Properties of solids under the effect of high temperature and pressure- NaCI as an example

Size: px
Start display at page:

Download "Properties of solids under the effect of high temperature and pressure- NaCI as an example"

Transcription

1 ndian Journal of Pure & Applied Physics Vol. 4, March 21, pp Properties of solids under the effect of high temperature and pressure- NaC as an example Munish Kumar Department of Physics, SRMS College of Engineering and Technology, Bareilly ( munish_dixit@yahoo.com) Received 5 September 2, accepted 22 December 2 A simple theoretical method is used to investigate the properties of solids nder varying conditions of temperature and pressure. The case of NaC is discussed as an example for the entire range of temperature and pressure, viz. from room temperature up to the melting temperature ( K) at the pressures varying from atmospheric pressure (referred as P = ) up to the structural transition pressure (P = 3 GPa). The results obtained for the temperature dependence of thermal expansivity are compared with those based on the widely used Suzuki equation. The results of the pressure dependence of thermal expansivity are compared with Anderson-Masuda rel ation. The results of Wang and Reeber [Phys Chem Miner, 23 (1996) 354] are also included for the sake of comparison. The good agreement with the avai lable theoretical as well as experimental data, supports the simple method used in the present paper. 1 ntroduction Kuswaha & Shanker 1 have compiled the methods reported by earlier workers for the determination of thermal expansivity. Such efforts may be used to study the isobaric (P = ) thermal expansion. Suzuki et at. 2 found what became known as the Suzuki equation, which yield the change in volume VV as a function of temperature T along the P = isobar. The detailed analysis of Suzuki equation is available elsewhere 2-4 and the mathematical form reads as follows: [ K - (1-4 KE Th Q ) 112 ] 2Ka... ( ) where K = (8' - 1)12 and Q = B V,[f. Bo, B'o are the isothermal bulk modulus and its first order pressure derivative, respectively, Yo is the Gruneisen ratio. The subscript refers to their value at P = and T = 3 K. ETh is the thermal energy, a equal to one, as discussed in detail by Anderson 3. Using the relation (YoETJV ) = PTh where PTh is the thermal pressure, Eq. () may be rewritten as follows: ~ - = - [ - { 2( B -1 ) B } p Th ] 12 V (B' -1)... (2) Eq. (2) may be used to determine isobaric (P = ) variation of VV versus T or the coefficient of volume thermal expansion a(7). The analytical expression for a(7) found by the differentiation of Eq. () is quite complicated. Therefore, the method of numerical differentiation has been suggested 3. Anderson 3 has discussed the limit of Suzuki equation for its applicability at high temperatures. t has been discussed 3 that it yields imaginary results for NaC at T > 736 K, and therefore not capable of explaining the thermal expansivity of NaC at P = isobar. Anderson & Masuda 5 have developed another method for the determination of a under the effect of pressure P. The formula reads as follows:... (3) where n = VV and ~~ is the value of a at n = for each isotherm. 8-r is the value of &rct) at high T and P =, K = 1.5. The application of Eq. (3) needs the input parameters measured along the temperature axis at P=O. Thus the problem becomes much difficult when one tries to investigate the properties of solids under the varying conditions of P and T. Thus, it is legitimate and may be useful to propose some simple method. n the present paper, an effort is made in this direction by developing a simple method. The method needs the values of input parameters at zero pressure and room temperature to

2 KUMAR: PROPERTES OF SOLDS 23 investigate the behaviour of solids under the varying conditions of pressure and temperature. NaC is a widely studied inorganic compound, because of its simple structure, high melting temperature and structural transition pressure. For this solid a large amount of theoretical as well as experimental data are available. The author has therefore selected NaC for the present study, so that the results may be discussed in the light of earlier studies. 2 Method of Analysis To investigate the properties of solids under varying conditions of pressure and temperature, the theory of equation of state recently developed by Kumar & Bedi 6 is extended. The detailed analysis is available elsewhere and the mathematical form reads as follows: l -=1--n V [ +-{P-a A B (T -T ) }...(4) V A B where P is the pressure, T the temperature and A = (8 T+ ), refers to the value at room temperature and atmospheric pressure. The coefficient of thermal expansion a is defined as a = (V)(dVdT)r. Therefore, from Eq. (4) one can get: a [ 1 AP, - = l--n{ Aa (T -T ) }f a A B { 1 + AP-Aa (T-Tr ) r' B o o -= B [ 1--n{l ArL(T-Tr)}] AP fii. A Bo --u o AP { 1+--An-(T -Tr)} B --u o... (5)... (6) The Anderson-Gruneisen parameter ~ is defined as: 8-1 (dbt J T-- abt dt )P Therefore, from Eq. (6) one can get: 3 Application Results and Discussion... (7) By making use of Eq. (4), the values of VV are investigated as a function of temperature along different isobars and reported in Fig.. The input data 3 are ~= 11.8 X o S K'' Bo = 24 GPa, 8 \ = 5.56 and 8 11 = Using the PTh values from Anderson, the values of VV at different T values are computed from Suzuki relation [Eq. (2)] at P = isobar. These results are reported in Fig. along with the results reported by Anderson 3, and Wang & ReeberR. Most of the results obtained are available up to 7 K. The author, therefore selected 7 K as a comparison point and data for VV are reported in Table. The results obtained in the present work are very close to the results reported by Anderson 3, and Wang & ReeberR. The results obtained by Suzuki formula are slightly low. At higher temperatures, the available data of Wang & ReeberR are used for comparison; a good agreement is obtained (Fig. 1). This demonstrates the effect of pressure on thermal expansion. t is found that thermal expansion is effected by pressure and it decreases as pressure is increased. Moreover, the isobar of P = 3 GPa is almost parallel to the temperature axis. This shows that at high pressure, the effect of temperature ts cancelled by the effect of pressure. Table -Comparison of VV at T = 7 K reported by earlier workers Reported by Anderson 3 Wang and ReeberR Suzuki Formula (Eq. 2) Present work (Eq. 4) VN The values of a calculated using Eq. (5) are reported in Figs 2 and 3 for the entire range of P and T. The results of a as a function of P and T reported by Wang & ReeberR are also given for the sake of comparison. The calculated values of a at P =, are found to lie between the two sets of the results reported by Wang & Reeber and Anderson 3 up to 6 K. Above 6 K, the calculated values of a are found to have a more rapid increase with the values of Wang & ReeberR, but this difference becomes very small as P is increased. This rapid increase of a with Tat P =, near melting temperature is

3 24 NDAN 1 PURE & APPL PHYS, VOL 4, MARCH 22 l.2.-- j~------~r ~ ~ ;e FP~-~D~GPa ~-Q ~ ~ P SGPa. 8 ~ ~ P - OGPa ~ ~P~Q~2GPa ~ FV3UGPa V/Vo Wang and Rceber 8.Andere on ' Suxull<1 for:rnula [ E q. C 21 ) - P resen t iudy Eq. ( 4 l ].2 t-- ol j L ~ ~------~L ~ _J Fig. -- Variation of V/V with temperature at diffe rent pressures ll ~ "-' 1j Wang and Reeber 8 -Present Study [Eq.(5)) P 1G Pa P"-2GPa * 25 ' 2... /.. ~ 15 ll... "-'1 d ',..., Wang and 3 Reebe r 8 + Anderson Suzilkf fomula [Bq,(l)J. - Present Study [Bq. ( 5)) P OGPa ~ * ~ * 2 * * * *' * * * * ~--~--~----L----~--~----~~ 3 ~ lf 9 1 Fig. 2 - Variati on of c1 with temperature consistent with theories of melting of alkali halides as di scussed in detai l by Shanker & Kumar 9 showing that a~ oo at T ~ TM. Anderson and Masuda have reported Eq. (3) for the determination of a as a function of T) along different isotherms. Making the use oft) values reported by Birch 1, ~~ (T) from Suzuki relation, and 8\ (T) from Anderson 3, the values of a are obtained along different isotherms using Eq. (3). The results thus ;j; 5 Fig. 3 - O. L----'-----'--~----"-- ~ ' Variation of a with temperatu re at diffe rent pressures obtained are reported in Fig. 4 along with those obtained using Eq. (5) reported in the present work. A good agreement is found. Here, it is pertinent to mention that the use of Anderson-Masuda relation [Eq. (3)] needs the values of rt along the isotherm considered and &r. a measured as a function of temperature at P =, as input data. On the other hand, Eq. (5) needs the input data at room temperature T = 3 K and P =. Thus, the application of Eq. (5) is simple as compared with Eq. (3).

4 KUMAR: PROPERTES OF SOLDS Anderson-Masuda rela tfon[eq ( 3) Jl. Present study [Eq.(5)] :: Ln ' P (GPa)! Fig. 4-Variation of a with pressure at different temperatures + lang and 3 Reeber 8 Anderson - Present study [Rq.(6)] 16 14r r ~p~ ~3~G~Pa t2 -.. ~ rll 6... P 2GPa Pa!OGPa. BOO 9 1 Fig. 5- Variation of bul k modulus with temperature at di fferent pressures The calculated values of bulk modulus as a function of T at different P using Eq. (6) are reported in Fig. 5. Anderson 3, Wang & ReeberR have 7 * P OGPa _.,_ 6it:=:Z=~=:j*t:::!*::~====~~ ~~~~~~a~ 5 Pt..5G!a ~ ~P~ OGPa.. 4 P 2GPa 2: Fig lang and 3 Reeber Anderson -Present Study [Hq.(7)] ~--~--L---~--~---L---L--~ T(K) Variation of &r with temperature at different pressures reported the variation of bulk modulus under the effect of temperature at P =. These results are al so included in Fig. 5 for the sake of compari son. A good agreement is obtained. The bulk modulus is found to decrease by increasing temperature and it

5 26 NDAN J PURE & APPL PHYS, VOL 4, MARCH 22 increases with increasing pressure. The decreasing behaviour of bulk n1odulus with increasing temperature is found to be less as the pressure increases. Al ong the hi ghest pressure isobar (P = 3 GPa) the percentage decrease the bulk modulus fro m 3 to K is found to be 4.58 %, which is very small as compared with the percentage decrease ( 48.8 % ), along P = isobar. Thus it seems that at hi gh temperatures, the effect of temperature is cancelled by the effect of pressure. The relati on investi gated fo r 8-r as a functi on of P and T [Eq. (7)] is used to predict the values of 8-r for the entire range of P and T. The results obtained are reported in Fi g. 6. The temperature dependence of 8T at P = is compared with the results reported by earl ier workersj.r. At most of the temperatures, the author's predicted values lie in between the two sets of resulth. 8-r is found to decrease by increasing pressure, which is consistent with the recent research in hi gh-pressure physics as di scussed in detail by Anderson 3 To summari se, the author has presented a simple method based on the knowledge of equation of state to in vesti gate the properties of solids under varying conditions of pressures and temperatures. A good agreement with the available theoretical as well as experimental data supports the validity of the simple method. The studies have been presented fo r the entire range of pressure and temperature even in the absence of experimental or theoretical data. Such an analys is may be useful fo r those engaged in the research at high pressures and high temperatures. References Kush wah S S & Shanker J, Phvsica 8, 225 ( 1996) Suzuki, Okaj ima S & Seya K, J Phys Earth, 27 ( 1979) Anderson L, Equation of state for geophysics and ceramic science (Oxford Un iversi ty Pr ss, Oxford), Anderson L, Mas uda K & Guo D, Phys Earth & Plane/a/)' n teriors, 89 ( 1995) Anderson L & Masuda K, Phys t -:arth & Planetary nteriors, 85 ( 1994) Kumar M & Bedi S S, Phys Status Solidi (b), 196 ( 1996) Kumar M, Physica 8, 2 12 ( 1995) 39 1; ( 1996) Wang K & Reeber R R, Phys Chem Miner, 23 ( 1996) Shanker J & Kumar M, Phys Status Solidi (b), 158 ( 199). Birch F, J Geophys Res, 9 1 ( 1986) 49.

Analysis of volume expansion data for periclase, lime, corundum and spinel at high temperatures

Analysis of volume expansion data for periclase, lime, corundum and spinel at high temperatures Bull. Mater. Sci., ol. 35, No., August, pp. 31 37. c Indian Academy of Sciences. Analysis of volume expansion data for periclase, lime, corundum and spinel at high temperatures BPSINGH, H CHANDRA, R SHYAM

More information

Pressure Volume Temperature (P-V-T) Relationships and Thermo elastic Properties of Geophysical Minerals

Pressure Volume Temperature (P-V-T) Relationships and Thermo elastic Properties of Geophysical Minerals Pressure Volume Temperature (P-V-T) Relationships and Thermo elastic Properties of Geophysical Minerals A PROPOSAL FOR Ph.D PROGRAMME BY MONIKA PANWAR UNDER THE SUPERVISION OF DR SANJAY PANWAR ASSISTANT

More information

Volume Thermal Expansion for Ionic Solids at High Temperatures

Volume Thermal Expansion for Ionic Solids at High Temperatures International Journal of Engineering and Mathematical Sciences Jan.- June 1, olume 1, Issue -1, pp.7- ISSN (rint) 19-457, (Online) 19-4545. All rights reserved (www.ijems.org) IJEMS olume hermal Expansion

More information

Canadian Journal of Physics. Higher Order derivatives of bulk modulus of materials at infinite pressure

Canadian Journal of Physics. Higher Order derivatives of bulk modulus of materials at infinite pressure Higher Order derivatives of bulk modulus of materials at infinite pressure Journal: Manuscript ID cjp-015-0699.r Manuscript Type: Article Date Submitted by the Author: 0-Apr-016 Complete List of Authors:

More information

Evaluation of pressure and bulk modulus for alkali halides under high pressure and temperature using different EOS

Evaluation of pressure and bulk modulus for alkali halides under high pressure and temperature using different EOS Journal of the Association of Arab Uniersities for Basic and Applied Sciences (3) 4, 38 45 Uniersity of Bahrain Journal of the Association of Arab Uniersities for Basic and Applied Sciences www.elseier.com/locate/jaaubas

More information

Temperature dependent study of volume and thermal expansivity of solids based on equation of state

Temperature dependent study of volume and thermal expansivity of solids based on equation of state Indian Journal of Pure & Applied Physics ol. 47, August 009, pp. 59-596 emperature dependent study of volume and ermal expansivity of solids based on equation of state Kamal Kapoor & Narsingh Dass Physics

More information

EMPORIUM H O W I T W O R K S F I R S T T H I N G S F I R S T, Y O U N E E D T O R E G I S T E R.

EMPORIUM H O W I T W O R K S F I R S T T H I N G S F I R S T, Y O U N E E D T O R E G I S T E R. H O W I T W O R K S F I R S T T H I N G S F I R S T, Y O U N E E D T O R E G I S T E R I n o r d e r t o b u y a n y i t e m s, y o u w i l l n e e d t o r e g i s t e r o n t h e s i t e. T h i s i s

More information

EOS-FIT V6.0 R.J. ANGEL

EOS-FIT V6.0 R.J. ANGEL EOS-FIT V6. R.J. AGEL Crystallography Laboratory, Dept. Geological Sciences, Virginia Tech, Blacksburg, VA46, USA http://www.geol.vt.edu/profs/rja/ ITRODUCTIO EosFit started as a program to fit equations

More information

Impact of size and temperature on thermal expansion of nanomaterials

Impact of size and temperature on thermal expansion of nanomaterials PRAMANA c Indian Academy of Sciences Vol. 84, No. 4 journal of April 205 physics pp. 609 69 Impact of size and temperature on thermal expansion of nanomaterials MADAN SINGH, and MAHIPAL SINGH 2 Department

More information

Melting Temperature of Lithium, Sodium and Potassium at High Pressures

Melting Temperature of Lithium, Sodium and Potassium at High Pressures International Journal of Applied Science and Technology Vol. No. 4; April 1 Melting Teperature of Lithiu, Sodiu and Potassiu at High Pressures Chuanhui Nie Shangyong Huang Wei Huang School of Science,

More information

NEW RELATION BETWEEN VOLUME THERMAL EXPANSION AND THERMAL PRESSURE FOR SOLIDS

NEW RELATION BETWEEN VOLUME THERMAL EXPANSION AND THERMAL PRESSURE FOR SOLIDS NEW RELATION BETWEEN VOLUME THERMAL EXANSION AND THERMAL RESSURE FOR SOLIDS Sumiti Narayan Tewari 1, Anita Shukla 1, Department of hysics, ranveer Singh Institute of Technology, Bhauti, Kanpur 8 U.. (India)

More information

Pressure derivatives of bulk modulus for materials at extreme compression

Pressure derivatives of bulk modulus for materials at extreme compression Indian Journal o ure & Applied hysics Vol. 5, October, pp. 734-738 ressure derivatives o bulk modulus or materials at extreme compression Singh* & A Dwivedi Department o hysics, Institute o Basic Sciences,

More information

COMPARATIVE ANALYSIS OF THERMO-ELASTIC PROPERTIES OF ZINC OXIDE NANOMATERIALS AT HIGH TEMPERATURES

COMPARATIVE ANALYSIS OF THERMO-ELASTIC PROPERTIES OF ZINC OXIDE NANOMATERIALS AT HIGH TEMPERATURES http:// COMPARATIVE ANALYSIS OF THERMO-ELASTIC PROPERTIES OF ZINC OXIDE NANOMATERIALS AT HIGH TEMPERATURES Krishna Chandra 1, Mahipal Singh2, Luv Kush3 and Madan Singh4 1,2,3 Department of Physics, R.H.

More information

American International Journal of Research in Formal, Applied & Natural Sciences

American International Journal of Research in Formal, Applied & Natural Sciences American International Journal of Research in Formal, Applied & Natural Sciences Available online at http://www.iasir.net ISSN (Print): 2328-3777, ISSN (Online): 2328-3785, ISSN (CD-ROM): 2328-3793 AIJRFANS

More information

Estimation of diffusion coefficients of Cr 3+ Ga 3+ in MgO at temperatures of the Earth s lower mantle.

Estimation of diffusion coefficients of Cr 3+ Ga 3+ in MgO at temperatures of the Earth s lower mantle. International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 1 Estimation of diffusion coefficients of Cr 3+ Ga 3+ in MgO at temperatures of the Earth s lower mantle. and

More information

Melting of Li, K, Rb and Cs at high pressure

Melting of Li, K, Rb and Cs at high pressure Melting of Li, K, Rb and Cs at high pressure R N Singh and S Arafin Abstract Lindemann s melting law has been used to develop analytical expression to determine the pressure (P) dependence of the melting

More information

Pressure Volume Temperature Equation of State

Pressure Volume Temperature Equation of State Pressure Volume Temperature Equation of State S.-H. Dan Shim ( ) Acknowledgement: NSF-CSEDI, NSF-FESD, NSF-EAR, NASA-NExSS, Keck Equations relating state variables (pressure, temperature, volume, or energy).

More information

Thermophysical Properties from the Equation of State of Mason and Co-workers ~

Thermophysical Properties from the Equation of State of Mason and Co-workers ~ hlternational Journal of Tlwrmophysic.~ ~. I.'ol. IA', No. 4. 1997 Thermophysical Properties from the Equation of State of Mason and Co-workers ~ A. Boushehri 2" 3 and H. Eslami 2 The theory gives formuhts

More information

Thermodynamical properties of neutron matter using Gogny effective interaction

Thermodynamical properties of neutron matter using Gogny effective interaction Indian Journal of Pure & Applied Physics Vol. 4 1, September 2003, pp. 675-680 Thermodynamical properties of neutron matter using Gogny effective interaction Kh A Ramadan & H M M Mansour Physics Department,

More information

Frequency and Composition Dependence on the Dielectric Properties for Mg-Zn Ferrite.

Frequency and Composition Dependence on the Dielectric Properties for Mg-Zn Ferrite. Egypt. J. Solids, Vol. (28), No. (2), (2005) 263 Frequency and Composition Dependence on the Dielectric Properties for Mg-Zn Ferrite. S. F. Mansour Zagazig University, Faculty of Science, Physics Department

More information

Higher Order Elastic Constants of Thorium Monochalcogenides

Higher Order Elastic Constants of Thorium Monochalcogenides Bulg. J. Phys. 37 (2010) 115 122 Higher Order Elastic Constants of Thorium Monochalcogenides K.M. Raju Department of Physics, Brahmanand P.G. College, Rath (Hamirpur), Uttar Pradesh, 210 431, India Received

More information

The calculation of ternary miscibility gaps using the linear contributions method: Problems, benchmark systems and an application to (K, Li, Na)Br

The calculation of ternary miscibility gaps using the linear contributions method: Problems, benchmark systems and an application to (K, Li, Na)Br Computer Coupling of Phase Diagrams and Thermochemistry 30 (2006) 185 190 www.elsevier.com/locate/calphad The calculation of ternary miscibility gaps using the linear contributions method: Problems, benchmark

More information

Thermodynamic Functions at Isobaric Process of van der Waals Gases

Thermodynamic Functions at Isobaric Process of van der Waals Gases Thermodynamic Functions at Isobaric Process of van der Waals Gases Akira Matsumoto Department of Material Sciences, College of Integrated Arts Sciences, Osaka Prefecture University, Sakai, Osaka, 599-853,

More information

Two Universal Equations of State for Solids

Two Universal Equations of State for Solids Two Universal Equations of State for Solids Jiu-Xun Sun a,b,qiangwu b,yangguo a, and Ling-Cang Cai b a Department of Applied Physics, University of Electronic Science and Technology, Chengdu 610054, China

More information

CORRELATION BETWEEN STANDARD ENTHALPY OF FORMATION AND REFRACTIVE INDEX IN ALKALI HALIDES

CORRELATION BETWEEN STANDARD ENTHALPY OF FORMATION AND REFRACTIVE INDEX IN ALKALI HALIDES Int. J. Chem. Sci.: 7(4), 2009, 2489-2494 CORRELATION BETWEEN STANDARD ENTHALPY OF FORMATION AND REFRACTIVE INDEX IN ALKALI HALIDES A. NASAR * P. G. Department of Chemistry, Shibli National College, AZAMGARH

More information

Physical Chemistry I CHEM 4641 Final Exam 13 questions, 30 points

Physical Chemistry I CHEM 4641 Final Exam 13 questions, 30 points Physical Chemistry I CHEM 4641 Final Exam 13 questions, 30 points Name: KEY Gas constant: R = 8.314 J mol -1 K -1 = 0.008314 kj mol -1 K -1. Boltzmann constant k = 1.381 10-23 J/K = 0.6950 cm -1 /K h =

More information

FURTHER MEYER-NELDEL RULE IN a-se 70 Te 30-x Zn x THIN FILMS

FURTHER MEYER-NELDEL RULE IN a-se 70 Te 30-x Zn x THIN FILMS Journal of Ovonic Research Vol. 5, No. 5, October 009, p. 15-1 FURTHER MEYER-NELDEL RULE IN a-se 70 Te 0-x Zn x THIN FILMS R. K. PAL, A. K. AGNIHOTRI, P. K. DWIVEDI a, A. KUMAR b* Physics Department, B.

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

THERMOPHYSICAL PROPERTIES OF THORIUM COMPOUNDS FROM FIRST PRINCIPLES

THERMOPHYSICAL PROPERTIES OF THORIUM COMPOUNDS FROM FIRST PRINCIPLES THERMOPHYSICAL PROPERTIES OF THORIUM COMPOUNDS FROM FIRST PRINCIPLES Vinayak Mishra a,* and Shashank Chaturvedi a a Computational Analysis Division, Bhabha Atomic Research Centre, Visakhapatnam 530012,

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

Hardness Prediction and First Principle Study of Re-123(Re = Y, Eu, Pr, Gd) Superconductors

Hardness Prediction and First Principle Study of Re-123(Re = Y, Eu, Pr, Gd) Superconductors 316 Bull. Korean Chem. Soc. 29, Vol. 3, No. 12 Weiwei Liu et al. DOI 1.512/bkcs.29.3.12.316 Hardness Prediction and First Principle Study of Re-123(Re = Y, Eu, Pr, Gd Superconductors Weiwei Liu,, Y. P.

More information

1 What is a differential equation

1 What is a differential equation Math 10B - Calculus by Hughes-Hallett, et al. Chapter 11 - Differential Equations Prepared by Jason Gaddis 1 What is a differential equation Remark 1.1. We have seen basic differential equations already

More information

Temperature and pressure dependence of the Raman frequency shifts in anthracene

Temperature and pressure dependence of the Raman frequency shifts in anthracene Indian Journal of Pure & Applied Physics Vol. 54, August 2016, pp. 489-494 Temperature and pressure dependence of the Raman frequency shifts in anthracene H Özdemir & H Yurtseven* Department of Physics,

More information

A simple model for calculating the bulk modulus of the mixed ionic crystal: NH 4 Cl 1 x Br x

A simple model for calculating the bulk modulus of the mixed ionic crystal: NH 4 Cl 1 x Br x PRAMANA c Indian Academy of Sciences Vol. 77, No. 4 journal of October 2011 physics pp. 689 695 A simple model for calculating the bulk modulus of the mixed ionic crystal: NH 4 Cl 1 x Br x VASSILIKI KATSIKA-TSIGOURAKOU

More information

Seismic velocity decrement ratios for regions of partial melt near the core-mantle boundary

Seismic velocity decrement ratios for regions of partial melt near the core-mantle boundary Stanford Exploration Project, Report 02, October 25, 999, pages 87 20 Seismic velocity decrement ratios for regions of partial melt near the core-mantle boundary James G. Berryman keywords: poroelasticity,

More information

Scholars Research Library

Scholars Research Library Available online at www.scholarsresearchlibrary.com Archives of Physics Research, 2015, 6 (5):5-10 (http://scholarsresearchlibrary.com/archive.html) ISSN : 0976-0970 CODEN (USA): APRRC7 The determination

More information

An ion-aerosol model study for the stratospheric conductivity under enhanced aerosol condition

An ion-aerosol model study for the stratospheric conductivity under enhanced aerosol condition Indian Journal of Radio & Space Physics Vol., February 2001, pp. 31-35 An ion-aerosol model study for the stratospheric conductivity under enhanced aerosol condition N Srinivas, B S N Prasad & K Nagaraja

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

UNCLASSIFIED Reptoduced. if ike ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA UNCLASSIFIED

UNCLASSIFIED Reptoduced. if ike ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA UNCLASSIFIED . UNCLASSIFIED. 273207 Reptoduced if ike ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA UNCLASSIFIED NOTICE: When government or other drawings, specifications

More information

Free Convective Heat Transfer From A Vertical Surface For The Case Of Linearly Varying Thermal Potential

Free Convective Heat Transfer From A Vertical Surface For The Case Of Linearly Varying Thermal Potential American Journal of Engineering Research (AJER) e-issn : 232-847 p-issn : 232-936 Volume-2, Issue-9, pp-71-75 www.ajer.org Research Paper Open Access Free Convective Heat Transfer From A Vertical Surface

More information

BCIT Fall Chem Exam #2

BCIT Fall Chem Exam #2 BCIT Fall 2017 Chem 3310 Exam #2 Name: Attempt all questions in this exam. Read each question carefully and give a complete answer in the space provided. Part marks given for wrong answers with partially

More information

THIS PAGE DECLASSIFIED IAW EO IRIS u blic Record. Key I fo mation. Ma n: AIR MATERIEL COMM ND. Adm ni trative Mar ings.

THIS PAGE DECLASSIFIED IAW EO IRIS u blic Record. Key I fo mation. Ma n: AIR MATERIEL COMM ND. Adm ni trative Mar ings. T H S PA G E D E CLA SSFED AW E O 2958 RS u blc Recod Key fo maon Ma n AR MATEREL COMM ND D cumen Type Call N u b e 03 V 7 Rcvd Rel 98 / 0 ndexe D 38 Eneed Dae RS l umbe 0 0 4 2 3 5 6 C D QC d Dac A cesson

More information

Ab initio Predictions of Structural and Thermodynamic Properties of Zr 2 AlC Under High Pressure and High Temperature

Ab initio Predictions of Structural and Thermodynamic Properties of Zr 2 AlC Under High Pressure and High Temperature CHINESE JOURNAL OF CHEMICAL PHYSICS VOLUME 28, NUMBER 3 JUNE 27, 215 ARTICLE Ab initio Predictions of Structural and Thermodynamic Properties of Zr 2 AlC Under High Pressure and High Temperature Fen Luo

More information

Volume dependence of the Grüneisen ratio for shock-wave equation-of-state studies

Volume dependence of the Grüneisen ratio for shock-wave equation-of-state studies Volume dependence of the Grüneisen ratio for shock-wave equation-of-state studies arxiv:140041v1 [cond-mat.mtrl-sci] 6 Jan 014 Valentin Gospodinov Space Research and Technology Institute BAS BG-1000, Sofia,

More information

Mean spherical model-structure of liquid argon

Mean spherical model-structure of liquid argon Prami0a, Vol. 6, No 5, 1976, pp. 284-290. Printed in ndia. Mean spherical model-structure of liquid argon R V GOPALA RAO and T NAMMALVAR Department of Physical Chemistry, Jadavpur University, Calcutta

More information

Peculiarities of first-order phase transitions in the presence of an electric field

Peculiarities of first-order phase transitions in the presence of an electric field Peculiarities of first-order phase transitions in the presence of an electric field Yu. Dolinsky* and T. Elperin The Pearlstone Center for Aeronautical Engineering Studies Department of Mechanical Engineering

More information

The first law of thermodynamics continued

The first law of thermodynamics continued Lecture 7 The first law of thermodynamics continued Pre-reading: 19.5 Where we are The pressure p, volume V, and temperature T are related by an equation of state. For an ideal gas, pv = nrt = NkT For

More information

Pressure-dependent viscosity and free volume of activation in hydrocarbons and other liquids

Pressure-dependent viscosity and free volume of activation in hydrocarbons and other liquids International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN : 0974-4290 Vol.6, No.14, pp 5503-5509, Nov-Dec 2014 Pressure-dependent viscosity and free volume of activation in hydrocarbons and other

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

Porosity dependence of Elastic Modulii for Ceramic Materials

Porosity dependence of Elastic Modulii for Ceramic Materials ISSN 394 3386 Volume 4, Issue 1 December 017 Porosity dependence of Elastic Modulii for Ceramic Materials R. K. Sharma a *, A.K.Upadhyay b & S. B. Sharma c a Department of Physics, B.S.A. College of Engg.

More information

Mechanisms inherent in the thermoluminescence processes

Mechanisms inherent in the thermoluminescence processes Indian Journal of Pure & Applied Physics Vol. 42, August 2004, pp 565-571 Mechanisms inherent in the thermoluminescence processes J Prakash, S K Rai, P K Singh & H O Gupta Department of Physics, D D U

More information

Speeds of sound and isothermal compressibility of ternary liquid systems: Application of Flory s statistical theory and hard sphere models

Speeds of sound and isothermal compressibility of ternary liquid systems: Application of Flory s statistical theory and hard sphere models PRAMANA c Indian Academy of Sciences Vol. 70, No. 4 journal of April 2008 physics pp. 731 738 Speeds of sound and isothermal compressibility of ternary liquid systems: Application of Flory s statistical

More information

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9 OH BOY! O h Boy!, was or igin a lly cr eat ed in F r en ch an d was a m a jor s u cc ess on t h e Fr en ch st a ge f or young au di enc es. It h a s b een s een by ap pr ox i ma t ely 175,000 sp ect at

More information

Physics 141. Lecture 24.

Physics 141. Lecture 24. Physics 141. Lecture 24. 0.5 µm particles in water, 50/50 glycerol-water, 75/25 glycerol-water, glycerol http://www.physics.emory.edu/~weeks/squishy/brownianmotionlab.html Frank L. H. Wolfs Department

More information

Thermodynamics of Three-phase Equilibrium in Lennard Jones System with a Simplified Equation of State

Thermodynamics of Three-phase Equilibrium in Lennard Jones System with a Simplified Equation of State 23 Bulletin of Research Center for Computing and Multimedia Studies, Hosei University, 28 (2014) Thermodynamics of Three-phase Equilibrium in Lennard Jones System with a Simplified Equation of State Yosuke

More information

W2 = N (I + Pp + Qp2)

W2 = N (I + Pp + Qp2) Physics. - Measurements about the velocity of sound in hydrogen gas at liquid hydrogen temperatures. By A. VAN TTERBE EK and W. H. KEESOM. (Communication N0. 216c from the Physical Laboratory at Leiden).

More information

Energy: 1. Energy is an abstract physical quantity 2. It can be measured only by means of its effect Vikasana - Bridge Course

Energy: 1. Energy is an abstract physical quantity 2. It can be measured only by means of its effect Vikasana - Bridge Course BASICS OF THERMODYNAMICS Vikasana - Bridge Course 2012 1 Energy: 1. Energy is an abstract physical quantity 2. It can be measured only by means of its effect Vikasana - Bridge Course 2012 2 HEAT Heat is

More information

Strong light matter coupling in two-dimensional atomic crystals

Strong light matter coupling in two-dimensional atomic crystals SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.2014.304 Strong light matter coupling in two-dimensional atomic crystals Xiaoze Liu 1, 2, Tal Galfsky 1, 2, Zheng Sun 1, 2, Fengnian Xia 3, Erh-chen Lin 4,

More information

Chapter 8 Phase Diagram, Relative Stability of Solid, Liquid, and Gas

Chapter 8 Phase Diagram, Relative Stability of Solid, Liquid, and Gas Chapter 8 Phase Diagram, Relative Stability of Solid, Liquid, and Gas Three states of matter: solid, liquid, gas (plasma) At low T: Solid is most stable. At high T: liquid or gas is most stable. Ex: Most

More information

Thermal dehydration and degradation kinetics of chitosan Schiff bases of o- and m nitrobenzaldehyde Muraleedharan K.* & Viswalekshmi C.H.

Thermal dehydration and degradation kinetics of chitosan Schiff bases of o- and m nitrobenzaldehyde Muraleedharan K.* & Viswalekshmi C.H. 2017 St. Joseph s College (Autonomous), Devagiri www.devagirijournals.com ISSN 2454-2091 Thermal dehydration and degradation kinetics of chitosan Schiff bases of o- and m nitrobenzaldehyde Muraleedharan

More information

Department of Physics, Anna University, Sardar Patel Road, Guindy, Chennai -25, India.

Department of Physics, Anna University, Sardar Patel Road, Guindy, Chennai -25, India. Advanced Materials Research Online: 2013-02-13 ISSN: 1662-8985, Vol. 665, pp 43-48 doi:10.4028/www.scientific.net/amr.665.43 2013 Trans Tech Publications, Switzerland Electronic Structure and Ground State

More information

dg = V dp - S dt (1.1) 2) There are two T ds equations that are useful in the analysis of thermodynamic systems. The first of these

dg = V dp - S dt (1.1) 2) There are two T ds equations that are useful in the analysis of thermodynamic systems. The first of these CHM 3410 Problem Set 5 Due date: Wednesday, October 7 th Do all of the following problems. Show your work. "Entropy never sleeps." - Anonymous 1) Starting with the relationship dg = V dp - S dt (1.1) derive

More information

IMPROVEMENT OF AN APPROXIMATE SET OF LATENT ROOTS AND MODAL COLUMNS OF A MATRIX BY METHODS AKIN TO THOSE OF CLASSICAL PERTURBATION THEORY

IMPROVEMENT OF AN APPROXIMATE SET OF LATENT ROOTS AND MODAL COLUMNS OF A MATRIX BY METHODS AKIN TO THOSE OF CLASSICAL PERTURBATION THEORY IMPROVEMENT OF AN APPROXIMATE SET OF LATENT ROOTS AND MODAL COLUMNS OF A MATRIX BY METHODS AKIN TO THOSE OF CLASSICAL PERTURBATION THEORY By H. A. JAHN {University of Birmingham) [Received 7 October 947]

More information

Physics 141. Lecture 24. December 5 th. An important day in the Netherlands. Physics 141. Lecture 24. Course Information. Quiz

Physics 141. Lecture 24. December 5 th. An important day in the Netherlands. Physics 141. Lecture 24. Course Information. Quiz Physics 141. Lecture 24. 0.5 µm particles in water, 50/50 glycerol-water, 75/25 glycerol-water, glycerol http://www.physics.emory.edu/~weeks/squishy/brownianmotionlab.html Frank L. H. Wolfs Department

More information

1. NMR Spectrum of the prepared energetic salts. Figure S1. 1 H NMR spectrum of diammonium BNOA (6)

1. NMR Spectrum of the prepared energetic salts. Figure S1. 1 H NMR spectrum of diammonium BNOA (6) Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 1. MR Spectrum of the prepared energetic salts Figure S1. 1 H MR spectrum of diammonium

More information

B.K. Singh et al./ BIBECHANA 14 (2017) : RCOST p.16 (Online Publication: Dec., 2016)

B.K. Singh et al./ BIBECHANA 14 (2017) : RCOST p.16 (Online Publication: Dec., 2016) B.K. Singh et al./ BIBECHANA 14 (2017) 16-29 : RCOST p.16 (Online Publication: Dec., 2016) BIBECHANA A Multidisciplinary Journal of Science, Technology and Mathematics ISSN 2091-0762 (Print), 2382-5340

More information

Properties of calcium fluoride up to 95 kbar: A theoretical study

Properties of calcium fluoride up to 95 kbar: A theoretical study Bull. Mater. Sci., Vol. 33, No. 4, August 2010, pp. 413 418. Indian Academy of Sciences. Properties of calcium fluoride up to 95 kbar: A theoretical study CHUN-SHENG WANG School of Traffic and Transportation,

More information

Unified analyses for P-V-T equation of state of MgO: A solution for pressure-scale problems in high P-T experiments

Unified analyses for P-V-T equation of state of MgO: A solution for pressure-scale problems in high P-T experiments JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2008jb005813, 2009 Unified analyses for P-V-T equation of state of MgO: A solution for pressure-scale problems in high P-T experiments Yoshinori

More information

Equations of State. Tiziana Boffa Ballaran

Equations of State. Tiziana Boffa Ballaran Equations o State iziana Boa Ballaran Why EoS? he Earth s interior is divided globally into layers having distinct seismic properties Speed with which body waves travel through the Earth s interior are

More information

Department of Physics, Kyoto University Kyoto

Department of Physics, Kyoto University Kyoto 29 Progress of Theoretical Physics, Vol. :12, No. 1, July 1964 Pauli Para.mag:netism and Superconducting State. II Kazumi MAKI*) Department of Physics, Kyoto University Kyoto (Received March 11, 1964)

More information

LATTICE DYNAMICS OF METALLIC GLASS M.M. SHUKLA

LATTICE DYNAMICS OF METALLIC GLASS M.M. SHUKLA Vol. 94 (1998) ACTA PHYSICA POLONICA A No. 4 LATTICE DYNAMICS OF METALLIC GLASS Ca70 Μg30 ON THE MODEL OF BHATIA AND SINGH M.M. SHUKLA Departamento de Fisica, UNESP, Bauru, C.P. 473, 17033-360, Bauru,

More information

OCN 623: Thermodynamic Laws & Gibbs Free Energy. or how to predict chemical reactions without doing experiments

OCN 623: Thermodynamic Laws & Gibbs Free Energy. or how to predict chemical reactions without doing experiments OCN 623: Thermodynamic Laws & Gibbs Free Energy or how to predict chemical reactions without doing experiments Definitions Extensive properties Depend on the amount of material e.g. # of moles, mass or

More information

Using the Entropy Rate Balance to Determine the Heat Transfer and Work in an Internally Reversible, Polytropic, Steady State Flow Process

Using the Entropy Rate Balance to Determine the Heat Transfer and Work in an Internally Reversible, Polytropic, Steady State Flow Process Undergraduate Journal of Mathematical Modeling: One + Two Volume 8 08 Spring 08 Issue Article Using the Entropy Rate Balance to Determine the Heat Transfer and Work in an Internally Reversible, Polytropic,

More information

PHY214 Thermal & Kinetic Physics Duration: 2 hours 30 minutes

PHY214 Thermal & Kinetic Physics Duration: 2 hours 30 minutes BSc Examination by course unit. Friday 5th May 01 10:00 1:30 PHY14 Thermal & Kinetic Physics Duration: hours 30 minutes YOU ARE NOT PERMITTED TO READ THE CONTENTS OF THIS QUESTION PAPER UNTIL INSTRUCTED

More information

Data for Titan, a moon of Saturn, is given below, and may be used to answer problems 1 and 2.

Data for Titan, a moon of Saturn, is given below, and may be used to answer problems 1 and 2. CHM 5423 Atmospheric Chemistry Problem Set 1 Due date: Thursday, September 10 th. Do the following problems. Show your work. Data for Titan, a moon of Saturn, is given below, and may be used to answer

More information

E21-3 (a) We ll assume that the new temperature scale is related to the Celsius scale by a linear. T S = mt C + b, (0) = m( C) + b.

E21-3 (a) We ll assume that the new temperature scale is related to the Celsius scale by a linear. T S = mt C + b, (0) = m( C) + b. E1-1 (a) We ll assume that the new temperature scale is related to the Celsius scale by a linear transformation; then T S = mt C + b, where m and b are constants to be determined, T S is the temperature

More information

Introduction into thermodynamics

Introduction into thermodynamics Introduction into thermodynamics Solid-state thermodynamics, J. Majzlan Chemical thermodynamics deals with reactions between substances and species. Mechanical thermodynamics, on the other hand, works

More information

Theoretical explanation of the uniform compressibility behavior observed in oxide spinels

Theoretical explanation of the uniform compressibility behavior observed in oxide spinels PHYSICAL REVIEW B, VOLUME 6, 184101 heoretical explanation of the uniform compressibility behavior observed in oxide spinels J. M. Recio, R. Franco, A. Martín Pendás, M. A. Blanco, and L. Pueyo Departamento

More information

Temperature effect on lyoluminescence of potassium halide microcrystals in luminol solution

Temperature effect on lyoluminescence of potassium halide microcrystals in luminol solution Indian Journal of Pure & Applied Physics Vol. 44, July 2006, pp. 519-523 Temperature effect on lyoluminescence of potassium halide microcrystals in luminol solution R S Chandok*, R Kaur**, G K Chandok

More information

Raman Studies on Functional Perovskite Oxides

Raman Studies on Functional Perovskite Oxides Raman Studies on Functional Perovskite Oxides Venkata S. Bhadram Postdoctoral Research Associate Geophysical Laboratory Carnegie Institution for Science Bangalore Jawaharlal Nehru Centre for Advanced Scientific

More information

PROCEEDINGS SECOND WORKSHOP GEOTHERMAL RESERVOIR ENGINEERING December 1-3,

PROCEEDINGS SECOND WORKSHOP GEOTHERMAL RESERVOIR ENGINEERING December 1-3, -- --- -- - -------- ---- - -- -- ------- -- - -- ---- SGP-TR-2-34 PROCEEDNGS SECOND WORKSHOP GEOTHERMAL RESERVOR ENGNEERNG December -3,976 976 'Conducted under Grant No. NSF-AER-72-349 supported by the

More information

Measurement of atomic number and mass attenuation coefficient in magnesium ferrite

Measurement of atomic number and mass attenuation coefficient in magnesium ferrite PRAMANA c Indian Academy of Sciences Vol. 68, No. 5 journal of May 2007 physics pp. 869 874 Measurement of atomic number and mass attenuation coefficient in magnesium ferrite R H KADAM 1,STALONE 2,GKBICHILE

More information

Problem Set 9 Solutions. (a) Using the guess that the value function for this problem depends only on y t and not ε t and takes the specific form

Problem Set 9 Solutions. (a) Using the guess that the value function for this problem depends only on y t and not ε t and takes the specific form EC 720 - Math for Economists Samson Alva Department of Economics, Boston College December 9, 20 roblem Set 9 Solutions. Stochastic Linear-Quadratic Dnamic rogramming (a) Using the guess that the value

More information

Dielectric studies and microwave emissivity of alkaline soil of Alwar with mixing of gypsum

Dielectric studies and microwave emissivity of alkaline soil of Alwar with mixing of gypsum Material Science Research India Vol. 7(2), 519-524 (2010) Dielectric studies and microwave emissivity of alkaline soil of Alwar with mixing of gypsum V.K. GUPTA*, R.A. JANGID and SEEMA YADAV Microwave

More information

On the local and nonlocal components of solvation thermodynamics and their relation to solvation shell models

On the local and nonlocal components of solvation thermodynamics and their relation to solvation shell models JOURNAL OF CHEMICAL PHYSICS VOLUME 109, NUMBER 12 22 SEPTEMBER 1998 On the local and nonlocal components of solvation thermodynamics and their relation to solvation shell models Nobuyuki Matubayasi Institute

More information

Week 1 Temperature, Heat and the First Law of Thermodynamics. (Ch. 19 of Serway&J.)

Week 1 Temperature, Heat and the First Law of Thermodynamics. (Ch. 19 of Serway&J.) Week 1 Temperature, Heat and the First Law of Thermodynamics. (Ch. 19 of Serway&J.) (Syllabus) Temperature Thermal Expansion Temperature and Heat Heat and Work The first Law Heat Transfer Temperature Thermodynamics:

More information

Thermal equation of state of (Mg 0.9 Fe 0.1 ) 2 SiO 4 olivine

Thermal equation of state of (Mg 0.9 Fe 0.1 ) 2 SiO 4 olivine Physics of the Earth and Planetary Interiors 157 (2006) 188 195 Thermal equation of state of (Mg 0.9 Fe 0.1 ) 2 SiO 4 olivine Wei Liu, Baosheng Li Mineral Physics Institute, Stony Brook University, Stony

More information

I-1. rei. o & A ;l{ o v(l) o t. e 6rf, \o. afl. 6rt {'il l'i. S o S S. l"l. \o a S lrh S \ S s l'l {a ra \o r' tn $ ra S \ S SG{ $ao. \ S l"l. \ (?

I-1. rei. o & A ;l{ o v(l) o t. e 6rf, \o. afl. 6rt {'il l'i. S o S S. ll. \o a S lrh S \ S s l'l {a ra \o r' tn $ ra S \ S SG{ $ao. \ S ll. \ (? >. 1! = * l >'r : ^, : - fr). ;1,!/!i ;(?= f: r*. fl J :!= J; J- >. Vf i - ) CJ ) ṯ,- ( r k : ( l i ( l 9 ) ( ;l fr i) rf,? l i =r, [l CB i.l.!.) -i l.l l.!. * (.1 (..i -.1.! r ).!,l l.r l ( i b i i '9,

More information

NAME: NITROMETHANE CHEMISTRY 443, Fall, 2015(15F) Section Number: 10 Final Examination, December 18, 2015

NAME: NITROMETHANE CHEMISTRY 443, Fall, 2015(15F) Section Number: 10 Final Examination, December 18, 2015 NAME: NITROMETHANE CHEMISTRY 443, Fall, 015(15F) Section Number: 10 Final Examination, December 18, 015 Answer each question in the space provided; use back of page if extra space is needed. Answer questions

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Chemistry 5.76 Revised February, 1982 NOTES ON MATRIX METHODS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Chemistry 5.76 Revised February, 1982 NOTES ON MATRIX METHODS MASSACHUSETTS INSTITUTE OF TECHNOLOGY Chemistry 5.76 Revised February, 198 NOTES ON MATRIX METHODS 1. Matrix Algebra Margenau and Murphy, The Mathematics of Physics and Chemistry, Chapter 10, give almost

More information

ANALYTIC SOLUTIONS OF A FUNCTIONAL DIFFERENTIAL EQUATION WITH STATE DEPENDENT ARGUMENT. Jian-Guo Si and Sui Sun Cheng

ANALYTIC SOLUTIONS OF A FUNCTIONAL DIFFERENTIAL EQUATION WITH STATE DEPENDENT ARGUMENT. Jian-Guo Si and Sui Sun Cheng TWIWANESE JOURNAL OF MATHEMATICS Vol., No. 4, pp. 47-480, December 997 ANALYTIC SOLUTIONS OF A FUNCTIONAL DIFFERENTIAL EQUATION WITH STATE DEPENDENT ARGUMENT Jian-Guo Si and Sui Sun Cheng Abstract. This

More information

Donald G. Isaak. University of Redlands Physics B.Sc., 1973 Pennsylvania State University Geophysics M.Sc., 1975 UCLA Geophysics Ph.D.

Donald G. Isaak. University of Redlands Physics B.Sc., 1973 Pennsylvania State University Geophysics M.Sc., 1975 UCLA Geophysics Ph.D. Donald G. Isaak Executive Director Office of Research and Grants Azusa Pacific University Azusa, California 91702-7000 phone: (626) 815-6000 (ext. 3796) email: disaak@apu.edu Education University of Redlands

More information

The efficiency at maximum power output of endoreversible engines under combined heat transfer modes

The efficiency at maximum power output of endoreversible engines under combined heat transfer modes The efficiency at maximum power output of endoreversible engines under combined heat transfer modes F. MOUKALLED, Faculty of Engineering and Architecture, Mechanical Engineering Department, American University

More information

The temperature dependence of the isothermal bulk modulus at 1 bar pressure

The temperature dependence of the isothermal bulk modulus at 1 bar pressure he temerature deendence of the isothermal bulk modulus at bar ressure J. Garai a) Det. of Earth Sciences, Florida International University, University Park, PC 344, Miami, FL 3399, USA A. Laugier IdPCES

More information

THE AMERICAN MINERALOGIST, VOL.51, MAY-JUNE. 1966

THE AMERICAN MINERALOGIST, VOL.51, MAY-JUNE. 1966 THE AMERICAN MINERALOGIST, VOL.51, MAY-JUNE. 1966 COMPOSITIONAL VARIATIONS OF PLAGIOCLASE FELDSPAR FROM A BASALTIC LAVA FLOW Jnnnv M. Honlnn, Department of Geology, Teras Western College, El Paso, Teras.

More information

2/23/2018. Familiar Kinetics. ...and the not so familiar. Chemical kinetics is the study of how fast reactions take place.

2/23/2018. Familiar Kinetics. ...and the not so familiar. Chemical kinetics is the study of how fast reactions take place. CHEMICAL KINETICS & REACTION MECHANISMS Readings, Examples & Problems Petrucci, et al., th ed. Chapter 20 Petrucci, et al., 0 th ed. Chapter 4 Familiar Kinetics...and the not so familiar Reaction Rates

More information

Phase Changes and Latent Heat

Phase Changes and Latent Heat Review Questions Why can a person remove a piece of dry aluminum foil from a hot oven with bare fingers without getting burned, yet will be burned doing so if the foil is wet. Equal quantities of alcohol

More information

FIRST PRINCIPLES STUDY OF AlBi

FIRST PRINCIPLES STUDY OF AlBi Available at: http://publications.ictp.it IC/2008/025 United Nations Educational, Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL

More information

Prediction of Elastic Constants on 3D Four-directional Braided

Prediction of Elastic Constants on 3D Four-directional Braided Prediction of Elastic Constants on 3D Four-directional Braided Composites Prediction of Elastic Constants on 3D Four-directional Braided Composites Liang Dao Zhou 1,2,* and Zhuo Zhuang 1 1 School of Aerospace,

More information

Chapter 6. Heat capacity, enthalpy, & entropy

Chapter 6. Heat capacity, enthalpy, & entropy Chapter 6 Heat capacity, enthalpy, & entropy 1 6.1 Introduction In this lecture, we examine the heat capacity as a function of temperature, compute the enthalpy, entropy, and Gibbs free energy, as functions

More information