Monte Carlo methods for magnetic systems

Size: px
Start display at page:

Download "Monte Carlo methods for magnetic systems"

Transcription

1 Monte Carlo methods for magnetc systems Zoltán Néda Babeş-Bolya Unversty Dept of Theoretcal and Computatonal Physcs Cluj-Napoca, Romana Man objectve of the lecture: To gve an ntroducton for basc Monte Carlo methods n some smple models of magnetsm. uropean School on Magnetsm, Tmşoara, Sept. -, 2009

2 Syllabus About Monte Carlo methods Determnstc versus stochastc smulaton methods lements of Stochastc Processes Markov chans Monte Carlo ntegraton Theoretcal approach to magnetc models What we are nterested n? The Metropols MC method for magnetc systems Implementng the Metropols MC method for the 2D Isng model Fnte-sze effects ffcent MC technques applet made by R. Sum

3 What are Monte Carlo methods? Computer smulaton methods: - Molecular dynamcs determnstc smulatons, based on the ntegraton of the equaton of moton - Monte Carlo methods Stochastc smulaton technques, where the random number generaton plays a crucal role - In general we speak about Monte Carlo smulaton methods whenever the use of the random numbers are crucal n the algorthm! MC: the art of usng pseudo random numbers - Monte Carlo technques are wdely used n studyng models of: statstcal physcs, soft condensed matter physcs, materal scence, many-body problems, comple systems, flud mechancs, bophyscs, econo-physcs, nonlnear phenomena, partcle physcs, heavy-on physcs, surface physcs, neuroscence etc.

4 Determnstc versus stochastc smulatons the Galton table - used to eemplfy the normal dstrbuton Molecular dynamcs approach: ntegratng n tme the equaton of moton of the partcles. advantage the realstc dynamcs dsadvantage slow even on supercomputers, only short tme-scales or small systems can be smulated Monte Carlo approach: the result of many determnstc effects s handled as a stochastc random force. advantage fast, easy to mplement dsadvantage less realstc, many elements of the real phenomena are not n the model t t Random number: wth p=/2 and - wth p=/2 Molecular dynamcs MC

5 Some necessary elements e of Stochastc Processes Markov processes/ Markov chans Stochastc process: let label the element of any state-space. A process that randomly vsts n tme these possble states s a stochastc process: ample the D random walk: 2D random walk: P=/2 P=/ Markov processes chan are characterzed by a lack of memory.e. the statstcal propertes of the mmedate future are unquely determned from the present, regardless of the past ample: random walk --> Markov process; self-avodng walk s NOT a Markov process Let be the state of the stochastc system at step, a stochastc varable The tme- evoluton of the system s descrbed by a sequence of states: 0,,.., n,. P,... The condtonal probablty that n s realzed f prevously we had: 0,,.., n- : n n 0 Defnton: For a Markov process we have: P,,..., P P a 0,..., n P n n. P n n2... P, 0. n n n2 0 n n 0 P m, j P m j Pm, j one-step transton probabltes, elements of the stochastc matr

6 Defnton: A probablty dstrbuton over the possble states w k s called nvarant or statonary for a gven Markov chan f satsfy: wk The probablty that =k durng an nfntely long process w m m w s 0; w m ; m w m P ms - A Markov chan s rreducble f and only f every state can be reached from every state! the stochastc matr s rreducble -A Markov chan s aperodc, f all states are aperodc. A state has a perod T> f P n =0 unless n=zt z: nteger, and T s the smallest nteger wth ths property. A state s aperodc f no such T> est. ere we denoted by P k n the probablty to get from state to state k through n steps Defnton: An rreducble and aperodc Markov chan s ergodc The basc theorem for Markov processes: An ergodc Markov chan posses an nvarant dstrbuton w k over the possble states

7 One dmensonal Monte Carlo ntegraton Problem: gven a functon f, compute the ntegral: b I f d The ntegral can be computed by choosng n ponts randomly on the [a,b] nterval, and wth a unform dstrbuton : / b a Const probablty densty: P, d d normalzaton: d Straghtforward samplng I f b a a b a n The strong law of large numbers guarantees us that for a suffcently large sample one can come arbtrary close to the desred ntegral! Let, 2,, n be random numbers selected accordng to a normalzed probablty densty, then :! the above affrmaton s also true f the random numbers are correlated, or the nterval s fnte ow rapdly the sum converge? --> for I Plm n n n f d; n f f very badly!!! Central lmt theorem the convergence mprove f the shape of appromates f we are samplng n the neghborhood where f s bg Const b a I

8 Important samplng The mportant samplng MC method wll calculate the I ntegral by samplng on random ponts on the [a,b] nterval accordng to a dstrbuton whch appromates the shape of f If one generates n ponts,,accordng to an arbtrary I b a f d b a f d n N f the convergence s nfntely fast f f Before gettng to ected. one cannot smply choose f, snce n ths case one cannot normalze normalzaton of s equvalent wth the ntal problem one cannot generate thus random numbers smply accordng to the desred f dstrbuton

9 Theoretcal approach to a magnetc orderng Usually canonc ensemble s used T, N, h s fed T temperature, h eternal magnetc feld, N partcle number relevant energes [nternal nteractons + nteracton wth eternal magnetc feld, h, +knetc terms] heat bath s a stochastc effect favor randomness a determnstc effect could favor orderng T or / kt Statstcal thermodynamcs amltonan,,= approach Z labels the mcrostates ep kt F kt lnz Z ep d kt F the free energy; k the Boltzmann constant assumng that the densty of state-space ponts s constant

10 What are we nterested n? The prmary goal of the MC type smulatons n magnetc systems s to estmate some averages at varous T, h and N values M 2 2 n canoncal ensemble average magnetzaton average energy average square energy X X Z Z X M ep X ep[ ] d average square magnetzaton X M we are also nterested n measurable quanttes lke: ; V C V T M h V, N 0 2 kt N NkT M 2 2 M 2 2 a sum wth huge number of terms number of terms ncreasng eponentally wth system sze e: 2 N or very hgh dmensonal ntegrals C 2 2 ; M ; ; the problem s that these sums cannot be usually analytcally calculated MC methods!! eact enumeraton s possble for small N not of thermodynamc nterest heat capacty at constant volume susceptblty

11 The Metropols MC method for magnetc systems ] ep[ ] [ ] [ ] [ u d u Z d u A Z A We want to compute ntegrals sums lke: -->elements of the state-space --> the entre state-space --> the amltonan of the system Very hgh dmensonal ntegral whch s eactly computable only for a lmted number of problems!!! Basc dea: to use the mportant samplng for calculatng these ntegrals IF n the MC ntegraton we choose the states wth probablty : n n u u A d u d u A A ] [ ] [ ] [ ] [ by choosng Z u ] [ the sum converges rapdly and: n A n A Problem: we stll don t know Z!

12 The Metropols et al. dea... an algorthm has to be derved that generates states accordng to the desred! Basc dea: usng a Markov chan, such that startng from an ntal state 0 further states are generated whch are ultmately dstrbuted accordng to for ths Markov s an nvarant chan need dstrbuton to specfy over the the P possble ' states transton probabltes from state to state. In order that the nvarant lmtng dstrbuton be we need:. The Markov chan should be ergodc any state pont should be reachable from any other state-pont through the Markov chan 2. For all possble mcrostates: 3. For all possble mcrostates : ' estence of the lmtng dstrbuton ' N. Metropols et. al; J. Chem. Phys., vol. 2, P P ' ' ' condton for the Instead of 2. and 3. a stronger but smpler condton can be used, the so called detaled balance: P ' P ' ' Result: We can construct Markov chans leadng to the desred wthout the pror knowledge of Z!!! dstrbuton,

13 ] ep[ ] [ kt u In the canoncal ensemble: Detaled balance satsfed Algorthm for MC smulatons:. Desgn an ergodc Markov process on the possble mcrostates each state should be reachable from each other 2. Specfy an ntal mcrostate for startng 3. Choose randomly a new mcrostate preferably so that 4. Compute the value of 5. Generate a unformly dstrbuted random number r between [0,]. 6. If --> jump to the new state, and return to 3. If --> count the old state as new and return Average the quantty A for the generated states. Repeat steps -6 untl the average converge The Metropols algorthm: 0 ', 0 ', ] ', ep[ ' for for P ' ', another possblty Glauber algorthm: kt kt P ', ep ', ep ' 0 ' P ' P P P r P r

14 The Isng spn system J, j j h { } - spontaneous magnetzaton s possble M0 for h=0 - frst model for understandng ferro- and ant-ferromagnetsm for localzed spns - for J>0 --> ferromagnetc order - for J<0 --> ant-ferromagnetc order - no phase transton n D - ferro-paramagnetc phase transton for D> - second order phase transton order-dsorder - In D and 2D eactly solvable! - Due to the local nteractons calculatng Z s dffcult. - eact soluton very dffcult n 2D - no eact soluton n 3D - Appromaton methods: mean-feld theory, renormalzaton, hgh and low temperature epanson

15 Implementng the Metropols MC for the 2D Isng model Implementng the Metropols MC for the 2D Isng model Problem: Study mt, <T>, C v T, T and T c for 2D Isng model We consder h=0, and f J=. The temperature unts are consdered so that k=. Square lattce topology s consdered, k j j -Let us assume a lattce L L wth free boundary condtons -We consder a canoncal ensemble and f thus N and T We plan to calculate: N N N M m T j j T, } { T T T Nk T C B v 2 2 T M T M NkT T T c from the mama of C v T and T

16 The Metropols MC algorthm for the problem:. F a temperature T 2. Consder an ntal spn confguraton { }. For eample for all 3. Calculate the ntal value of and M 4. Consder a new spn confguraton by vrtually flppng one randomly selected spn 5. Calculate the energy of the new confguraton, and the energy change due to ths spn-flp 6. Calculate the Metropols P=P--> probabltes for ths change 7. Generate a random number r between 0 and 8. If r P accept the flp and update the value of the energy to and magnetzaton to M If r P reject the spn flp and take agan the ntal and M values n the needed averages 9. Repeat the steps 4-8 many tmes drve the system to the desred canoncal dstrbuton of the states 0. Repeat the steps 4-8 by collectng the values of, 2, M, M 2, for the needed averages. Compute ths average for a large number of mcrostates 2. Calculate the value of mt, <T>, C v T and T usng the gven formulas 3. Change the temperature and repeat the algorthm for the new temperatures as well. 4. Construct the desred mt, <T>, C v T, T curves, N

17 Fnte-sze effects -The bggest problem wth computer smulatons s that t can be performed for relatvely small systems far from the ones needed n thermodynamcs N - Real phase-transton real dvergences n the thermodynamc quanttes dervatves of the thermodynamc potental s possble only n nfnte systems! In a fnte-sze system the correlaton length cannot dverge and t s cut by the sze of the system nstead of dvergences rounded mamum or contnuous behavor s obtaned. -The results obtaned by MC smulatons for fnte systems has to be carefully evaluated and etrapolated for nfnte systems! fnte sze scalng s needed! - Important quanttes that have to be scaled: mt, CvT, T curves and the value of T c N A N L L N L L L=0 L=5 L=20 L=30 L=40 L=0 L=5 L=20 L=30 L=40 The order parameter mt as a functon of T for dfferent system szes Specfc heat C v T as a functon of T for varous system szes

18 Observatons and techncal ponts: the consdered P--> transtons leads to an ergodc Markov process one MC step s defned as N spn flp trals! By applyng the above algorthm for T<T c one can also follow how the order arses n the system. Ths dynamcs mght not necessarly be the real one. The Metropols MC method s ntended to yeld equlbrum propertes and not dynamcal smulaton of the system! It s beleved that the Glauber probabltes gves a realstc pcture for the dynamcs as well! One way of makng the system quas-nfnte s to mpose perodc boundary condtons see the eercse n the computer codes! however ths cuts also the correlaton length The smple Metropols and Glauber algorthm can be further mproved, desgnng more clever and faster methods

19 ffcent MC technques T T c I. At low temperatures the Metropols and Glauber algorthm s neffcent. After equlbrum s reached spns are ordered most of the spn-flps are rejected, and computer tme s wasted very long smulatons are needed to get a reasonable estmate for the averages. Ths drawback s elmnated by the BKL MC algorthm, see A. B. Bortz, M.. Kalos and J.L. Lebowtz, J. Comp. Phys. Vol. 7, II. In the neghborhood of T c the Metropols and Glauber algorthm s neffcent due to the crtcal slowng down the relaaton tme s lnked z to the correlaton length by ~ the dynamcal crtcal eponent, z. as T-->Tc we have --> and get that --> The bg problem: for the Metropols or the Glauber algorthm z=2!!! ---> There are many MC steps necessary to generate ndependent uncorrelated confguratons --> the samplng s restrcted only to a small part of the state-space The system has a long memory. Ths problem s partally solved by flppng together clusters of correlated spns cluster algorthms see: U. Wolff, PRL vol. 62, ; R.. Swendsen and J-S. Wang, PRL vol. 58, III. Quantum-statstcal models ubbard, Stoner, T-J, etc can be studed by Quantum MC methods, see: J. Tobochnk, G. Batroun and. Gould, Computers n Physcs, vol. 6, IV. Frustrated, spn-glass type models dward-anderson, Potts glass, etc can be studed also by MC methods. One of these s the smulated annealng method, see: S. Krckpatrck, G.D. Gelatt and M.P. Vecch, Scence vol. 220,

20 Conclusons -MC methods are powerful tools for numercally studyng varous models of magnetsm. -MC methods can be mplemented on normal PC type computers, no supercomputers are needed. - MC methods are easy to learn however some basc programmng eperence s needed -Masterng the MC method opens possbltes for studyng many other models n sold-state physcs, bophyscs, ecology, economcs, socology, nuclear and medcal physcs, etc. -The most cted paper n statstcal physcs s the paper of Metropols et. al!

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement Markov Chan Monte Carlo MCMC, Gbbs Samplng, Metropols Algorthms, and Smulated Annealng 2001 Bonformatcs Course Supplement SNU Bontellgence Lab http://bsnuackr/ Outlne! Markov Chan Monte Carlo MCMC! Metropols-Hastngs

More information

Monte Carlo method II

Monte Carlo method II Course MP3 Lecture 5 14/11/2006 Monte Carlo method II How to put some real physcs nto the Monte Carlo method Dr James Ellott 5.1 Monte Carlo method revsted In lecture 4, we ntroduced the Monte Carlo (MC)

More information

Probability Theory. The nth coefficient of the Taylor series of f(k), expanded around k = 0, gives the nth moment of x as ( ik) n n!

Probability Theory. The nth coefficient of the Taylor series of f(k), expanded around k = 0, gives the nth moment of x as ( ik) n n! 8333: Statstcal Mechancs I Problem Set # 3 Solutons Fall 3 Characterstc Functons: Probablty Theory The characterstc functon s defned by fk ep k = ep kpd The nth coeffcent of the Taylor seres of fk epanded

More information

Lecture 4. Macrostates and Microstates (Ch. 2 )

Lecture 4. Macrostates and Microstates (Ch. 2 ) Lecture 4. Macrostates and Mcrostates (Ch. ) The past three lectures: we have learned about thermal energy, how t s stored at the mcroscopc level, and how t can be transferred from one system to another.

More information

Prof. Dr. I. Nasser Phys 630, T Aug-15 One_dimensional_Ising_Model

Prof. Dr. I. Nasser Phys 630, T Aug-15 One_dimensional_Ising_Model EXACT OE-DIMESIOAL ISIG MODEL The one-dmensonal Isng model conssts of a chan of spns, each spn nteractng only wth ts two nearest neghbors. The smple Isng problem n one dmenson can be solved drectly n several

More information

CS 3750 Machine Learning Lecture 6. Monte Carlo methods. CS 3750 Advanced Machine Learning. Markov chain Monte Carlo

CS 3750 Machine Learning Lecture 6. Monte Carlo methods. CS 3750 Advanced Machine Learning. Markov chain Monte Carlo CS 3750 Machne Learnng Lectre 6 Monte Carlo methods Mlos Haskrecht mlos@cs.ptt.ed 5329 Sennott Sqare Markov chan Monte Carlo Importance samplng: samples are generated accordng to Q and every sample from

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Scence robablstc Graphcal Models Appromate Inference: Markov Chan Monte Carlo 05 07 Erc Xng Lecture 7 March 9 04 X X 075 05 05 03 X 3 Erc Xng @ CMU 005-04 Recap of Monte Carlo Monte

More information

WORM ALGORITHM. Nikolay Prokofiev, Umass, Amherst. Boris Svistunov, Umass, Amherst Igor Tupitsyn, PITP, Vancouver

WORM ALGORITHM. Nikolay Prokofiev, Umass, Amherst. Boris Svistunov, Umass, Amherst Igor Tupitsyn, PITP, Vancouver WOR ALGORTH Nkolay Prokofev, Umass, Amherst asha ra Bors Svstunov, Umass, Amherst gor Tuptsyn, PTP, Vancouver assmo Bonnsegn, UAlerta, Edmonton Los Angeles, January 23, 2006 Why other wth algorthms? Effcency

More information

Evaluation of an Efficient Monte Carlo Algorithm to Calculate the Density of States

Evaluation of an Efficient Monte Carlo Algorithm to Calculate the Density of States Internatonal Journal of Machne earnng and Computng, Vol., No., Aprl valuaton of an ffcent Monte Carlo Algorthm to Calculate the Densty of States Seung-Yeon Km, Member, IACSIT Abstract Phase transtons and

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

6. Stochastic processes (2)

6. Stochastic processes (2) 6. Stochastc processes () Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 6. Stochastc processes () Contents Markov processes Brth-death processes 6. Stochastc processes () Markov process

More information

6. Stochastic processes (2)

6. Stochastic processes (2) Contents Markov processes Brth-death processes Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 Markov process Consder a contnuous-tme and dscrete-state stochastc process X(t) wth state space

More information

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M CIS56: achne Learnng Lecture 3 (Sept 6, 003) Preparaton help: Xaoyng Huang Lnear Regresson Lnear regresson can be represented by a functonal form: f(; θ) = θ 0 0 +θ + + θ = θ = 0 ote: 0 s a dummy attrbute

More information

STATISTICAL MECHANICAL ENSEMBLES 1 MICROSCOPIC AND MACROSCOPIC VARIABLES PHASE SPACE ENSEMBLES. CHE 524 A. Panagiotopoulos 1

STATISTICAL MECHANICAL ENSEMBLES 1 MICROSCOPIC AND MACROSCOPIC VARIABLES PHASE SPACE ENSEMBLES. CHE 524 A. Panagiotopoulos 1 CHE 54 A. Panagotopoulos STATSTCAL MECHACAL ESEMBLES MCROSCOPC AD MACROSCOPC ARABLES The central queston n Statstcal Mechancs can be phrased as follows: f partcles (atoms, molecules, electrons, nucle,

More information

STABILITY OF METALLIC FERROMAGNETISM: CORRELATED HOPPING OF ELECTRONS IN Mn 4 N

STABILITY OF METALLIC FERROMAGNETISM: CORRELATED HOPPING OF ELECTRONS IN Mn 4 N STABILITY OF METALLIC FERROMAGNETISM: CORRELATED HOPPING OF ELECTRONS IN Mn 4 N EUGEN BIRSAN 1, COSMIN CANDIN 2 1 Physcs Department, Unversty Lucan Blaga, Dr. I. Ratu str., No. 5 7, 550024, Sbu, Romana,

More information

10.34 Fall 2015 Metropolis Monte Carlo Algorithm

10.34 Fall 2015 Metropolis Monte Carlo Algorithm 10.34 Fall 2015 Metropols Monte Carlo Algorthm The Metropols Monte Carlo method s very useful for calculatng manydmensonal ntegraton. For e.g. n statstcal mechancs n order to calculate the prospertes of

More information

Convergence of random processes

Convergence of random processes DS-GA 12 Lecture notes 6 Fall 216 Convergence of random processes 1 Introducton In these notes we study convergence of dscrete random processes. Ths allows to characterze phenomena such as the law of large

More information

STATISTICAL MECHANICS

STATISTICAL MECHANICS STATISTICAL MECHANICS Thermal Energy Recall that KE can always be separated nto 2 terms: KE system = 1 2 M 2 total v CM KE nternal Rgd-body rotaton and elastc / sound waves Use smplfyng assumptons KE of

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Markov Chain Monte Carlo Lecture 6

Markov Chain Monte Carlo Lecture 6 where (x 1,..., x N ) X N, N s called the populaton sze, f(x) f (x) for at least one {1, 2,..., N}, and those dfferent from f(x) are called the tral dstrbutons n terms of mportance samplng. Dfferent ways

More information

Why BP Works STAT 232B

Why BP Works STAT 232B Why BP Works STAT 232B Free Energes Helmholz & Gbbs Free Energes 1 Dstance between Probablstc Models - K-L dvergence b{ KL b{ p{ = b{ ln { } p{ Here, p{ s the eact ont prob. b{ s the appromaton, called

More information

Relaxation laws in classical and quantum long-range lattices

Relaxation laws in classical and quantum long-range lattices Relaxaton laws n classcal and quantum long-range lattces R. Bachelard Grupo de Óptca Insttuto de Físca de São Carlos USP Quantum Non-Equlbrum Phenomena Natal RN 13/06/2016 Lattce systems wth long-range

More information

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography CSc 6974 and ECSE 6966 Math. Tech. for Vson, Graphcs and Robotcs Lecture 21, Aprl 17, 2006 Estmatng A Plane Homography Overvew We contnue wth a dscusson of the major ssues, usng estmaton of plane projectve

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

Markov chains. Definition of a CTMC: [2, page 381] is a continuous time, discrete value random process such that for an infinitesimal

Markov chains. Definition of a CTMC: [2, page 381] is a continuous time, discrete value random process such that for an infinitesimal Markov chans M. Veeraraghavan; March 17, 2004 [Tp: Study the MC, QT, and Lttle s law lectures together: CTMC (MC lecture), M/M/1 queue (QT lecture), Lttle s law lecture (when dervng the mean response tme

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

12. The Hamilton-Jacobi Equation Michael Fowler

12. The Hamilton-Jacobi Equation Michael Fowler 1. The Hamlton-Jacob Equaton Mchael Fowler Back to Confguraton Space We ve establshed that the acton, regarded as a functon of ts coordnate endponts and tme, satsfes ( ) ( ) S q, t / t+ H qpt,, = 0, and

More information

and Statistical Mechanics Material Properties

and Statistical Mechanics Material Properties Statstcal Mechancs and Materal Propertes By Kuno TAKAHASHI Tokyo Insttute of Technology, Tokyo 15-855, JAPA Phone/Fax +81-3-5734-3915 takahak@de.ttech.ac.jp http://www.de.ttech.ac.jp/~kt-lab/ Only for

More information

Lecture 7: Boltzmann distribution & Thermodynamics of mixing

Lecture 7: Boltzmann distribution & Thermodynamics of mixing Prof. Tbbtt Lecture 7 etworks & Gels Lecture 7: Boltzmann dstrbuton & Thermodynamcs of mxng 1 Suggested readng Prof. Mark W. Tbbtt ETH Zürch 13 März 018 Molecular Drvng Forces Dll and Bromberg: Chapters

More information

k t+1 + c t A t k t, t=0

k t+1 + c t A t k t, t=0 Macro II (UC3M, MA/PhD Econ) Professor: Matthas Kredler Fnal Exam 6 May 208 You have 50 mnutes to complete the exam There are 80 ponts n total The exam has 4 pages If somethng n the queston s unclear,

More information

Lecture#1 Path integral and Mote Carlo simulations

Lecture#1 Path integral and Mote Carlo simulations Lecture# Path ntegral and Mote Carlo smulatons Ken-Ich Ishkaa Hroshma Unv. . Lattce Feld Theory? For eample: Standard Model QCD: Strong nteracton, Hadrons

More information

Sampling Self Avoiding Walks

Sampling Self Avoiding Walks Samplng Self Avodng Walks James Farbanks and Langhao Chen December 3, 204 Abstract These notes present the self testng algorthm for samplng self avodng walks by Randall and Snclar[3] [4]. They are ntended

More information

Q e E i /k B. i i i i

Q e E i /k B. i i i i Water and Aqueous Solutons 3. Lattce Model of a Flud Lattce Models Lattce models provde a mnmalst, or coarse-graned, framework for descrbng the translatonal, rotatonal, and conformatonal degrees of freedom

More information

A Robust Method for Calculating the Correlation Coefficient

A Robust Method for Calculating the Correlation Coefficient A Robust Method for Calculatng the Correlaton Coeffcent E.B. Nven and C. V. Deutsch Relatonshps between prmary and secondary data are frequently quantfed usng the correlaton coeffcent; however, the tradtonal

More information

2.29 Numerical Fluid Mechanics

2.29 Numerical Fluid Mechanics REVIEW Lecture 10: Sprng 2015 Lecture 11 Classfcaton of Partal Dfferental Equatons PDEs) and eamples wth fnte dfference dscretzatons Parabolc PDEs Ellptc PDEs Hyperbolc PDEs Error Types and Dscretzaton

More information

Global Sensitivity. Tuesday 20 th February, 2018

Global Sensitivity. Tuesday 20 th February, 2018 Global Senstvty Tuesday 2 th February, 28 ) Local Senstvty Most senstvty analyses [] are based on local estmates of senstvty, typcally by expandng the response n a Taylor seres about some specfc values

More information

IRO0140 Advanced space time-frequency signal processing

IRO0140 Advanced space time-frequency signal processing IRO4 Advanced space tme-frequency sgnal processng Lecture Toomas Ruuben Takng nto account propertes of the sgnals, we can group these as followng: Regular and random sgnals (are all sgnal parameters determned

More information

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis Statstcal analyss usng matlab HY 439 Presented by: George Fortetsanaks Roadmap Probablty dstrbutons Statstcal estmaton Fttng data to probablty dstrbutons Contnuous dstrbutons Contnuous random varable X

More information

Continuous Time Markov Chain

Continuous Time Markov Chain Contnuous Tme Markov Chan Hu Jn Department of Electroncs and Communcaton Engneerng Hanyang Unversty ERICA Campus Contents Contnuous tme Markov Chan (CTMC) Propertes of sojourn tme Relatons Transton probablty

More information

RELIABILITY ASSESSMENT

RELIABILITY ASSESSMENT CHAPTER Rsk Analyss n Engneerng and Economcs RELIABILITY ASSESSMENT A. J. Clark School of Engneerng Department of Cvl and Envronmental Engneerng 4a CHAPMAN HALL/CRC Rsk Analyss for Engneerng Department

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

Lecture 10. Reading: Notes and Brennan Chapter 5

Lecture 10. Reading: Notes and Brennan Chapter 5 Lecture tatstcal Mechancs and Densty of tates Concepts Readng: otes and Brennan Chapter 5 Georga Tech C 645 - Dr. Alan Doolttle C 645 - Dr. Alan Doolttle Georga Tech How do electrons and holes populate

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecture 7 Specal Relatvty (Chapter 7) What We Dd Last Tme Worked on relatvstc knematcs Essental tool for epermental physcs Basc technques are easy: Defne all 4 vectors Calculate c-o-m

More information

A Hybrid Variational Iteration Method for Blasius Equation

A Hybrid Variational Iteration Method for Blasius Equation Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 10, Issue 1 (June 2015), pp. 223-229 Applcatons and Appled Mathematcs: An Internatonal Journal (AAM) A Hybrd Varatonal Iteraton Method

More information

Gaussian Mixture Models

Gaussian Mixture Models Lab Gaussan Mxture Models Lab Objectve: Understand the formulaton of Gaussan Mxture Models (GMMs) and how to estmate GMM parameters. You ve already seen GMMs as the observaton dstrbuton n certan contnuous

More information

WORM ALGORITHM NASA. ISSP, August Nikolay Prokofiev, Umass, Amherst. Boris Svistunov, Umass, Amherst Igor Tupitsyn, PITP, Vancouver

WORM ALGORITHM NASA. ISSP, August Nikolay Prokofiev, Umass, Amherst. Boris Svistunov, Umass, Amherst Igor Tupitsyn, PITP, Vancouver WOR ALGORITH asha kolay Prokofev, Umass, Amherst Ira Bors Svstunov, Umass, Amherst Igor Tuptsyn, PITP, Vancouver Vladmr Kashurnkov, EPI, oscow assmo Bonnsegn, UAlberta, Edmonton Evgen Burovsk, Umass, Amherst

More information

Notes prepared by Prof Mrs) M.J. Gholba Class M.Sc Part(I) Information Technology

Notes prepared by Prof Mrs) M.J. Gholba Class M.Sc Part(I) Information Technology Inverse transformatons Generaton of random observatons from gven dstrbutons Assume that random numbers,,, are readly avalable, where each tself s a random varable whch s unformly dstrbuted over the range(,).

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands Content. Inference on Regresson Parameters a. Fndng Mean, s.d and covarance amongst estmates.. Confdence Intervals and Workng Hotellng Bands 3. Cochran s Theorem 4. General Lnear Testng 5. Measures of

More information

Simulation and Random Number Generation

Simulation and Random Number Generation Smulaton and Random Number Generaton Summary Dscrete Tme vs Dscrete Event Smulaton Random number generaton Generatng a random sequence Generatng random varates from a Unform dstrbuton Testng the qualty

More information

The Two-scale Finite Element Errors Analysis for One Class of Thermoelastic Problem in Periodic Composites

The Two-scale Finite Element Errors Analysis for One Class of Thermoelastic Problem in Periodic Composites 7 Asa-Pacfc Engneerng Technology Conference (APETC 7) ISBN: 978--6595-443- The Two-scale Fnte Element Errors Analyss for One Class of Thermoelastc Problem n Perodc Compostes Xaoun Deng Mngxang Deng ABSTRACT

More information

Dirichlet s Theorem In Arithmetic Progressions

Dirichlet s Theorem In Arithmetic Progressions Drchlet s Theorem In Arthmetc Progressons Parsa Kavkan Hang Wang The Unversty of Adelade February 26, 205 Abstract The am of ths paper s to ntroduce and prove Drchlet s theorem n arthmetc progressons,

More information

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force.

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force. The fundamental prncples of classcal mechancs were lad down by Galleo and Newton n the 16th and 17th centures. In 1686, Newton wrote the Prncpa where he gave us three laws of moton, one law of gravty,

More information

b ), which stands for uniform distribution on the interval a x< b. = 0 elsewhere

b ), which stands for uniform distribution on the interval a x< b. = 0 elsewhere Fall Analyss of Epermental Measurements B. Esensten/rev. S. Errede Some mportant probablty dstrbutons: Unform Bnomal Posson Gaussan/ormal The Unform dstrbuton s often called U( a, b ), hch stands for unform

More information

Portfolios with Trading Constraints and Payout Restrictions

Portfolios with Trading Constraints and Payout Restrictions Portfolos wth Tradng Constrants and Payout Restrctons John R. Brge Northwestern Unversty (ont wor wth Chrs Donohue Xaodong Xu and Gongyun Zhao) 1 General Problem (Very) long-term nvestor (eample: unversty

More information

( ) ( ) ( ) ( ) STOCHASTIC SIMULATION FOR BLOCKED DATA. Monte Carlo simulation Rejection sampling Importance sampling Markov chain Monte Carlo

( ) ( ) ( ) ( ) STOCHASTIC SIMULATION FOR BLOCKED DATA. Monte Carlo simulation Rejection sampling Importance sampling Markov chain Monte Carlo SOCHASIC SIMULAIO FOR BLOCKED DAA Stochastc System Analyss and Bayesan Model Updatng Monte Carlo smulaton Rejecton samplng Importance samplng Markov chan Monte Carlo Monte Carlo smulaton Introducton: If

More information

Chapter 1. Probability

Chapter 1. Probability Chapter. Probablty Mcroscopc propertes of matter: quantum mechancs, atomc and molecular propertes Macroscopc propertes of matter: thermodynamcs, E, H, C V, C p, S, A, G How do we relate these two propertes?

More information

where the sums are over the partcle labels. In general H = p2 2m + V s(r ) V j = V nt (jr, r j j) (5) where V s s the sngle-partcle potental and V nt

where the sums are over the partcle labels. In general H = p2 2m + V s(r ) V j = V nt (jr, r j j) (5) where V s s the sngle-partcle potental and V nt Physcs 543 Quantum Mechancs II Fall 998 Hartree-Fock and the Self-consstent Feld Varatonal Methods In the dscusson of statonary perturbaton theory, I mentoned brey the dea of varatonal approxmaton schemes.

More information

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices Amplfcaton and Relaxaton of Electron Spn Polarzaton n Semconductor Devces Yury V. Pershn and Vladmr Prvman Center for Quantum Devce Technology, Clarkson Unversty, Potsdam, New York 13699-570, USA Spn Relaxaton

More information

SIMULATION OF WAVE PROPAGATION IN AN HETEROGENEOUS ELASTIC ROD

SIMULATION OF WAVE PROPAGATION IN AN HETEROGENEOUS ELASTIC ROD SIMUATION OF WAVE POPAGATION IN AN HETEOGENEOUS EASTIC OD ogéro M Saldanha da Gama Unversdade do Estado do o de Janero ua Sào Francsco Xaver 54, sala 5 A 559-9, o de Janero, Brasl e-mal: rsgama@domancombr

More information

DS-GA 1002 Lecture notes 5 Fall Random processes

DS-GA 1002 Lecture notes 5 Fall Random processes DS-GA Lecture notes 5 Fall 6 Introducton Random processes Random processes, also known as stochastc processes, allow us to model quanttes that evolve n tme (or space n an uncertan way: the trajectory of

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation CE 530 Molecular Smulaton Lecture 3 Molecular Dynamcs n Other Ensembles Davd A. Kofke Department of Chemcal Engneerng SUY Buffalo kofke@eng.buffalo.edu Revew Molecular dynamcs s a numercal ntegraton of

More information

MOLECULAR DYNAMICS ,..., What is it? 2 = i i

MOLECULAR DYNAMICS ,..., What is it? 2 = i i MOLECULAR DYNAMICS What s t? d d x t 2 m 2 = F ( x 1,..., x N ) =1,,N r ( x1 ( t),..., x ( t)) = v = ( x& 1 ( t ),..., x& ( t )) N N What are some uses of molecular smulatons and modelng? Conformatonal

More information

Lecture 14: Forces and Stresses

Lecture 14: Forces and Stresses The Nuts and Bolts of Frst-Prncples Smulaton Lecture 14: Forces and Stresses Durham, 6th-13th December 2001 CASTEP Developers Group wth support from the ESF ψ k Network Overvew of Lecture Why bother? Theoretcal

More information

Poisson brackets and canonical transformations

Poisson brackets and canonical transformations rof O B Wrght Mechancs Notes osson brackets and canoncal transformatons osson Brackets Consder an arbtrary functon f f ( qp t) df f f f q p q p t But q p p where ( qp ) pq q df f f f p q q p t In order

More information

Solutions for Euler and Navier-Stokes Equations in Powers of Time

Solutions for Euler and Navier-Stokes Equations in Powers of Time Solutons for Euler and Naver-Stokes Equatons n Powers of Tme Valdr Montero dos Santos Godo valdr.msgodo@gmal.com Abstract We present a soluton for the Euler and Naver-Stokes equatons for ncompressble case

More information

Lecture Note 3. Eshelby s Inclusion II

Lecture Note 3. Eshelby s Inclusion II ME340B Elastcty of Mcroscopc Structures Stanford Unversty Wnter 004 Lecture Note 3. Eshelby s Incluson II Chrs Wenberger and We Ca c All rghts reserved January 6, 004 Contents 1 Incluson energy n an nfnte

More information

THERMAL PHASE TRANSITIONS AND GROUND STATE PHASE TRANSITIONS: THE COMMON FEATURES AND SOME INTERESTING MODELS

THERMAL PHASE TRANSITIONS AND GROUND STATE PHASE TRANSITIONS: THE COMMON FEATURES AND SOME INTERESTING MODELS THERMAL PHASE TRANSITIONS AND GROUND STATE PHASE TRANSITIONS: THE COMMON FEATURES AND SOME INTERESTING MODELS Ján Greguš Department of Physcs, Faculty of the Natural Scences, Unversty of Constantne the

More information

Why Monte Carlo Integration? Introduction to Monte Carlo Method. Continuous Probability. Continuous Probability

Why Monte Carlo Integration? Introduction to Monte Carlo Method. Continuous Probability. Continuous Probability Introducton to Monte Carlo Method Kad Bouatouch IRISA Emal: kad@rsa.fr Wh Monte Carlo Integraton? To generate realstc lookng mages, we need to solve ntegrals of or hgher dmenson Pel flterng and lens smulaton

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015 Lecture 2. 1/07/15-1/09/15 Unversty of Washngton Department of Chemstry Chemstry 453 Wnter Quarter 2015 We are not talkng about truth. We are talkng about somethng that seems lke truth. The truth we want

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Lecture Space-Bounded Derandomization

Lecture Space-Bounded Derandomization Notes on Complexty Theory Last updated: October, 2008 Jonathan Katz Lecture Space-Bounded Derandomzaton 1 Space-Bounded Derandomzaton We now dscuss derandomzaton of space-bounded algorthms. Here non-trval

More information

Quantifying Uncertainty

Quantifying Uncertainty Partcle Flters Quantfyng Uncertanty Sa Ravela M. I. T Last Updated: Sprng 2013 1 Quantfyng Uncertanty Partcle Flters Partcle Flters Appled to Sequental flterng problems Can also be appled to smoothng problems

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechancs Rajdeep Sensarma! sensarma@theory.tfr.res.n ecture #9 QM of Relatvstc Partcles Recap of ast Class Scalar Felds and orentz nvarant actons Complex Scalar Feld and Charge conjugaton

More information

Probability Theory (revisited)

Probability Theory (revisited) Probablty Theory (revsted) Summary Probablty v.s. plausblty Random varables Smulaton of Random Experments Challenge The alarm of a shop rang. Soon afterwards, a man was seen runnng n the street, persecuted

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown

More information

Hidden Markov Models & The Multivariate Gaussian (10/26/04)

Hidden Markov Models & The Multivariate Gaussian (10/26/04) CS281A/Stat241A: Statstcal Learnng Theory Hdden Markov Models & The Multvarate Gaussan (10/26/04) Lecturer: Mchael I. Jordan Scrbes: Jonathan W. Hu 1 Hdden Markov Models As a bref revew, hdden Markov models

More information

A note on almost sure behavior of randomly weighted sums of φ-mixing random variables with φ-mixing weights

A note on almost sure behavior of randomly weighted sums of φ-mixing random variables with φ-mixing weights ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA Volume 7, Number 2, December 203 Avalable onlne at http://acutm.math.ut.ee A note on almost sure behavor of randomly weghted sums of φ-mxng

More information

Uncertainty and auto-correlation in. Measurement

Uncertainty and auto-correlation in. Measurement Uncertanty and auto-correlaton n arxv:1707.03276v2 [physcs.data-an] 30 Dec 2017 Measurement Markus Schebl Federal Offce of Metrology and Surveyng (BEV), 1160 Venna, Austra E-mal: markus.schebl@bev.gv.at

More information

Department of Computer Science Artificial Intelligence Research Laboratory. Iowa State University MACHINE LEARNING

Department of Computer Science Artificial Intelligence Research Laboratory. Iowa State University MACHINE LEARNING MACHINE LEANING Vasant Honavar Bonformatcs and Computatonal Bology rogram Center for Computatonal Intellgence, Learnng, & Dscovery Iowa State Unversty honavar@cs.astate.edu www.cs.astate.edu/~honavar/

More information

Percolation and the Potts Model

Percolation and the Potts Model Chapter 7 Percolaton and the Potts Model c 2012 by W. Klen, Harvey Gould, and Jan Tobochnk 5 November 2012 7.1 Introducton To ntroduce bond dluton correctly and use bond dluton to map the percolaton model

More information

Grand canonical Monte Carlo simulations of bulk electrolytes and calcium channels

Grand canonical Monte Carlo simulations of bulk electrolytes and calcium channels Grand canoncal Monte Carlo smulatons of bulk electrolytes and calcum channels Thess of Ph.D. dssertaton Prepared by: Attla Malascs M.Sc. n Chemstry Supervsor: Dr. Dezső Boda Unversty of Pannona Insttute

More information

Modeling and Simulation NETW 707

Modeling and Simulation NETW 707 Modelng and Smulaton NETW 707 Lecture 5 Tests for Random Numbers Course Instructor: Dr.-Ing. Magge Mashaly magge.ezzat@guc.edu.eg C3.220 1 Propertes of Random Numbers Random Number Generators (RNGs) must

More information

CS 468 Lecture 16: Isometry Invariance and Spectral Techniques

CS 468 Lecture 16: Isometry Invariance and Spectral Techniques CS 468 Lecture 16: Isometry Invarance and Spectral Technques Justn Solomon Scrbe: Evan Gawlk Introducton. In geometry processng, t s often desrable to characterze the shape of an object n a manner that

More information

CHAPTER-5 INFORMATION MEASURE OF FUZZY MATRIX AND FUZZY BINARY RELATION

CHAPTER-5 INFORMATION MEASURE OF FUZZY MATRIX AND FUZZY BINARY RELATION CAPTER- INFORMATION MEASURE OF FUZZY MATRI AN FUZZY BINARY RELATION Introducton The basc concept of the fuzz matr theor s ver smple and can be appled to socal and natural stuatons A branch of fuzz matr

More information

1 GSW Iterative Techniques for y = Ax

1 GSW Iterative Techniques for y = Ax 1 for y = A I m gong to cheat here. here are a lot of teratve technques that can be used to solve the general case of a set of smultaneous equatons (wrtten n the matr form as y = A), but ths chapter sn

More information

U-Pb Geochronology Practical: Background

U-Pb Geochronology Practical: Background U-Pb Geochronology Practcal: Background Basc Concepts: accuracy: measure of the dfference between an expermental measurement and the true value precson: measure of the reproducblty of the expermental result

More information

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS Avalable onlne at http://sck.org J. Math. Comput. Sc. 3 (3), No., 6-3 ISSN: 97-537 COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

More information

Note 10. Modeling and Simulation of Dynamic Systems

Note 10. Modeling and Simulation of Dynamic Systems Lecture Notes of ME 475: Introducton to Mechatroncs Note 0 Modelng and Smulaton of Dynamc Systems Department of Mechancal Engneerng, Unversty Of Saskatchewan, 57 Campus Drve, Saskatoon, SK S7N 5A9, Canada

More information

VQ widely used in coding speech, image, and video

VQ widely used in coding speech, image, and video at Scalar quantzers are specal cases of vector quantzers (VQ): they are constraned to look at one sample at a tme (memoryless) VQ does not have such constrant better RD perfomance expected Source codng

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

Rate of Absorption and Stimulated Emission

Rate of Absorption and Stimulated Emission MIT Department of Chemstry 5.74, Sprng 005: Introductory Quantum Mechancs II Instructor: Professor Andre Tokmakoff p. 81 Rate of Absorpton and Stmulated Emsson The rate of absorpton nduced by the feld

More information

Grid Generation around a Cylinder by Complex Potential Functions

Grid Generation around a Cylinder by Complex Potential Functions Research Journal of Appled Scences, Engneerng and Technolog 4(): 53-535, 0 ISSN: 040-7467 Mawell Scentfc Organzaton, 0 Submtted: December 0, 0 Accepted: Januar, 0 Publshed: June 0, 0 Grd Generaton around

More information

Susceptibility and Inverted Hysteresis Loop of Prussian Blue Analogs with Orthorhombic Structure

Susceptibility and Inverted Hysteresis Loop of Prussian Blue Analogs with Orthorhombic Structure Commun. Theor. Phys. 58 (202) 772 776 Vol. 58, No. 5, November 5, 202 Susceptblty and Inverted Hysteress Loop of Prussan Blue Analogs wth Orthorhombc Structure GUO An-Bang (ÁËǑ) and JIANG We ( å) School

More information