Automatic Differentiation Algorithms and Data Structures. Chen Fang PhD Candidate Joined: January 2013 FuRSST Inaugural Annual Meeting May 8 th, 2014

Size: px
Start display at page:

Download "Automatic Differentiation Algorithms and Data Structures. Chen Fang PhD Candidate Joined: January 2013 FuRSST Inaugural Annual Meeting May 8 th, 2014"

Transcription

1 Automatic Differentiation Algorithms and Data Structures Chen Fang PhD Candidate Joined: January 2013 FuRSST Inaugural Annual Meeting May 8 th,

2 About 2 3 of the code for physics in simulators computes derivatives 2

3 Automatic Differentiation (AD) 1. AD data type Value Gradient x 1 x 1, x 1 x 1, x 1 x 2 2. Operator overloading x y = x y + y x x 1 x 2 = x 1 x 2, x 1 x 2 x 1, x 2 x 2 + x 2 x 1 x 1, x 1 x 2 3

4 Example of Automatic Differentiation f x 1, x 2 = cos x 1 + x 1 exp x 2 Procedures: x 1 = x 1, 1, 0 x 2 = x 2, 0, 1 cos x 1 = cos x 1, sin x 1, 0 exp x 2 = exp x 2, 0, exp x 2 x 1 exp x 2 = x 1 exp x 2, exp x 2, x 1 exp x 2 f x 1, x 2 = cos x 1 + x 1 exp x 2, sin x 1 + exp x 2, x 1 exp x 2 f x 1 f x 2 4

5 Popular AD Packages There are many AD packages available: OpenAD ADOL-C Various implementation methods Source Transformation Operator Overloading Various implementation language Fortran C/C++ MATLAB Python Applications that use AD: Ocean circulation Optimization of dynamic systems governed by PDEs Nuclear reactor applications 5

6 Challenges for AD in Reservoir Simulation 1. Variable sparsity pattern Diagonal Block diagonal Stenciling Evaluation 6

7 Challenges for AD in Reservoir Simulation 2. Variable switching 7

8 Automatically Differentiable Expression Templates Library (ADETL) Developed by Rami Younis at Stanford University Initial prototype to prove viability of AD for reservoir simulation ADETL solves some reservoir simulation chanllenges: Block sparse gradient data structure Two algorithms to compute derivative operations Variable switching and adaptive implicit problems Builds runtime expression for derivatives 8

9 Sparse Algorithms in ADETL Algorithm 1: axpy Phase 1 Phase 2 9

10 Sparse Algorithms in ADETL Algorithm 2: running pointers 10

11 Variable Switching in ADETL Independent variable set: Components in liquid phase Components in gas phase [ Po, Pg, Pw, So, Sg, x1, x2, x3, x4, y1, y2, y3, y4] Gas phase disappears: Auto (de)activation [ Po, Pg, Pw, So, Sg, x1, x2, x3, x4, y1, y2, y3, y4] 11

12 Application of ADETL ADETL has been successfully applied in the development of reservoir simulators: AD-GPRS (Stanford University) Unconventional shale gas reservoir simulator (FuRSST) We are improving ADETL towards ADETL

13 So what s next? 1. Can we deal with various degrees of sparsity patterns? 2. Can we avoid the cost of runtime sparsity detection? 13

14 Non-zero Call Stack 14

15 Univariate Dense Multivariate Sparse Multivariate ADETL

16 Stage 1 Univariate terms Test case: product of sequence N F x = f i x F x = i=1 N j=1 df j x dx i j f i x Case # # of arguments (N)

17 N Univariate Test 1 F x = f i x 1. Hand differentiation F x = i=1 N j=1 df j x dx i j f i x N Value & Derivative Expressions 1 F x = f 1 x F x = f 1 x 2 F x = f 1 x f 2 x F x = f 1 x f 2 x + f 1 x f 2 x 3 F x = f 1 x f 2 x f 3 x F x = f 1 x f 2 x f 3 x + f 1 x f 2 x f 3 x + f 1 x f 2 x f 3 x 17

18 Univariate Test 2 2. ADunivariate (new datatype) N ADunivariate Expression 1 R = a 2 R = a * b 3 R = a * b * c 18

19 Univariate Test 3 3. ADETL (block sparse gradient) N ADETL Expression 1 R = a 2 R = a * b 3 R = a * b * c 19

20 N Univariate Test Result F x = f i x F x = i=1 N j=1 df j x dx i j f i x 20

21 Stage 2 Dense Multivariate Test case: summation F x 1, x 2 x n = f i x 1, x 2 x n 4 i=1 Case # # of independent variables F x 1, x 2 x n x 1 = F x 1, x 2 x n x n = 4 fi x 1, x 2 x n i=1 i=1 x 1 4 fi x 1, x 2 x n x n 21

22 Dense Multivariate Test 1 1. Manual implementation Case 1 Case 2 Case

23 Dense Multivariate Test 2 2. Expression Templates with dense gradient Vector1 Vector2 Vector3 Vector4 Vector1 + Vector2 Vector1 + Vector2 + Vector3 Vector1 + Vector2 + Vector3+Vector4 23

24 Dense Multivariate Test 3 3. ADETL (block sparse gradient) Case 1 Case 2 Case

25 Time(microseconds) Problem 2 - Dense Multivariate Manual 2. Expression Template 3. ADETL F x 1, x 2 x n = N i=1 f i x 1, x 2 x n 4.1X X 7.5X 1X X 1X Number of elements in dense vector Manual Expression Template ADETL 25

26 Avoiding sparse operations sparse dense d1 d2 d x x 1 x x 2 x x x 1 x x x 3 x x x 1 x x x 4 x x x 1 x x x x = 5 x x x 1 x x x 6 x x x 1 x x x 7 x x x 1 x x x 8 x x x 1 x x x 9 x x 1 x x Sparse Jacobian Seed matrix Compressed Jacobian 26

27 Compressed AD 1. Variable activation (Dense Jacobian) 2. Evaluation U = U S x x x x J = x x x x x x x x x x x x recover J = x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 27

28 Challenge with Compressed AD 1. Sparsity pattern is unknown 2. Variable switching d1 d2 d x x 1 x x 2 x x x 1 x x x 3 x x x 1 x x x 4 x x x 1 x x x x = 5 x x x 1 x x x 6 x x x 1 x x x 7 x x x 1 x x x 8 x x x 1 x x x 9 x x 1 x x Sparse Jacobian Seed matrix Compressed Jacobian 28

29 ADETL 2.0 Full range of data types and efficient algorithms Ability to convert from one type to the other Compressed AD Automatic variable set Seed matrix will be incorporated Benchmark kernel to test AD packages for reservoir simulation calculations 29

30 Automatic Differentiation Algorithms and Data Structures Chen Fang PhD Candidate Joined: January 2013 FuRSST Inaugural Annual Meeting May 8 th,

Generating pseudo- random numbers

Generating pseudo- random numbers Generating pseudo- random numbers What are pseudo-random numbers? Numbers exhibiting statistical randomness while being generated by a deterministic process. Easier to generate than true random numbers?

More information

STCE. Adjoint Code Design Patterns. Uwe Naumann. RWTH Aachen University, Germany. QuanTech Conference, London, April 2016

STCE. Adjoint Code Design Patterns. Uwe Naumann. RWTH Aachen University, Germany. QuanTech Conference, London, April 2016 Adjoint Code Design Patterns Uwe Naumann RWTH Aachen University, Germany QuanTech Conference, London, April 2016 Outline Why Adjoints? What Are Adjoints? Software Tool Support: dco/c++ Adjoint Code Design

More information

On the efficient exploitation of sparsity

On the efficient exploitation of sparsity On the efficient exploitation of sparsity Andrea Walther Institut für Mathematik Universität Paderborn Workshop on PDE constrained optimization 2009 Trier, June 3 5, 2009 Outline 1 Motivation 2 Computing

More information

Lecture 17: Iterative Methods and Sparse Linear Algebra

Lecture 17: Iterative Methods and Sparse Linear Algebra Lecture 17: Iterative Methods and Sparse Linear Algebra David Bindel 25 Mar 2014 Logistics HW 3 extended to Wednesday after break HW 4 should come out Monday after break Still need project description

More information

Module III: Partial differential equations and optimization

Module III: Partial differential equations and optimization Module III: Partial differential equations and optimization Martin Berggren Department of Information Technology Uppsala University Optimization for differential equations Content Martin Berggren (UU)

More information

Branch Detection and Sparsity Estimation in Matlab

Branch Detection and Sparsity Estimation in Matlab Branch Detection and Sparsity Estimation in Matlab Marina Menshikova & Shaun Forth Engineering Systems Department Cranfield University (DCMT Shrivenham) Shrivenham, Swindon SN6 8LA, U.K. email: M.Menshikova@cranfield.ac.uk/S.A.Forth@cranfield.ac.uk

More information

Review and Unification of Methods for Computing Derivatives of Multidisciplinary Computational Models

Review and Unification of Methods for Computing Derivatives of Multidisciplinary Computational Models his is a preprint of the following article, which is available from http://mdolabenginumichedu J R R A Martins and J Hwang Review and unification of methods for computing derivatives of multidisciplinary

More information

Nested Differentiation and Symmetric Hessian Graphs with ADTAGEO

Nested Differentiation and Symmetric Hessian Graphs with ADTAGEO Nested Differentiation and Symmetric Hessian Graphs with ADTAGEO ADjoints and TAngents by Graph Elimination Ordering Jan Riehme Andreas Griewank Institute for Applied Mathematics Humboldt Universität zu

More information

Sensitivity Analysis AA222 - Multidisciplinary Design Optimization Joaquim R. R. A. Martins Durand

Sensitivity Analysis AA222 - Multidisciplinary Design Optimization Joaquim R. R. A. Martins Durand Sensitivity Analysis AA222 - Multidisciplinary Design Optimization Joaquim R. R. A. Martins Durand 165 email: joaquim.martins@stanford.edu 1 Introduction Sensitivity analysis consists in computing derivatives

More information

Coordinate Update Algorithm Short Course The Package TMAC

Coordinate Update Algorithm Short Course The Package TMAC Coordinate Update Algorithm Short Course The Package TMAC Instructor: Wotao Yin (UCLA Math) Summer 2016 1 / 16 TMAC: A Toolbox of Async-Parallel, Coordinate, Splitting, and Stochastic Methods C++11 multi-threading

More information

A Geothermal Reservoir Simulator in AD-GPRS

A Geothermal Reservoir Simulator in AD-GPRS SGP-TR-206 A Geothermal Reservoir Simulator in AD-GPRS Zhi Yang Wong June 2015 Financial support was provided through the Stanford Geothermal Program under Department of Energy Grant No. DE-EE0006646,

More information

Positive Definite Kernels: Opportunities and Challenges

Positive Definite Kernels: Opportunities and Challenges Positive Definite Kernels: Opportunities and Challenges Michael McCourt Department of Mathematical and Statistical Sciences University of Colorado, Denver CUNY Mathematics Seminar CUNY Graduate College

More information

A Taylor series solution of the reactor point kinetics equations

A Taylor series solution of the reactor point kinetics equations 1 A Taylor series solution of the reactor point kinetics equations David McMahon and Adam Pierson Department of Nuclear Safety Analysis,Sandia National Laboratories, Albuquerque, NM 87185-1141 E-mail address:

More information

Linear Algebra. PHY 604: Computational Methods in Physics and Astrophysics II

Linear Algebra. PHY 604: Computational Methods in Physics and Astrophysics II Linear Algebra Numerical Linear Algebra We've now seen several places where solving linear systems comes into play Implicit ODE integration Cubic spline interpolation We'll see many more, including Solving

More information

Tensor networks and deep learning

Tensor networks and deep learning Tensor networks and deep learning I. Oseledets, A. Cichocki Skoltech, Moscow 26 July 2017 What is a tensor Tensor is d-dimensional array: A(i 1,, i d ) Why tensors Many objects in machine learning can

More information

Economics 101A (Lecture 3) Stefano DellaVigna

Economics 101A (Lecture 3) Stefano DellaVigna Economics 101A (Lecture 3) Stefano DellaVigna January 24, 2017 Outline 1. Implicit Function Theorem 2. Envelope Theorem 3. Convexity and concavity 4. Constrained Maximization 1 Implicit function theorem

More information

Current Developments and Applications related to the Discrete Adjoint Solver in SU2

Current Developments and Applications related to the Discrete Adjoint Solver in SU2 Current Developments and Applications related to the Discrete Adjoint Solver in SU2 Tim Albring, Max Sagebaum, Ole Burghardt, Lisa Kusch, Nicolas R. Gauger Chair for Scientific Computing TU Kaiserslautern

More information

Simple sparse matrices we have seen so far include diagonal matrices and tridiagonal matrices, but these are not the only ones.

Simple sparse matrices we have seen so far include diagonal matrices and tridiagonal matrices, but these are not the only ones. A matrix is sparse if most of its entries are zero. Simple sparse matrices we have seen so far include diagonal matrices and tridiagonal matrices, but these are not the only ones. In fact sparse matrices

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Classical Iterations We have a problem, We assume that the matrix comes from a discretization of a PDE. The best and most popular model problem is, The matrix will be as large

More information

A Geothermal Reservoir Simulator with AD-GPRS

A Geothermal Reservoir Simulator with AD-GPRS Proceedings World Geothermal Congress 2015 Melbourne, Australia, 19-25 April 2015 A Geothermal Reservoir Simulator with Zhi Yang Wong, Roland Horne and Denis Voskov Department of Energy Resources Engineering,

More information

B553 Lecture 5: Matrix Algebra Review

B553 Lecture 5: Matrix Algebra Review B553 Lecture 5: Matrix Algebra Review Kris Hauser January 19, 2012 We have seen in prior lectures how vectors represent points in R n and gradients of functions. Matrices represent linear transformations

More information

Towards abstract and executable multivariate polynomials in Isabelle

Towards abstract and executable multivariate polynomials in Isabelle Towards abstract and executable multivariate polynomials in Isabelle Florian Haftmann Andreas Lochbihler Wolfgang Schreiner Institute for Informatics Institute of Information Security RISC TU Munich ETH

More information

https://goo.gl/kfxweg KYOTO UNIVERSITY Statistical Machine Learning Theory Sparsity Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT OF INTELLIGENCE SCIENCE AND TECHNOLOGY 1 KYOTO UNIVERSITY Topics:

More information

Introduction to numerical computations on the GPU

Introduction to numerical computations on the GPU Introduction to numerical computations on the GPU Lucian Covaci http://lucian.covaci.org/cuda.pdf Tuesday 1 November 11 1 2 Outline: NVIDIA Tesla and Geforce video cards: architecture CUDA - C: programming

More information

Systems of Nonlinear Equations

Systems of Nonlinear Equations Systems of Nonlinear Equations L. T. Biegler Chemical Engineering Department Carnegie Mellon University Pittsburgh, PA 15213 Biegler@cmu.edu http://dynopt.cheme.cmu.edu Obtaining Derivatives Broyden vs.

More information

ELSI: A Unified Software Interface for Kohn-Sham Electronic Structure Solvers

ELSI: A Unified Software Interface for Kohn-Sham Electronic Structure Solvers ELSI: A Unified Software Interface for Kohn-Sham Electronic Structure Solvers Victor Yu and the ELSI team Department of Mechanical Engineering & Materials Science Duke University Kohn-Sham Density-Functional

More information

Visual SLAM Tutorial: Bundle Adjustment

Visual SLAM Tutorial: Bundle Adjustment Visual SLAM Tutorial: Bundle Adjustment Frank Dellaert June 27, 2014 1 Minimizing Re-projection Error in Two Views In a two-view setting, we are interested in finding the most likely camera poses T1 w

More information

A Tutorial On Backward Propagation Through Time (BPTT) In The Gated Recurrent Unit (GRU) RNN

A Tutorial On Backward Propagation Through Time (BPTT) In The Gated Recurrent Unit (GRU) RNN A Tutorial On Backward Propagation Through Time (BPTT In The Gated Recurrent Unit (GRU RNN Minchen Li Department of Computer Science The University of British Columbia minchenl@cs.ubc.ca Abstract In this

More information

A COUPLED-ADJOINT METHOD FOR HIGH-FIDELITY AERO-STRUCTURAL OPTIMIZATION

A COUPLED-ADJOINT METHOD FOR HIGH-FIDELITY AERO-STRUCTURAL OPTIMIZATION A COUPLED-ADJOINT METHOD FOR HIGH-FIDELITY AERO-STRUCTURAL OPTIMIZATION Joaquim Rafael Rost Ávila Martins Department of Aeronautics and Astronautics Stanford University Ph.D. Oral Examination, Stanford

More information

libsupermesh version 1.0.1

libsupermesh version 1.0.1 libsupermesh version 1.0.1 James R. Maddison School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, UK Iakovos Panourgias EPCC, University of Edinburgh, UK, Patrick

More information

Efficient Calculation of Derivatives using Automatic Differentiation With applications in optimization and reservoir simulation Vegard Ove Endresen

Efficient Calculation of Derivatives using Automatic Differentiation With applications in optimization and reservoir simulation Vegard Ove Endresen Efficient Calculation of Derivatives using Automatic Differentiation With applications in optimization and reservoir simulation Vegard Ove Endresen Kjelseth Master s Thesis Autumn 2014 Efficient Calculation

More information

arxiv: v1 [math.na] 7 May 2009

arxiv: v1 [math.na] 7 May 2009 The hypersecant Jacobian approximation for quasi-newton solves of sparse nonlinear systems arxiv:0905.105v1 [math.na] 7 May 009 Abstract Johan Carlsson, John R. Cary Tech-X Corporation, 561 Arapahoe Avenue,

More information

PETSc for Python. Lisandro Dalcin

PETSc for Python.  Lisandro Dalcin PETSc for Python http://petsc4py.googlecode.com Lisandro Dalcin dalcinl@gmail.com Centro Internacional de Métodos Computacionales en Ingeniería Consejo Nacional de Investigaciones Científicas y Técnicas

More information

Intro to Automatic Differentiation

Intro to Automatic Differentiation Intro to Automatic Differentiation Thomas Kaminski (http://fastopt.com) Thanks to: Simon Blessing (FastOpt), Ralf Giering (FastOpt), Nadine Gobron (JRC), Wolfgang Knorr (QUEST), Thomas Lavergne (Met.No),

More information

Department of Chemical Engineering University of California, Santa Barbara Spring Exercise 2. Due: Thursday, 4/19/09

Department of Chemical Engineering University of California, Santa Barbara Spring Exercise 2. Due: Thursday, 4/19/09 Department of Chemical Engineering ChE 210D University of California, Santa Barbara Spring 2012 Exercise 2 Due: Thursday, 4/19/09 Objective: To learn how to compile Fortran libraries for Python, and to

More information

Conditions for Robust Principal Component Analysis

Conditions for Robust Principal Component Analysis Rose-Hulman Undergraduate Mathematics Journal Volume 12 Issue 2 Article 9 Conditions for Robust Principal Component Analysis Michael Hornstein Stanford University, mdhornstein@gmail.com Follow this and

More information

Enhancing Scalability of Sparse Direct Methods

Enhancing Scalability of Sparse Direct Methods Journal of Physics: Conference Series 78 (007) 0 doi:0.088/7-6596/78//0 Enhancing Scalability of Sparse Direct Methods X.S. Li, J. Demmel, L. Grigori, M. Gu, J. Xia 5, S. Jardin 6, C. Sovinec 7, L.-Q.

More information

Empowering Scientists with Domain Specific Languages

Empowering Scientists with Domain Specific Languages Empowering Scientists with Domain Specific Languages Julian Kunkel, Nabeeh Jum ah Scientific Computing Department of Informatics University of Hamburg SciCADE2017 2017-09-13 Outline 1 Developing Scientific

More information

Quantitative Seismic Interpretation An Earth Modeling Perspective

Quantitative Seismic Interpretation An Earth Modeling Perspective Quantitative Seismic Interpretation An Earth Modeling Perspective Damien Thenin*, RPS, Calgary, AB, Canada TheninD@rpsgroup.com Ron Larson, RPS, Calgary, AB, Canada LarsonR@rpsgroup.com Summary Earth models

More information

CONTROL OF ROBOT CAMERA SYSTEM WITH ACTUATOR S DYNAMICS TO TRACK MOVING OBJECT

CONTROL OF ROBOT CAMERA SYSTEM WITH ACTUATOR S DYNAMICS TO TRACK MOVING OBJECT Journal of Computer Science and Cybernetics, V.31, N.3 (2015), 255 265 DOI: 10.15625/1813-9663/31/3/6127 CONTROL OF ROBOT CAMERA SYSTEM WITH ACTUATOR S DYNAMICS TO TRACK MOVING OBJECT NGUYEN TIEN KIEM

More information

Sparse Polynomial Multiplication and Division in Maple 14

Sparse Polynomial Multiplication and Division in Maple 14 Sparse Polynomial Multiplication and Division in Maple 4 Michael Monagan and Roman Pearce Department of Mathematics, Simon Fraser University Burnaby B.C. V5A S6, Canada October 5, 9 Abstract We report

More information

Solving Ax = b, an overview. Program

Solving Ax = b, an overview. Program Numerical Linear Algebra Improving iterative solvers: preconditioning, deflation, numerical software and parallelisation Gerard Sleijpen and Martin van Gijzen November 29, 27 Solving Ax = b, an overview

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) Lecture 19: Computing the SVD; Sparse Linear Systems Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical

More information

ARPACK. Dick Kachuma & Alex Prideaux. November 3, Oxford University Computing Laboratory

ARPACK. Dick Kachuma & Alex Prideaux. November 3, Oxford University Computing Laboratory ARPACK Dick Kachuma & Alex Prideaux Oxford University Computing Laboratory November 3, 2006 What is ARPACK? ARnoldi PACKage Collection of routines to solve large scale eigenvalue problems Developed at

More information

Computer Algebra and Computer Algebra Systems L algèbre computationnelle et systèmes d algèbre computationnelle (Org: Michael Monagan (SFU))

Computer Algebra and Computer Algebra Systems L algèbre computationnelle et systèmes d algèbre computationnelle (Org: Michael Monagan (SFU)) Computer Algebra and Computer Algebra Systems L algèbre computationnelle et systèmes d algèbre computationnelle (Org: Michael Monagan (SFU)) OLEG GOLUBITSKY, Ontario Research Centre for Computer Algebra,

More information

Historical Perspective on Numerical Problem Solving

Historical Perspective on Numerical Problem Solving Historical Perspective on Numerical Problem Solving Mordechai Shacham Department of Chemical Engineering Ben Gurion University of the Negev Beer-Sheva, Israel Michael B. Cutlip Department of Chemical Engineering

More information

Python. Tutorial. Jan Pöschko. March 22, Graz University of Technology

Python. Tutorial. Jan Pöschko. March 22, Graz University of Technology Tutorial Graz University of Technology March 22, 2010 Why? is: very readable easy to learn interpreted & interactive like a UNIX shell, only better object-oriented but not religious about it slower than

More information

DiffSharp An AD Library for.net Languages

DiffSharp An AD Library for.net Languages DiffSharp An AD Library for.net Languages Atılım Güneş Baydin 1 Barak A. Pearlmutter 2 Jeffrey Mark Siskind 3 1 University of Oxford gunes@robots.ox.ac.uk 2 Maynooth University barak@pearlmutter.net 3

More information

The FEniCS Project Philosophy, current status and future plans

The FEniCS Project Philosophy, current status and future plans The FEniCS Project Philosophy, current status and future plans Anders Logg logg@simula.no Simula Research Laboratory FEniCS 06 in Delft, November 8-9 2006 Outline Philosophy Recent updates Future plans

More information

Entropy of Gaussian Random Functions and Consequences in Geostatistics

Entropy of Gaussian Random Functions and Consequences in Geostatistics Entropy of Gaussian Random Functions and Consequences in Geostatistics Paula Larrondo (larrondo@ualberta.ca) Department of Civil & Environmental Engineering University of Alberta Abstract Sequential Gaussian

More information

Linear Systems of Equations. ChEn 2450

Linear Systems of Equations. ChEn 2450 Linear Systems of Equations ChEn 450 LinearSystems-directkey - August 5, 04 Example Circuit analysis (also used in heat transfer) + v _ R R4 I I I3 R R5 R3 Kirchoff s Laws give the following equations

More information

Chapter 9. Derivatives. Josef Leydold Mathematical Methods WS 2018/19 9 Derivatives 1 / 51. f x. (x 0, f (x 0 ))

Chapter 9. Derivatives. Josef Leydold Mathematical Methods WS 2018/19 9 Derivatives 1 / 51. f x. (x 0, f (x 0 )) Chapter 9 Derivatives Josef Leydold Mathematical Methods WS 208/9 9 Derivatives / 5 Difference Quotient Let f : R R be some function. The the ratio f = f ( 0 + ) f ( 0 ) = f ( 0) 0 is called difference

More information

Algorithmic Differentiation of Numerical Methods: Tangent and Adjoint Solvers for Parameterized Systems of Nonlinear Equations

Algorithmic Differentiation of Numerical Methods: Tangent and Adjoint Solvers for Parameterized Systems of Nonlinear Equations Algorithmic Differentiation of Numerical Methods: Tangent and Adjoint Solvers for Parameterized Systems of Nonlinear Equations UWE NAUMANN, JOHANNES LOTZ, KLAUS LEPPKES, and MARKUS TOWARA, RWTH Aachen

More information

. D Matrix Calculus D 1

. D Matrix Calculus D 1 D Matrix Calculus D 1 Appendix D: MATRIX CALCULUS D 2 In this Appendix we collect some useful formulas of matrix calculus that often appear in finite element derivations D1 THE DERIVATIVES OF VECTOR FUNCTIONS

More information

Statistical Tools for Making Predictions. LCPC Training Week 5 October 2010 Dr Colin Caprani

Statistical Tools for Making Predictions. LCPC Training Week 5 October 2010 Dr Colin Caprani www.colincaprani.com 1 Introduction About me: Did PhD in Bridge Traffic Loading (BTL) in UCD, 2001-2005 Concentrated on statistical analysis of BTL Continuing research in the BTL (and new areas) About

More information

CP2K. New Frontiers. ab initio Molecular Dynamics

CP2K. New Frontiers. ab initio Molecular Dynamics CP2K New Frontiers in ab initio Molecular Dynamics Jürg Hutter, Joost VandeVondele, Valery Weber Physical-Chemistry Institute, University of Zurich Ab Initio Molecular Dynamics Molecular Dynamics Sampling

More information

ECE521 W17 Tutorial 1. Renjie Liao & Min Bai

ECE521 W17 Tutorial 1. Renjie Liao & Min Bai ECE521 W17 Tutorial 1 Renjie Liao & Min Bai Schedule Linear Algebra Review Matrices, vectors Basic operations Introduction to TensorFlow NumPy Computational Graphs Basic Examples Linear Algebra Review

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Matrix Notation Mark Schmidt University of British Columbia Winter 2017 Admin Auditting/registration forms: Submit them at end of class, pick them up end of next class. I need

More information

The Art of Differentiating Computer Programs

The Art of Differentiating Computer Programs The Art of Differentiating Computer Programs Uwe Naumann LuFG Informatik 12 Software and Tools for Computational Engineering RWTH Aachen University, Germany naumann@stce.rwth-aachen.de www.stce.rwth-aachen.de

More information

Block diagonalization of matrix-valued sum-of-squares programs

Block diagonalization of matrix-valued sum-of-squares programs Block diagonalization of matrix-valued sum-of-squares programs Johan Löfberg Division of Automatic Control Department of Electrical Engineering Linköpings universitet, SE-581 83 Linköping, Sweden WWW:

More information

Fastfood Approximating Kernel Expansions in Loglinear Time. Quoc Le, Tamas Sarlos, and Alex Smola Presenter: Shuai Zheng (Kyle)

Fastfood Approximating Kernel Expansions in Loglinear Time. Quoc Le, Tamas Sarlos, and Alex Smola Presenter: Shuai Zheng (Kyle) Fastfood Approximating Kernel Expansions in Loglinear Time Quoc Le, Tamas Sarlos, and Alex Smola Presenter: Shuai Zheng (Kyle) Large Scale Problem: ImageNet Challenge Large scale data Number of training

More information

Gradient Enhanced Universal Kriging Model for Uncertainty Propagation in Nuclear Engineering

Gradient Enhanced Universal Kriging Model for Uncertainty Propagation in Nuclear Engineering Gradient Enhanced Universal Kriging Model for Uncertainty Propagation in Nuclear Engineering Brian A. Lockwood 1 and Mihai Anitescu 2 1 Department of Mechanical Engineering University of Wyoming 2 Mathematics

More information

Homework #5 Solution Due Thursday, December 01, 2011

Homework #5 Solution Due Thursday, December 01, 2011 12.010 Homework #5 Solution Due Thursday, December 01, 2011 Question (1): (25- points) (a) Write a Matlab M- file which generates a table of error function (erf) and its derivatives for real arguments

More information

Sparse Linear Systems. Iterative Methods for Sparse Linear Systems. Motivation for Studying Sparse Linear Systems. Partial Differential Equations

Sparse Linear Systems. Iterative Methods for Sparse Linear Systems. Motivation for Studying Sparse Linear Systems. Partial Differential Equations Sparse Linear Systems Iterative Methods for Sparse Linear Systems Matrix Computations and Applications, Lecture C11 Fredrik Bengzon, Robert Söderlund We consider the problem of solving the linear system

More information

Exercise: mechanics of dike formation at Ship Rock

Exercise: mechanics of dike formation at Ship Rock Exercise: mechanics of dike formation at Ship Rock Reading: Fundamentals of Structural Geology, Ch. 8, p. 87 95, 319-33 Delaney & Pollard, 1981, Deformation of host rocks and flow of magma during growth

More information

B553 Lecture 1: Calculus Review

B553 Lecture 1: Calculus Review B553 Lecture 1: Calculus Review Kris Hauser January 10, 2012 This course requires a familiarity with basic calculus, some multivariate calculus, linear algebra, and some basic notions of metric topology.

More information

Large Scale Modeling by Bayesian Updating Techniques

Large Scale Modeling by Bayesian Updating Techniques Large Scale Modeling by Bayesian Updating Techniques Weishan Ren Centre for Computational Geostatistics Department of Civil and Environmental Engineering University of Alberta Large scale models are useful

More information

Several ways to solve the MSO problem

Several ways to solve the MSO problem Several ways to solve the MSO problem J. J. Steil - Bielefeld University - Neuroinformatics Group P.O.-Box 0 0 3, D-3350 Bielefeld - Germany Abstract. The so called MSO-problem, a simple superposition

More information

PARSIMONIOUS MULTIVARIATE COPULA MODEL FOR DENSITY ESTIMATION. Alireza Bayestehtashk and Izhak Shafran

PARSIMONIOUS MULTIVARIATE COPULA MODEL FOR DENSITY ESTIMATION. Alireza Bayestehtashk and Izhak Shafran PARSIMONIOUS MULTIVARIATE COPULA MODEL FOR DENSITY ESTIMATION Alireza Bayestehtashk and Izhak Shafran Center for Spoken Language Understanding, Oregon Health & Science University, Portland, Oregon, USA

More information

AUTOMATIC DIFFERENTIATION FOR NONLINEAR, MULTIPHYSICS SIMULATION

AUTOMATIC DIFFERENTIATION FOR NONLINEAR, MULTIPHYSICS SIMULATION AUTOMATIC DIFFERENTIATION FOR NONLINEAR, MULTIPHYSICS SIMULATION Derek Gaston October 24 2016 Multiphysics Object Oriented Simulation Environment MOOSE is a finite-element, multiphysics framework that

More information

Least-squares Support Vector Regression for GSP-Phot

Least-squares Support Vector Regression for GSP-Phot Least-squares Support Vector Regression for GSP-Phot prepared by: reference: issue: 1 revision: 2 date: 2016-02-05 status: Issued R. Andrae Abstract We discuss the least-squares support vector regression

More information

Self-Calibration and Biconvex Compressive Sensing

Self-Calibration and Biconvex Compressive Sensing Self-Calibration and Biconvex Compressive Sensing Shuyang Ling Department of Mathematics, UC Davis July 12, 2017 Shuyang Ling (UC Davis) SIAM Annual Meeting, 2017, Pittsburgh July 12, 2017 1 / 22 Acknowledgements

More information

DISTRIBUTIONAL SEMANTICS

DISTRIBUTIONAL SEMANTICS COMP90042 LECTURE 4 DISTRIBUTIONAL SEMANTICS LEXICAL DATABASES - PROBLEMS Manually constructed Expensive Human annotation can be biased and noisy Language is dynamic New words: slangs, terminology, etc.

More information

Sparse Matrices and Iterative Methods

Sparse Matrices and Iterative Methods Sparse Matrices and Iterative Methods K. 1 1 Department of Mathematics 2018 Iterative Methods Consider the problem of solving Ax = b, where A is n n. Why would we use an iterative method? Avoid direct

More information

182 George Street Providence, RI 02912, U.S.A.

182 George Street   Providence, RI 02912, U.S.A. Curriculum Vitae Guang Lin CONTACT INFORMATION Division of Applied Mathematics Phone: 401-863-3694 Box F, Brown University glin@dam.brown.edu 182 George Street http://www.dam.brown.edu/people/glin/, U.S.A.

More information

Sparse inverse covariance estimation with the lasso

Sparse inverse covariance estimation with the lasso Sparse inverse covariance estimation with the lasso Jerome Friedman Trevor Hastie and Robert Tibshirani November 8, 2007 Abstract We consider the problem of estimating sparse graphs by a lasso penalty

More information

Machine Learning Applied to 3-D Reservoir Simulation

Machine Learning Applied to 3-D Reservoir Simulation Machine Learning Applied to 3-D Reservoir Simulation Marco A. Cardoso 1 Introduction The optimization of subsurface flow processes is important for many applications including oil field operations and

More information

Some notes on efficient computing and setting up high performance computing environments

Some notes on efficient computing and setting up high performance computing environments Some notes on efficient computing and setting up high performance computing environments Andrew O. Finley Department of Forestry, Michigan State University, Lansing, Michigan. April 17, 2017 1 Efficient

More information

Fitting a Tensor Decomposition is a Nonlinear Optimization Problem

Fitting a Tensor Decomposition is a Nonlinear Optimization Problem Fitting a Tensor Decomposition is a Nonlinear Optimization Problem Evrim Acar, Daniel M. Dunlavy, and Tamara G. Kolda* Sandia National Laboratories Sandia is a multiprogram laboratory operated by Sandia

More information

Derivatives for Time-Spectral Computational Fluid Dynamics using an Automatic Differentiation Adjoint

Derivatives for Time-Spectral Computational Fluid Dynamics using an Automatic Differentiation Adjoint Derivatives for Time-Spectral Computational Fluid Dynamics using an Automatic Differentiation Adjoint Charles A. Mader University of Toronto Institute for Aerospace Studies Toronto, Ontario, Canada Joaquim

More information

Hands-on Generating Random

Hands-on Generating Random CVIP Laboratory Hands-on Generating Random Variables Shireen Elhabian Aly Farag October 2007 The heart of Monte Carlo simulation for statistical inference. Generate synthetic data to test our algorithms,

More information

Gypsilab : a MATLAB toolbox for FEM-BEM coupling

Gypsilab : a MATLAB toolbox for FEM-BEM coupling Gypsilab : a MATLAB toolbox for FEM-BEM coupling François Alouges, (joint work with Matthieu Aussal) Workshop on Numerical methods for wave propagation and applications Sept. 1st 2017 Facts New numerical

More information

Simplifying Chemical Kinetics

Simplifying Chemical Kinetics Texas A&M University September 1, 2010 Chemically Reactive Flows: In gas-phase chemical reaction systems, the governing porcesses such as flow, chemical reactions and molecular transport, occur at time

More information

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for 1 Logistics Notes for 2016-08-26 1. Our enrollment is at 50, and there are still a few students who want to get in. We only have 50 seats in the room, and I cannot increase the cap further. So if you are

More information

GloVe: Global Vectors for Word Representation 1

GloVe: Global Vectors for Word Representation 1 GloVe: Global Vectors for Word Representation 1 J. Pennington, R. Socher, C.D. Manning M. Korniyenko, S. Samson Deep Learning for NLP, 13 Jun 2017 1 https://nlp.stanford.edu/projects/glove/ Outline Background

More information

Generalized Autoregressive Score Models

Generalized Autoregressive Score Models Generalized Autoregressive Score Models by: Drew Creal, Siem Jan Koopman, André Lucas To capture the dynamic behavior of univariate and multivariate time series processes, we can allow parameters to be

More information

Differential-algebraic equations, the dummy derivatives method, and AD

Differential-algebraic equations, the dummy derivatives method, and AD Differential-algebraic equations, the dummy derivatives method, and AD John D Pryce Nedialko S Nedialkov 7th International Conference on Algorithmic Differentiation Oxford, UK, 12 15 September 2016 September

More information

Sparse regularization of NIR spectra using implicit spiking and derivative spectroscopy

Sparse regularization of NIR spectra using implicit spiking and derivative spectroscopy 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1 6 December 2013 www.mssanz.org.au/modsim2013 Sparse regularization of NIR spectra using implicit spiking and derivative spectroscopy

More information

Independent Component Analysis and Unsupervised Learning. Jen-Tzung Chien

Independent Component Analysis and Unsupervised Learning. Jen-Tzung Chien Independent Component Analysis and Unsupervised Learning Jen-Tzung Chien TABLE OF CONTENTS 1. Independent Component Analysis 2. Case Study I: Speech Recognition Independent voices Nonparametric likelihood

More information

Bayesian Learning in Undirected Graphical Models

Bayesian Learning in Undirected Graphical Models Bayesian Learning in Undirected Graphical Models Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London, UK http://www.gatsby.ucl.ac.uk/ and Center for Automated Learning and

More information

Measuring Social Influence Without Bias

Measuring Social Influence Without Bias Measuring Social Influence Without Bias Annie Franco Bobbie NJ Macdonald December 9, 2015 The Problem CS224W: Final Paper How well can statistical models disentangle the effects of social influence from

More information

The Laplace Approximation

The Laplace Approximation The Laplace Approximation Sargur N. University at Buffalo, State University of New York USA Topics in Linear Models for Classification Overview 1. Discriminant Functions 2. Probabilistic Generative Models

More information

ENGI Partial Differentiation Page y f x

ENGI Partial Differentiation Page y f x ENGI 344 4 Partial Differentiation Page 4-0 4. Partial Differentiation For functions of one variable, be found unambiguously by differentiation: y f x, the rate of change of the dependent variable can

More information

Department of Chemical Engineering University of California, Santa Barbara Spring Exercise 3. Due: Thursday, 5/3/12

Department of Chemical Engineering University of California, Santa Barbara Spring Exercise 3. Due: Thursday, 5/3/12 Department of Chemical Engineering ChE 210D University of California, Santa Barbara Spring 2012 Exercise 3 Due: Thursday, 5/3/12 Objective: To learn how to write & compile Fortran libraries for Python,

More information

SMCP Documentation. Release Martin S. Andersen and Lieven Vandenberghe

SMCP Documentation. Release Martin S. Andersen and Lieven Vandenberghe SMCP Documentation Release 0.4.5 Martin S. Andersen and Lieven Vandenberghe May 18, 2018 Contents 1 Current release 3 2 Future releases 5 3 Availability 7 4 Authors 9 5 Feedback and bug reports 11 5.1

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 27, 2015 Outline Linear regression Ridge regression and Lasso Time complexity (closed form solution) Iterative Solvers Regression Input: training

More information

GCE AS. Mathematics. Mark Schemes. Summer 2010

GCE AS. Mathematics. Mark Schemes. Summer 2010 GCE AS Mathematics Summer 010 Mark Schemes Issued: October 010 NORTHERN IRELAND GENERAL CERTIFICATE OF SECONDARY EDUCATION (GCSE) AND NORTHERN IRELAND GENERAL CERTIFICATE OF EDUCATION (GCE) Introduction

More information

Utilisation de la compression low-rank pour réduire la complexité du solveur PaStiX

Utilisation de la compression low-rank pour réduire la complexité du solveur PaStiX Utilisation de la compression low-rank pour réduire la complexité du solveur PaStiX 26 Septembre 2018 - JCAD 2018 - Lyon Grégoire Pichon, Mathieu Faverge, Pierre Ramet, Jean Roman Outline 1. Context 2.

More information

NUMERICAL INTEGRATION OF CONSTRAINED MULTI-BODY DYNAMICAL SYSTEMS USING 5 T H ORDER EXACT ANALYTIC CONTINUATION ALGORITHM

NUMERICAL INTEGRATION OF CONSTRAINED MULTI-BODY DYNAMICAL SYSTEMS USING 5 T H ORDER EXACT ANALYTIC CONTINUATION ALGORITHM (Preprint) AAS 12-638 NUMERICAL INTEGRATION OF CONSTRAINED MULTI-BODY DYNAMICAL SYSTEMS USING 5 T H ORDER EXACT ANALYTIC CONTINUATION ALGORITHM Ahmad Bani Younes, and James Turner Many numerical integration

More information

Matlab Course. Anna Kristine Wåhlin. Department of Geophysics, University of Oslo. January Matlab Course p.1/??

Matlab Course. Anna Kristine Wåhlin. Department of Geophysics, University of Oslo. January Matlab Course p.1/?? Matlab Course Anna Kristine Wåhlin Department of Geophysics, University of Oslo January 2003 Matlab Course p.1/?? Numerical estimate of the derivative An estimate of the time derivative of dataset at time

More information