Homogenization of the Transmission Eigenvalue Problem for a Periodic Media

Size: px
Start display at page:

Download "Homogenization of the Transmission Eigenvalue Problem for a Periodic Media"

Transcription

1 Homogenization of the Transmission Eigenvalue Problem for a Periodic Media Isaac Harris Texas A&M University, Department of Mathematics College Station, Texas iharris@math.tamu.edu Joint work with: F. Cakoni and H. Haddar Research Funded by: NSF Grant DMS and University of Delaware Graduate Student Fellowship SIAM CSE Conference 2017 Homogenization of the TE for Periodic Material 1 / 20

2 Problem Statement for Periodic Materials We consider the time harmonic Acoustic scattering in R 3 or Electromagnetic scattering in R 2 (TE-polarization case). u i D u s u = u R d \D Figure: An example of a periodic scatterer. Homogenization of the TE for Periodic Material 2 / 20

3 The Scattering Problem for Periodic Media The time harmonic scattering by a periodic media with scattered field u s ɛ H 1 loc (Rd ) and incident field u i = exp(ikx ŷ), where the total field u ɛ = u s ɛ + u i and scattered field satisfy u s ɛ + k 2 u s ɛ = 0 in R d \ D A(x/ɛ) u ɛ + k 2 n(x/ɛ)u ɛ = 0 in D u ɛ = uɛ s + u i and u ɛ = ν A ν (us ɛ + u i ) on D ( ) lim r m 1 u s 2 ɛ iku s r ɛ = 0. r Homogenization of the TE for Periodic Material 3 / 20

4 Convergence of the Coefficients The matrix A(y) L ( Y, R d d) is Y -periodic symmetric positive definite and the function n(y) L (Y ) is a positive Y -periodic function. We have that as ɛ 0 n ɛ := n(x/ɛ) n h := 1 Y Y n(y) dy weakly in L A ɛ := A(x/ɛ) A h in the sense of H-convergence (i.e. for u ɛ u in H 1 (D) then A ɛ u ɛ A h u in [L 2 (D)] m ) where A h is a constant symmetric positive definite matrix Homogenization of the TE for Periodic Material 4 / 20

5 Far-Field Operator It is known that the radiating scattered field which depends on the incident direction ŷ, has the following asymptotic expansion u s ɛ(x, ŷ; k) = eik x x m 1 2 { ( )} 1 u ɛ (ˆx, ŷ; k) + O x We now define the far field operator as L 2 (S) L 2 (S) (Fg)(ˆx) := u ɛ (ˆx, ŷ; k)g(ŷ) ds(ŷ) S as x where S = {x R m : x = 1} is the unit circle or sphere. Homogenization of the TE for Periodic Material 5 / 20

6 The Inverse Problem: Obtain information about the macro/micro structure of the periodic scattering object where the period is characterized by a small parameter ɛ 1 from the scattered field. F. Cakoni, H. Haddar and I. Harris Homogenization approach for the transmission eigenvalue problem for periodic media and application to the inverse problem, Inverse Problems and Imaging , Volume 9, Issue 4, 2015 (arxiv: ). Homogenization of the TE for Periodic Material 6 / 20

7 The TE-Problem for a Periodic Media Homogenization is used to study composite periodic media. We are interested in the limiting case as ɛ 0 for the TE-Problem. Find non-trivial { k ɛ, (w ɛ, v ɛ ) } R + X (D) such that: A(x/ɛ) w ɛ + k 2 ɛ n(x/ɛ)w ɛ = 0 in D v ɛ + k 2 ɛ v ɛ = 0 in D w ɛ = v ɛ and w ɛ = v ɛ ν A ν Note that the spaces for the solution (w ɛ, v ɛ ) will become precise later since they depend on whether A = I or A I. on D Homogenization of the TE for Periodic Material 7 / 20

8 Reconstructing the Real TEs Consider the Far-Field equation is given by (Fg z )(ˆx) = exp( ikz ˆx) for a z D. Let g z,δ be the regularized solution to the Far-Field equation if k ɛ R + is not a TE then g z,δ L 2 (S) is bounded as δ 0 if k ɛ R + is a TE then g z,δ L 2 (S) is unbounded as δ 0. Where we assume that lim δ 0 Fg z,δ exp( ikz ˆx) L 2 (S) = 0. Homogenization of the TE for Periodic Material 8 / 20

9 Numerical Examples i.e. plot k g α z Figure: A = Diag(5, 6) and n = 2 where the domain D is a 2 2 Square. I. Harris, F. Cakoni and J. Sun Transmission eigenvalues and non-destructive testing of anisotropic magnetic materials with voids. Inverse Problems 30 (2014) Homogenization of the TE for Periodic Material 9 / 20

10 Numerical Examples We now compute the TEs using the Far-Field Equation (FFE) and the FEM where we fix A = Diag(5, 6) and n = 2. Table: Comparison of FFE Computation v.s. FEM Calculations Method Domain 1st TE 2nd TE FFE square (2 2) FEM square (2 2) FFE circle (R = 1) FEM circle (R = 1) Homogenization of the TE for Periodic Material 10 / 20

11 Alternative Methods for computing TEs Inside-Out Duality Method Stefan Peters The Inside-Outside Duality in Inverse Scattering Theory. Ph.D. Thesis (2016). Generalized LSM Lorenzo Audibert Qualitative methods for heterogeneous media. Ph.D. Thesis (2015). Homogenization of the TE for Periodic Material 11 / 20

12 The case of an Isotropic media (i.e. A = I ) For this case (w ɛ, v ɛ ) L 2 (D) L 2 (D) with u ɛ = w ɛ v ɛ H 2 0 (D), where we have that the difference u ɛ satisfies for n ɛ := n(x/ɛ) 0 = ( + kɛ 2 ) 1 ( ) n ɛ + k 2 n ɛ 1 ɛ uɛ in D. The equivalent variational form is given by 1 ( uɛ + k 2 )( ɛ u ɛ ϕ + k 2 n ɛ 1 ɛ n ɛ ϕ ) dx = 0 for all ϕ H0 2 (D). D We can rewrite the variational form as A ɛ,kɛ (u ɛ, ϕ) k 2 ɛ B(u ɛ, ϕ) = 0 for all ϕ H 2 0 (D). Homogenization of the TE for Periodic Material 12 / 20

13 Lemma (Cakoni-Haddar-IH) Let n min n(y) n max, then there exists an infinite sequence of real transmission eigenvalues k ɛ, j for j N such that k j (n max, D) k ɛ, j < k j (n min, D) if n min > 1 k j (n min, D) k ɛ, j < k j (n max, D) if n max < 1. Bounded Eigenfunctions: We let u ɛ denote the eigenfunction corresponding to the eigenvalue k ɛ with u ɛ H 1 (D) = 1 for all ɛ > 0 α u ɛ 2 L 2 (D) A ɛ,k ɛ (u ɛ, u ɛ ) = k 2 ɛ B(u ɛ, u ɛ ) k 2 ɛ u ɛ 2 H 1 (D) provided that n min > 1 or n max < 1 = u ɛ are bounded in H 2 (D) Then appeal to Elliptic Regularity and Homogenization Theory. Homogenization of the TE for Periodic Material 13 / 20

14 Theorem (Cakoni-Haddar-IH) If n min > 1 or n max < 1, then there is a subsequence of { k ɛ, (w ɛ, v ɛ ) } R + L 2 (D) L 2 (D) that converges weakly to (v, w) L 2 (D) L 2 (D) and k ɛ k such that w + k 2 n h w = 0 and v + k 2 v = 0 in D w = v and w ν = v on D ν provided that k ɛ is bounded, where n h = 1 n(y) dy. Y Y Homogenization of the TE for Periodic Material 14 / 20

15 Reconstructing Material Properties A = I We can reconstruct the effective material property n h by finding a n 0 such that k 1 (n 0 ) = k 1 (n ɛ ) where w + k 2 n 0 w = 0 and v + k 2 v = 0 in D w = v and w ν = v ν on D. Now let n(x/ɛ) = sin 2 (2πx 1 /ɛ) + 2 Table: Reconstruction from scattering data ɛ k 1 (n ɛ ) n h n Homogenization of the TE for Periodic Material 15 / 20

16 Theorem (Cakoni-Haddar-IH) Assume that A(y) I and n(y) 1 have different sign in Y, or if n(y) = 1 and A(y) I is positive (or negative) definite. Then there is a subsequence of { kɛ, (w ɛ, v ɛ ) } R + H 1 (D) H 1 (D) that converges weakly to (w, v) H 1 (D) H 1 (D) and k ɛ k that satisfies A h w + k 2 n h w = 0 and v + k 2 v = 0 in D w w = v and = v on D ν ν Ah provided that k ɛ is bounded, where A(x/ɛ) A h in the sense of H-convergence as ɛ 0. Homogenization of the TE for Periodic Material 16 / 20

17 Reconstructing Material Properties n = 1 We can reconstruct the effective material property A h = a h I by finding an a 0 such that k 1 (a 0 ) = k 1 (A ɛ ) where a 0 w + k 2 w = 0 and v + k 2 v = 0 in D w w = v and a 0 ν = v on D. ν ( Now let A(x/ɛ) = 1 sin 2 ) (2πx 2 /ɛ) cos 2 (2πx 1 /ɛ) + 1 Table: Reconstruction from scattering data ɛ k 1 (A ɛ ) a h a Homogenization of the TE for Periodic Material 17 / 20

18 In the paper we have also considered: The convergence of the interior transmission problem for the cases where A = I and A I Construct a bulk corrector to prove strong convergence for A I Numerical test for the order of convergence Open Problem: Determining the corrector term in the asymptotic expansion for transmission eigenvalues to determine microstructure information. Homogenization of the TE for Periodic Material 18 / 20

19 Some References A. Bensoussan, J.L. Lions, G. Papanicolau Asymptotic Analysis for Periodic Structures Chelsea Publications, 1978 F. Cakoni and D. Colton, A Qualitative Approach to Inverse Scattering Theory Springer, Berlin I. Harris, Non-Destructive Testing of Anisotropic Materials University of Delaware, Ph.D. Thesis (2015). Homogenization of the TE for Periodic Material 19 / 20

20 Figure: Questions? Homogenization of the TE for Periodic Material 20 / 20

Inverse Scattering Theory: Transmission Eigenvalues and Non-destructive Testing

Inverse Scattering Theory: Transmission Eigenvalues and Non-destructive Testing Inverse Scattering Theory: Transmission Eigenvalues and Non-destructive Testing Isaac Harris Texas A & M University College Station, Texas 77843-3368 iharris@math.tamu.edu Joint work with: F. Cakoni, H.

More information

The Imaging of Anisotropic Media in Inverse Electromagnetic Scattering

The Imaging of Anisotropic Media in Inverse Electromagnetic Scattering The Imaging of Anisotropic Media in Inverse Electromagnetic Scattering Fioralba Cakoni Department of Mathematical Sciences University of Delaware Newark, DE 19716, USA email: cakoni@math.udel.edu Research

More information

An eigenvalue method using multiple frequency data for inverse scattering problems

An eigenvalue method using multiple frequency data for inverse scattering problems An eigenvalue method using multiple frequency data for inverse scattering problems Jiguang Sun Abstract Dirichlet and transmission eigenvalues have important applications in qualitative methods in inverse

More information

A Direct Method for reconstructing inclusions from Electrostatic Data

A Direct Method for reconstructing inclusions from Electrostatic Data A Direct Method for reconstructing inclusions from Electrostatic Data Isaac Harris Texas A&M University, Department of Mathematics College Station, Texas 77843-3368 iharris@math.tamu.edu Joint work with:

More information

STEKLOFF EIGENVALUES AND INVERSE SCATTERING THEORY

STEKLOFF EIGENVALUES AND INVERSE SCATTERING THEORY STEKLOFF EIGENVALUES AND INVERSE SCATTERING THEORY David Colton, Shixu Meng, Peter Monk University of Delaware Fioralba Cakoni Rutgers University Research supported by AFOSR Grant FA 9550-13-1-0199 Scattering

More information

Homogenization of the transmission eigenvalue problem for periodic media and application to the inverse problem

Homogenization of the transmission eigenvalue problem for periodic media and application to the inverse problem Homogenization of the transmission eigenvalue problem for periodic media and application to the inverse problem Fioralba Cakoni, Houssem Haddar, Isaac Harris To cite this version: Fioralba Cakoni, Houssem

More information

Estimation of transmission eigenvalues and the index of refraction from Cauchy data

Estimation of transmission eigenvalues and the index of refraction from Cauchy data Estimation of transmission eigenvalues and the index of refraction from Cauchy data Jiguang Sun Abstract Recently the transmission eigenvalue problem has come to play an important role and received a lot

More information

Transmission eigenvalues and non-destructive testing of anisotropic magnetic materials with voids

Transmission eigenvalues and non-destructive testing of anisotropic magnetic materials with voids Transmission eigenvalues and non-destructive testing of anisotropic magnetic materials with voids Isaac Harris 1, Fioralba Cakoni 1 and Jiguang Sun 2 1 epartment of Mathematical Sciences, University of

More information

The Interior Transmission Eigenvalue Problem for Maxwell s Equations

The Interior Transmission Eigenvalue Problem for Maxwell s Equations The Interior Transmission Eigenvalue Problem for Maxwell s Equations Andreas Kirsch MSRI 2010 epartment of Mathematics KIT University of the State of Baden-Württemberg and National Large-scale Research

More information

Transmission Eigenvalues in Inverse Scattering Theory

Transmission Eigenvalues in Inverse Scattering Theory Transmission Eigenvalues in Inverse Scattering Theory David Colton Department of Mathematical Sciences University of Delaware Newark, DE 19716, USA email: colton@math.udel.edu Research supported by a grant

More information

Transmission Eigenvalues in Inverse Scattering Theory

Transmission Eigenvalues in Inverse Scattering Theory Transmission Eigenvalues in Inverse Scattering Theory Fioralba Cakoni Department of Mathematical Sciences University of Delaware Newark, DE 19716, USA email: cakoni@math.udel.edu Jointly with D. Colton,

More information

A coupled BEM and FEM for the interior transmission problem

A coupled BEM and FEM for the interior transmission problem A coupled BEM and FEM for the interior transmission problem George C. Hsiao, Liwei Xu, Fengshan Liu, Jiguang Sun Abstract The interior transmission problem (ITP) is a boundary value problem arising in

More information

NEW RESULTS ON TRANSMISSION EIGENVALUES. Fioralba Cakoni. Drossos Gintides

NEW RESULTS ON TRANSMISSION EIGENVALUES. Fioralba Cakoni. Drossos Gintides Inverse Problems and Imaging Volume 0, No. 0, 0, 0 Web site: http://www.aimsciences.org NEW RESULTS ON TRANSMISSION EIGENVALUES Fioralba Cakoni epartment of Mathematical Sciences University of elaware

More information

ON THE EXISTENCE OF TRANSMISSION EIGENVALUES. Andreas Kirsch1

ON THE EXISTENCE OF TRANSMISSION EIGENVALUES. Andreas Kirsch1 Manuscript submitted to AIMS Journals Volume 3, Number 2, May 29 Website: http://aimsciences.org pp. 1 XX ON THE EXISTENCE OF TRANSMISSION EIGENVALUES Andreas Kirsch1 University of Karlsruhe epartment

More information

Discreteness of Transmission Eigenvalues via Upper Triangular Compact Operators

Discreteness of Transmission Eigenvalues via Upper Triangular Compact Operators Discreteness of Transmission Eigenvalues via Upper Triangular Compact Operators John Sylvester Department of Mathematics University of Washington Seattle, Washington 98195 U.S.A. June 3, 2011 This research

More information

Inverse Scattering Theory and Transmission Eigenvalues

Inverse Scattering Theory and Transmission Eigenvalues Inverse Scattering Theory and Transmission Eigenvalues David Colton Department of Mathematical Sciences University of Delaware Newark, DE 19716, USA email: colton@udel.edu Research supported a grant from

More information

ON THE MATHEMATICAL BASIS OF THE LINEAR SAMPLING METHOD

ON THE MATHEMATICAL BASIS OF THE LINEAR SAMPLING METHOD Georgian Mathematical Journal Volume 10 (2003), Number 3, 411 425 ON THE MATHEMATICAL BASIS OF THE LINEAR SAMPLING METHOD FIORALBA CAKONI AND DAVID COLTON Dedicated to the memory of Professor Victor Kupradze

More information

Uniqueness in determining refractive indices by formally determined far-field data

Uniqueness in determining refractive indices by formally determined far-field data Applicable Analysis, 2015 Vol. 94, No. 6, 1259 1269, http://dx.doi.org/10.1080/00036811.2014.924215 Uniqueness in determining refractive indices by formally determined far-field data Guanghui Hu a, Jingzhi

More information

The Factorization Method for Inverse Scattering Problems Part I

The Factorization Method for Inverse Scattering Problems Part I The Factorization Method for Inverse Scattering Problems Part I Andreas Kirsch Madrid 2011 Department of Mathematics KIT University of the State of Baden-Württemberg and National Large-scale Research Center

More information

Notes on Transmission Eigenvalues

Notes on Transmission Eigenvalues Notes on Transmission Eigenvalues Cédric Bellis December 28, 2011 Contents 1 Scattering by inhomogeneous medium 1 2 Inverse scattering via the linear sampling method 2 2.1 Relationship with the solution

More information

Chapter 5 Fast Multipole Methods

Chapter 5 Fast Multipole Methods Computational Electromagnetics; Chapter 1 1 Chapter 5 Fast Multipole Methods 5.1 Near-field and far-field expansions Like the panel clustering, the Fast Multipole Method (FMM) is a technique for the fast

More information

Factorization method in inverse

Factorization method in inverse Title: Name: Affil./Addr.: Factorization method in inverse scattering Armin Lechleiter University of Bremen Zentrum für Technomathematik Bibliothekstr. 1 28359 Bremen Germany Phone: +49 (421) 218-63891

More information

Transmission eigenvalues with artificial background for explicit material index identification

Transmission eigenvalues with artificial background for explicit material index identification Transmission eigenvalues with artificial background for explicit material index identification Lorenzo Audibert 1,, Lucas Chesnel, Houssem Haddar 1 Department STEP, EDF R&D, 6 quai Watier, 78401, Chatou

More information

Reconstructing inclusions from Electrostatic Data

Reconstructing inclusions from Electrostatic Data Reconstructing inclusions from Electrostatic Data Isaac Harris Texas A&M University, Department of Mathematics College Station, Texas 77843-3368 iharris@math.tamu.edu Joint work with: W. Rundell Purdue

More information

The Asymptotic of Transmission Eigenvalues for a Domain with a Thin Coating

The Asymptotic of Transmission Eigenvalues for a Domain with a Thin Coating The Asymptotic of Transmission Eigenvalues for a Domain with a Thin Coating Hanen Boujlida, Houssem Haddar, Moez Khenissi To cite this version: Hanen Boujlida, Houssem Haddar, Moez Khenissi. The Asymptotic

More information

LECTURE 5 APPLICATIONS OF BDIE METHOD: ACOUSTIC SCATTERING BY INHOMOGENEOUS ANISOTROPIC OBSTACLES DAVID NATROSHVILI

LECTURE 5 APPLICATIONS OF BDIE METHOD: ACOUSTIC SCATTERING BY INHOMOGENEOUS ANISOTROPIC OBSTACLES DAVID NATROSHVILI LECTURE 5 APPLICATIONS OF BDIE METHOD: ACOUSTIC SCATTERING BY INHOMOGENEOUS ANISOTROPIC OBSTACLES DAVID NATROSHVILI Georgian Technical University Tbilisi, GEORGIA 0-0 1. Formulation of the corresponding

More information

DISTRIBUTION A: Distribution approved for public release.

DISTRIBUTION A: Distribution approved for public release. AFRL-AFOSR-VA-TR-2016-0371 Nondestructive Testing and Target Identification David Colton UNIVERSITY OF DELAWARE 12/20/2016 Final Report DISTRIBUTION A: Distribution approved for public release. Air Force

More information

The factorization method for a cavity in an inhomogeneous medium

The factorization method for a cavity in an inhomogeneous medium Home Search Collections Journals About Contact us My IOPscience The factorization method for a cavity in an inhomogeneous medium This content has been downloaded from IOPscience. Please scroll down to

More information

The Factorization Method for Maxwell s Equations

The Factorization Method for Maxwell s Equations The Factorization Method for Maxwell s Equations Andreas Kirsch University of Karlsruhe Department of Mathematics 76128 Karlsruhe Germany December 15, 2004 Abstract: The factorization method can be applied

More information

EFFECTIVE CHARACTERISTICS OF POROUS MEDIA AS A FUNCTION OF POROSITY LEVEL

EFFECTIVE CHARACTERISTICS OF POROUS MEDIA AS A FUNCTION OF POROSITY LEVEL AMS Subject Classification Index: 74Q20 EFFECTIVE CHARACTERISTICS OF POROUS MEDIA AS A FUNCTION OF POROSITY LEVEL Irini DJERAN-MAIGRE and Sergey V.KUZNETSOV INSA de Lyon, URGC 34 Avenue des Arts, 69621

More information

Some Old and Some New Results in Inverse Obstacle Scattering

Some Old and Some New Results in Inverse Obstacle Scattering Some Old and Some New Results in Inverse Obstacle Scattering Rainer Kress Abstract We will survey on uniqueness, that is, identifiability and on reconstruction issues for inverse obstacle scattering for

More information

Inverse wave scattering problems: fast algorithms, resonance and applications

Inverse wave scattering problems: fast algorithms, resonance and applications Inverse wave scattering problems: fast algorithms, resonance and applications Wagner B. Muniz Department of Mathematics Federal University of Santa Catarina (UFSC) w.b.muniz@ufsc.br III Colóquio de Matemática

More information

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4.

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4. Entrance Exam, Differential Equations April, 7 (Solve exactly 6 out of the 8 problems). Consider the following initial value problem: { y + y + y cos(x y) =, y() = y. Find all the values y such that the

More information

On the Spectrum of Volume Integral Operators in Acoustic Scattering

On the Spectrum of Volume Integral Operators in Acoustic Scattering 11 On the Spectrum of Volume Integral Operators in Acoustic Scattering M. Costabel IRMAR, Université de Rennes 1, France; martin.costabel@univ-rennes1.fr 11.1 Volume Integral Equations in Acoustic Scattering

More information

Inverse Obstacle Scattering

Inverse Obstacle Scattering , Göttingen AIP 2011, Pre-Conference Workshop Texas A&M University, May 2011 Scattering theory Scattering theory is concerned with the effects that obstacles and inhomogenities have on the propagation

More information

A modification of the factorization method for scatterers with different physical properties

A modification of the factorization method for scatterers with different physical properties A modification of the factorization method for scatterers with different physical properties Takashi FURUYA arxiv:1802.05404v2 [math.ap] 25 Oct 2018 Abstract We study an inverse acoustic scattering problem

More information

DIRECT METHODS FOR INVERSE SCATTERING WITH TIME DEPENDENT AND REDUCED DATA. Jacob D. Rezac

DIRECT METHODS FOR INVERSE SCATTERING WITH TIME DEPENDENT AND REDUCED DATA. Jacob D. Rezac DIRECT METHODS FOR INVERSE SCATTERING WITH TIME DEPENDENT AND REDUCED DATA by Jacob D. Rezac A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements

More information

The linear sampling method for three-dimensional inverse scattering problems

The linear sampling method for three-dimensional inverse scattering problems ANZIAM J. 42 (E) ppc434 C46, 2 C434 The linear sampling method for three-dimensional inverse scattering problems David Colton Klaus Giebermann Peter Monk (Received 7 August 2) Abstract The inverse scattering

More information

Introduction to Aspects of Multiscale Modeling as Applied to Porous Media

Introduction to Aspects of Multiscale Modeling as Applied to Porous Media Introduction to Aspects of Multiscale Modeling as Applied to Porous Media Part III Todd Arbogast Department of Mathematics and Center for Subsurface Modeling, Institute for Computational Engineering and

More information

The Inside-Outside Duality for Scattering Problems by Inhomogeneous Media

The Inside-Outside Duality for Scattering Problems by Inhomogeneous Media The Inside-Outside uality for Scattering Problems by Inhomogeneous Media Andreas Kirsch epartment of Mathematics Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany and Armin Lechleiter Center

More information

THE INTERIOR TRANSMISSION PROBLEM FOR REGIONS WITH CAVITIES

THE INTERIOR TRANSMISSION PROBLEM FOR REGIONS WITH CAVITIES THE INTERIOR TRANSMISSION PROBLEM FOR REGIONS WITH CAVITIES FIORALBA CAKONI, AVI COLTON, AN HOUSSEM HAAR Abstract. We consider the interior transmission problem in the case when the inhomogeneous medium

More information

Homogenization and Multiscale Modeling

Homogenization and Multiscale Modeling Ralph E. Showalter http://www.math.oregonstate.edu/people/view/show Department of Mathematics Oregon State University Multiscale Summer School, August, 2008 DOE 98089 Modeling, Analysis, and Simulation

More information

Upscaling Wave Computations

Upscaling Wave Computations Upscaling Wave Computations Xin Wang 2010 TRIP Annual Meeting 2 Outline 1 Motivation of Numerical Upscaling 2 Overview of Upscaling Methods 3 Future Plan 3 Wave Equations scalar variable density acoustic

More information

Electromagnetic Theory for Microwaves and Optoelectronics

Electromagnetic Theory for Microwaves and Optoelectronics Keqian Zhang Dejie Li Electromagnetic Theory for Microwaves and Optoelectronics Second Edition With 280 Figures and 13 Tables 4u Springer Basic Electromagnetic Theory 1 1.1 Maxwell's Equations 1 1.1.1

More information

Computation of Maxwell s transmission eigenvalues and its applications in inverse medium problems

Computation of Maxwell s transmission eigenvalues and its applications in inverse medium problems Computation of Maxwell s transmission eigenvalues and its applications in inverse medium problems Jiguang Sun 1 and Liwei Xu 2,3 1 Department of Mathematical Sciences, Michigan Technological University,

More information

The inverse transmission eigenvalue problem

The inverse transmission eigenvalue problem The inverse transmission eigenvalue problem Drossos Gintides Department of Mathematics National Technical University of Athens Greece email: dgindi@math.ntua.gr. Transmission Eigenvalue Problem Find (w,

More information

Recursive integral method for transmission eigenvalues

Recursive integral method for transmission eigenvalues Recursive integral method for transmission eigenvalues Ruihao Huang Allan A. Struthers Jiguang Sun Ruming Zhang Abstract Recently, a new eigenvalue problem, called the transmission eigenvalue problem,

More information

BEHAVIOR OF THE REGULARIZED SAMPLING INVERSE SCATTERING METHOD AT INTERNAL RESONANCE FREQUENCIES

BEHAVIOR OF THE REGULARIZED SAMPLING INVERSE SCATTERING METHOD AT INTERNAL RESONANCE FREQUENCIES Progress In Electromagnetics Research, PIER 38, 29 45, 2002 BEHAVIOR OF THE REGULARIZED SAMPLING INVERSE SCATTERING METHOD AT INTERNAL RESONANCE FREQUENCIES N. Shelton and K. F. Warnick Department of Electrical

More information

Kirchhoff, Fresnel, Fraunhofer, Born approximation and more

Kirchhoff, Fresnel, Fraunhofer, Born approximation and more Kirchhoff, Fresnel, Fraunhofer, Born approximation and more Oberseminar, May 2008 Maxwell equations Or: X-ray wave fields X-rays are electromagnetic waves with wave length from 10 nm to 1 pm, i.e., 10

More information

Scattering of electromagnetic waves by thin high contrast dielectrics II: asymptotics of the electric field and a method for inversion.

Scattering of electromagnetic waves by thin high contrast dielectrics II: asymptotics of the electric field and a method for inversion. Scattering of electromagnetic waves by thin high contrast dielectrics II: asymptotics of the electric field and a method for inversion. David M. Ambrose Jay Gopalakrishnan Shari Moskow Scott Rome June

More information

Hydrodynamic Limit with Geometric Correction in Kinetic Equations

Hydrodynamic Limit with Geometric Correction in Kinetic Equations Hydrodynamic Limit with Geometric Correction in Kinetic Equations Lei Wu and Yan Guo KI-Net Workshop, CSCAMM University of Maryland, College Park 2015-11-10 1 Simple Model - Neutron Transport Equation

More information

ITERATIVE METHODS FOR TRANSMISSION EIGENVALUES

ITERATIVE METHODS FOR TRANSMISSION EIGENVALUES ITERATIVE METHODS FOR TRANSMISSION EIGENVALUES JIGUANG SUN Abstract. Transmission eigenvalues have important applications in inverse scattering theory. They can be used to obtain useful information of

More information

The inverse transmission eigenvalue problem

The inverse transmission eigenvalue problem The inverse transmission eigenvalue problem Drossos Gintides Department of Mathematics National Technical University of Athens Greece email: dgindi@math.ntua.gr. Transmission Eigenvalue Problem Find (w,

More information

arxiv: v1 [math.ap] 21 Dec 2018

arxiv: v1 [math.ap] 21 Dec 2018 Uniqueness to Inverse Acoustic and Electromagnetic Scattering From Locally Perturbed Rough Surfaces Yu Zhao, Guanghui Hu, Baoqiang Yan arxiv:1812.09009v1 [math.ap] 21 Dec 2018 Abstract In this paper, we

More information

A probing method for the transmission eigenvalue problem

A probing method for the transmission eigenvalue problem A probing method for the transmission eigenvalue problem Fang Zeng Jiguang Sun Liwe Xu Abstract In this paper, we consider an integral eigenvalue problem, which is a reformulation of the transmission eigenvalue

More information

Determination of thin elastic inclusions from boundary measurements.

Determination of thin elastic inclusions from boundary measurements. Determination of thin elastic inclusions from boundary measurements. Elena Beretta in collaboration with E. Francini, S. Vessella, E. Kim and J. Lee September 7, 2010 E. Beretta (Università di Roma La

More information

Asymptotic Behavior of Waves in a Nonuniform Medium

Asymptotic Behavior of Waves in a Nonuniform Medium Available at http://pvamuedu/aam Appl Appl Math ISSN: 1932-9466 Vol 12, Issue 1 June 217, pp 217 229 Applications Applied Mathematics: An International Journal AAM Asymptotic Behavior of Waves in a Nonuniform

More information

Coercivity of high-frequency scattering problems

Coercivity of high-frequency scattering problems Coercivity of high-frequency scattering problems Valery Smyshlyaev Department of Mathematics, University College London Joint work with: Euan Spence (Bath), Ilia Kamotski (UCL); Comm Pure Appl Math 2015.

More information

EXISTENCE OF GUIDED MODES ON PERIODIC SLABS

EXISTENCE OF GUIDED MODES ON PERIODIC SLABS SUBMITTED FOR: PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS June 16 19, 2004, Pomona, CA, USA pp. 1 8 EXISTENCE OF GUIDED MODES ON PERIODIC SLABS Stephen

More information

Physics 250 Green s functions for ordinary differential equations

Physics 250 Green s functions for ordinary differential equations Physics 25 Green s functions for ordinary differential equations Peter Young November 25, 27 Homogeneous Equations We have already discussed second order linear homogeneous differential equations, which

More information

Monotonicity-based inverse scattering

Monotonicity-based inverse scattering Monotonicity-based inverse scattering Bastian von Harrach http://numerical.solutions Institute of Mathematics, Goethe University Frankfurt, Germany (joint work with M. Salo and V. Pohjola, University of

More information

Breast Cancer Detection by Scattering of Electromagnetic Waves

Breast Cancer Detection by Scattering of Electromagnetic Waves 57 MSAS'2006 Breast Cancer Detection by Scattering of Electromagnetic Waves F. Seydou & T. Seppänen University of Oulu Department of Electrical and Information Engineering P.O. Box 3000, 9040 Oulu Finland

More information

Electromagnetic Theorems

Electromagnetic Theorems Electromagnetic Theorems Daniel S. Weile Department of Electrical and Computer Engineering University of Delaware ELEG 648 Electromagnetic Theorems Outline Outline Duality The Main Idea Electric Sources

More information

DIRECT SAMPLING METHODS FOR INVERSE SCATTERING PROBLEMS

DIRECT SAMPLING METHODS FOR INVERSE SCATTERING PROBLEMS Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2017 DIRECT SAMPLING METHODS FOR INVERSE SCATTERING PROBLEMS Ala Mahmood Nahar Al Zaalig

More information

arxiv: v3 [math.ap] 4 Jan 2017

arxiv: v3 [math.ap] 4 Jan 2017 Recovery of an embedded obstacle and its surrounding medium by formally-determined scattering data Hongyu Liu 1 and Xiaodong Liu arxiv:1610.05836v3 [math.ap] 4 Jan 017 1 Department of Mathematics, Hong

More information

Orthogonality Sampling for Object Visualization

Orthogonality Sampling for Object Visualization Orthogonality ampling for Object Visualization Roland Potthast October 31, 2007 Abstract The goal of this paper is to propose a new sampling algorithm denoted as orthogonality sampling for the detection

More information

Stable solitons of the cubic-quintic NLS with a delta-function potential

Stable solitons of the cubic-quintic NLS with a delta-function potential Stable solitons of the cubic-quintic NLS with a delta-function potential François Genoud TU Delft Besançon, 7 January 015 The cubic-quintic NLS with a δ-potential We consider the nonlinear Schrödinger

More information

Some negative results on the use of Helmholtz integral equations for rough-surface scattering

Some negative results on the use of Helmholtz integral equations for rough-surface scattering In: Mathematical Methods in Scattering Theory and Biomedical Technology (ed. G. Dassios, D. I. Fotiadis, K. Kiriaki and C. V. Massalas), Pitman Research Notes in Mathematics 390, Addison Wesley Longman,

More information

TWO-SCALE CONVERGENCE ON PERIODIC SURFACES AND APPLICATIONS

TWO-SCALE CONVERGENCE ON PERIODIC SURFACES AND APPLICATIONS TWO-SCALE CONVERGENCE ON PERIODIC SURFACES AND APPLICATIONS Grégoire ALLAIRE Commissariat à l Energie Atomique DRN/DMT/SERMA, C.E. Saclay 91191 Gif sur Yvette, France Laboratoire d Analyse Numérique, Université

More information

Introduction to the Boundary Element Method

Introduction to the Boundary Element Method Introduction to the Boundary Element Method Salim Meddahi University of Oviedo, Spain University of Trento, Trento April 27 - May 15, 2015 1 Syllabus The Laplace problem Potential theory: the classical

More information

Inverse obstacle scattering problems using multifrequency measurements

Inverse obstacle scattering problems using multifrequency measurements Inverse obstacle scattering problems using multifrequency measurements Nguyen Trung Thành Inverse Problems Group, RICAM Joint work with Mourad Sini *** Workshop 3 - RICAM special semester 2011 Nov 21-25

More information

A new method for the solution of scattering problems

A new method for the solution of scattering problems A new method for the solution of scattering problems Thorsten Hohage, Frank Schmidt and Lin Zschiedrich Konrad-Zuse-Zentrum Berlin, hohage@zibde * after February 22: University of Göttingen Abstract We

More information

Darwin and higher order approximations to Maxwell s equations in R 3. Sebastian Bauer Universität Duisburg-Essen

Darwin and higher order approximations to Maxwell s equations in R 3. Sebastian Bauer Universität Duisburg-Essen Darwin and higher order approximations to Maxwell s equations in R 3 Sebastian Bauer Universität Duisburg-Essen in close collaboration with the Maxwell group around Dirk Pauly Universität Duisburg-Essen

More information

Transmission eigenvalues for the electromagnetic scattering problem in pseudo-chiral media and a practical reconstruction method

Transmission eigenvalues for the electromagnetic scattering problem in pseudo-chiral media and a practical reconstruction method Transmission eigenvalues for the electromagnetic scattering problem in pseudo-chiral media and a practical reconstruction method Tiexiang Li School of Mathematics, Southeast University, Nanjing 289, People

More information

A Parallel Schwarz Method for Multiple Scattering Problems

A Parallel Schwarz Method for Multiple Scattering Problems A Parallel Schwarz Method for Multiple Scattering Problems Daisuke Koyama The University of Electro-Communications, Chofu, Japan, koyama@imuecacjp 1 Introduction Multiple scattering of waves is one of

More information

MOSCO CONVERGENCE FOR H(curl) SPACES, HIGHER INTEGRABILITY FOR MAXWELL S EQUATIONS, AND STABILITY IN DIRECT AND INVERSE EM SCATTERING PROBLEMS

MOSCO CONVERGENCE FOR H(curl) SPACES, HIGHER INTEGRABILITY FOR MAXWELL S EQUATIONS, AND STABILITY IN DIRECT AND INVERSE EM SCATTERING PROBLEMS MOSCO CONVERGENCE FOR H(curl) SPACES, HIGHER INTEGRABILITY FOR MAXWELL S EQUATIONS, AND STABILITY IN DIRECT AND INVERSE EM SCATTERING PROBLEMS HONGYU LIU, LUCA RONDI, AND JINGNI XIAO Abstract. This paper

More information

Completeness of the generalized transmission eigenstates

Completeness of the generalized transmission eigenstates Completeness of the generalized transmission eigenstates Eemeli Blåsten Department of Mathematics and Statistics, University of Helsinki Research carried out at the Mittag-Leffler Institute Joint work

More information

J10M.1 - Rod on a Rail (M93M.2)

J10M.1 - Rod on a Rail (M93M.2) Part I - Mechanics J10M.1 - Rod on a Rail (M93M.2) J10M.1 - Rod on a Rail (M93M.2) s α l θ g z x A uniform rod of length l and mass m moves in the x-z plane. One end of the rod is suspended from a straight

More information

The Helmholtz Equation

The Helmholtz Equation The Helmholtz Equation Seminar BEM on Wave Scattering Rene Rühr ETH Zürich October 28, 2010 Outline Steklov-Poincare Operator Helmholtz Equation: From the Wave equation to Radiation condition Uniqueness

More information

Physics 443, Solutions to PS 2

Physics 443, Solutions to PS 2 . Griffiths.. Physics 443, Solutions to PS The raising and lowering operators are a ± mω ( iˆp + mωˆx) where ˆp and ˆx are momentum and position operators. Then ˆx mω (a + + a ) mω ˆp i (a + a ) The expectation

More information

Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers

Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers INSTITUTE OF PHYSICS PUBLISHING Inverse Problems 22 (2006) 515 524 INVERSE PROBLEMS doi:10.1088/0266-5611/22/2/008 Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and

More information

A method for creating materials with a desired refraction coefficient

A method for creating materials with a desired refraction coefficient This is the author s final, peer-reviewed manuscript as accepted for publication. The publisher-formatted version may be available through the publisher s web site or your institution s library. A method

More information

Scalar electromagnetic integral equations

Scalar electromagnetic integral equations Scalar electromagnetic integral equations Uday K Khankhoje Abstract This brief note derives the two dimensional scalar electromagnetic integral equation starting from Maxwell s equations, and shows how

More information

Mathematical Foundations for the Boundary- Field Equation Methods in Acoustic and Electromagnetic Scattering

Mathematical Foundations for the Boundary- Field Equation Methods in Acoustic and Electromagnetic Scattering Mathematical Foundations for the Boundary- Field Equation Methods in Acoustic and Electromagnetic Scattering George C. Hsiao Abstract The essence of the boundary-field equation method is the reduction

More information

Test Dipole Selection for Linear Sampling in Transverse Electric Case

Test Dipole Selection for Linear Sampling in Transverse Electric Case Progress In Electromagnetics Research B, Vol. 6, 24 258, 24 Test Dipole Selection for Linear Sampling in Transverse Electric Case Krishna Agarwal * Abstract This paper discusses the problem of choosing

More information

Continuous dependence estimates for the ergodic problem with an application to homogenization

Continuous dependence estimates for the ergodic problem with an application to homogenization Continuous dependence estimates for the ergodic problem with an application to homogenization Claudio Marchi Bayreuth, September 12 th, 2013 C. Marchi (Università di Padova) Continuous dependence Bayreuth,

More information

Electromagnetic Theory for Microwaves and Optoelectronics

Electromagnetic Theory for Microwaves and Optoelectronics Keqian Zhang Dejie Li Electromagnetic Theory for Microwaves and Optoelectronics Translated by authors With 259 Figures Springer Contents 1 Basic Electromagnetic Theory 1 1.1 Maxwell's Equations 1 1.1.1

More information

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case.

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case. s of the Fourier Theorem (Sect. 1.3. The Fourier Theorem: Continuous case. : Using the Fourier Theorem. The Fourier Theorem: Piecewise continuous case. : Using the Fourier Theorem. The Fourier Theorem:

More information

Chem 452 Mega Practice Exam 1

Chem 452 Mega Practice Exam 1 Last Name: First Name: PSU ID #: Chem 45 Mega Practice Exam 1 Cover Sheet Closed Book, Notes, and NO Calculator The exam will consist of approximately 5 similar questions worth 4 points each. This mega-exam

More information

Contents. 1 Basic Equations 1. Acknowledgment. 1.1 The Maxwell Equations Constitutive Relations 11

Contents. 1 Basic Equations 1. Acknowledgment. 1.1 The Maxwell Equations Constitutive Relations 11 Preface Foreword Acknowledgment xvi xviii xix 1 Basic Equations 1 1.1 The Maxwell Equations 1 1.1.1 Boundary Conditions at Interfaces 4 1.1.2 Energy Conservation and Poynting s Theorem 9 1.2 Constitutive

More information

TRANSPORT IN POROUS MEDIA

TRANSPORT IN POROUS MEDIA 1 TRANSPORT IN POROUS MEDIA G. ALLAIRE CMAP, Ecole Polytechnique 1. Introduction 2. Main result in an unbounded domain 3. Asymptotic expansions with drift 4. Two-scale convergence with drift 5. The case

More information

Nonlinear Integral Equations for the Inverse Problem in Corrosion Detection from Partial Cauchy Data. Fioralba Cakoni

Nonlinear Integral Equations for the Inverse Problem in Corrosion Detection from Partial Cauchy Data. Fioralba Cakoni Nonlinear Integral Equations for the Inverse Problem in Corrosion Detection from Partial Cauchy Data Fioralba Cakoni Department of Mathematical Sciences, University of Delaware email: cakoni@math.udel.edu

More information

Optimization of Resonances in Photonic Crystal Slabs

Optimization of Resonances in Photonic Crystal Slabs Optimization of Resonances in Photonic Crystal Slabs Robert P. Lipton a, Stephen P. Shipman a, and Stephanos Venakides b a Louisiana State University, Baton Rouge, LA, USA b Duke University, Durham, NC,

More information

Creating materials with a desired refraction coefficient: numerical experiments

Creating materials with a desired refraction coefficient: numerical experiments Creating materials with a desired refraction coefficient: numerical experiments Sapto W. Indratno and Alexander G. Ramm Department of Mathematics Kansas State University, Manhattan, KS 66506-2602, USA

More information

Volume and surface integral equations for electromagnetic scattering by a dielectric body

Volume and surface integral equations for electromagnetic scattering by a dielectric body Volume and surface integral equations for electromagnetic scattering by a dielectric body M. Costabel, E. Darrigrand, and E. H. Koné IRMAR, Université de Rennes 1,Campus de Beaulieu, 35042 Rennes, FRANCE

More information

Looking Back on Inverse Scattering Theory

Looking Back on Inverse Scattering Theory Looking Back on Inverse Scattering Theory David Colton and Rainer Kress History will be kind to me for I intend to write it Abstract Winston Churchill We present an essay on the mathematical development

More information

Mixing in a Simple Map

Mixing in a Simple Map Chaotic Mixing and Large-scale Patterns: Mixing in a Simple Map Jean-Luc Thiffeault Department of Mathematics Imperial College London with Steve Childress Courant Institute of Mathematical Sciences New

More information

A Perron-type theorem on the principal eigenvalue of nonsymmetric elliptic operators

A Perron-type theorem on the principal eigenvalue of nonsymmetric elliptic operators A Perron-type theorem on the principal eigenvalue of nonsymmetric elliptic operators Lei Ni And I cherish more than anything else the Analogies, my most trustworthy masters. They know all the secrets of

More information

Electromagnetic Wave Propagation Lecture 3: Plane waves in isotropic and bianisotropic media

Electromagnetic Wave Propagation Lecture 3: Plane waves in isotropic and bianisotropic media Electromagnetic Wave Propagation Lecture 3: Plane waves in isotropic and bianisotropic media Daniel Sjöberg Department of Electrical and Information Technology September 2016 Outline 1 Plane waves in lossless

More information

Heat Transfer in a Medium in Which Many Small Particles Are Embedded

Heat Transfer in a Medium in Which Many Small Particles Are Embedded Math. Model. Nat. Phenom. Vol. 8, No., 23, pp. 93 99 DOI:.5/mmnp/2384 Heat Transfer in a Medium in Which Many Small Particles Are Embedded A. G. Ramm Department of Mathematics Kansas State University,

More information