SUPPLEMENTARY INFORMATION

Size: px
Start display at page:

Download "SUPPLEMENTARY INFORMATION"

Transcription

1 doi: /nature09478 Supplementary Figures and Legends Supplementary Figure 1. ORTEP plot of molecule 1 in phase I of Fe 4 C 5 viewed perpendicular (left) and parallel (right) to the idealized threefold axis. Colour code: black = C, yellow = S, red = O, green = Fe. Thermal ellipsoids are drawn at 50-% probability level. Supplementary Figure 2. DC magnetic properties of Fe 4 C 5, with best-fit calculated data drawn as a solid curve. WWW NATURE.COM/NATURE 1

2 " M (emu/mol) doi: /nature09478 Supplementary Figure 3. Isothermal M M vs. H/T measurements on Fe 4 C 5, along with best-fit calculated data drawn as solid curves 'M (emu/mol) T (K) ac frequency (Hz) Supplementary Figure 4. Frequency dependence of the imaginary (top) and real (bottom) components of the AC magnetic susceptibility of Fe 4 C 5 measured in zero static field and different temperatures (see colour scheme) WWW NATURE.COM/NATURE 2

3 (s) doi: /nature /T (K -1 ) Supplementary Figure 5. Temperature dependence of the relaxation time (black filled circles) and of the parameter describing the width of the distribution (blue squares). The red broken line represents the best fit using the Arrhenius law. Supplementary Figure 6. Frozen solution EPR spectra of Fe 4 C 5 at 95 GHz and two temperatures. Thin broken lines represent the simulated curves with parameters reported in the text. The asterisk indicates a spurious contribution arising from the cavity. WWW NATURE.COM/NATURE 3

4 counts doi: /nature diameter (nm) Supplementary Figure 7. (left) 2D representation of the STM image reported in Figure 1d. No filtering processes have been applied to this version of the image where single molecule features are clearly visible. (right) Statistical analysis obtained on a set of 6 independent images; the average size evaluated as the peak of a lognormal distribution (2.2 nm) agrees with the dimension of the Fe 4 C 5 molecules found by X-ray diffraction. Supplementary Figure 8. (left) XAS and XNLD of Fe 4 C 9 on Au. (right) XAS and XNLD of Fe 4 C 5 on Au. These spectra were obtained in identical experimental conditions. WWW NATURE.COM/NATURE 4

5 Supplementary Figure 9. Schematic view of the relative orientation of the polarization vectors and single ion cross sections used to simulate XNLD spectra. WWW NATURE.COM/NATURE 5

6 Supplementary Methods Synthesis and structural characterization. [Fe 4 (L) 2 (dpm) 6 ] (Fe 4 C 5 ) was prepared by reaction of the [Fe 4 (OMe) 6 (dpm) 6 ] precursor 30 with the functionalized ligand 7-(acetylthio)-2,2- bis(hydroxymethyl)heptan-1-ol (H 3 L). Elemental analysis calculated for C 88 H 152 Fe 4 O 20 S 2 : C 58.15, H 8.43, S 3.53 %; found: C 57.99, H 8.61, S 3.68 %. Crystallographic analysis showed that the crystalline material comprises at least three crystal phases with exactly the same chemical composition. Phase I is largely dominant in all preparations and grows as very thin plates; phase II and phase III are formed in minor amounts and give wellformed prisms. Unit cell parameters for the three forms are reported in Supplementary Table 1. All crystal forms contain the same Fe 4 molecular unit. In particular phase I contains four crystallographically independent Fe 4 molecules. The molecular structure of one of these is shown in Supplementary Figure 1. The structural parameters around the iron centres are very similar to those previously reported for this class of compounds. 14 More details of the crystal structure characterization are out of the scope of this Letter and are left for a more specialized publication. Bulk magnetic data. For DC and AC measurements we used a 9.28-mg microcrystalline sample of Fe 4 C 5 pressed in a pellet. DC data were recorded using a Quantum Design MPMS magnetometer at temperatures ranging from T = 1.9 to 300 K and in fields H = 1 koe (T < 30 K) or 10 koe (T > 30 K). Isothermal magnetization curves were recorded in fields up to 50 koe and at 1.9, 2.5 and 4.5 K. The M M /H ratio, where M M is the molar magnetization, was assumed to correspond to the static molar susceptibility M. Raw data were reduced using a molecular weight of and a diamagnetic correction (estimated from Pascal s constants) of emu/mol. The fitting of DC magnetic data was carried out using dedicated software, as described elsewhere. 31 M T vs. T data were fitted to a Heisenberg plus Zeeman Hamiltonian, assuming threefold symmetry for the cluster and using two different exchange-coupling constants to describe nearest-neighbour (J) and next-nearest-neighbour (J ) interactions with the J convention (Eq. S1). Ĥ Heis+Zee = J(Ŝ 1 Ŝ 2 +Ŝ 1 Ŝ 3 +Ŝ 1 Ŝ 4 ) + J (Ŝ 2 Ŝ 3 +Ŝ 3 Ŝ 4 +Ŝ 2 Ŝ 4 ) + μ B gŝ Ĥ (S1) (here, S 1 is the central spin vector and Ŝ is the total spin). A Curie-Weiss correction was introduced to reproduce the low-temperature drop of the M T product due to anisotropy effects. ( M T) = ( M T) T / (T - ) (S2) WWW NATURE.COM/NATURE 6

7 The best-fit parameters so obtained were g = (8), J = 16.74(4) cm -1, J = 0.05(2) cm -1 and = (4) K (Supplementary Figure 2). Isothermal M M vs. H data were fitted to a S = 5 giant-spin model, with axial zero-field splitting (Eq. S3), for which the D and the g parameters were refined to give g = 1.923(2) and D = (4) cm -1 (Supplementary Figure 3). Ĥ S=5 = μ B gŝ Ĥ + D[Ŝ z 2 - S(S+1)/3] (S3) The dynamics of the magnetization of a polycrystalline powder sample of Fe 4 C 5 was investigated by means of AC susceptibility measurements in zero static applied field performed with a homemade inductive set-up adapted to an Oxford Instruments MAGLAB2000 platform. In Supplementary Figure 4 the imaginary and real components of the susceptibility are reported as a function of the ac frequency for several temperatures. These curves were fitted with the Debye model, extended to take into account the distribution of the relaxation times according to: 1 1 (ω ) sin απ/ 2 χ'(ω) χ χ χ S T S 12 (ω) sin απ/ 2 (ω) 1 22 (S4) 1 (ω ) cos απ/ 2 χ "(ω) χ χ T S 12 (ω) sin απ/ 2 (ω) 1 22 The relaxation time,, and the width of the distribution, α, obtained with this procedure are reported in Supplementary Figure 5. A linear behaviour is observed in the Arrhenius plot, = 0 exp(u eff / k B T), thus allowing to extract the parameters: 0 = 0.061(2) s and U eff /k B = 14.8(1) K. The α parameter shows a gradual increase on lowering the temperature but its value remains relatively small despite the different crystallographically inequivalent molecules present in the dominant phase. EPR spectra. Spectra were recorded by using a Bruker Elexsys E600 CW spectrometer, operating at ca. 95 GHz, equipped with a 6 T split-coil superconducting magnet (Oxford Instruments). To avoid the complex convolution of signals coming from the different crystal phases and independent molecules in phase I, the EPR spectra were recorded on ca. 0.5 l of a frozen solution of Fe 4 C 5 in CH 2 Cl 2 :hexane 2:1 at 4 mm concentration (Supplementary Figure 6). Simulation of the spectra was performed by using a dedicated program based on full diagonalization of the Spin Hamiltonian matrix: 32 WWW NATURE.COM/NATURE 7

8 Ĥ EPR = μ B gŝ Ĥ + D[Ŝ z 2 - S(S+1)/3] + (E/2)(Ŝ Ŝ - 2 ) (S5) STM characterization. STM imaging was carried out on a NT-MDT Solver P47pro (NT-MDT, Zelenograd, Moscow, Russia; equipped with a custom built low-current head operated in air (Supplementary Figure 7). Tips were prepared by mechanical sharpening of Pt/Ir 90:10 wire. Simulation of XNLD spectra. In order to simulate the XNLD features observed in the monolayer of Fe 4 C 5 (Supplementary Figure 8) it was necessary to evaluate the absorption process occurring on each iron ion, considering its local anisotropy in both magnitude, sign and orientation with respect to the molecular reference frame. Finally, we needed to evaluate the effect of the preferential orientation of the molecules within the monolayer as obtained by DFT calculations. For each iron ion we define the cross-section for linear polarization parallel to the single ion anisotropy axis ( // ) and the cross-section for linear polarization perpendicular to the single ion anisotropy axis ( ). Following this approach and considering a single molecule of Fe 4 C 5 with its idealized threefold axis lying along the Au surface normal (Supplementary Figure 9) it is possible to attribute to the central ion an XNLD signal corresponding to XNLD Central = 1/2[ - // ] Central. On the other hand, for the peripheral ions, the anisotropy axis is perpendicular to the molecular axis and the XNLD signal for one ion is equal to XNLD Peripheral = -1/4[ - // ] Peripheral. The molecular XNLD signal is then evaluated as the weighted average of the contributions from one central ion and three peripheral ions: V - H = 1/4 ( Central + 3 Peripheral) = 1/8[ - // ] Central - 3/16[ - // ] Peripheral (S6) The final step of the calculation takes into account the distribution of orientations of the molecular axis, which is restrained to form an angle smaller than 35 with respect to the surface normal. The sample frame axes (X, Y, Z) are chosen so that Z is along the sample normal, X is horizontal and perpendicular to Z, and Y is vertical. In the experimental set-up, the propagation vector makes a angle with the Z axis so that the vertical and horizontal polarization vectors are given by V = (0,1,0) and H = (1/2,0,1/2). According to Brouder, 29 the general expression for dichroic crosssections with linear polarization is: ) = (cos( [ - // ] (S7) WWW NATURE.COM/NATURE 8

9 where is the angle between the polarization vector and the molecular axis. To evaluate the polarization vector and the molecular axis are given in the sample (X, Y, Z) reference frame by using standard polar coordinates, i. e. m = (sin()cos(), sin()sin(), cos()). For a molecule whose molecular axis forms an angle with the normal to Au surface, one gets V = [ ] Molecule ( V. m) 2 [ - // ] Molecule = [ ] Molecule (sin()sin() 2 [ - // ] Molecule and (S8) H = [ ] Molecule ( H. m) 2 [ - // ] Molecule = [ ] Molecule [sin()cos()/2 + cos()/2] 2 [ - // ] Molecule. The total XNLD signal for a collection of molecules whose axes lie within a cone of angle max is then simply given by: V - H ] Sample = = [ - // ] Molecule 0<<max 0<<2 {1/2 [sin()cos() + cos()] 2 (sin()sin()) 2 } sin(dd For max = 35 this results in: V - H ] Sample = /2 [ - // ] Molecule = {1/8[ - // ] Central - 3/16[ - // ] Peripheral } This final formula has been employed to reproduce the observed features in the Fe 4 C 5 monolayer. The different cross-sections ( and // for the central ion and for the peripheral ions) have been calculated within the Ligand Field Multiplet theory developed by T. Thole in the framework established by Cowan and Butler. 33 The distortion parameter D has been set in order to reproduce the splittings of the ground state sextuplet obtained by Tancini et al. from HF-EPR measurements (peripheral centers) 21 and calculated by Ribas et al. (central iron). 34 For all ions D has been set to 0. For the central ion, D = ev and the lowest lying level has longitudinal spin component m = ±5/2 with the m = ±3/2 and m = ±1/2 levels lying 0.28 mev and 0.43 mev respectively above in WWW NATURE.COM/NATURE 9

10 energy. These separations correspond to a zero-field splitting parameter D/k B = K. For the peripheral ions, D = ev and the lowest lying level is m = ±1/2 with the m = ±3/2 and m = ±5/2 levels lying 0.18 mev and 0.52 mev above the ground doublet, respectively. These separations correspond to a zero field splitting parameter of D/k B =1.05 K. WWW NATURE.COM/NATURE 10

11 Supplementary Tables Supplementary Table 1. Crystallographic data and refinement parameters for the three crystal phases of Fe 4 C 5. [a] Phase I Phase II Phase III Formula C 88 H 152 Fe 4 O 20 S 2 C 88 H 152 Fe 4 O 20 S 2 C 88 H 152 Fe 4 O 20 S 2 MW crystal system monoclinic monoclinic Monoclinic space group P2 C2/c P2 1 /n a / Å (6) (5) (4) b / Å (6) (3) (10) c / Å (10) (6) (5) / deg (14) (10) (9) V / Å (6) (4) (5) Z [a] all measurements carried out at 120(2) K using Mo-K radiation ( = Å). Supplementary Notes (30) S. Accorsi, A.-L. Barra, A. Caneschi, G. Chastanet, A. Cornia, A. C. Fabretti, D. Gatteschi, C. Mortalò, E. Olivieri, F. Parenti, P. Rosa, R. Sessoli, L. Sorace, W. Wernsdorfer, L. Zobbi, J. Am. Chem. Soc. 2006, 128, (31) A.-L. Barra, F. Bianchi, A. Caneschi, A. Cornia, D. Gatteschi, L. Gorini, L. Gregoli, M. Maffini, F. Parenti, R. Sessoli, L. Sorace, A. M. Talarico, Eur. J. Inorg. Chem. 2007, (32) C. J. H. Jacobsen, E. Pedersen, J. Villadsen, H. Weihe, Inorg. Chem.1993, 32, (33) B. T. Thole, G. van der Laan, J. C. Fuggle, G. A. Sawatzky, R. C. Karnatak and J. M. Esteva, Phys. Rev. B 1985, 32, (34) J. Ribas-Arino, T. Baruah, M. R. Pederson, J. Chem. Phys. 2005, 123, WWW NATURE.COM/NATURE 11

Supporting Information for

Supporting Information for Supporting Information for A Single Molecule Magnet Behaviour in a D 3h Symmetry Dy(III) Complex Involving a Quinone-Tetrathiafulvalene-Quinone Bridge Fabrice Pointillart, a Svetlana Klementieva, b Viacheslav

More information

Supporting Information. for. Angew. Chem. Int. Ed Wiley-VCH 2004

Supporting Information. for. Angew. Chem. Int. Ed Wiley-VCH 2004 Supporting Information for Angew. Chem. Int. Ed. 246736 Wiley-VCH 24 69451 Weinheim, Germany 1 Challenges in Engineering Spin Crossover. Structures and Magnetic Properties of six Alcohol Solvates of Iron(II)

More information

Room Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits

Room Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits Room Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits Matteo Atzori, Lorenzo Tesi, Elena Morra, Mario Chiesa, Lorenzo Sorace,

More information

A trigonal prismatic mononuclear cobalt(ii) complex showing single-molecule magnet behavior

A trigonal prismatic mononuclear cobalt(ii) complex showing single-molecule magnet behavior Supplementary information for A trigonal prismatic mononuclear cobalt(ii) complex showing single-molecule magnet behavior by Valentin V. Novikov*, Alexander A. Pavlov, Yulia V. Nelyubina, Marie-Emmanuelle

More information

Supplementary Information. for. Magnetic memory of a single-molecule quantum magnet wired to a gold surface

Supplementary Information. for. Magnetic memory of a single-molecule quantum magnet wired to a gold surface Supplementary Information for Magnetic memory of a single-molecule quantum magnet wired to a gold surface Matteo Mannini, 1 Francesco Pineider, 1 Philippe Sainctavit, 2 Chiara Danieli, 3 Edwige Otero,

More information

From Double-Shelled Grids to Supramolecular Frameworks

From Double-Shelled Grids to Supramolecular Frameworks Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 From Double-Shelled Grids to Supramolecular Frameworks Jianfeng Wu, Mei Guo, Xiao-Lei Li, Lang

More information

Zero-field slow magnetic relaxation in a uranium(iii) complex with a radical ligand

Zero-field slow magnetic relaxation in a uranium(iii) complex with a radical ligand Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information for: Zero-field slow magnetic relaxation in a uranium(iii) complex with

More information

Heterometallic M II Ln III (M = Co / Zn; Ln = Dy / Y) complexes with pentagonal bipyramidal 3d centres: syntheses, structures, and magnetic properties

Heterometallic M II Ln III (M = Co / Zn; Ln = Dy / Y) complexes with pentagonal bipyramidal 3d centres: syntheses, structures, and magnetic properties Supporting Information for Heterometallic M II Ln III (M = Co / Zn; Ln = Dy / Y) complexes with pentagonal bipyramidal 3d centres: syntheses, structures, and magnetic properties Fu-Xing Shen, Hong-Qing

More information

Origin (and control?) of the anisotropy in tetranuclear star shaped molecular nanomagnets

Origin (and control?) of the anisotropy in tetranuclear star shaped molecular nanomagnets Origin (and control?) of the anisotropy in tetranuclear star shaped molecular nanomagnets Lorenzo Sorace, Roberta Sessoli, Andrea Cornia Department of Chemistry & INSTM, University of Florence, Italy Department

More information

size (nm) Supplementary Figure 1. Hydrodynamic size distribution in a H 2O:MeOH 50% v/v

size (nm) Supplementary Figure 1. Hydrodynamic size distribution in a H 2O:MeOH 50% v/v Intensity (%) 20 15 10 [0a] [0b] CoTPMA: 3 eq CoTPMA: 10 eq CoTPMA: 20 eq CoTPMA : 40 eq CoTPMA: 60 eq, [1] CoTPMA: 85 eq CoTPMA: 125 eq CoTPMA: 170 eq CoTPMA: 210 eq 5 0 10 100 size (nm) Supplementary

More information

The First Cobalt Single-Molecule Magnet

The First Cobalt Single-Molecule Magnet The First Cobalt Single-Molecule Magnet En-Che Yang and David N Hendrickson Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92037, USA Wolfgang Wernsdorfer

More information

High Frequency Electron Paramagnetic Resonance Studies of Mn 12 Wheels

High Frequency Electron Paramagnetic Resonance Studies of Mn 12 Wheels High Frequency Electron Paramagnetic Resonance Studies of Mn 12 Wheels Gage Redler and Stephen Hill Department of Physics, University of Florida Abstract High Frequency Electron Paramagnetic Resonance

More information

Supporting Information. Ze-Min Zhang, Lu-Yi Pan, Wei-Quan Lin, Ji-Dong Leng, Fu-Sheng Guo, Yan-Cong Chen, Jun-Liang Liu, and Ming-Liang Tong*

Supporting Information. Ze-Min Zhang, Lu-Yi Pan, Wei-Quan Lin, Ji-Dong Leng, Fu-Sheng Guo, Yan-Cong Chen, Jun-Liang Liu, and Ming-Liang Tong* Supporting Information Wheel-shaped nanoscale 3d-4f {Co II 16Ln III 24} clusters (Ln = Dy and Gd) Ze-Min Zhang, Lu-Yi Pan, Wei-Quan Lin, Ji-Dong Leng, Fu-Sheng Guo, Yan-Cong Chen, Jun-Liang Liu, and Ming-Liang

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.1067 Light-induced spin-crossover magnet Shin-ichi Ohkoshi, 1,2, * Kenta Imoto, 1 Yoshihide Tsunobuchi, 1 Shinjiro Takano, 1 and Hiroko Tokoro 1 1 Department of Chemistry, School of

More information

6 NMR Interactions: Zeeman and CSA

6 NMR Interactions: Zeeman and CSA 6 NMR Interactions: Zeeman and CSA 6.1 Zeeman Interaction Up to this point, we have mentioned a number of NMR interactions - Zeeman, quadrupolar, dipolar - but we have not looked at the nature of these

More information

Supporting Information

Supporting Information Supporting Information Heteroligand o-semiquinonato-formazanato cobalt complexes Natalia A. Protasenko, Andrey I. Poddel sky,*, Artem S. Bogomyakov, Georgy K. Fukin, Vladimir K. Cherkasov G.A. Razuvaev

More information

Antiferromagnetic interactions in a distorted cubane-type tetranuclear manganese cluster

Antiferromagnetic interactions in a distorted cubane-type tetranuclear manganese cluster Journal of Physics: Conference Series Antiferromagnetic interactions in a distorted cubane-type tetranuclear manganese cluster To cite this article: E Kampert et al 2010 J. Phys.: Conf. Ser. 200 022022

More information

Tb 2 Hf 2 O 7 R 2 B 2 7 R B R 3+ T N

Tb 2 Hf 2 O 7 R 2 B 2 7 R B R 3+ T N Tb Hf O 7 7 χ ac(t ) χ(t ) M(H) C p(t ) µ χ ac(t ) µ 7 7 7 R B 7 R B R 3+ 111 7 7 7 7 111 θ p = 19 7 7 111 7 15 7 7 7 7 7 7 7 7 T N.55 3+ 7 µ µ B 7 7 7 3+ 4f 8 S = 3 L = 3 J = 6 J + 1 = 13 7 F 6 3+ 7 7

More information

Supporting Information for

Supporting Information for Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2015 Supporting Information for Slow magnetic relaxation in a novel carboxylate/oxalate/hydroxyl

More information

Magnetic Metal-Organic Framework Exhibiting Quick and. Selective Solvatochromic Behavior Along With The Reversible

Magnetic Metal-Organic Framework Exhibiting Quick and. Selective Solvatochromic Behavior Along With The Reversible Magnetic Metal-Organic Framework Exhibiting Quick and Selective Solvatochromic Behavior Along With The Reversible Crystal-to-Amorphous-to-Crystal Transformation Peng Hu,, Lei Yin,, Angelo Kirchon,, Jiangli

More information

Cis-Trans Isomerism Modulates the Magnetic Relaxation of. Dysprosium Single-Molecule Magnets

Cis-Trans Isomerism Modulates the Magnetic Relaxation of. Dysprosium Single-Molecule Magnets Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2016 Cis-Trans Isomerism Modulates the Magnetic Relaxation of Dysprosium Single-Molecule Magnets

More information

Magnetic Properties of One-, Two-, and Three-dimensional Crystal Structures built of Manganese (III) Cluster-based Coordination Polymers

Magnetic Properties of One-, Two-, and Three-dimensional Crystal Structures built of Manganese (III) Cluster-based Coordination Polymers Magnetic Properties of One-, Two-, and Three-dimensional Crystal Structures built of Manganese (III) Cluster-based Coordination Polymers Kevin J. Little * Department of Physics, University of Florida Gainesville,

More information

Observation of slow relaxation of the magnetization and hysteresis. loop in antiferromagnetic ordered phase of a 2D framework based on

Observation of slow relaxation of the magnetization and hysteresis. loop in antiferromagnetic ordered phase of a 2D framework based on Observation of slow relaxation of the magnetization and hysteresis loop in antiferromagnetic ordered phase of a 2D framework based on Co II magnetic chains Shi-Yuan Zhang, a Wei Shi,* a Yanhua Lan, b Na

More information

"Unique Ligand Radical Character of an Activated Cobalt Salen Catalyst that is Generated. Takuya Kurahashi and Hiroshi Fujii *

Unique Ligand Radical Character of an Activated Cobalt Salen Catalyst that is Generated. Takuya Kurahashi and Hiroshi Fujii * Supporting Information for "Unique Ligand Radical Character of an Activated Cobalt Salen Catalyst that is Generated by Aerobic Oxidation of a Cobalt(II) Salen Complex" Takuya Kurahashi and Hiroshi Fujii

More information

Supplementary Figure 1 IR Spectroscopy. 1Cu 1Ni Supplementary Figure 2 UV/Vis Spectroscopy. 1Cu 1Ni

Supplementary Figure 1 IR Spectroscopy. 1Cu 1Ni Supplementary Figure 2 UV/Vis Spectroscopy. 1Cu 1Ni Supplementary Figure 1 IR Spectroscopy. IR spectra of 1Cu and 1Ni as well as of the starting compounds, recorded as KBr-pellets on a Bruker Alpha FTIR spectrometer. Supplementary Figure 2 UV/Vis Spectroscopy.

More information

Rare double spin canting antiferromagnetic behaviours in a. [Co 24 ] cluster

Rare double spin canting antiferromagnetic behaviours in a. [Co 24 ] cluster Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Rare double spin canting antiferromagnetic behaviours in a [Co 24 ] cluster Guang-Ming Liang, Qing-Ling

More information

A Mn(III) single ion magnet with tridentate Schiff-base ligands

A Mn(III) single ion magnet with tridentate Schiff-base ligands Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Supporting information for: A Mn(III) single ion magnet with tridentate Schiff-base

More information

Introduction to Electron Paramagnetic Resonance Spectroscopy

Introduction to Electron Paramagnetic Resonance Spectroscopy Introduction to Electron Paramagnetic Resonance Spectroscopy Art van der Est, Department of Chemistry, Brock University St. Catharines, Ontario, Canada 1 EPR Spectroscopy EPR is magnetic resonance on unpaired

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Chiral discotic derivatives of 1,3,5-triphenyl-6-oxoverdazyl radical Aleksandra Jankowiak, a Damian Pociecha, b Jacek Szczytko, c and Piotr Kaszynski* a,d a Department of

More information

Supporting Information

Supporting Information Supporting Information ph-controlled Assembly of Organophosphonate-Bridged Dy(III) Single-Molecule Magnets Based on Polyoxometalates Yu Huo, Yan-Cong Chen, Si-Guo Wu, Jian-Hua Jia, Wen-Bin Chen, Jun-Liang

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Materials and Methods Single crystals of Pr 2 Ir 2 O 7 were grown by a flux method [S1]. Energy dispersive x-ray analysis found no impurity phases, no inhomogeneities and a ratio between Pr and Ir of 1:1.03(3).

More information

NYU Spin Dynamics in Single Molecule Magnets. Andrew D. Kent

NYU Spin Dynamics in Single Molecule Magnets. Andrew D. Kent Spin Dynamics in Single Molecule Magnets Andrew D. Kent Department of Physics, New York University Collaborators: Gregoire de Loubens, Enrique del Barco Stephen Hill Dmitry Garanin Myriam Sarachik, Yosi

More information

ion, as obtained from a search of the Cambridge Structural database (CSD), December 2013.

ion, as obtained from a search of the Cambridge Structural database (CSD), December 2013. Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2014 SI Figure S1. The reported bridging modes of the CO 3 2- ion, as obtained from a

More information

Observation of a robust zero-energy bound state in iron-based superconductor Fe(Te,Se)

Observation of a robust zero-energy bound state in iron-based superconductor Fe(Te,Se) Materials and Methods: SUPPLEMENTARY INFORMATION Observation of a robust zero-energy bound state in iron-based superconductor Fe(Te,Se) All the crystals, with nominal composition FeTe0.5Se0.5, used in

More information

Impeller-like dodecameric water clusters in metal organic nanotubes

Impeller-like dodecameric water clusters in metal organic nanotubes Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Impeller-like dodecameric water clusters in metal organic

More information

Phthalocyanine-Based Single-Component

Phthalocyanine-Based Single-Component Phthalocyanine-Based Single-Component Molecular Conductor [Mn Ⅲ (Pc)(CN)] 2 O Mitsuo Ikeda, Hiroshi Murakawa, Masaki Matsuda, and Noriaki Hanasaki *, Department of Physics, Graduate School of Science,

More information

Ferromagnetic and spin-glass properties of single-crystalline U 2 NiSi 3

Ferromagnetic and spin-glass properties of single-crystalline U 2 NiSi 3 Materials Science-Poland, Vol. 25, No. 4, 2007 Ferromagnetic and spin-glass properties of single-crystalline U 2 NiSi 3 * M. SZLAWSKA **, A. PIKUL, D. KACZOROWSKI Institute of Low Temperature and Structure

More information

arxiv:cond-mat/ Oct 2001

arxiv:cond-mat/ Oct 2001 Europhysics Letters PREPRINT Quantum rotational band model for the Heisenberg molecular magnet {Mo 7 Fe 30 } Jürgen Schnack 1, Marshall Luban, and Robert Modler 1 Universität Osnabrück, Fachbereich Physik,

More information

Chemical Communication RSC Publishing

Chemical Communication RSC Publishing Chemical Communication RSC Publishing Supporting Information 1 Table of Contents Experimental Section and Physical Measurements Figure S1. Cyclic Voltammogram of 1 in THF at 22 C. Figure S2. Cyclic Voltammogram

More information

Spins Dynamics in Nanomagnets. Andrew D. Kent

Spins Dynamics in Nanomagnets. Andrew D. Kent Spins Dynamics in Nanomagnets Andrew D. Kent Department of Physics, New York University Lecture 1: Magnetic Interactions and Classical Magnetization Dynamics Lecture 2: Spin Current Induced Magnetization

More information

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra*

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra* Supporting Information Ferrocenyl BODIPYs: Synthesis, Structure and Properties Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra* Department of Chemistry, Indian Institute of Technology

More information

Quantum Tunneling of Magnetization in Molecular Magnets. Department of Physics, New York University. Tutorial T2: Molecular Magnets, March 12, 2006

Quantum Tunneling of Magnetization in Molecular Magnets. Department of Physics, New York University. Tutorial T2: Molecular Magnets, March 12, 2006 Quantum Tunneling of Magnetization in Molecular Magnets ANDREW D. KENT Department of Physics, New York University Tutorial T2: Molecular Magnets, March 12, 2006 1 Outline 1. Introduction Nanomagnetism

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany Carbene Activation of P 4 and Subsequent Derivatization Jason D. Masuda, Wolfgang W. Schoeller, Bruno Donnadieu, and Guy Bertrand * [*] Dr.

More information

Spin Transition and Structural Transformation in a

Spin Transition and Structural Transformation in a Supporting Information for Spin Transition and Structural Transformation in a Mononuclear Cobalt(II) Complex Ying Guo, Xiu-Long Yang, Rong-Jia Wei, Lan-Sun Zheng, and Jun Tao* State Key Laboratory of Physical

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information (ESI) A Large Spin, Magnetically Anisotropic, Octanuclear

More information

Supplementary Information. Structural Transition and Unusually Strong Antiferromagnetic Superexchange Coupling in Perovskite KAgF3

Supplementary Information. Structural Transition and Unusually Strong Antiferromagnetic Superexchange Coupling in Perovskite KAgF3 Supplementary Information Structural Transition and Unusually Strong Antiferromagnetic Superexchange Coupling in Perovskite KAgF3 Dominik Kurzydłowski, *a Zoran Mazej, b Zvonko Jagličić, c Yaroslav Filinchuk

More information

Study on Magnetic Properties of Vermiculite Intercalation compounds

Study on Magnetic Properties of Vermiculite Intercalation compounds Study on Magnetic Properties of Vermiculite Intercalation compounds M. Suzuki and I.S. Suzuki Department of Physics, State University of New York at Binghamton (October, ) I. INTRODUCTION In recent years

More information

A Cu-Zn-Cu-Zn heterometallomacrocycle shows significant antiferromagnetic coupling between paramagnetic centres mediated by diamagnetic metal

A Cu-Zn-Cu-Zn heterometallomacrocycle shows significant antiferromagnetic coupling between paramagnetic centres mediated by diamagnetic metal Electronic Supplementary Information to A Cu-Zn-Cu-Zn heterometallomacrocycle shows significant antiferromagnetic coupling between paramagnetic centres mediated by diamagnetic metal Elena A. Buvaylo, a

More information

The solvent effect on the structural and magnetic features of bidentate ligand-capped {Co II 9[W V (CN) 8 ] 6 } Single-Molecule Magnets

The solvent effect on the structural and magnetic features of bidentate ligand-capped {Co II 9[W V (CN) 8 ] 6 } Single-Molecule Magnets Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2016 SUPPORTING INFORMATION The solvent effect on the structural and magnetic features of bidentate

More information

A hydride-ligated dysprosium single-molecule magnet

A hydride-ligated dysprosium single-molecule magnet Supporting information for: A hydride-ligated dysprosium single-molecule magnet Ajay Venugopal, a Thomas Spaniol, a Floriana Tuna, b,c Liviu Ungur, d Liviu F. Chibotaru, d Jun Okuda a and Richard A. Layfield

More information

Lecture 6: Physical Methods II. UV Vis (electronic spectroscopy) Electron Spin Resonance Mossbauer Spectroscopy

Lecture 6: Physical Methods II. UV Vis (electronic spectroscopy) Electron Spin Resonance Mossbauer Spectroscopy Lecture 6: Physical Methods II UV Vis (electronic spectroscopy) Electron Spin Resonance Mossbauer Spectroscopy Physical Methods used in bioinorganic chemistry X ray crystallography X ray absorption (XAS)

More information

Supplementary Figure S1 a, wireframe view of the crystal structure of compound 11. b, view of the pyridinium sites. c, crystal packing of compound

Supplementary Figure S1 a, wireframe view of the crystal structure of compound 11. b, view of the pyridinium sites. c, crystal packing of compound a b c Supplementary Figure S1 a, wireframe view of the crystal structure of compound 11. b, view of the pyridinium sites. c, crystal packing of compound 11. 1 a b c Supplementary Figure S2 a, wireframe

More information

Supplementary Figures

Supplementary Figures Supplementary Figures 8 6 Energy (ev 4 2 2 4 Γ M K Γ Supplementary Figure : Energy bands of antimonene along a high-symmetry path in the Brillouin zone, including spin-orbit coupling effects. Empty circles

More information

Supplementary Figure 1. ToF-SIMS data obtained for the Au(111) surface after the sublimation of the Cu-BCOD (mass 889 a.u.). During the sublimation

Supplementary Figure 1. ToF-SIMS data obtained for the Au(111) surface after the sublimation of the Cu-BCOD (mass 889 a.u.). During the sublimation Supplementary Figure 1. ToF-SIMS data obtained for the Au(111) surface after the sublimation of the Cu-BCOD (mass 889 a.u.). During the sublimation process, Cu-BCOD was converted into Cu-Benzo (mass 786

More information

Manganese-Calcium Clusters Supported by Calixarenes

Manganese-Calcium Clusters Supported by Calixarenes Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2014 Manganese-Calcium Clusters Supported by Calixarenes Rebecca O. Fuller, George A. Koutsantonis*,

More information

One-dimensional organization of free radicals via halogen bonding. Supporting information

One-dimensional organization of free radicals via halogen bonding. Supporting information One-dimensional organization of free radicals via halogen bonding Guillermo Mínguez Espallargas,* a Alejandro Recuenco, a Francisco M. Romero, a Lee Brammer, b and Stefano Libri. b a Instituto de Ciencia

More information

Magnetic properties of spherical fcc clusters with radial surface anisotropy

Magnetic properties of spherical fcc clusters with radial surface anisotropy Magnetic properties of spherical fcc clusters with radial surface anisotropy D. A. Dimitrov and G. M. Wysin Department of Physics Kansas State University Manhattan, KS 66506-2601 (December 6, 1994) We

More information

Mean-field theory. Alessandro Vindigni. ETH October 29, Laboratorium für Festkörperphysik, ETH Zürich

Mean-field theory. Alessandro Vindigni. ETH October 29, Laboratorium für Festkörperphysik, ETH Zürich Alessandro Vindigni Laboratorium für Festkörperphysik, ETH Zürich ETH October 29, 2012 Lecture plan N-body problem Lecture plan 1. Atomic magnetism (Pescia) 2. Magnetism in solids (Pescia) 3. Magnetic

More information

Correlation between anisotropy, slow relaxation, and spectroscopic behaviour: the Ln(trensal) family

Correlation between anisotropy, slow relaxation, and spectroscopic behaviour: the Ln(trensal) family Correlation between anisotropy, slow relaxation, and spectroscopic behaviour: the Ln(trensal) family Lorenzo Sorace Department of Chemistry & INSTM, University of Florence, Italy lorenzo.sorace@unifi.it

More information

EPR in Kagome Staircase Compound Mg Co V 2 O 8

EPR in Kagome Staircase Compound Mg Co V 2 O 8 Vol. 111 (2007) ACTA PHYSICA POLONICA A No. 1 Proceedings of the Symposium K: Complex Oxide Materials for New Technologies of E-MRS Fall Meeting 2006, Warsaw, September 4 8, 2006 EPR in Kagome Staircase

More information

ELECTRON MAGNETIC RESONANCE OF MANGANESE COMPOUNDS

ELECTRON MAGNETIC RESONANCE OF MANGANESE COMPOUNDS ELECTRON MAGNETIC RESONANCE OF MANGANESE COMPOUNDS Peter C Riedi School of Physics and Astronomy, University of St. Andrews, Fife, Scotland KY16 9SS, UK (pcr@st-and.ac.uk) INTRODUCTION This talk will introduce

More information

Chapter 8 Magnetic Resonance

Chapter 8 Magnetic Resonance Chapter 8 Magnetic Resonance 9.1 Electron paramagnetic resonance 9.2 Ferromagnetic resonance 9.3 Nuclear magnetic resonance 9.4 Other resonance methods TCD March 2007 1 A resonance experiment involves

More information

Observation of magnetism in Au thin films.

Observation of magnetism in Au thin films. Observation of magnetism in Au thin films. S. Reich*, G. Leitus and Y. Feldman. Department of Materials and Interfaces, The Weizmann Institute of Science, Rehovoth, Israel. *e-mail: shimon.reich@weizmann.ac.il

More information

Electronic Supporting Information

Electronic Supporting Information Electronic Supporting Information Solid-State Coexistence of {Zr 12 } and {Zr 6 } Zirconium Oxocarboxylate Clusters Iurie L. Malaestean, Meliha Kutluca Alıcı, Claire Besson, Arkady Ellern and Paul Kögerler*

More information

Centro Universitario de la Defensa. Academia General Militar, Zaragoza, Spain.

Centro Universitario de la Defensa. Academia General Militar, Zaragoza, Spain. This journal is The Royal Society of Chemistry 13 Electronic Supplementary Information {Dy(α-fur) 3 } n : from double relaxation Single-Ion Magnet behavior to 3D ordering E.Bartolomé, a J. Bartolomé, b

More information

Supporting Information. Selective Synthesis of Iridium(III) End-Capped. Polyynes by Oxidative Addition of 1-Iodopolyynes

Supporting Information. Selective Synthesis of Iridium(III) End-Capped. Polyynes by Oxidative Addition of 1-Iodopolyynes Electronic Supplementary Material (ES) for Dalton Transactions. This journal is The Royal Society of Chemistry 2018 Supporting nformation Selective Synthesis of ridium() End-Capped Polyynes by Oxidative

More information

Supporting Information (SI) for the manuscript:

Supporting Information (SI) for the manuscript: Supporting Information (SI) for the manuscript: Field-Induced Slow Magnetic Relaxation in a Six-Coordinated Mononuclear Cobalt(II) Complex with a Positive Anisotropy Julia Vallejo, Isabel Castro,* Rafael

More information

Exotic phase transitions in RERhSn compounds

Exotic phase transitions in RERhSn compounds NUKLEONIKA 2003;48(Supplement 1):S35 S40 PROCEEDINGS Exotic phase transitions in RERhSn compounds Kazimierz Łątka, Roman Kmieć, Robert Kruk, Andrzej W. Pacyna, Michał Rams, Tobias Schmidt, Rainer Pöttgen

More information

Unusual Molecular Material formed through Irreversible Transformation and Revealed by 4D Electron Microscopy

Unusual Molecular Material formed through Irreversible Transformation and Revealed by 4D Electron Microscopy 26 March 2013 Unusual Molecular Material formed through Irreversible Transformation and Revealed by 4D Electron Microscopy Renske M. van der Veen, Antoine Tissot, Andreas Hauser, Ahmed H. Zewail Physical

More information

DETECTION OF UNPAIRED ELECTRONS

DETECTION OF UNPAIRED ELECTRONS DETECTION OF UNPAIRED ELECTRONS There are experimental methods for the detection of unpaired electrons. One of the hallmarks of unpaired electrons in materials is interaction with a magnetic field. That

More information

Supporting Information. Lacunary Polytungstate Ligands

Supporting Information. Lacunary Polytungstate Ligands This journal is The Royal Society of Chemistry 0 Supporting Information Heterometallic Appended {MMn III } Cubanes Encapsulated by Lacunary Polytungstate Ligands Hai-Hong Wu, Shuang Yao, Zhi-Ming Zhang,*

More information

Search for new iron single-molecule magnets

Search for new iron single-molecule magnets Polyhedron 22 (2003) 1865/1870 www.elsevier.com/locate/poly Search for new iron single-molecule magnets Evan M. Rumberger a, Stephen Hill b, Rachel S. Edwards b, Wolfgang Wernsdorfer c, Lev N. Zakharov

More information

Magnetic Properties: NMR, EPR, Susceptibility

Magnetic Properties: NMR, EPR, Susceptibility Magnetic Properties: NMR, EPR, Susceptibility Part 3: Selected 5f 2 systems Jochen Autschbach, University at Buffalo, jochena@buffalo.edu J. Autschbach Magnetic Properties 1 Acknowledgments: Funding: Current

More information

Beyond the Giant Spin Approximation: The view from EPR

Beyond the Giant Spin Approximation: The view from EPR Beyond the Giant Spin Approximation: The view from EPR Simple is Stephen Hill, NHMFL and Florida State University At UF: Saiti Datta, Jon Lawrence, Junjie Liu, Erica Bolin better In collaboration with:

More information

Inorganic Spectroscopic and Structural Methods

Inorganic Spectroscopic and Structural Methods Inorganic Spectroscopic and Structural Methods Electromagnetic spectrum has enormous range of energies. Wide variety of techniques based on absorption of energy e.g. ESR and NMR: radiowaves (MHz) IR vibrations

More information

arxiv:cond-mat/ v1 1 Nov 2000

arxiv:cond-mat/ v1 1 Nov 2000 Magnetic properties of a new molecular-based spin-ladder system: (5IAP) 2 CuBr 4 2H 2 O arxiv:cond-mat/0011016v1 1 Nov 2000 C. P. Landee 1, M. M. Turnbull 2, C. Galeriu 1, J. Giantsidis 2, and F. M. Woodward

More information

Quantum tunneling of magnetization in lanthanide single-molecule. magnets, bis(phthalocyaninato)terbium and bis(phthalocyaninato)-

Quantum tunneling of magnetization in lanthanide single-molecule. magnets, bis(phthalocyaninato)terbium and bis(phthalocyaninato)- Quantum tunneling of magnetization in lanthanide single-molecule magnets, bis(phthalocyaninato)terbium and bis(phthalocyaninato)- dysprosium anions** Naoto Ishikawa, * Miki Sugita and Wolfgang Wernsdorfer

More information

Iron Complexes of a Bidentate Picolyl NHC Ligand: Synthesis, Structure and Reactivity

Iron Complexes of a Bidentate Picolyl NHC Ligand: Synthesis, Structure and Reactivity Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Supplementary Information for Iron Complexes of a Bidentate Picolyl HC Ligand: Synthesis,

More information

10.4 Continuous Wave NMR Instrumentation

10.4 Continuous Wave NMR Instrumentation 10.4 Continuous Wave NMR Instrumentation coherent detection bulk magnetization the rotating frame, and effective magnetic field generating a rotating frame, and precession in the laboratory frame spin-lattice

More information

Supplementary Materials for

Supplementary Materials for Supplementary Materials for Tristability in a Light Actuated Single-Molecule Magnet Xiaowen Feng, 1 Corine Mathonière, 2,3 Ie-Rang Jeon, 2,3,4,5 Mathieu Rouzières, 4,5 Andrew Ozarowski, 6 Michael L. Aubrey,

More information

New example of Jahn-Teller isomerism in [Mn 12 O 12 (O 2 CR) 16 (H 2 O) 4 ] complexes

New example of Jahn-Teller isomerism in [Mn 12 O 12 (O 2 CR) 16 (H 2 O) 4 ] complexes Polyhedron 22 (2003) 1783/1788 www.elsevier.com/locate/poly New example of Jahn-Teller isomerism in [Mn 12 O 12 (O 2 CR) 16 (H 2 O) 4 ] complexes Mònica Soler a, Wolfgang Wernsdorfer b, *, Ziming Sun c,

More information

Influence of the Pseudohalide Ligands on the SIM Behaviour of Four- Coordinate Benzylimidazole-Containing Cobalt(II) Complexes

Influence of the Pseudohalide Ligands on the SIM Behaviour of Four- Coordinate Benzylimidazole-Containing Cobalt(II) Complexes Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTARY MATERIALS Influence of the Pseudohalide Ligands on the SIM Behaviour of

More information

Fe Co Si. Fe Co Si. Ref. p. 59] d elements and C, Si, Ge, Sn or Pb Alloys and compounds with Ge

Fe Co Si. Fe Co Si. Ref. p. 59] d elements and C, Si, Ge, Sn or Pb Alloys and compounds with Ge Ref. p. 59] 1.5. 3d elements and C, Si, Ge, Sn or Pb 7 1.75 1.50 Co Si 0.8 0. 3.50 3.5 Co Si 0.8 0. H cr Magnetic field H [koe] 1.5 1.00 0.75 0.50 0.5 C C IF "A" P Frequency ωγ / e [koe] 3.00.75.50.5.00

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/1/e151117/dc1 Supplementary Materials for Quantum Hall effect in a bulk antiferromagnet EuMni2 with magnetically confined two-dimensional Dirac fermions Hidetoshi

More information

Arnab Pariari & Prabhat Mandal Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta , India

Arnab Pariari & Prabhat Mandal Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta , India Supplementary information for Coexistence of topological Dirac fermions on the surface and three-dimensional Dirac cone state in the bulk of ZrTe 5 single crystal Arnab Pariari & Prabhat Mandal Saha Institute

More information

Appendix A Anti-parallel aggregation of WALP peptides in DOPC

Appendix A Anti-parallel aggregation of WALP peptides in DOPC Appendix A Appendix A Anti-parallel aggregation of WALP peptides in DOPC The study of WALP spin labeled at the central position had suggested linear aggregates in DOPC and cluster aggregates in DPPC, both

More information

An unprecedented 2D 3D metal-organic polyrotaxane. framework constructed from cadmium and flexible star-like

An unprecedented 2D 3D metal-organic polyrotaxane. framework constructed from cadmium and flexible star-like Electronic Supplementary Information An unprecedented 2D 3D metal-organic polyrotaxane framework constructed from cadmium and flexible star-like ligand Hua Wu, a,b Hai-Yan Liu, a Ying-Ying Liu, a Jin Yang,*

More information

7.2 Dipolar Interactions and Single Ion Anisotropy in Metal Ions

7.2 Dipolar Interactions and Single Ion Anisotropy in Metal Ions 7.2 Dipolar Interactions and Single Ion Anisotropy in Metal Ions Up to this point, we have been making two assumptions about the spin carriers in our molecules: 1. There is no coupling between the 2S+1

More information

Supplementary Figure 1. Large-area SEM images of rhombic rod foldectures (F1) deposited on Si substrate in (a) an in-plane magnetic field and (b) an

Supplementary Figure 1. Large-area SEM images of rhombic rod foldectures (F1) deposited on Si substrate in (a) an in-plane magnetic field and (b) an Supplementary Figure 1. Large-area SEM images of rhombic rod foldectures (F1) deposited on Si substrate in (a) an in-plane magnetic field and (b) an out-of-plane magnetic field. Scale bars: 10 m. 1 Supplementary

More information

Supporting Information. Crystal structures, magnetic and electrochemical properties of. coordination polymers based on the

Supporting Information. Crystal structures, magnetic and electrochemical properties of. coordination polymers based on the Supporting Information Crystal structures, magnetic and electrochemical properties of coordination polymers based on the tetra(4-pyridyl)-tetrathiafulvalene ligand Hai-Ying Wang, Yue Wu, Chanel F. Leong,

More information

A vanadium(iv) pyrazolate metal organic polyhedron with permanent porosity and adsorption selectivity

A vanadium(iv) pyrazolate metal organic polyhedron with permanent porosity and adsorption selectivity Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Electronic supporting Information A vanadium(iv) pyrazolate metal organic polyhedron with permanent

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 214 Electronic Supplementary Information (ESI) Dehydration-triggered magnetic phase conversion

More information

metal-organic compounds

metal-organic compounds metal-organic compounds Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Poly[tetra-l-cyanido-dipyridinecadmium(II)zinc(II)] Sheng Li,* Kun Tang and Fu-Li Zhang College of Medicine,

More information

Structural and magnetic characterization of the new GdMn 1-x. O 3 perovskite material

Structural and magnetic characterization of the new GdMn 1-x. O 3 perovskite material Journal of Physics: Conference Series PAPER OPEN ACCESS Structural and magnetic characterization of the new GdMn 1-x Fe x O 3 perovskite material To cite this article: J A Cardona Vasquez et al 2016 J.

More information

Reaction Landscape of a Pentadentate N5-Ligated Mn II Complex with O 2

Reaction Landscape of a Pentadentate N5-Ligated Mn II Complex with O 2 Electronic Supplementary Information for: Reaction Landscape of a Pentadentate N5-Ligated Mn II Complex with O - and H O Includes Conversion of a Peroxomanganese(III) Adduct to a Bis(µ- O)dimanganese(III,IV)

More information

EPR Studies of Cu 2+ in dl-aspartic Acid Single Crystals

EPR Studies of Cu 2+ in dl-aspartic Acid Single Crystals EPR Studies of Cu 2+ in dl-aspartic Acid Single Crystals B. Karabulut, R. Tapramaz, and A. Bulut Ondokuz Mayis University, Faculty of Art and Sciences, Department of Physics, 55139 Samsun, Turkey Z. Naturforsch.

More information

2.1 Experimental and theoretical studies

2.1 Experimental and theoretical studies Chapter 2 NiO As stated before, the first-row transition-metal oxides are among the most interesting series of materials, exhibiting wide variations in physical properties related to electronic structure.

More information

Luminescent Cu(I) complexes with bisphosphane and halogen-substituted 2,2'-bipyridine ligands

Luminescent Cu(I) complexes with bisphosphane and halogen-substituted 2,2'-bipyridine ligands Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2018 Electronic supplementary data to accompany Luminescent Cu(I) complexes with bisphosphane

More information

Investigation of the Local Lattice Structure and the Effects of the Orbital Reduction Factor on the g Factors of a Trigonal [Ni(H 2

Investigation of the Local Lattice Structure and the Effects of the Orbital Reduction Factor on the g Factors of a Trigonal [Ni(H 2 Investigation of the Local Lattice Structure and the Effects of the Orbital Reduction Factor on the g Factors of a Trigonal [Ni(H 2 O) 6 ] 2+ Cluster in NiTiF 6 6H 2 O and ZnSiF 6 6H 2 O Crystals at Different

More information

Seth B. Harkins and Jonas C. Peters

Seth B. Harkins and Jonas C. Peters Amido-bridged Cu 2 N 2 diamond cores that minimize structural reorganization and facilitate reversible redox behavior between a Cu 1 Cu 1 and a Class III delocalized Cu 1.5 Cu 1.5 species. Seth B. Harkins

More information