Thermal field-flow fractionation (ThFFF)

Size: px
Start display at page:

Download "Thermal field-flow fractionation (ThFFF)"

Transcription

1 NAS Study: A Research Agenda for a New Era in SEPARATIONS SCIENCE May 7-8, 2018 The Beckman Center 100 Academy Way, Irvine, CA Thermal field-flow fractionation (ThFFF) KIM R. WILLIAMS DEPARTMENT OF CHEMISTRY COLORADO SCHOOL OF MINES GOLDEN, CO 80401

2 Field-Flow Fractionation Retention parameter λ l λ = l = w D Uw = kt F w Retention time t r 0 t Fwt t r = = 6 λ 6kT FIELD for λ << 1 Electric Crossflow Dielectric Light Thermal Sedimentation Magnetic Acoustic (1984)

3 Thermal FFF separation mechanism x = w Hot wall D T ΔT x = 0 D Cold wall D T thermal diffusion coefficient D diffusion coefficient T temperature difference between hot and cold wall 3

4 ThFFF channel Hot wall Cold wall ThFFF channel: 45.6 cm x 2 cm x cm. T max ~120 DETECTORS: Light scattering (multiangle light scattering, dynamic light scattering) Concentration (UV-Vis, differential refractive index) 4

5 Thermal FFF theory Force exerted by temperature gradient F = kt D T D dt dx D T thermal diffusion coefficient D translational diffusion coefficient dt/dx temperature gradient (= T/w) Substitute F expression into t r equation (assuming well retained species) 0 D T temperature difference between T Tt tr D 6 hot and cold walls t 0 channel void time t r S T Tt 6 0 S T Soret coefficient (= D T /D) Stokes-Einstein eqn D = kt 3πηd h d h hydrodynamic diameter η liquid viscosity D measured by dynamic light Scattering (on-line) 5

6 Diffusion (size)-based ThFFF separation of polystyrene (PS) 200kDa 465kDa 1290kDa 3150kDa THF, 0.1 ml/min ΔT initial = 80C t 1 =10 min ΔT final = 5C 90kDa 28.5kDa V o Runyon, Williams, Colorado School of Mines, unpublished results 6

7 ThFFF composition separation and universal calibration via D T HOMOPOLYMERS COPOLYMERS (RANDOM, BLOCK, MIKTOARM) D ~4.0 x 10-7 cm 2 s -1 PS-PBA S.K.R. Williams, J.R. Runyon, A.A.Ashames, Anal. Chem., 83, (2011). J.R. Runyon, S.K.R. Williams, J. Chromatogr. A 1218, (2011). Copolymer D T varies proportionally with the mole fraction of monomers present. Nonselective solvent for both PS and PBA. 7

8 Thermodiffusion behavior in liquids Early works 1856 Ludwig observed decrease of salt concentration on warm side of U-shaped tube 1879 Soret did more extensive systematic studies with salt solutions 1938 Clusius-Dickel showed gas concentration differs at top and bottom of column with heated interior cylinder and cooled exterior cylinder (thermogravitational column) 1948 Debye & Bueche expts with polymers W. Kohler, K. I.Morozov, J. Non-Equilib. Thermodyn. 41, 151 (2016). 8

9 What is known about D T for (co)polymers in organic solvents? D T is independent of molecular weight (>~10 kda) Strongly affected by polymer-solvent interactions Homopolymers: Different polymer chemistries have different D T (in same solvent) Different solvents yield different D T for the same polymer chemistry Copolymers: If solvent is nonselective for both components of the diblock, copolymer, D T behavior same as random copolymer. If solvent is selective for one component, the copolymer D T is dominated by D T of the homopolymer located at the solvent interface. Schimpf, Giddings, J. Polym. Sci.: Part B Polym. Phys., 27, 1317 (1989). S-B-S-B-B-S-B-S (S-S-S-S-B-B-B-B) n Not fully understood, many theories proposed 9

10 Identifying theories for estimating polymer D T Schimpf and Semenov J. Phys. Chem. B, 104, 2000, Based on temperature-dependent pressure gradient due to small changes in solvent density around the mer Mes, Kok, Tijssen Int. J. Poly. Anal. Charact. 8, 2003, Based on temperature dependent chemical potential gradient Flory-Huggins lattice theory D T 16α T r = 27η 2 m A v o D T 2 = φ 1 D T seg T χ T T 2 α T r m A η v 0 coefficient of thermal expansion of solvent monomer radius Hamaker constant solvent viscosity mean volume of solvent occupied by one solvent molecule D seg φ 1 χ segmental diffusion coefficient (solvent viscosity) volume fraction of solvent polymer-solvent interaction parameter Runyon, Williams, J. Chromatogr. A, 1218, (2011).

11 Comparison of Measured and Theoretical S T for Linear Polymers S T,exp Linear PS, PBA, PMMA, PMA Linear PS, PBA, PMA, PMMA S T,theo NSC PBA y = 1.00x R 2 =.99 S T for linear polymers can be estimated from theory S T exp and S T theo relationship is independent of linear polymer composition PS Polystyrene PBA Polybutylacrylate PMA Polymethacrylate, PMMA Polymethylmethacrylate 11

12 Comparison of Measured and Theoretical S T for Linear Polymers S T,exp Linear PS, PBA, PMA, PMMA S T,theo PBA 2 y = 1.00x R 2 =.99 PBA 2 branching due to backbiting reactions? Intramolecular chain transfer 12

13 S T for different polymer architectures Soret contraction factor g = SS TT bbbbbbbbbbbbbbb SS TT llllllllllll Runyon, Williams, Colorado School of Mines, unpublished results 13

14 Number of Chain Ends From g g is directly correlated to the number of chain ends Linear polymer analogue is not needed! Runyon, Williams, Colorado School of Mines, unpublished results

15 MW, composition, and chain ends in a single analysis? COMPOSITION DISTRIBUTION ARCHITECTURE, MW DISTRIBUTIONS D T x 10 7 cm 2 sec -1 K Weight percent PBA Number of arms M w (kda) Retention time (min) t o t o Retention time (min) Average mole fraction Miktoarm star # arms PS/PBA Nominal 50 Nominal.44/.56 ThFFF ThFFF.43/.57 Runyon, Williams, Colorado School of Mines, unpublished results.

16 Separation of Hybrid Metal-Metal Oxide Nanoparticles Pt nanocubes Particle Type TEM Size (nm) D T x 10-8 (cm 2 K -1 sec -1 ) Pt-Fe3O4 nanoflowers Pt Nanocubes* 6.0 ± Fe3O4 nanoparticles Fe 3 O 4 Nanoparticles Pt-Fe 3 O 4 Nanoflowers 11.1 ± ± D T calculated using ThFFF theory and online DLS. * D T calculated using diffusion measured via AF4 Smith, Williams, Colorado School of Mines, unpublished results.

17 Separation of Hybrid Metal-Metal Oxide Nanoparticles Smith, Williams, Colorado School of Mines, unpublished results. 17

18 Composition Distribution for Hybrid Nanoparticles Smith, Williams, Colorado School of Mines, unpublished results. 18

19 Why Particles Move in a Thermal Field 9 Particle Parameters: Solvent Parameters: Solvent-Particle Parameters: A: Particle Surface Area Known σ 2 eff : Effective Surface Charge density Capillary Electrophoresis -Measurement β: Ionic Shielding Factor Known ε: Solvent Dielectric Constant Known λ DH : Debye-Hückel Screening Length ζ-potential or Calculation s hyd : Particle-area-specific Hydration Entropy S. Duhr, D. Braun, PNAS,. 103, (2006).

20 ThFFF work in progress Polymer microstructure: 1,2 versus 1,4 polybutadiene ratios and distributions Polymer architecture: differentiating linear, star, bottle brush, cyclic Nanoparticle composition (inorganic, metals, polymeric, core-shells) Nanoparticle shape (Pt cube/cuboctahedra) D T, S T measurement Thermal diffusion theory Analytes with controlled physicochemical characteristics 20

21 Challenges Whether or not polymers would show a marked thermodiffusion effect cannot be predicted, since no adequate theoretical treatment of solutions has been reported. Many attempts have been made both from the thermodynamic and kinetic points of view but they all fail to predict what a given liquid mixture will do. P. Debye and A. M. Bueche Thermal diffusion of polymer solutions in H. A. Robinson, ed., High Polymer Physics Remsen Press Div. Brooklyn, 497 (1948) Advance understanding of thermodiffusion predict S T, D T values and transport direction for different analytes, solvents, ionic strengths, T, etc. Establish benchmark S T, D T values for different categories Well characterized sample series Better detectors (low cell volumes, better sensitivity,.) W. Kohler, K. I.Morozov, J. Non-Equilib. Thermodyn. 41, 151 (2016). 21

22 Opportunities? Microfluidics Temperature Gradient Focusing D. Ross, L.E. Locasio, Anal. Chem., 74, (2002). Microscale thermophoresis S. Duhr, D. Braun, PNAS, 103, (2006). Self propelled thermophoretic microgear M.C. Yang, M. Ripoll, Soft Matter, 10, 1006 (2014) Use waste heat to effect large scale thermal diffusion-based separations? Examples of large scale processes present in nature. Untapped potential? Biological applications 1-2 K over 25 µm Controlling fluid flow by design? 22

23 23

24 Does D T Scale with Metal-Metal Oxide Surface Area Smith, Williams, Colorado School of Mines, unpublished results. 24

25 Energetic Derivations: Thermal Diffusion Theories Hydrodynamic Derivations: Theory Author Type Gradient Driver Focus Braun and Duhr Energetic Free Enthalpy ΔG (-) Electrostatics Morozov Hydrodynamic Pressure Interfacial Surface Tension Anderson Electrostatics Includes perturbations by Particle Thermal Conductivity

Dr. Christoph Johann Wyatt Technology Europe GmbH Copyright Wyatt Technology Europe GmbH All Rights reserved 1

Dr. Christoph Johann Wyatt Technology Europe GmbH Copyright Wyatt Technology Europe GmbH All Rights reserved 1 Dr. Christoph Johann Wyatt Technology Europe GmbH 2010 Copyright Wyatt Technology Europe GmbH All Rights reserved 1 Introduction Overview The Nature of Scattered Light: Intensity of scattered light Angular

More information

c) fitting of the NMR intensity in dependence of the recycle delays 4

c) fitting of the NMR intensity in dependence of the recycle delays 4 Supporting Information Prediction of NMR magnetization for onflow experiments: According to Albert, the relaxation rate can be expressed under flow conditions as follows: T flow = T + τ (S-) with T as

More information

Nicholas Cox, Pawel Drapala, and Bruce F. Finlayson Department of Chemical Engineering, University of Washington, Seattle, WA, USA.

Nicholas Cox, Pawel Drapala, and Bruce F. Finlayson Department of Chemical Engineering, University of Washington, Seattle, WA, USA. Transport Limitations in Thermal Diffusion Nicholas Cox, Pawel Drapala, and Bruce F. Finlayson Department of Chemical Engineering, University of Washington, Seattle, WA, USA Abstract Numerical simulations

More information

Mesoscale fluid simulation of colloidal systems

Mesoscale fluid simulation of colloidal systems Mesoscale fluid simulation of colloidal systems Mingcheng Yang Institute of Physics, CAS Outline (I) Background (II) Simulation method (III) Applications and examples (IV) Summary Background Soft matter

More information

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS OUTLINE: Topic D. PHASE TRANSITIONS IN SOFT MATTER SYSTEMS Definition of a phase Classification of phase transitions Thermodynamics of mixing (gases, polymers, etc.) Mean-field approaches in the spirit

More information

Lecture 5: Macromolecules, polymers and DNA

Lecture 5: Macromolecules, polymers and DNA 1, polymers and DNA Introduction In this lecture, we focus on a subfield of soft matter: macromolecules and more particularly on polymers. As for the previous chapter about surfactants and electro kinetics,

More information

Supporting Information for. Dynamics of Architecturally Engineered All- Polymer Nanocomposites

Supporting Information for. Dynamics of Architecturally Engineered All- Polymer Nanocomposites Supporting Information for Dynamics of Architecturally Engineered All- Polymer Nanocomposites Erkan Senses,,,,* Madhusudan Tyagi,, Madeleine Pasco, Antonio Faraone,* NIST Center for Neutron Research, National

More information

Field-Flow Fractionation of Macromolecules and Structures That Cannot be Characterized by Conventional GPC/SEC Techniques

Field-Flow Fractionation of Macromolecules and Structures That Cannot be Characterized by Conventional GPC/SEC Techniques The Field-Flow Fractionation Platform Field-Flow Fractionation of Macromolecules and Structures That Cannot be Characterized by Conventional GPC/SEC Techniques Trevor Havard, Evelin Moldenhaur, Soheyl

More information

Chapter 2 Polymer Physics Concentrated Solutions and Melts

Chapter 2 Polymer Physics Concentrated Solutions and Melts Chapter 2 Polymer Physics Concentrated Solutions and Melts Chapter 1 discussed the statistical thermodynamics of an isolated polymer chain in a solvent. The conformation of an isolated polymer coil in

More information

An Introductions to Advanced GPC Solutions

An Introductions to Advanced GPC Solutions An Introductions to Advanced GPC Solutions Alan Brookes Sales Manager GPC Instruments EMEAI 9 th April 2014 Agilent GPC/SEC Solutions 1 Introduction to Polymers Polymers are long chain molecules produced

More information

Quiz 8 Introduction to Polymers

Quiz 8 Introduction to Polymers 100603 Quiz 8 Introduction to Polymers 1) a) Why is there no real termination for ionic polymerizations (i.e. no coupling or disproportionation)? b) Briefly outline how you would produce Kraton Rubber

More information

[VIM = 4 R3 gx ( 3)

[VIM = 4 R3 gx ( 3) POLYMER LETTERS vol. 5, PP. 753-759 (1967) A UNIVERSAL CALIBRATION FOR GEL PERMEATION CHROMATOGRAPHY Gel permeation chromatography is one of the most powerful techniques for characterizing the polydispersity

More information

Steric stabilization i the role of polymers

Steric stabilization i the role of polymers Steric stabilization i the role of polymers Dispersions in liquids: suspensions, emulsions, and foams ACS National Meeting March 21 22, 2009 Salt Lake City Ian Morrison 2009 Ian Morrison 2009 Lecture 4

More information

Size exclusion chromatography of branched polymers: Star and comb polymers

Size exclusion chromatography of branched polymers: Star and comb polymers Macromol. Theory Simul. 8, 513 519 (1999) 513 Size exclusion chromatography of branched polymers: Star and comb polymers Hidetaka Tobita*, Sadayuki Saito Department of Materials Science and Engineering,

More information

Steric stabilization. Dispersions in liquids: suspensions, emulsions, and foams ACS National Meeting April 9 10, 2008 New Orleans

Steric stabilization. Dispersions in liquids: suspensions, emulsions, and foams ACS National Meeting April 9 10, 2008 New Orleans Steric stabilization Dispersions in liquids: suspensions, emulsions, and foams ACS National Meeting April 9 10, 2008 New Orleans Rates of flocculation Strength of interparticle forces The time for half

More information

(3) A UNIVERSAL CALIBRATION FOR GEL PERMEATION CHROMATOGRAPHY. [TIM = 4 R3 gx POLYMER LETTERS VOL. 5, PP (1967)

(3) A UNIVERSAL CALIBRATION FOR GEL PERMEATION CHROMATOGRAPHY. [TIM = 4 R3 gx POLYMER LETTERS VOL. 5, PP (1967) POLYMER LETTERS VOL. 5, PP. 753-759 (1967) A UNIVERSAL CALIBRATION FOR GEL PERMEATION CHROMATOGRAPHY Gel permeation chromatography is one of the most powerful techniques for characterizing the polydispersity

More information

Polymers Reactions and Polymers Production (3 rd cycle)

Polymers Reactions and Polymers Production (3 rd cycle) EQ, Q, DEQuim, DQuim nd semester 017/018, IST-UL Science and Technology of Polymers ( nd cycle) Polymers Reactions and Polymers Production (3 rd cycle) Lecture 5 Viscosity easurements of the viscosity

More information

Transient Interfacial Phenomena in Miscible Polymer Systems (TIPMPS)

Transient Interfacial Phenomena in Miscible Polymer Systems (TIPMPS) Transient Interfacial Phenomena in Miscible Polymer Systems (TIPMPS) A flight project in the Microgravity Materials Science Program 2002 Microgravity Materials Science Meeting June 25, 2002 John A. Pojman

More information

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials Chap. 2. Polymers 2.1. Introduction - Polymers: synthetic materials natural materials no gas phase, not simple liquid (much more viscous), not perfectly crystalline, etc 2.3. Polymer Chain Conformation

More information

Soft Matter and Biological Physics

Soft Matter and Biological Physics Dr. Ulrich F. Keyser - ufk20 (at) cam.ac.uk Soft Matter and Biological Physics Question Sheet Michaelmas 2011 Version: November 2, 2011 Question 0: Sedimentation Initially consider identical small particles

More information

Macromolecular Chemistry

Macromolecular Chemistry Macromolecular Chemistry Vacuum Degasser Pump and Pulse Controller Autosampler Solvent and Filter In-Line Filter Column Oven and Columns Injection Loop Sample Source Detector 1 Detector 2 Detector 3 Waste

More information

Introduction to the calculators in the Zetasizer software

Introduction to the calculators in the Zetasizer software Introduction to the calculators in the Zetasizer software PARTICLE SIZE ZETA POTENTIAL MOLECULAR WEIGHT MOLECULAR SIZE Introduction The calculators are a series of tools in the Zetasizer software that

More information

V(φ) CH 3 CH 2 CH 2 CH 3. High energy states. Low energy states. Views along the C2-C3 bond

V(φ) CH 3 CH 2 CH 2 CH 3. High energy states. Low energy states. Views along the C2-C3 bond Example V(φ): Rotational conformations of n-butane C 3 C C C 3 Potential energy of a n-butane molecule as a function of the angle φ of bond rotation. V(φ) Potential energy/kj mol -1 0 15 10 5 eclipse gauche

More information

Amorphous Polymers: Polymer Conformation Laboratory 1: Module 1

Amorphous Polymers: Polymer Conformation Laboratory 1: Module 1 D E P A R T M E N T O F M A T E R I A L S S C I E N C E A N D E N G I N E E R I N G M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y 3.014 Materials Laboratory Fall 2008 Amorphous Polymers:

More information

Polymer Dynamics and Rheology

Polymer Dynamics and Rheology Polymer Dynamics and Rheology 1 Polymer Dynamics and Rheology Brownian motion Harmonic Oscillator Damped harmonic oscillator Elastic dumbbell model Boltzmann superposition principle Rubber elasticity and

More information

VISCOSITY MEASUREMENT MEAN MOLECULAR MASS DETERMINATION

VISCOSITY MEASUREMENT MEAN MOLECULAR MASS DETERMINATION VISCOSITY MEASUREMENT MEAN MOLECULAR MASS DETERMINATION Author: dr Marek Studziński Editor: dr hab. Agnieszka Ewa Wiącek Task 11 VISCOSITY MEASUREMENT MEAN MOLECULAR MASS DETERMINATION I. Aim of the task

More information

Lab Week 4 Module α 3. Polymer Conformation. Lab. Instructor : Francesco Stellacci

Lab Week 4 Module α 3. Polymer Conformation. Lab. Instructor : Francesco Stellacci 3.014 Materials Laboratory Dec. 9 th Dec.14 th, 2004 Lab Week 4 Module α 3 Polymer Conformation Lab. Instructor : Francesco Stellacci OBJECTIVES 9 Review random walk model for polymer chains 9 Introduce

More information

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS Foundations of Colloid Science SECOND EDITION Robert J. Hunter School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS CONTENTS 1 NATURE OF COLLOIDAL DISPERSIONS 1.1 Introduction 1 1.2 Technological

More information

Elution Behavior of Protein and Pullulan in Asymmetrical Flow Field-flow Fractionation (AsFlFFF)

Elution Behavior of Protein and Pullulan in Asymmetrical Flow Field-flow Fractionation (AsFlFFF) Elution Behavior of Protein and Pullulan in AsFlFFF Bull. Korean Chem. Soc. 2006, Vol. 27, No. 9 1433 Elution Behavior of Protein and Pullulan in Asymmetrical Flow Field-flow Fractionation (AsFlFFF) Eunsun

More information

Latest Developments in GPC Analysis of Adhesive and Sealant Polymers Mark Pothecary PhD Americas Product Manager Malvern Instruments

Latest Developments in GPC Analysis of Adhesive and Sealant Polymers Mark Pothecary PhD Americas Product Manager Malvern Instruments Latest Developments in GPC Analysis of Adhesive and Sealant Polymers Mark Pothecary PhD Americas Product Manager Malvern Instruments Molecular weight The most fundamental molecular property that controls

More information

Comparison of Polymer Separation by Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation

Comparison of Polymer Separation by Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation Comparison of Polymer Separation by Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation Stepan Podzimek, 1 Christoph Johann 2 1 SYNPO / University of Pardubice, Czech Republic, stepan.podzimek@synpo.cz

More information

Entanglements. M < M e. M > M e. Rouse. Zero-shear viscosity vs. M (note change of slope) Edwards degennes Doi. Berry + Fox, slope 3.4.

Entanglements. M < M e. M > M e. Rouse. Zero-shear viscosity vs. M (note change of slope) Edwards degennes Doi. Berry + Fox, slope 3.4. Entanglements Zero-shear viscosity vs. M (note change of slope) M < M e Rouse slope 3.4 M > M e Edwards degennes Doi slope 1 Berry + Fox, 1968 Question: Which factors affect the Me: T, P, M, flexibility,

More information

Thermodynamic of polymer blends Assoc.Prof.Dr. Jatyuphorn Wootthikanokkhan

Thermodynamic of polymer blends Assoc.Prof.Dr. Jatyuphorn Wootthikanokkhan Thermodynamic of polymer blends Assoc.Prof.Dr. Jatyuphorn Wootthikanokkhan Division of Materials Technology, School of Energy, Environment and Materials, KMUTT, Thailand Classification of polymer blends

More information

Use of SEC-MALS. (Size Exclusion Chromatography - Multi Angle. Light Scattering) for protein quality and characterization

Use of SEC-MALS. (Size Exclusion Chromatography - Multi Angle. Light Scattering) for protein quality and characterization Use of SEC-MALS (Size Exclusion Chromatography - Multi Angle Light Scattering) for protein quality and characterization Methods for protein characterization Analytical SEC is a common method to characterize

More information

CHARACTERIZATION OF BRANCHED POLYMERS IN SOLUTION (I)

CHARACTERIZATION OF BRANCHED POLYMERS IN SOLUTION (I) CHARACTERIZATION OF BRANCHED POLYMERS IN SOLUTION (I) Overview: General Properties of Macromolecules in Solution Molar Mass Dependencies Molar Mass Distributions Generalized Ratios Albena Lederer Leibniz-Institute

More information

Molecular Driving Forces

Molecular Driving Forces Molecular Driving Forces Statistical Thermodynamics in Chemistry and Biology SUBGfittingen 7 At 216 513 073 / / Ken A. Dill Sarina Bromberg With the assistance of Dirk Stigter on the Electrostatics chapters

More information

Light scattering Small and large particles

Light scattering Small and large particles Scattering by macromolecules E B Incident light Scattered Light particle Oscillating E field from light makes electronic cloud oscillate surrounding the particle Intensity: I E Accelerating charges means

More information

Electrophoretic Deposition. - process in which particles, suspended in a liquid medium, migrate in an electric field and deposit on an electrode

Electrophoretic Deposition. - process in which particles, suspended in a liquid medium, migrate in an electric field and deposit on an electrode Electrophoretic Deposition - process in which particles, suspended in a liquid medium, migrate in an electric field and deposit on an electrode no redox differs from electrolytic in several ways deposit

More information

40 46, 51, ,

40 46, 51, , cha02680_fm.indd Page xxvi 12/27/12 4:05 PM GG-009 /Volumes/107/GO01228/CHANG_11E/ANCILLARY/CHANG/007_665610_1_P1 BIG IDEA 1: The chemical elements are fundamental building materials of matter, and all

More information

Thermodynamic behaviour of mixtures containing CO 2. A molecular simulation study

Thermodynamic behaviour of mixtures containing CO 2. A molecular simulation study Thermodynamic behaviour of mixtures containing. A molecular simulation study V. Lachet, C. Nieto-Draghi, B. Creton (IFPEN) Å. Ervik, G. Skaugen, Ø. Wilhelmsen, M. Hammer (SINTEF) Introduction quality issues

More information

Optimizing GPC Separations

Optimizing GPC Separations Optimizing GPC Separations Criteria for Solvent Selection True sample solubility (Polarity and Time dependant) Compatibility with columns Avoid non-size exclusion effects (eg adsorption by reverse phase

More information

Lecture 8. Polymers and Gels

Lecture 8. Polymers and Gels Lecture 8 Polymers and Gels Variety of polymeric materials Polymer molecule made by repeating of covalently joint units. Many of physical properties of polymers have universal characteristic related to

More information

Dynamic lattice liquid (DLL) model in computer simulation of the structure and dynamics of polymer condensed systems

Dynamic lattice liquid (DLL) model in computer simulation of the structure and dynamics of polymer condensed systems e-polymers 2012, no. 079 http://www.e-polymers.org ISSN 1618-7229 Dynamic lattice liquid (DLL) model in computer simulation of the structure and dynamics of polymer condensed systems Anna Blim *, Tomasz

More information

Advanced GPC. GPC On Tour, Barcelona, 28 th February The use of Advanced Detectors in GPC

Advanced GPC. GPC On Tour, Barcelona, 28 th February The use of Advanced Detectors in GPC Advanced GPC GPC On Tour, Barcelona, 28 th February 2012 The use of Advanced Detectors in GPC 1 What does Conventional GPC give? Molecular weight averages Relative to the standards used Mw Weight Average

More information

Kolligative Eigenschaften der Makromolekülen

Kolligative Eigenschaften der Makromolekülen Kolligative Eigenschaften der Makromolekülen Kolligative Eigenschaften (colligere = sammeln) Gefrierpunkterniedrigung, Siedepunkterhöhung, Dampfdruckerniedrigung, Osmotischer Druck Kolligative Eigenschaften

More information

Sem /2007. Fisika Polimer Ariadne L. Juwono

Sem /2007. Fisika Polimer Ariadne L. Juwono Chapter 8. Measurement of molecular weight and size 8.. End-group analysis 8.. Colligative property measurement 8.3. Osmometry 8.4. Gel-permeation chromatography 8.5. Ultracentrifugation 8.6. Light-scattering

More information

Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale. Miguel Rubi

Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale. Miguel Rubi Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale Miguel Rubi References S.R. de Groot and P. Mazur, Non equilibrium Thermodynamics, Dover, New York, 1984 J.M. Vilar and

More information

Polymer Dynamics. Tom McLeish. (see Adv. Phys., 51, , (2002)) Durham University, UK

Polymer Dynamics. Tom McLeish. (see Adv. Phys., 51, , (2002)) Durham University, UK Polymer Dynamics Tom McLeish Durham University, UK (see Adv. Phys., 51, 1379-1527, (2002)) Boulder Summer School 2012: Polymers in Soft and Biological Matter Schedule Coarse-grained polymer physics Experimental

More information

Separation of Proteins Mixture in Hollow Fiber Flow Field-Flow Fractionation

Separation of Proteins Mixture in Hollow Fiber Flow Field-Flow Fractionation Separation of Proteins Mixture in Hollow Fiber Flow Field-Flow Fractionation Bull. Korean Chem. Soc. 2003, Vol. 24, No. 9 1339 Separation of Proteins Mixture in Hollow Fiber Flow Field-Flow Fractionation

More information

The lattice model of polymer solutions

The lattice model of polymer solutions The lattice model of polymer solutions Marc R. Roussel Department of Chemistry and Biochemistry University of Lethbridge February 25, 2009 1 The lattice model of polymer solutions In the last note, we

More information

Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. H i

Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. H i Gel Permeation Chromatography (GPC) : Size Exclusion Chromatography GPC : 1. Chromatogram (V R vs H) H i Detector response Baseline N i M i 130 135 140 145 150 155 160 165 Elution volume (V R ) (counts)

More information

Separation Methods Based on Distributions in Discrete Stages (02/04/15)

Separation Methods Based on Distributions in Discrete Stages (02/04/15) Separation Methods Based on Distributions in Discrete Stages (02/04/15) 1. Chemical Separations: The Big Picture Classification and comparison of methods 2. Fundamentals of Distribution Separations 3.

More information

Supracolloidal Polymer Chains of Diblock Copolymer Micelles

Supracolloidal Polymer Chains of Diblock Copolymer Micelles Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2014 Supporting Information Supracolloidal Polymer Chains of Diblock Copolymer Micelles

More information

Surface Forces & Liquid Films (Answers to Exercise Problems)

Surface Forces & Liquid Films (Answers to Exercise Problems) //5 Surface Forces & Liquid Films (nswers to Exercise Problems) Wuge H. Briscoe wuge.briscoe@bris.ac.uk URL: wugebrisco7.wix.com/briscoegroup Exercise : van der Waals forces & liquid films When octane

More information

Interfacial forces and friction on the nanometer scale: A tutorial

Interfacial forces and friction on the nanometer scale: A tutorial Interfacial forces and friction on the nanometer scale: A tutorial M. Ruths Department of Chemistry University of Massachusetts Lowell Presented at the Nanotribology Tutorial/Panel Session, STLE/ASME International

More information

Supporting Information for. Concentration dependent effects of bovine serum albumin on graphene

Supporting Information for. Concentration dependent effects of bovine serum albumin on graphene Supporting Information for Concentration dependent effects of bovine serum albumin on graphene oxide colloidal stability in aquatic environment Binbin Sun, Yinqing Zhang, Wei Chen, Kunkun Wang, Lingyan

More information

Biomolecular hydrodynamics

Biomolecular hydrodynamics Biomolecular hydrodynamics Chem 341, Fall, 2014 1 Frictional coefficients Consider a particle moving with velocity v under the influence of some external force F (say a graviational or electrostatic external

More information

GPC/SEC An essential tool for polymer analysis

GPC/SEC An essential tool for polymer analysis GPC/SEC An essential tool for polymer analysis Ben MacCreath, PhD Product Manager GPC/SEC Instrumentation 26 th March 2013 Introduction to Polymers Where are they found? Polyolefins Engineering Polymers

More information

GPC / SEC Theory and Understanding

GPC / SEC Theory and Understanding Dr. Jason S. Davies, Smithers Rapra, UK Gel permeation chromatography (GPC), also known as size exclusion chromatography (SEC) is a branch of liquid chromatography specifically concerned with characterisation

More information

Polymerisation of Sodium 4-Styrenesulfonate via Atom Transfer Radical Polymerisation

Polymerisation of Sodium 4-Styrenesulfonate via Atom Transfer Radical Polymerisation Polymerisation of Sodium 4-Styrenesulfonate via Atom Transfer Radical Polymerisation Peter D. Iddon, Kay L. Robinson and Steven P. Armes ACS Philadelphia Meeting August 2004 Email: P.Iddon@shef.ac.uk Introduction

More information

Polymer solutions and melts

Polymer solutions and melts Course M6 Lecture 9//004 (JAE) Course M6 Lecture 9//004 Polymer solutions and melts Scattering methods Effects of excluded volume and solvents Dr James Elliott Online teaching material reminder Overheads

More information

The ph-responsive behaviour of aqueous solutions of poly(acrylic acid) is dependent on molar mass

The ph-responsive behaviour of aqueous solutions of poly(acrylic acid) is dependent on molar mass Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 2016 The ph-responsive behaviour of aqueous solutions of poly(acrylic acid) is dependent on molar

More information

Lecture 4 : Gel Permeation or Size Exclusion Chromatography

Lecture 4 : Gel Permeation or Size Exclusion Chromatography Lecture 4 : Gel Permeation or Size Exclusion Chromatography Polymer Fractionation Sedimentation Centrifugation Evaporation of the solvent Gel permeation chromatography Gel Permeation Chromatography (GPC)

More information

Liquids and Solutions

Liquids and Solutions Liquids and Solutions Introduction This course examines the properties of liquids and solutions at both the thermodynamic and the molecular level. The main topics are: Liquids, Ideal and Regular Solutions,

More information

GRAFT COPOLYMERS OF STYRENE AND METHYL METHACRYLATE

GRAFT COPOLYMERS OF STYRENE AND METHYL METHACRYLATE GRAFT COPOLYMERS OF STYRENE AND METHYL METHACRYLATE PART 11: VISCOSITY ABSTRACT A study of the viscosity behavior of the graft copolymers described in Part I has been made with dilute solutions in benzene

More information

Supporting Information

Supporting Information Block Copolymer Mimetic Self-Assembly of Inorganic Nanoparticles Yunyong Guo, Saman Harirchian-Saei, Celly M. S. Izumi and Matthew G. Moffitt* Department of Chemistry, University of Victoria, P.O. Box

More information

Mechanical properties of polymers: an overview. Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore

Mechanical properties of polymers: an overview. Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore Mechanical properties of polymers: an overview Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore UGC-NRCM Summer School on Mechanical Property Characterization- June 2012 Overview of polymer

More information

ANALYSIS OF LOW DENSITY PARTICLES USING DIFFERENTIAL CENTRIFUGAL SEDIMENTATION

ANALYSIS OF LOW DENSITY PARTICLES USING DIFFERENTIAL CENTRIFUGAL SEDIMENTATION ANALYSIS OF LOW DENSITY PARTICLES USING DIFFERENTIAL CENTRIFUGAL SEDIMENTATION Conventional Centrifugal Methods Centrifugal sedimentation of particles suspended in a fluid is a well known method (1, 2)

More information

Stability of colloidal systems

Stability of colloidal systems Stability of colloidal systems Colloidal stability DLVO theory Electric double layer in colloidal systems Processes to induce charges at surfaces Key parameters for electric forces (ζ-potential, Debye

More information

Arborescent Polymers as Templates for the Preparation of Metallic Nanoparticles

Arborescent Polymers as Templates for the Preparation of Metallic Nanoparticles Arborescent Polymers as Templates for the Preparation of Metallic Nanoparticles Jason Dockendorff Department of Chemistry University of Waterloo Outline 1. 1. Focus and Purpose of of Research 2. 2. The

More information

Number of pages in the question paper : 05 Number of questions in the question paper : 48 Modeling Transport Phenomena of Micro-particles Note: Follow the notations used in the lectures. Symbols have their

More information

Chapter 4 Polymer solutions

Chapter 4 Polymer solutions Chapter 4 Polymer solutions 4.1 Introduction Solution: any phase containing more than one component.(gas, liquid or solid) Polymer solution is important: Classical analyses of polymers are conducted on

More information

Origin of the Electrophoretic Force on DNA in Nanopores. Biological and Soft Systems - Cavendish Laboratory

Origin of the Electrophoretic Force on DNA in Nanopores. Biological and Soft Systems - Cavendish Laboratory Origin of the Electrophoretic Force on DNA in Nanopores Ulrich F. Keyser Biological and Soft Systems - Cavendish Laboratory Acknowledgements Delft Cees Dekker, Nynke H. Dekker, Serge G. Lemay R. Smeets,

More information

Quick guide to selecting columns and standards for Gel Permeation Chromatography and Size Exclusion Chromatography SELECTION GUIDE

Quick guide to selecting columns and standards for Gel Permeation Chromatography and Size Exclusion Chromatography SELECTION GUIDE Quick guide to selecting columns and standards for Gel Permeation Chromatography and Size Exclusion Chromatography SELECTION GUIDE Introduction Gel permeation chromatography (GPC) and size exclusion chromatography

More information

Thermodiffusion of nanoparticles in water. o of solid-liquid interfaces

Thermodiffusion of nanoparticles in water. o of solid-liquid interfaces Thermodiffusion of nanoparticles in water and the thermal boundary conditions o of solid-liquid interfaces David Cahill Shawn Putnam, Zhenbin Ge, Profs. Paul Braun, Gerard Wong Center of Advanced Materials

More information

How DLS Works: Interference of Light

How DLS Works: Interference of Light Static light scattering vs. Dynamic light scattering Static light scattering measures time-average intensities (mean square fluctuations) molecular weight radius of gyration second virial coefficient Dynamic

More information

Particles, drops, and bubbles. Lecture 3

Particles, drops, and bubbles. Lecture 3 Particles, drops, and bubbles Lecture 3 Brownian Motion is diffusion The Einstein relation between particle size and its diffusion coefficient is: D = kt 6πηa However gravitational sedimentation tends

More information

Precipitation. Size! Shape! Size distribution! Agglomeration!

Precipitation. Size! Shape! Size distribution! Agglomeration! Precipitation Size! Shape! Size distribution! Agglomeration! Precipitation Four major questions: 1. Why do molecules/ions precipitate? 2. What determines the size? 3. What determines the size distribution?

More information

Final Exam Introduction to Polymers (each part, a,b,c,, is worth 2.2 points)

Final Exam Introduction to Polymers (each part, a,b,c,, is worth 2.2 points) 168 Final Exam Introduction to Polymers (each part, a,b,c,, is worth 2.2 points) 1) Polymers are different than low-molecular weight oligomers. For example an oligomeric polyethylene is wax, oligomeric

More information

Supporting Information. Ultrathin and Ion-selective Janus Membranes. for High-performance Osmotic Energy Conversion

Supporting Information. Ultrathin and Ion-selective Janus Membranes. for High-performance Osmotic Energy Conversion Supporting Information for Ultrathin and Ion-selective Janus Membranes for High-performance Osmotic Energy Conversion Zhen Zhang,,, Xin Sui,, Pei Li, Ganhua Xie,, Xiang-Yu Kong, Kai Xiao,, Longcheng Gao,*,

More information

Colloids as nucleons

Colloids as nucleons Colloids as nucleons Willem Kegel & Jan Groenewold Van t Hoff Laboratory Utrecht University The Netherlands Finite-size equilibrium structures macroscopic phase separation Equilibrium clusters & periodic

More information

Research Statement. Shenggao Zhou. November 3, 2014

Research Statement. Shenggao Zhou. November 3, 2014 Shenggao Zhou November 3, My research focuses on: () Scientific computing and numerical analysis (numerical PDEs, numerical optimization, computational fluid dynamics, and level-set method for interface

More information

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

Analysis of Fragile Ultra-High Molar Mass. d Chromatography. Amandaa K. Brewer October 22, 2015

Analysis of Fragile Ultra-High Molar Mass. d Chromatography. Amandaa K. Brewer October 22, 2015 Analysis of Fragile Ultra-High Molar Mass Polymers by Hydrodynamic d Chromatography Amandaa K. Brewer October 22, 2015 Ultra-High Molar Mass Polymers and Colloids Particle size and shape of polymers and

More information

CHARGED POLYMERS THE STORY SO FAR

CHARGED POLYMERS THE STORY SO FAR CHARGED POLYMERS THE STORY SO FAR Andrey V Dobrynin Institute of Materials Science &Department of Physics University of Connecticut What are polyelectrolytes? Poly(styrene sulfonate) CH-CH 2 SO Na Poly(methacrylic

More information

Polymers in Modified Asphalt Robert Q. Kluttz KRATON Polymers

Polymers in Modified Asphalt Robert Q. Kluttz KRATON Polymers Polymers in Modified Asphalt Robert Q. Kluttz KRATON Polymers Polymers in Modified Asphalt Types of Polymers Compatibility of Polymers Effects of Polymers Analysis of polymers Recovery of PMA What Is a

More information

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 25: CHROMATOGRAPHIC METHODS AND CAPILLARY ELECTROPHORESIS

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 25: CHROMATOGRAPHIC METHODS AND CAPILLARY ELECTROPHORESIS Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 25: CHROMATOGRAPHIC METHODS AND CAPILLARY ELECTROPHORESIS CHAPTER 25: Opener Aa CHAPTER 25: Opener Ab CHAPTER 25: Opener B 25-1 Ion-Exchange

More information

Introduction to Dynamic Light Scattering for Particle Size Determination

Introduction to Dynamic Light Scattering for Particle Size Determination www.horiba.com/us/particle Jeffrey Bodycomb, Ph.D. Introduction to Dynamic Light Scattering for Particle Size Determination 2016 HORIBA, Ltd. All rights reserved. 1 Sizing Techniques 0.001 0.01 0.1 1 10

More information

Characterization of functionalized styrene butadiene rubber by flow field-flow fractionation/light scattering in organic solvent

Characterization of functionalized styrene butadiene rubber by flow field-flow fractionation/light scattering in organic solvent Journal of Chromatography A, 1147 (2007) 200 205 Characterization of functionalized styrene butadiene rubber by flow field-flow fractionation/light scattering in organic solvent Dae Young Bang a, Da Young

More information

Polymer analysis by GPC-SEC. Technical Note. Introduction

Polymer analysis by GPC-SEC. Technical Note. Introduction Polymer analysis by GPC-SEC Technical Note Introduction Gel Permeation Chromatography (GPC), also referred to as Size Exclusion Chromatography (SEC) is a mode of liquid chromatography in which the components

More information

Measuring particle aggregation rates by light scattering

Measuring particle aggregation rates by light scattering Measuring particle aggregation rates by light scattering Gregor Trefalt, Istvan Szilagyi, Michal Borkovec Email. gregor.trefalt@unige.ch, istvan.szilagyi@unige.ch, michal.borkovec@unige.ch Introduction

More information

Size characterization of magnetic cell sorting microbeads using flow field-flow fractionation and photon correlation spectroscopy

Size characterization of magnetic cell sorting microbeads using flow field-flow fractionation and photon correlation spectroscopy Journal of Magnetism and Magnetic Materials 194 (1999) 248 253 Size characterization of magnetic cell sorting microbeads using flow field-flow fractionation and photon correlation spectroscopy S. Kim Ratanathanawongs

More information

On the hydrodynamic diffusion of rigid particles

On the hydrodynamic diffusion of rigid particles On the hydrodynamic diffusion of rigid particles O. Gonzalez Introduction Basic problem. Characterize how the diffusion and sedimentation properties of particles depend on their shape. Diffusion: Sedimentation:

More information

Example: Uniaxial Deformation. With Axi-symmetric sample cross-section dl l 0 l x. α x since α x α y α z = 1 Rewriting ΔS α ) explicitly in terms of α

Example: Uniaxial Deformation. With Axi-symmetric sample cross-section dl l 0 l x. α x since α x α y α z = 1 Rewriting ΔS α ) explicitly in terms of α Eample: Uniaial Deformation y α With Ai-symmetric sample cross-section l dl l 0 l, d Deform along, α = α = l0 l0 = α, α y = α z = Poisson contraction in lateral directions α since α α y α z = Rewriting

More information

Membrane processes selective hydromechanical diffusion-based porous nonporous

Membrane processes selective hydromechanical diffusion-based porous nonporous Membrane processes Separation of liquid or gaseous mixtures by mass transport through membrane (= permeation). Membrane is selective, i.e. it has different permeability for different components. Conditions

More information

Hairy Uniform Permanently-Ligated Hollow Nanoparticles with. Precise Dimension Control and Tunable Optical Properties

Hairy Uniform Permanently-Ligated Hollow Nanoparticles with. Precise Dimension Control and Tunable Optical Properties Supporting Information Hairy Uniform Permanently-Ligated Hollow Nanoparticles with Precise Dimension Control and Tunable Optical Properties Yihuang Chen, 1,2 Di Yang, 3 Young Jun Yoon, 1 Xinchang Pang,

More information

Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany

Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany Preliminaries Learning Goals Phase Equilibria Phase diagrams and classical thermodynamics

More information

CHEM 429 / 529 Chemical Separation Techniques

CHEM 429 / 529 Chemical Separation Techniques CHEM 429 / 529 Chemical Separation Techniques Robert E. Synovec, Professor Department of Chemistry University of Washington Lecture 1 Course Introduction Goal Chromatography and Related Techniques Obtain

More information

Colloidal Crystal: emergence of long range order from colloidal fluid

Colloidal Crystal: emergence of long range order from colloidal fluid Colloidal Crystal: emergence of long range order from colloidal fluid Lanfang Li December 19, 2008 Abstract Although emergence, or spontaneous symmetry breaking, has been a topic of discussion in physics

More information

Single action pressing (from top)

Single action pressing (from top) www.komage.de Single action pressing (from top) Double action pressing with fixed die Typical course of the pressure during pressing and ejection (Single action) Upper punch Pressure Lower punch Time Green

More information