Textbooks that are recommended for undergraduate students which provide a good overview

Size: px
Start display at page:

Download "Textbooks that are recommended for undergraduate students which provide a good overview"

Transcription

1 Bibliography In this bibliography, we deliberately restricted ourselves to the textbooks or papers that we effectively consulted and used practically. The subject of this book being very broad, it is obvious that the following list is far from exhaustive and there certainly exist many other excellent books. A more complete bibliography can be found as references in some of the textbooks mentioned below. Textbooks that are recommended for undergraduate students which provide a good overview L. Landau and E. Lifchitz, Mechanics, Pergamon Press, Unavoidable basic textbook. V. Arnold, Mathematical Methods of Classical Mechanics, Springer, 2nd edition, Reference textbook which, and this is an additional quality for specialists, introduces and uses the tools of differential geometry. H. Goldstein, Classical Mechanics, Addison-Wesley, Londres, 2nd edition, Basic textbook for point mechanics and continuous medium mechanics. It is very complete, especially for relativitic aspects. The discussion concerning chaos is absent. H. Goldstein, C. Poole and J. Fasko, Classical Mechanics, Addison-Wesley, Londres, 3rd edition, This third edition of the famous Goldstein book takes advantage of the experience of two new authors for renewing some obsolete aspects of the previous editions, in particular concerning relativistic topics. This edition addresses the notion of chaos.

2 458 Bibliography I. Percival and D. Richards, Introduction to Dynamics, Cambridge University Press, Excellent textbook that we recommend for its clarity and its pedagogical emphasis, written by specialists in this domain. J.V. José and E.J. Saletan, Classical Dynamics, Cambridge University Press, This very pedagogical textbook takes time to explain and illustrate every new notion. Its contains many explicit diagrams and figures and is a source of many interesting and miscellaneous exercices. S. Hildebrandt and A. Tromba, Mathématiques et formes optimales, Belin, Pour la Science, 1986 (in French). A real masterpiece of clarity which explains the various aspects of the least action principle. G.L. Kotkin and U. Serbo, Collection of Problems in Classical Mechanics, Pergamon Press, An excellent source of very beautiful original problems on various aspects of classical mechanics. I. Stewart, Does God Play Dice?, Penguin, new edition, Remarkable popular work concerning chaos, understandable to all. It addresses all interesting aspects, including those which go beyond Hamiltonian systems. Poincaré, collection Les génies de la science, Pour la Science, n 4, November 2000 (in french). Useful for all. Textbooks for undergraduate and graduate students which we used as reference works concerning the summaries of this book C. Lanczos, The Variational Principles of Mechanics, University of Toronto Press, Very marginal work, which deals with subjects generally forgotten by other authors and which is, consequently, an invaluable complement. H.G. Schuster, Deterministic Chaos: An Introduction, VCH Verlagsgellschaft Germany, This book easy to read, illustrated with many figures, is an introduction to chaos; it is not restricted to Hamiltonian systems.

3 Bibliography 459 M. Tabor, Chaos and Integrability in Nonlinear Dynamics, John Wiley & Sons, New York, Very concise and complete, this textbook has the advantage of avoiding sophisticated mathematical tools. A.J. Lichtenberg and M.A. Lieberman, Regular and Stochastic Motion, Springer-Verlag, This book is addressed to specialists. E. Ott, Chaos in Dynamical Systems, Cambridge University Press, This clear and complete textbook is concerned with general dynamical systems and thus goes beyond the ambition of the present work. M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer- Verlag, New York Inc., A book for students interested in quantum mechanics. Nevertheless, the part devoted to classical mechanics is well presented. E.N. Lorentz, Essence of Chaos, University of Washington Press, Easily readable, this book addresses all topics concerning chaos. F. Scheck, Mechanics: From Newton s Law to Deterministic Chaos, Springer- Verlag, 3rd edition, A book close to ours in spirit, but which employs more abstract mathematical notations. W. Yourgrau and S. Mandelstam, Variational Principles in Dynamics and Quantum Theory, Pitman, 3rd edition, Original and epistemological analysis of Hamilton s theory. Many historical references and connections with other domains in physics. N. Rasband, Dynamics, John Wiley & Sons, Many aspects are addressed in this book, but the mathematical notations are abstract. K.T. Alligood, T.D. Sauer and J.A. Yorke, Chaos, an Introduction to Dynamical Systems, Springer-Verlag, This book is clear and complete, but reserved for students with a good mathematical training.

4 460 Bibliography Books which were consulted occasionally to address very special points. The interested reader may thus go further by looking at them L. Landau and E. Lifchitz, The Classical Theory of Fields, Pergamon Press, L. Landau and E. Lifchitz, Theory of Elasticity, Pergamon Press, J.D. Jackson, Classical Electrodynamics, John Wiley & Sons, New York, A. Messiah, Quantum Mechanics, North Holland, L.E. Ballentine, Quantum Mechanics, World Scientific Publishing Co., B. Cagnac and J.C. Pebay- Peyroula, Modern Atomic Physics, MacMillan interacting publishing, J. Bass, Cours de mathématiques, Masson, 1977 (in French). J.W.S. Rayleigh, Theory of Sound, Dover, R.P. Feynman, Lectures on Physics, Addison-Wesley Publishing Company, S. Weinberg, Gravitation and Cosmology, John Wiley & Sons, G. Bruhat, Optique, Masson, 1992 (in French). W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical Recipes, Cambridge University Press, R. Campbell, Théorie générale de l équation de Mathieu et de quelques autres équations, Masson, 1955 (in French). C. Rosensweig and J.B. Krieger, Exact Quantization Conditions, J. Math. Phys., 9, 849, F.L. Moore, J.C. Robinson, C.F. Barucha, Bala Sundaram and M.G. Raizen, Atom Optics Realisation of the Quantum Delta-kicked Rotor, Phys. Rev. Lett. 75, 4598, H. Stapelfeldt and T. Seideman, Aligning Molecules with Strong Laser Pulses, Rev. Mod. Phys. 75, 543, 2003.

5 Index acceleration mode, 401, 425, 437 acoustical frequency, 75, 108 action, 112 function, 233, 239 functional, 112 variable, 284 adiabatic invariant, 341, 346 Aharonov Bohm effect, 246 d Alembert principle, 12, 14 angle action variables, 283 Anosov s mapping, 403, 432 aphelion, 223, 229 areal velocity, 56 Arnold s cat, 403, 432 atomic chain, 75, 107 attractor, 446 aurora borealis, 354, 379 autonomous, 167 axial frequency, 95 axle, 19, 39 bead, 16, 28, 186, 224, 356, 382 bifurcation, 187, 228, 394, 398, 419 billiard, 183, 409, 447 Binet equation, 56, 133, 134, 143, 163, 222, 228 blade, 71, 102 boost, 304 brachistochrone, 148 calculus of variations, 114 canonical perturbation, 342, 348 transformation, 283, 334 caustic, 243, 264 centrifugal force, 23, 50 chaos, 390, 392, 395 chaos ergodicity, 399, 423 Compton, 23, 47 conjugate point, 119, 138 variable, 52 conservative, 167 constant of the motion, 53, 167, 282, 288 constraint equation, 40 continuous fraction, 396, 417 convergent direction, 394 separatrix, 394 Coriolis force, 12, 17, 23, 49 Coulomb problem, 302 Curie principle, 125 cyclic coordinate, 53 cycloid, 31 cyclotron frequency, 96, 352, 376 motion, 379 radius, 379 damped pendulum, 407, 443 declination angle, 69 degree of freedom, 10 divergent separatrix, 394 drift, 66, 67, 91, 354, 381 ecliptic, 68, 98 elastic bar, 64 moment, 71

6 462 Index electromagnetic potential, 51 electrostatic lens, 243, 265 ellipsoid, 150 elliptic coordinate, 248, 276 integral, 349 point, 168 energy, 53, 167 equinox precession, 68, 97 Fermat path, 236 principle, 122, 144, 181 Fermi accelerator, 405, 438 Fibonacci sequence, 403, 435 field, 112 fine structure, 293 constant, 292, 294, 318 first integral, 281, 288 fixed point, 169, 390, 392 flexion vibration, 71, 102 flow, 167, 204 parameter, 287, 304, 337 Foucault pendulum, 59, 79 free fall, 242, 261 friction force, 12 Galilean transformation, 304, 338 general action, 253 generalized acceleration, 10 coordinate, 9 force, 12 momentum, 52, 165 potential, 51 velocity, 10 generating function, 289, 297, 298, 301, 302, 324, 330, 332, 353, 375 generator, 284, 287, 303, 336 geodesic, 241, 261 group speed, 239 velocity, 252, 279 gyroscope, 21, 44, 46 Hamilton equation, 167 function, 166 principle, 111 Hamilton Jacobi, 233, 235 Hamiltonian, 166 Hannay s phase, 356, 382 harmonic oscillator, 295, 298, 302 Heiles, 62 Hénon, 62 Hénon and Heiles potential, 84 heterocline point, 395 holonomic, 13, 40 constraint, 18, 116, 123 homocline point, 395 hoop, 16, 28, 186, 224 Huygens construction, 238, 243 pendulum, 17, 31 hyperbolic point, 168 index, 236 inertial force, 23, 48 integrable system, 281 integral constraint, 115, 159 involution, 282, 323 isochronous, 17 Jacobi theorem, 236 Jupiter s Greeks, 412, 450 Trojans, 412, 450 KAM curve, 390 theorem, 391 Kepler problem, 174, 292, 295, 314 kicked rotor, 385 kinetic energy, 10 Koenig theorem, 18, 76, 99 Lagrange

7 Index 463 equation, 10, 52 function, 52 multiplier, 13, 19, 41, 115, 150, 159 Lagrangian, 52 point, 412, 413, 450, 452 system, 52 Landau levels, 312 Laplace law, 127, 158 least action principle, 111, 118, 135 Legendre transform, 166 libration, 227 Liouville theorem, 167 Lorentz force, 116, 131, 200 transformation, 304, 339 magnetic flux, 246 forces, 12 moment, 378 magnetron frequency, 96 Mathieu, 211 equation, 180 Maupertuis principle, 121, 141, 235, 245, 268 Mercury, 128, 162 Minkowski metric, 176 mixture, 395 Noether theorem, 54, 58, 78 non-resonant torus, 389 optical frequency, 75, 108 path, 214 Painlevé integral, 58, 77 parabolic coordinate, 247, 271 parametric resonance, 170 Paul trap, 180, 211 Penning trap, 67, 94 perihelion, 197, 223, 229 perturbation theory, 341, 342 phase portrait, 37, 168, 190, 220, 227, 229 space, 165 speed, 239 velocity, 252, 279 Poincaré section, 183, 388 Poincaré Birkhoff theorem, 393 Poisson bracket, 281, 327, 329 precession of perihelia, 129, 164 prolate shape, 249 propagator, 169, 208, 212 proper mode, 57 quadrupolar approximation, 249 quadrupole interaction, 97 quantum, 112 quasi-integrable system, 341 reaction force, 16, 19, 28 reduced action, 121, 234, 239, 253 mass, 55 resonant torus, 286, 390, 396, 415 reverse pendulum, 178, 207 revisiting theorem, 168 rope, 16, 27 rotating frame, 65, 89, 172, 192 rule EBK, 285 Runge Lenz vector, 173, 195 Rydberg constant, 294, 318 saddle point, 120 sawtooth mapping, 402, 428 scalar potential, 51 scale invariance, 395 Schwarzschild metric, 129, 162 radius, 129, 164 secular term, 348, 362 self-similarity, 395 separation of variables, 236 separatrice, 168 shearing modulus, 64

8 464 Index sidereal day, 69 sine-gordon equation, 73, 105 sling, 15, 26 small denominators, 345 Snell Descartes law, 144, 215 soap film, 125, 154 soft mode, 63, 86 solitary wave, 73, 105 Sommerfeld atom, 293, 316 spiral point, 446 square well, 351 stability islet, 392 stable elliptic fixed point, 394 node, 168 standard mapping, 387, 398, 401, 402, 418, 425, 428 Stark effect, 247, 271 surface tension, 127, 158 Toda net, 62 torus, 282 trajectory, 11 transversal wave, 64, 88 turn indicator, 21, 43 turning point, 168, 274, 278 Ulam approximation, 407 mapping, 443 unstable hyperbolic point, 394 node, 168 vector potential, 51 virial theorem, 186, 223, 230 virtual displacement, 12 work, 12 wave front, 242, 243, 263, 264 wheel jack, 14, 24 Young modulus, 72

ANALYTICAL MECHANICS. LOUIS N. HAND and JANET D. FINCH CAMBRIDGE UNIVERSITY PRESS

ANALYTICAL MECHANICS. LOUIS N. HAND and JANET D. FINCH CAMBRIDGE UNIVERSITY PRESS ANALYTICAL MECHANICS LOUIS N. HAND and JANET D. FINCH CAMBRIDGE UNIVERSITY PRESS Preface xi 1 LAGRANGIAN MECHANICS l 1.1 Example and Review of Newton's Mechanics: A Block Sliding on an Inclined Plane 1

More information

Classical Mechanics. Character: Optative Credits: 12. Type: Theoretical Hours by week: 6. Hours. Theory: 6 Practice: 0

Classical Mechanics. Character: Optative Credits: 12. Type: Theoretical Hours by week: 6. Hours. Theory: 6 Practice: 0 Classical Mechanics Code: 66703 Character: Optative Credits: 12 Type: Theoretical Hours by week: 6 Hours Theory: 6 Practice: 0 General Objective: Provide the student the most important knowledge of classical

More information

FINAL EXAM GROUND RULES

FINAL EXAM GROUND RULES PHYSICS 507 Fall 2011 FINAL EXAM Room: ARC-108 Time: Wednesday, December 21, 10am-1pm GROUND RULES There are four problems based on the above-listed material. Closed book Closed notes Partial credit will

More information

Physical Dynamics (PHY-304)

Physical Dynamics (PHY-304) Physical Dynamics (PHY-304) Gabriele Travaglini March 31, 2012 1 Review of Newtonian Mechanics 1.1 One particle Lectures 1-2. Frame, velocity, acceleration, number of degrees of freedom, generalised coordinates.

More information

Mechanics and the Foundations of Modern Physics. T. Helliwell V. Sahakian

Mechanics and the Foundations of Modern Physics. T. Helliwell V. Sahakian Mechanics and the Foundations of Modern Physics T. Helliwell V. Sahakian Contents 1 Newtonian particle mechanics 3 1.1 Inertial frames and the Galilean transformation........ 3 1.2 Newton s laws of motion.....................

More information

Bibliography. [1] Howard Anton. Elementary Linear Algebra. John Wiley, New York, QA251.A57 ISBN

Bibliography. [1] Howard Anton. Elementary Linear Algebra. John Wiley, New York, QA251.A57 ISBN Bibliography [1] Howard Anton. Elementary Linear Algebra. John Wiley, New York, 1973. QA251.A57 ISBN 0-471-03247-6. [2] V. I. Arnol d. Math. Methods of Classical Mechanics. Springer-Verlag, New York, 1984.

More information

PHYSICS 110A : CLASSICAL MECHANICS

PHYSICS 110A : CLASSICAL MECHANICS PHYSICS 110A : CLASSICAL MECHANICS 1. Introduction to Dynamics motion of a mechanical system equations of motion : Newton s second law ordinary differential equations (ODEs) dynamical systems simple 2.

More information

Physical Dynamics (SPA5304) Lecture Plan 2018

Physical Dynamics (SPA5304) Lecture Plan 2018 Physical Dynamics (SPA5304) Lecture Plan 2018 The numbers on the left margin are approximate lecture numbers. Items in gray are not covered this year 1 Advanced Review of Newtonian Mechanics 1.1 One Particle

More information

AN-NAJAH NATIONAL UNIVERSITY PHYSICS DEPARTMENT FALL SEMESTER, 2012

AN-NAJAH NATIONAL UNIVERSITY PHYSICS DEPARTMENT FALL SEMESTER, 2012 AN-NAJAH NATIONAL UNIVERSITY PHYSICS DEPARTMENT FALL SEMESTER, 2012 Course: Classical Mechanics ( 22352 ) Instructor: Dr. Mohammed Salameh Abu-Jafar Office: Faculty of Graduate Studies, office # 3201 Faculty

More information

Hamiltonian Dynamics

Hamiltonian Dynamics Hamiltonian Dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS Feb. 10, 2009 Joris Vankerschaver (CDS) Hamiltonian Dynamics Feb. 10, 2009 1 / 31 Outline 1. Introductory concepts; 2. Poisson brackets;

More information

Index. Symbols 4-vector of current density, 320, 339

Index. Symbols 4-vector of current density, 320, 339 709 Index Symbols 4-vector of current density, 320, 339 A action for an electromagnetic field, 320 adiabatic invariants, 306 amplitude, complex, 143 angular momentum tensor of an electromagnetic field,

More information

Advanced Mechanics PHY 504 Fall Semester, 2016 (Revised 08/24/16) The Course will meet MWF in CP183, 9:00-9:50 a.m., beginning August 24, 2016.

Advanced Mechanics PHY 504 Fall Semester, 2016 (Revised 08/24/16) The Course will meet MWF in CP183, 9:00-9:50 a.m., beginning August 24, 2016. Advanced Mechanics PHY 504 Fall Semester, 2016 (Revised 08/24/16) I. INSTRUCTOR/VENUE Professor Lance De Long Email: lance.delong@uky.edu Office: CP363 (257-4775) Labs: CP75, CP158 (257-8883) Office Hours:

More information

List of Comprehensive Exams Topics

List of Comprehensive Exams Topics List of Comprehensive Exams Topics Mechanics 1. Basic Mechanics Newton s laws and conservation laws, the virial theorem 2. The Lagrangian and Hamiltonian Formalism The Lagrange formalism and the principle

More information

An Introduction to Celestial Mechanics

An Introduction to Celestial Mechanics An Introduction to Celestial Mechanics This accessible text on classical celestial mechanics the principles governing the motions of bodies in the solar system provides a clear and concise treatment of

More information

Analytical Mechanics for Relativity and Quantum Mechanics

Analytical Mechanics for Relativity and Quantum Mechanics Analytical Mechanics for Relativity and Quantum Mechanics Oliver Davis Johns San Francisco State University OXPORD UNIVERSITY PRESS CONTENTS Dedication Preface Acknowledgments v vii ix PART I INTRODUCTION:

More information

Advanced Analytical Mechanics 553a, b

Advanced Analytical Mechanics 553a, b Lecture Notes for Advanced Analytical Mechanics 553a, b University of Southern California Richard R. Auelmann February 1970 About These Notes I was a new engineer at Missile Division of North American

More information

The Transition to Chaos

The Transition to Chaos Linda E. Reichl The Transition to Chaos Conservative Classical Systems and Quantum Manifestations Second Edition With 180 Illustrations v I.,,-,,t,...,* ', Springer Dedication Acknowledgements v vii 1

More information

Brief report on Science Academies Lecture Workshop on Classical Mechanics. Organized by Department of Physics, Loyola College, Chennai

Brief report on Science Academies Lecture Workshop on Classical Mechanics. Organized by Department of Physics, Loyola College, Chennai Brief report on Science Academies Lecture Workshop on Classical Mechanics (December 4-6, 2014) Organized by Department of Physics, Loyola College, Chennai Convener: Prof. V. Balakrishnan, Dept. of Physics,

More information

B.Sc. (Semester - 5) Subject: Physics Course: US05CPHY01 Classical Mechanics

B.Sc. (Semester - 5) Subject: Physics Course: US05CPHY01 Classical Mechanics 1 B.Sc. (Semester - 5) Subject: Physics Course: US05CPHY01 Classical Mechanics Question Bank UNIT: I Multiple choice questions: (1) The gravitational force between two masses is (a) Repulsive (b) Attractive

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index 347 Index a AC fields 81 119 electric 81, 109 116 laser 81, 136 magnetic 112 microwave 107 109 AC field traps see Traps AC Stark effect 82, 84, 90, 96, 97 101, 104 109 Adiabatic approximation 3, 10, 32

More information

Theory of Adiabatic Invariants A SOCRATES Lecture Course at the Physics Department, University of Marburg, Germany, February 2004

Theory of Adiabatic Invariants A SOCRATES Lecture Course at the Physics Department, University of Marburg, Germany, February 2004 Preprint CAMTP/03-8 August 2003 Theory of Adiabatic Invariants A SOCRATES Lecture Course at the Physics Department, University of Marburg, Germany, February 2004 Marko Robnik CAMTP - Center for Applied

More information

Variational Principles in Physics

Variational Principles in Physics Variational Principles in Physics lean-louis Basdevant Variational Principles in Physics ~ Springer Professor Jean-Louis Basdevant Physics Department Ecole Poly technique 91128 Palaiseau France jean-louis.

More information

Introduction to Applied Nonlinear Dynamical Systems and Chaos

Introduction to Applied Nonlinear Dynamical Systems and Chaos Stephen Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos Second Edition With 250 Figures 4jj Springer I Series Preface v L I Preface to the Second Edition vii Introduction 1 1 Equilibrium

More information

Energy and Equations of Motion

Energy and Equations of Motion Energy and Equations of Motion V. Tanrıverdi tanriverdivedat@googlemail.com Physics Department, Middle East Technical University, Ankara / TURKEY Abstract. From the total time derivative of energy an equation

More information

Classical Field Theory

Classical Field Theory April 13, 2010 Field Theory : Introduction A classical field theory is a physical theory that describes the study of how one or more physical fields interact with matter. The word classical is used in

More information

Physics 106b: Lecture 7 25 January, 2018

Physics 106b: Lecture 7 25 January, 2018 Physics 106b: Lecture 7 25 January, 2018 Hamiltonian Chaos: Introduction Integrable Systems We start with systems that do not exhibit chaos, but instead have simple periodic motion (like the SHO) with

More information

Review for Final. elementary mechanics. Lagrangian and Hamiltonian Dynamics. oscillations

Review for Final. elementary mechanics. Lagrangian and Hamiltonian Dynamics. oscillations Review for Final elementary mechanics Newtonian mechanics gravitation dynamics of systems of particles Lagrangian and Hamiltonian Dynamics Lagrangian mechanics Variational dynamics Hamiltonian dynamics

More information

A Classical Approach to the Stark-Effect. Mridul Mehta Advisor: Prof. Enrique J. Galvez Physics Dept., Colgate University

A Classical Approach to the Stark-Effect. Mridul Mehta Advisor: Prof. Enrique J. Galvez Physics Dept., Colgate University A Classical Approach to the Stark-Effect Mridul Mehta Advisor: Prof. Enrique J. Galvez Physics Dept., Colgate University Abstract The state of an atom in the presence of an external electric field is known

More information

Topics for the Qualifying Examination

Topics for the Qualifying Examination Topics for the Qualifying Examination Quantum Mechanics I and II 1. Quantum kinematics and dynamics 1.1 Postulates of Quantum Mechanics. 1.2 Configuration space vs. Hilbert space, wave function vs. state

More information

REVIEW. Hamilton s principle. based on FW-18. Variational statement of mechanics: (for conservative forces) action Equivalent to Newton s laws!

REVIEW. Hamilton s principle. based on FW-18. Variational statement of mechanics: (for conservative forces) action Equivalent to Newton s laws! Hamilton s principle Variational statement of mechanics: (for conservative forces) action Equivalent to Newton s laws! based on FW-18 REVIEW the particle takes the path that minimizes the integrated difference

More information

Lecture 1: A Preliminary to Nonlinear Dynamics and Chaos

Lecture 1: A Preliminary to Nonlinear Dynamics and Chaos Lecture 1: A Preliminary to Nonlinear Dynamics and Chaos Autonomous Systems A set of coupled autonomous 1st-order ODEs. Here "autonomous" means that the right hand side of the equations does not explicitly

More information

NONLINEAR DYNAMICS PHYS 471 & PHYS 571

NONLINEAR DYNAMICS PHYS 471 & PHYS 571 NONLINEAR DYNAMICS PHYS 471 & PHYS 571 Prof. R. Gilmore 12-918 X-2779 robert.gilmore@drexel.edu Office hours: 14:00 Quarter: Winter, 2014-2015 Course Schedule: Tuesday, Thursday, 11:00-12:20 Room: 12-919

More information

PH 610/710-2A: Advanced Classical Mechanics I. Fall Semester 2007

PH 610/710-2A: Advanced Classical Mechanics I. Fall Semester 2007 PH 610/710-2A: Advanced Classical Mechanics I Fall Semester 2007 Time and location: Tuesdays & Thursdays 8:00am 9:15am (EB 144) Instructor and office hours: Dr. Renato Camata, camata@uab.edu CH 306, (205)

More information

A new Lagrangian of the simple harmonic oscillator

A new Lagrangian of the simple harmonic oscillator A new Lagrangian of the simple harmonic oscillator Faisal Amin Yassein Abdelmohssin 1 Sudan Institute for Natural Sciences, P.O.BOX 3045, Khartoum, Sudan Abstract A new Lagrangian functional of the simple

More information

Dynamics inertia, mass, force. Including centripetal acceleration

Dynamics inertia, mass, force. Including centripetal acceleration For the Singapore Junior Physics Olympiad, no question set will require the use of calculus. However, solutions of questions involving calculus are acceptable. 1. Mechanics Kinematics position, displacement,

More information

ME DYNAMICAL SYSTEMS SPRING SEMESTER 2009

ME DYNAMICAL SYSTEMS SPRING SEMESTER 2009 ME 406 - DYNAMICAL SYSTEMS SPRING SEMESTER 2009 INSTRUCTOR Alfred Clark, Jr., Hopeman 329, x54078; E-mail: clark@me.rochester.edu Office Hours: M T W Th F 1600 1800. COURSE TIME AND PLACE T Th 1400 1515

More information

Maxwell s equations. based on S-54. electric field charge density. current density

Maxwell s equations. based on S-54. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

Study Plan for Ph.D in Physics (2011/2012)

Study Plan for Ph.D in Physics (2011/2012) Plan Study Plan for Ph.D in Physics (2011/2012) Offered Degree: Ph.D in Physics 1. General Rules and Conditions:- This plan conforms to the regulations of the general frame of the higher graduate studies

More information

Chaos in Hamiltonian systems

Chaos in Hamiltonian systems Chaos in Hamiltonian systems Teemu Laakso April 26, 2013 Course material: Chapter 7 from Ott 1993/2002, Chaos in Dynamical Systems, Cambridge http://matriisi.ee.tut.fi/courses/mat-35006 Useful reading:

More information

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals Kerson Huang Quantum Field Theory From Operators to Path Integrals Second, Revised, and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA I vh Contents Preface XIII 1 Introducing Quantum Fields

More information

PHYSICS-PH (PH) Courses. Physics-PH (PH) 1

PHYSICS-PH (PH) Courses. Physics-PH (PH) 1 Physics-PH (PH) 1 PHYSICS-PH (PH) Courses PH 110 Physics of Everyday Phenomena (GT-SC2) Credits: 3 (3-0-0) Fundamental concepts of physics and elementary quantitative reasoning applied to phenomena in

More information

Miami-Dade Community College PHY 2053 College Physics I

Miami-Dade Community College PHY 2053 College Physics I Miami-Dade Community College PHY 2053 College Physics I PHY 2053 3 credits Course Description PHY 2053, College physics I, is the first semester of a two semester physics-without-calculus sequence. This

More information

RELG - General Relativity

RELG - General Relativity Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2017 230 - ETSETB - Barcelona School of Telecommunications Engineering 749 - MAT - Department of Mathematics 748 - FIS - Department

More information

DEPARTMENT OF PHYSICS

DEPARTMENT OF PHYSICS Department of Physics 1 DEPARTMENT OF PHYSICS Office in Engineering Building, Room 124 (970) 491-6206 physics.colostate.edu (http://www.physics.colostate.edu) Professor Jacob Roberts, Chair Undergraduate

More information

Sr. No. Subject Code. Subject Name

Sr. No. Subject Code. Subject Name TEACHING AND EXAMINATION SCHEME Semester I Sr. No. Subject Code Subject Name Credit Hours (per week) Theory Practical Lecture(DT) Practical(Lab.) Lecture(DT) Practical(Lab.) CE SEE Total CE SEE Total L

More information

Lecture 2. Contents. 1 Fermi s Method 2. 2 Lattice Oscillators 3. 3 The Sine-Gordon Equation 8. Wednesday, August 28

Lecture 2. Contents. 1 Fermi s Method 2. 2 Lattice Oscillators 3. 3 The Sine-Gordon Equation 8. Wednesday, August 28 Lecture 2 Wednesday, August 28 Contents 1 Fermi s Method 2 2 Lattice Oscillators 3 3 The Sine-Gordon Equation 8 1 1 Fermi s Method Feynman s Quantum Electrodynamics refers on the first page of the first

More information

Electromagnetic and Gravitational Waves: the Third Dimension

Electromagnetic and Gravitational Waves: the Third Dimension Electromagnetic and Gravitational Waves: the Third Dimension Gerald E. Marsh Argonne National Laboratory (Ret) 5433 East View Park Chicago, IL 60615 E-mail: gemarsh@uchicago.edu Abstract. Plane electromagnetic

More information

Hamiltonian Chaos. Niraj Srivastava, Charles Kaufman, and Gerhard Müller. Department of Physics, University of Rhode Island, Kingston, RI

Hamiltonian Chaos. Niraj Srivastava, Charles Kaufman, and Gerhard Müller. Department of Physics, University of Rhode Island, Kingston, RI Hamiltonian Chaos Niraj Srivastava, Charles Kaufman, and Gerhard Müller Department of Physics, University of Rhode Island, Kingston, RI 02881-0817. Cartesian coordinates, generalized coordinates, canonical

More information

CLASSICAL ELECTRICITY

CLASSICAL ELECTRICITY CLASSICAL ELECTRICITY AND MAGNETISM by WOLFGANG K. H. PANOFSKY Stanford University and MELBA PHILLIPS Washington University SECOND EDITION ADDISON-WESLEY PUBLISHING COMPANY Reading, Massachusetts Menlo

More information

Illustrating Dynamical Symmetries in Classical Mechanics: The Laplace-Runge-Lenz Vector Revisited

Illustrating Dynamical Symmetries in Classical Mechanics: The Laplace-Runge-Lenz Vector Revisited Illustrating Dynamical Symmetries in Classical Mechanics: The Laplace-Runge-Lenz Vector Revisited Ross C. O Connell and Kannan Jagannathan Physics Department, Amherst College Amherst, MA 01002-5000 Abstract

More information

Lectures on Quantum Mechanics

Lectures on Quantum Mechanics Lectures on Quantum Mechanics Steven Weinberg The University of Texas at Austin CAMBRIDGE UNIVERSITY PRESS Contents PREFACE page xv NOTATION xviii 1 HISTORICAL INTRODUCTION 1 1.1 Photons 1 Black-body radiation

More information

Quantum Mechanics: Fundamentals

Quantum Mechanics: Fundamentals Kurt Gottfried Tung-Mow Yan Quantum Mechanics: Fundamentals Second Edition With 75 Figures Springer Preface vii Fundamental Concepts 1 1.1 Complementarity and Uncertainty 1 (a) Complementarity 2 (b) The

More information

PHYSICS (PHYS) PHYS Courses. Physics (PHYS) 1

PHYSICS (PHYS) PHYS Courses. Physics (PHYS) 1 Physics (PHYS) 1 PHYSICS (PHYS) PHYS Courses PHYS 104. Introductory Physics. 4 units Prerequisite: Passing score on ELM examination, or an ELM exemption, or credit in MATH 96 (formerly MATH 104). Elementary

More information

Cambridge University Press The Geometry of Celestial Mechanics: London Mathematical Society Student Texts 83 Hansjörg Geiges

Cambridge University Press The Geometry of Celestial Mechanics: London Mathematical Society Student Texts 83 Hansjörg Geiges acceleration, xii action functional, 173 and Newton s equation (Maupertuis s principle), 173 action of a group on a set, 206 transitive, 157 affine part of a subset of RP 2, 143 algebraic multiplicity

More information

Nonlinear Dynamics and Chaos Summer 2011

Nonlinear Dynamics and Chaos Summer 2011 67-717 Nonlinear Dynamics and Chaos Summer 2011 Instructor: Zoubir Benzaid Phone: 424-7354 Office: Swart 238 Office Hours: MTWR: 8:30-9:00; MTWR: 12:00-1:00 and by appointment. Course Content: This course

More information

Constrained motion and generalized coordinates

Constrained motion and generalized coordinates Constrained motion and generalized coordinates based on FW-13 Often, the motion of particles is restricted by constraints, and we want to: work only with independent degrees of freedom (coordinates) k

More information

equilibrium ; I suppose that this means that the forces add up to zero, but the authors fail to observe that this is not enough to conclude that

equilibrium ; I suppose that this means that the forces add up to zero, but the authors fail to observe that this is not enough to conclude that Analytical Mechanics. By Antonio Fasano and Stefano Marmi. Oxford Graduate Texts, Oxford University Press, Oxford, 2006. $. xiii+772 pp., hardcover. ISBN 0-19-850802-6. This is the English translation

More information

Simple conservative, autonomous, second-order chaotic complex variable systems.

Simple conservative, autonomous, second-order chaotic complex variable systems. Simple conservative, autonomous, second-order chaotic complex variable systems. Delmar Marshall 1 (Physics Department, Amrita Vishwa Vidyapeetham, Clappana P.O., Kollam, Kerala 690-525, India) and J. C.

More information

Dynamics of a double pendulum with distributed mass. Abstract

Dynamics of a double pendulum with distributed mass. Abstract The following article has been accepted by the American Journal of Physics. After it is published, it will be found at http://scitation.aip.org/ajp. Dynamics of a double pendulum with distributed mass

More information

WHAT IS A CHAOTIC ATTRACTOR?

WHAT IS A CHAOTIC ATTRACTOR? WHAT IS A CHAOTIC ATTRACTOR? CLARK ROBINSON Abstract. Devaney gave a mathematical definition of the term chaos, which had earlier been introduced by Yorke. We discuss issues involved in choosing the properties

More information

Syllabus of the Ph.D. Course Work Centre for Theoretical Physics Jamia Millia Islamia (First Semester: July December, 2010)

Syllabus of the Ph.D. Course Work Centre for Theoretical Physics Jamia Millia Islamia (First Semester: July December, 2010) Syllabus of the Ph.D. Course Work Centre for Theoretical Physics Jamia Millia Islamia (First Semester: July December, 2010) GRADUATE SCHOOL MATHEMATICAL PHYSICS I 1. THEORY OF COMPLEX VARIABLES Laurent

More information

Physics 610: Electricity & Magnetism I

Physics 610: Electricity & Magnetism I Physics 610: Electricity & Magnetism I [i.e. relativistic EM, electro/magneto-statics] [lin12.triumph.ca] [J-lab accelerator] [ixnovi.people.wm.edu] [Thywissen group, U. of Toronto] [nanotechetc.com] [wikipedia.org]

More information

2.5.1 Static tides Tidal dissipation Dynamical tides Bibliographical notes Exercises 118

2.5.1 Static tides Tidal dissipation Dynamical tides Bibliographical notes Exercises 118 ii Contents Preface xiii 1 Foundations of Newtonian gravity 1 1.1 Newtonian gravity 2 1.2 Equations of Newtonian gravity 3 1.3 Newtonian field equation 7 1.4 Equations of hydrodynamics 9 1.4.1 Motion of

More information

Preface to the Fifth Edition

Preface to the Fifth Edition Preface to the Fifth Edition Since the previous fourth edition has received quite a positive response from students as well as teachers, we have decided to extend the contents and improve some chapters

More information

TITLE. Mechanics Practicals. Waves and Oscillation Practicals. 3 Electromagnetic Theory 3. Atomic Physics Practicals 3. Basic Electronics Practicals 3

TITLE. Mechanics Practicals. Waves and Oscillation Practicals. 3 Electromagnetic Theory 3. Atomic Physics Practicals 3. Basic Electronics Practicals 3 B.Sc. PHYSICS SYLLABUS COURSR STRUCTURE PHYSICS Semester FIRST THEORY/ PRACTICAL Theory I Practical I TITLE Mechanics Mechanics Practicals WORKLOAD HRS/WEEK CREDITS SECOND Theory II Practical II Waves

More information

Bifurcations of phase portraits of pendulum with vibrating suspension point

Bifurcations of phase portraits of pendulum with vibrating suspension point Bifurcations of phase portraits of pendulum with vibrating suspension point arxiv:1605.09448v [math.ds] 9 Sep 016 A.I. Neishtadt 1,,, K. Sheng 1 1 Loughborough University, Loughborough, LE11 3TU, UK Space

More information

Class Notes Introduction to Modern Physics Physics 321 Plan II Under Construction

Class Notes Introduction to Modern Physics Physics 321 Plan II Under Construction Class Notes Introduction to Modern Physics Physics 321 Plan II Under Construction Austin M. Gleeson 1 Department of Physics University of Texas at Austin Austin, TX 78712 January 15, 2010 1 gleeson@physics.utexas.edu

More information

Classical Electrodynamics

Classical Electrodynamics Classical Electrodynamics Third Edition John David Jackson Professor Emeritus of Physics, University of California, Berkeley JOHN WILEY & SONS, INC. Contents Introduction and Survey 1 I.1 Maxwell Equations

More information

Generalized Coordinates, Lagrangians

Generalized Coordinates, Lagrangians Generalized Coordinates, Lagrangians Sourendu Gupta TIFR, Mumbai, India Classical Mechanics 2012 August 10, 2012 Generalized coordinates Consider again the motion of a simple pendulum. Since it is one

More information

Orbital dynamics in the tidally-perturbed Kepler and Schwarzschild systems. Sam R. Dolan

Orbital dynamics in the tidally-perturbed Kepler and Schwarzschild systems. Sam R. Dolan Orbital dynamics in the tidally-perturbed Kepler and Schwarzschild systems Sam R. Dolan Gravity @ All Scales, Nottingham, 24th Aug 2015 Sam Dolan (Sheffield) Perturbed dynamics Nottingham 1 / 67 work in

More information

= 0. = q i., q i = E

= 0. = q i., q i = E Summary of the Above Newton s second law: d 2 r dt 2 = Φ( r) Complicated vector arithmetic & coordinate system dependence Lagrangian Formalism: L q i d dt ( L q i ) = 0 n second-order differential equations

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction The book Introduction to Modern Physics: Theoretical Foundations starts with the following two paragraphs [Walecka (2008)]: At the end of the 19th century, one could take pride in

More information

4.1 Important Notes on Notation

4.1 Important Notes on Notation Chapter 4. Lagrangian Dynamics (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7) 4.1 Important Notes on Notation In this chapter, unless otherwise stated, the

More information

Students are required to pass a minimum of 15 AU of PAP courses including the following courses:

Students are required to pass a minimum of 15 AU of PAP courses including the following courses: School of Physical and Mathematical Sciences Division of Physics and Applied Physics Minor in Physics Curriculum - Minor in Physics Requirements for the Minor: Students are required to pass a minimum of

More information

AP Goal 1. Physics knowledge

AP Goal 1. Physics knowledge Physics 2 AP-B This course s curriculum is aligned with College Board s Advanced Placement Program (AP) Physics B Course Description, which supports and encourages the following broad instructional goals:

More information

Modern Geometric Structures and Fields

Modern Geometric Structures and Fields Modern Geometric Structures and Fields S. P. Novikov I.A.TaJmanov Translated by Dmitry Chibisov Graduate Studies in Mathematics Volume 71 American Mathematical Society Providence, Rhode Island Preface

More information

2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity

2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity 2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity Energy 7 4 Kinematics Free fall Collisions 3 5 Dynamics

More information

Chaos Indicators. C. Froeschlé, U. Parlitz, E. Lega, M. Guzzo, R. Barrio, P.M. Cincotta, C.M. Giordano, C. Skokos, T. Manos, Z. Sándor, N.

Chaos Indicators. C. Froeschlé, U. Parlitz, E. Lega, M. Guzzo, R. Barrio, P.M. Cincotta, C.M. Giordano, C. Skokos, T. Manos, Z. Sándor, N. C. Froeschlé, U. Parlitz, E. Lega, M. Guzzo, R. Barrio, P.M. Cincotta, C.M. Giordano, C. Skokos, T. Manos, Z. Sándor, N. Maffione November 17 th 2016 Wolfgang Sakuler Introduction Major question in celestial

More information

The Kepler Problem and the Isotropic Harmonic Oscillator. M. K. Fung

The Kepler Problem and the Isotropic Harmonic Oscillator. M. K. Fung CHINESE JOURNAL OF PHYSICS VOL. 50, NO. 5 October 01 The Kepler Problem and the Isotropic Harmonic Oscillator M. K. Fung Department of Physics, National Taiwan Normal University, Taipei, Taiwan 116, R.O.C.

More information

202 Index. failure, 26 field equation, 122 force, 1

202 Index. failure, 26 field equation, 122 force, 1 Index acceleration, 12, 161 admissible function, 155 admissible stress, 32 Airy's stress function, 122, 124 d'alembert's principle, 165, 167, 177 amplitude, 171 analogy, 76 anisotropic material, 20 aperiodic

More information

Physics Courses. Courses. Physics Courses 1

Physics Courses. Courses. Physics Courses 1 Physics Courses 1 Physics Courses Courses PHYS 1403. General Physics I (C). General Physics I (3-2) A non-calculus treatment of mechanics and heat. Laboratory experience is an essential component of this

More information

College Physics 10th edition

College Physics 10th edition College Physics 10th edition Raymond A. Serway and Chris Vuille Publisher: Cengage Learning Table of Contents PHY101 covers chapters 1-8 PHY102 covers chapters 9-25 Chapter 1: Introduction 1.1: Standards

More information

Orbital and Celestial Mechanics

Orbital and Celestial Mechanics Orbital and Celestial Mechanics John P. Vinti Edited by Gim J. Der TRW Los Angeles, California Nino L. Bonavito NASA Goddard Space Flight Center Greenbelt, Maryland Volume 177 PROGRESS IN ASTRONAUTICS

More information

2018 SPRING PHYS 8011 Classical mechanics I (as of Apr. 19/2018) The course syllabus is a general plan for the course; deviations announced to the class by the instructor may be necessary. A FRIENDLY REMINDER:

More information

INTRODUCTION TO THE CALCULUS OF VARIATIONS AND ITS APPLICATIONS

INTRODUCTION TO THE CALCULUS OF VARIATIONS AND ITS APPLICATIONS INTRODUCTION TO THE CALCULUS OF VARIATIONS AND ITS APPLICATIONS Frederick Y.M. Wan University of California, Irvine CHAPMAN & HALL I(J)P An International Thomson Publishing Company New York Albany Bonn

More information

QUANTUM GRAVITY AND QUANTUM ELECTRODYNAMICS

QUANTUM GRAVITY AND QUANTUM ELECTRODYNAMICS QUANTUM GRAVITY AND QUANTUM ELECTRODYNAMICS Andrzej Staruszkiewicz Marian Smoluchowski Institute of Physics, Jagellonian University, Reymonta 4, 30-059 Kraków, Poland e-mail: astar@th.if.uj.edu.pl (Received

More information

Tentative Physics 1 Standards

Tentative Physics 1 Standards Tentative Physics 1 Standards Mathematics MC1. Arithmetic: I can add, subtract, multiply, and divide real numbers, take their natural and common logarithms, and raise them to real powers and take real

More information

Maxwell s equations. electric field charge density. current density

Maxwell s equations. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

Symmetries. x = x + y k 2π sin(2πx), y = y k. 2π sin(2πx t). (3)

Symmetries. x = x + y k 2π sin(2πx), y = y k. 2π sin(2πx t). (3) The standard or Taylor Chirikov map is a family of area-preserving maps, z = f(z)where z = (x, y) is the original position and z = (x,y ) the new position after application of the map, which is defined

More information

Nonlinear Single-Particle Dynamics in High Energy Accelerators

Nonlinear Single-Particle Dynamics in High Energy Accelerators Nonlinear Single-Particle Dynamics in High Energy Accelerators Part 2: Basic tools and concepts Nonlinear Single-Particle Dynamics in High Energy Accelerators This course consists of eight lectures: 1.

More information

The Principle of Least Action

The Principle of Least Action The Principle of Least Action In their never-ending search for general principles, from which various laws of Physics could be derived, physicists, and most notably theoretical physicists, have often made

More information

Postulates of Special Relativity

Postulates of Special Relativity Relativity Relativity - Seen as an intricate theory that is necessary when dealing with really high speeds - Two charged initially stationary particles: Electrostatic force - In another, moving reference

More information

GRADUATE MATHEMATICS COURSES, FALL, 2016

GRADUATE MATHEMATICS COURSES, FALL, 2016 GRADUATE MATHEMATICS COURSES, FALL, 2016 Math 8007: Introduction to Methods in Applied Mathematics I Prof. I. Klapper Modeling and understanding our world through mathematical description and analysis

More information

Introduction to CLASSICAL MECHANICS

Introduction to CLASSICAL MECHANICS Introduction to CLASSICAL MECHANICS Introduction to CLASSICAL MECHANICS A.P. FRENCH Massachusetts Institute oj Technology M.G. EBISON The Institute oj Physics, London KLUWER ACADEMIC PUBLISHERS DORDRECHT

More information

Lagrangian Description for Particle Interpretations of Quantum Mechanics Single-Particle Case

Lagrangian Description for Particle Interpretations of Quantum Mechanics Single-Particle Case Lagrangian Description for Particle Interpretations of Quantum Mechanics Single-Particle Case Roderick I. Sutherland Centre for Time, University of Sydney, NSW 26 Australia rod.sutherland@sydney.edu.au

More information

Physics 106a, Caltech 13 November, Lecture 13: Action, Hamilton-Jacobi Theory. Action-Angle Variables

Physics 106a, Caltech 13 November, Lecture 13: Action, Hamilton-Jacobi Theory. Action-Angle Variables Physics 06a, Caltech 3 November, 08 Lecture 3: Action, Hamilton-Jacobi Theory Starred sections are advanced topics for interest and future reference. The unstarred material will not be tested on the final

More information

TENTATIVE SYLLABUS INTRODUCTION

TENTATIVE SYLLABUS INTRODUCTION Physics 615: Overview of QFT Fall 2010 TENTATIVE SYLLABUS This is a tentative schedule of what we will cover in the course. It is subject to change, often without notice. These will occur in response to

More information

Symplectic maps. James D. Meiss. March 4, 2008

Symplectic maps. James D. Meiss. March 4, 2008 Symplectic maps James D. Meiss March 4, 2008 First used mathematically by Hermann Weyl, the term symplectic arises from a Greek word that means twining or plaiting together. This is apt, as symplectic

More information

Unit assessments are composed of multiple choice and free response questions from AP exams.

Unit assessments are composed of multiple choice and free response questions from AP exams. AP Physics B Text: Serway, Raymond A., and Jerry S. Faugh, College Physics, 7 th ed. Belmont, CA: Thomson Brooks/Cole, 2006. Course evaluation: - Grade determination Final Exam 15% Unit Exams 42.5% Daily

More information

Frank Y. Wang. Physics with MAPLE. The Computer Algebra Resource for Mathematical Methods in Physics. WILEY- VCH WILEY-VCH Verlag GmbH & Co.

Frank Y. Wang. Physics with MAPLE. The Computer Algebra Resource for Mathematical Methods in Physics. WILEY- VCH WILEY-VCH Verlag GmbH & Co. Frank Y. Wang Physics with MAPLE The Computer Algebra Resource for Mathematical Methods in Physics WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA k Preface Guide for Users Bibliography XI XVII XIX 1 Introduction

More information