Lectures on Quantum Mechanics

Size: px
Start display at page:

Download "Lectures on Quantum Mechanics"

Transcription

1 Lectures on Quantum Mechanics Steven Weinberg The University of Texas at Austin CAMBRIDGE UNIVERSITY PRESS

2 Contents PREFACE page xv NOTATION xviii 1 HISTORICAL INTRODUCTION Photons 1 Black-body radiation 3 Rayleigh Jeans formula 3 Planck formula LII Atomic constants El Photoelectric effect CI Compton scattering 1.2 Atomic Spectra 5 Discovery of atomic nuclei El Ritz combination principle 3 Bohr quantization condition III Hydrogen spectrum 3 Atomic numbers 3 Sommerfeld quantization condition Einstein A and B coefficients 1.3 Wave Mechanics 11 De Broglie waves III Davi s son Germer experiment El Schrödinger equation 1.4 Matrix Mechanics 14 Radiative transition rate III Harmonic oscillator El Heisenberg matrix algebra Commutation relations ClEquivalence to wave mechanics 1.5 Probabilistic Interpretation 21 Scattering LII Probability density ClExpectation values EI Classical motion E Born rule for transition probabilities Historical Bibliography 27 Problems 27 vii

3 viii Contents 2 PARTICLE STATES IN A CENTRAL POTENTIAL Schrödinger Equation for a Central Potential 29 Hamiltonian for central potentials 13 Orbital angular momentum operators L3 Spectrum of L2 El Separation of wave function El Boundary conditions 2.2 Spherical Harmonics 36 Spectrum of L3 E As sociated Legendre polynomials E Construction of spherical harmonics 3 Orthonormality LI Parity 2.3 The Hydrogen Atom 39 Radial Schrödinger equation 3 Power series solution 13 Laguerre polynomials Energy levels 13 Selection rules 2.4 The Two-Body Problem 44 Reduced masse Relative and center-of-mass coordinates EI Relative and total momenta 13 Hydrogen and deuterium spectra 2.5 The Harmonie Oscillator 45 Separation of wave function 111 Raising and lowering operators Spectrum 2 Normalized wave functions 3 Radiative transition matrix elements Problems 50 3 GENERAL PRINCIPLES OF QUANTUM MECHANICS States 52 Hilbert space Vector spaces E Norms EI Completeness and independence 13 Orthonormalization 13 Probabilities 111Rays LII Dirac notation 3.2 Continuum States 58 From discrete to continuum states EI Normalization E Delta functions 3 Distributions 3.3 Observables 61 Operators LIII Adjoints Cl Matrix representation E Eigenvalues 3 Completeness of eigenvectors E Schwarz inequality EI Uncertainty principle C1 Dyads LII Projection operators EI Density matrix 13 von Neumann entropy 3.4 Symmetries 69 Unitary operators EI Wigner's theoremill Antiunitary operators EI Continuous symmetries EI Commutators 3.5 Space Translation 73 Momentum operators EI Commutation rules EI Momentum eigenstates 13 Bloch waves 13 Band structure

4 Contents ix 3.6 Time Translation 77 Hamiltonians 2 Time-dependent Schrödinger equation 2 Conservation laws 3 Time reversal 3 Galilean invariance 2 Boost generator 3.7 Interpretations of Quantum Mechanics 81 Copenhagen interpretation 111Two classes of interpretationlilmany-worlds interpretations 111 Examples of measurement 2 Decoherence 13 Calculation of probabilities 2 Abandoning realism El Decoherent histories interpretation Problems 96 4 SPIN ET CETERA Rotations 99 Finite rotations 111 Action on physical states 3 Infinitesimal rotations 0 Commutation relations2 Total angular momentumespin 4.2 Angular Momentum Multiplets 104 Raising and lowering operators 2 Spectrum of J2 and J3 2 Spin matrices 3 Pauli matrices [11 J3-independence 13 Stern Gerlach experiment 4.3 Addition of Angular Momenta 109 Choice of basis 2 Clebsch Gordan coefficients 3 Sum rules 2 Hydrogen states El SU(2) formalism 4.4 The Wigner Eckart Theorem 118 Operator transformation properties 2 Theorem for matrix elements 13 Parallel matrix elements 111Photon emission selection rules 4.5 Bosons and Fermions 121 Symmetrical and antisymmetrical states 13 Connection with spin 13 Hartree approximation 2 Pauli exclusion principle C1 Periodic table for atoms EI Magic numbers for nuclei 3 Temperature and chemical potential 2 Statistics 13 Insulators, conductors, semi-conductors 4.6 Internal Symmetries 131 Charge symmetry 111 Isotopic spin symmetry 3 Pions 13 As 3 Strangeness 3 U(1) symmetries 2 SU (3) symmetry 4.7 Inversions 138 Space Inversion 13 Orbital parity 3 Intrinsic parity 3 Parity of pions 2 Violations of parity conservation 2 P, C, and T 4.8 Algebraic Derivation of the Hydrogen Spectrum 142 Runge Lenz vector 0 SO(3) 0 SO(3) commutation relations 3 Energy levels 2 Scattering states Problems 146

5 Contents 5 APPROXIMATIONS FOR ENERGY EIGENVALUES First-Order Perturbation Theory 148 Energy shift E Dealing with degeneracy E State vector perturbation E A classical analog 5.2 The Zeeman Effect 152 Gyromagnetic ratio E Lande g-factor El Sodium D lines E Normal and anomalous Zeeman effect E Paschen Back effect 5.3 The First-Order Stark Effect 157 Mixing of 2s1/2 and 2p1/2 states E Energy shift for weak fields 111 Energy shift for strong fields 5.4 Second-Order Perturbation Theory 160 Energy shift El Ultraviolet and infrared divergences El Closure approximation Second-order Stark effect 5.5 The Variational Method 162 Upper bound on ground state energy ClApproximation to state vectors E Virial theorem El Other states 5.6 The Born Oppenheimer Approximation 165 Reduced Hamiltonian E Hellmann Feynman theorem E Estimate of corrections E Electronic, vibrational, and rotational modes El Effective theories 5.7 The WKB Approximation 171 Approximate solutions E Validity conditions E Turning points El Energy eigenvalues one dimension E Energy eigenvalues three dimensions 5.8 Broken Symmetry 179 Approximate solutions for thick barriers E Energy splitting El Decoherence El Oscillations LIChiral molecules Problems APPROXIMATIONS FOR TIME-DEPENDENT PROBLEMS First-Order Perturbation Theory 183 Differential equation for amplitudes E Approximate solution 6.2 Monochromatic Perturbations 184 Transition rate III Fermi golden rulell1continuum final states 6.3 Ionization by an Electromagnetic Wave 187 Nature of perturbation 111Conditions on frequency El Ionization rate of hydrogen ground state

6 Contents xi 6.4 Fluctuating Perturbations 189 Stationary fluctuations Correlation function 173 Transition rate 6.5 Absorption and Stimulated Emission of Radiation 191 Dipole approximation fl Transition rates Energy density of radiation EI B-coefficients 111Spontaneous transition rate 6.6 The Adiabatic Approximation 193 Slowly varying HamiltonianslilDynamical phase 3 Non-dynamical phaselildegenerate case 6.7 The Berry Phase 196 Geometric character of the non-dynamical phase EI Closed curves in parameter space 13 General formula for the Berry phase [3 Spin in a slowly varying magnetic field Problems POTENTIAL SCATTERING In-States 203 Wave packets LII Lippmann Schwinger equation 111 Wave packets at early times 111 Spread of wave packet 7.2 Scattering Amplitudes 208 Green's function for scattering 3 Definition of scattering amplitude EI Wave packet at late times EI Differential cross-section 7.3 The Optical Theorem 211 Derivation of theorem111conservation of probabilitylildiffraction peak 7.4 The Born Approximation 214 First-order scattering amplitude 3 Scattering by shielded Coulomb potential 7.5 Phase Shifts 216 Partial wave expansion of plane wave EI Partial wave expansion of "in" wave functione Partial wave expansion of scattering amplitude El Scattering cross-section EI Scattering length and effective range 7.6 Resonances 220 Thick barriers 111 Breit Wigner formula 111 Decay rate EI Alpha decay 111 Ramsauer Townsend effect 7.7 Time Delay 224 Wigner formulallicausality 7.8 Levinson's Theorem 226 Conservation of discrete states111growth of phase shift

7 xii Contents 7.9 Coulomb Scattering 227 Separation of wave function 3 Kummer functions E Scattering amplitude 7.10 The Eikonal Approximation 229 WKB approximation in three dimensions 3 Initial surface E Ray paths E Calculation of phase D Calculation of amplitude E Application to potential scattering Problems GENERAL SCATTERING THEORY The S-Matrix 235 "In" and "out " states 13 Wave packets at early and late times Ei Definition of the S-Matrix E Normalization of the "in" and "out" states Ei Unitarity of the S-matrix 8.2 Rates 240 Transition probabilities in a spacetime box E Decay rates ü Cross-sections E Relative velocity 13 Connection with scattering amplitudes 13 Final states 8.3 The General Optical Theorem 244 Optical theorem for multi -particle states E Two-particle case 8.4 The Partial Wave Expansion 245 Discrete basis for two-particle states Ei Two-particle S-matrix Ei Total and scattering cross-sections 13 Phase shifts Ei High-energy scattering 8.5 Resonances Revisited 252 S-matrix near a resonance energy Ei Consequences of unitaiity E General Breit Wigner formula 0 Total and scattering cross-sections Ei Branching ratios 8.6 Old-Fashioned Perturbation Theory 256 Perturbation series for the S-matrix Ei Functional analysis13 Square-integrable kerne113 Sufficient conditions for convergence Ei Upper bound on binding energies E Distorted wave Born approximation E Coulomb suppression 8.7 Time-Dependent Perturbation Theory 262 Time-development Operator Ei Interaction picture Ei Time-ordered products D Dyson perturbation series D Lorentz invariance Ei "In-in" formalism 8.8 Shallow Bound States 267 Low equation Ei Low-energy approximation Ei Solution for scattering length 13 Neutron proton scattering Ei Solution using Herglotz theorem Problems 273

8 Contents xiii 9 THE CANONICAL FORMALISM The Lagrangian Formalism 276 Stationary action El Lagrangian equations of motion 3 Example: spherical coordinates 9.2 Symmetry Principles and Conservation Laws 278 Noether's theorem 3 Conserved quantities from symmetries of Lagrangian 3 Space translation 3 Rotations El Symmetries of action 9.3 The Hamiltonian Formalism 279 Time translation and Hamiltonian D Hamiltonian equations of motion 3 Spherical coordinates again 9.4 Canonical Commutation Relations 281 Conserved quantities as symmetry generators 3 Commutators of canonical variables and conjugates El Momentum and angular momentum El Poisson brackets 3 Jacobi identity 9.5 Constrained Hamiltonian Systems 285 Example: particle on a surface El Primary and secondary constraints EI First- and second-class constraints El Dirac brackets 9.6 The Path-Integral Formalism 290 Derivation of the general path integral El Integrating out momenta El The free particle 3 Two-slit experiment El Interactions Problems CHARGED PARTICLES IN ELECTROMAGNETIC FIELDS Canonical Formalism for Charged Particles 298 Equations of motion El Scalar and vector potentials 3 Lagrangian D Hamiltonian El Commutation relations 10.2 Gauge Invariance 300 Gauge transformations of potentials EI Gauge transformation of Lagrangian 3 Gauge transformation of Hamiltonian El Gauge transformation of state vector 3 Gauge invariance of energy eigenvalues 10.3 Landau Energy Levels 302 Hamiltonian in a uniform magnetic field El Energy levels 3 Near degeneracy El Fermi level El Periodicity in 1/ B, III Shubnikow de Haas and de Haas van Alphen effects 10.4 The Aharonov Bohm Effect 305 Application of the eikonal approximation D Interference between alternate ray paths III Relation to Berry phase III Effect of field-free vector potential 3 Periodicity in the flux Problems 307

9 xiv Contents 11 THE QUANTUM THEORY OF RADIATION The Euler Lagrange Equations 309 General field theories3 Variational derivatives of Lagrangian El Lagrangian density 11.2 The Lagrangian for Electrodynamics 311 Maxwell equations 3 Charge density and current density El Field, interaction, and matter Lagrangians 11.3 Commutation Relations for Electrodynamics 313 Coulomb gauge El ConstraintsClApplying Dirac brackets 11.4 The Hamiltonian for Electrodynamics 316 Evaluation of Hamiltonian3 Coulomb energy El Recovery of Maxwell's equations 11.5 Interaction Picture 318 Interaction picture operators 3 Expansion in plane wavescipolarization vectors E 11.6 Photons 322 Creation and annihilation operators E Fock space El Photon energies 3 Vacuum energy 17) Photon momentum El Photon spin El Varieties of polarization El Coherent states 11.7 Radiative Transition Rates 327 S-matrix for photon emission CISeparation of center-of-mass motion E General decay rate III Electric dipole radiationcielectric quadrupole and magnetic dipole radiation 21 cm radiation E No 0 > 0 transitions Problems ENTANGLEMENT Paradoxes of Entanglement 336 The Einstein Podolsky Rosen paradox 3 The Bohm paradox El Instantaneous communication? El Entanglement entropy 12.2 The Bell Inequalities 341 Local hidden variable theories CI Two-spin inequality El Generalized inequality Experimental tests 12.3 Quantum Computation 346 Qbits CI Comparison with classical digital computers El Computation as unitary transformation El Fourier transforms III Gates El Reading the memory E No-copying theorem El Necessity of entanglement AUTHOR INDEX 350 SUBJECT INDEX 353

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer Franz Schwabl QUANTUM MECHANICS Translated by Ronald Kates Second Revised Edition With 122Figures, 16Tables, Numerous Worked Examples, and 126 Problems ff Springer Contents 1. Historical and Experimental

More information

Quantum Mechanics: Fundamentals

Quantum Mechanics: Fundamentals Kurt Gottfried Tung-Mow Yan Quantum Mechanics: Fundamentals Second Edition With 75 Figures Springer Preface vii Fundamental Concepts 1 1.1 Complementarity and Uncertainty 1 (a) Complementarity 2 (b) The

More information

Quantum Physics II (8.05) Fall 2002 Outline

Quantum Physics II (8.05) Fall 2002 Outline Quantum Physics II (8.05) Fall 2002 Outline 1. General structure of quantum mechanics. 8.04 was based primarily on wave mechanics. We review that foundation with the intent to build a more formal basis

More information

LECTURES ON QUANTUM MECHANICS

LECTURES ON QUANTUM MECHANICS LECTURES ON QUANTUM MECHANICS GORDON BAYM Unitsersity of Illinois A II I' Advanced Bock Progrant A Member of the Perseus Books Group CONTENTS Preface v Chapter 1 Photon Polarization 1 Transformation of

More information

Lecture Notes. Quantum Theory. Prof. Maximilian Kreuzer. Institute for Theoretical Physics Vienna University of Technology. covering the contents of

Lecture Notes. Quantum Theory. Prof. Maximilian Kreuzer. Institute for Theoretical Physics Vienna University of Technology. covering the contents of Lecture Notes Quantum Theory by Prof. Maximilian Kreuzer Institute for Theoretical Physics Vienna University of Technology covering the contents of 136.019 Quantentheorie I and 136.027 Quantentheorie II

More information

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION P. W. Atkins and R. S. Friedman Molecular Quantum Mechanics THIRD EDITION Oxford New York Tokyo OXFORD UNIVERSITY PRESS 1997 Introduction and orientation 1 Black-body radiation 1 Heat capacities 2 The

More information

Quantum Mechanics: Foundations and Applications

Quantum Mechanics: Foundations and Applications Arno Böhm Quantum Mechanics: Foundations and Applications Third Edition, Revised and Enlarged Prepared with Mark Loewe With 96 Illustrations Springer-Verlag New York Berlin Heidelberg London Paris Tokyo

More information

Quantum Physics in the Nanoworld

Quantum Physics in the Nanoworld Hans Lüth Quantum Physics in the Nanoworld Schrödinger's Cat and the Dwarfs 4) Springer Contents 1 Introduction 1 1.1 General and Historical Remarks 1 1.2 Importance for Science and Technology 3 1.3 Philosophical

More information

QUANTUM MECHANICS SECOND EDITION G. ARULDHAS

QUANTUM MECHANICS SECOND EDITION G. ARULDHAS QUANTUM MECHANICS SECOND EDITION G. ARULDHAS Formerly, Professor and Head of Physics and Dean, Faculty of Science University of Kerala New Delhi-110001 2009 QUANTUM MECHANICS, 2nd Ed. G. Aruldhas 2009

More information

Practical Quantum Mechanics

Practical Quantum Mechanics Siegfried Flügge Practical Quantum Mechanics With 78 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents Volume I I. General Concepts 1. Law of probability

More information

Index. 3-j symbol, 415

Index. 3-j symbol, 415 3-j symbol, 415 absorption spectrum, 22 absorptive power, 488 adjoint, 169 Airy function, 189 algebra, 76 alpha-rays, 160 analytic family of type (A), 281 angular momentum operators, 398 anharmonic oscillator,

More information

List of Comprehensive Exams Topics

List of Comprehensive Exams Topics List of Comprehensive Exams Topics Mechanics 1. Basic Mechanics Newton s laws and conservation laws, the virial theorem 2. The Lagrangian and Hamiltonian Formalism The Lagrange formalism and the principle

More information

MOLECULAR SPECTROSCOPY

MOLECULAR SPECTROSCOPY MOLECULAR SPECTROSCOPY First Edition Jeanne L. McHale University of Idaho PRENTICE HALL, Upper Saddle River, New Jersey 07458 CONTENTS PREFACE xiii 1 INTRODUCTION AND REVIEW 1 1.1 Historical Perspective

More information

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in LONDON BEIJING HONG TSINGHUA Report and Review in Physics Vol2 PRINCIPLES OF PHYSICS From Quantum Field Theory to Classical Mechanics Ni Jun Tsinghua University, China NEW JERSEY \Hp SINGAPORE World Scientific

More information

CONTENTS. vii. CHAPTER 2 Operators 15

CONTENTS. vii. CHAPTER 2 Operators 15 CHAPTER 1 Why Quantum Mechanics? 1 1.1 Newtonian Mechanics and Classical Electromagnetism 1 (a) Newtonian Mechanics 1 (b) Electromagnetism 2 1.2 Black Body Radiation 3 1.3 The Heat Capacity of Solids and

More information

Quantum. Mechanics. Y y. A Modern Development. 2nd Edition. Leslie E Ballentine. World Scientific. Simon Fraser University, Canada TAIPEI BEIJING

Quantum. Mechanics. Y y. A Modern Development. 2nd Edition. Leslie E Ballentine. World Scientific. Simon Fraser University, Canada TAIPEI BEIJING BEIJING TAIPEI Quantum Mechanics A Modern Development 2nd Edition Leslie E Ballentine Simon Fraser University, Canada Y y NEW JERSEY LONDON SINGAPORE World Scientific SHANGHAI HONG KONG CHENNAI Contents

More information

Topics for the Qualifying Examination

Topics for the Qualifying Examination Topics for the Qualifying Examination Quantum Mechanics I and II 1. Quantum kinematics and dynamics 1.1 Postulates of Quantum Mechanics. 1.2 Configuration space vs. Hilbert space, wave function vs. state

More information

Advanced quantum mechanics Reading instructions

Advanced quantum mechanics Reading instructions Advanced quantum mechanics Reading instructions All parts of the book are included in the course and are assumed to be read. But of course some concepts are more important than others. The main purpose

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

msqm 2011/8/14 21:35 page 189 #197

msqm 2011/8/14 21:35 page 189 #197 msqm 2011/8/14 21:35 page 189 #197 Bibliography Dirac, P. A. M., The Principles of Quantum Mechanics, 4th Edition, (Oxford University Press, London, 1958). Feynman, R. P. and A. P. Hibbs, Quantum Mechanics

More information

MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont

MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont McGRAW-HILL, INC. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London Madrid Mexico Milan Montreal New Delhi

More information

Students are required to pass a minimum of 15 AU of PAP courses including the following courses:

Students are required to pass a minimum of 15 AU of PAP courses including the following courses: School of Physical and Mathematical Sciences Division of Physics and Applied Physics Minor in Physics Curriculum - Minor in Physics Requirements for the Minor: Students are required to pass a minimum of

More information

Quantum Field Theory 2 nd Edition

Quantum Field Theory 2 nd Edition Quantum Field Theory 2 nd Edition FRANZ MANDL and GRAHAM SHAW School of Physics & Astromony, The University of Manchester, Manchester, UK WILEY A John Wiley and Sons, Ltd., Publication Contents Preface

More information

Shigeji Fujita and Salvador V Godoy. Mathematical Physics WILEY- VCH. WILEY-VCH Verlag GmbH & Co. KGaA

Shigeji Fujita and Salvador V Godoy. Mathematical Physics WILEY- VCH. WILEY-VCH Verlag GmbH & Co. KGaA Shigeji Fujita and Salvador V Godoy Mathematical Physics WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XIII Table of Contents and Categories XV Constants, Signs, Symbols, and General Remarks

More information

Index. Symbols 4-vector of current density, 320, 339

Index. Symbols 4-vector of current density, 320, 339 709 Index Symbols 4-vector of current density, 320, 339 A action for an electromagnetic field, 320 adiabatic invariants, 306 amplitude, complex, 143 angular momentum tensor of an electromagnetic field,

More information

A. F. J. Levi 1 EE539: Engineering Quantum Mechanics. Fall 2017.

A. F. J. Levi 1 EE539: Engineering Quantum Mechanics. Fall 2017. A. F. J. Levi 1 Engineering Quantum Mechanics. Fall 2017. TTh 9.00 a.m. 10.50 a.m., VHE 210. Web site: http://alevi.usc.edu Web site: http://classes.usc.edu/term-20173/classes/ee EE539: Abstract and Prerequisites

More information

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009 Fundamentals of Spectroscopy for Optical Remote Sensing Course Outline 2009 Part I. Fundamentals of Quantum Mechanics Chapter 1. Concepts of Quantum and Experimental Facts 1.1. Blackbody Radiation and

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index 347 Index a AC fields 81 119 electric 81, 109 116 laser 81, 136 magnetic 112 microwave 107 109 AC field traps see Traps AC Stark effect 82, 84, 90, 96, 97 101, 104 109 Adiabatic approximation 3, 10, 32

More information

The Quantum Theory of Fields. Volume I Foundations Steven Weinberg

The Quantum Theory of Fields. Volume I Foundations Steven Weinberg The Quantum Theory of Fields Volume I Foundations Steven Weinberg PREFACE NOTATION x x xxv 1 HISTORICAL INTRODUCTION 1 1.1 Relativistic Wave Mechanics 3 De Broglie waves q Schrödinger-Klein-Gordon wave

More information

Theory and Experiment

Theory and Experiment Theory and Experiment Mark Beck OXPORD UNIVERSITY PRESS Contents Table of Symbols Preface xiii xix 1 MATHEMATICAL PRELIMINARIES 3 1.1 Probability and Statistics 3 1.2 LinearAlgebra 9 1.3 References 17

More information

Many-Body Problems and Quantum Field Theory

Many-Body Problems and Quantum Field Theory Philippe A. Martin Francois Rothen Many-Body Problems and Quantum Field Theory An Introduction Translated by Steven Goldfarb, Andrew Jordan and Samuel Leach Second Edition With 102 Figures, 7 Tables and

More information

Physics of atoms and molecules

Physics of atoms and molecules Physics of atoms and molecules 2nd edition B.H. Bransden and C.J. Joachain Prentice Hall An imprint of Pearson Education Harlow, England London New York Boston San Francisco Toronto Sydney Singapore Hong

More information

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals Kerson Huang Quantum Field Theory From Operators to Path Integrals Second, Revised, and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA I vh Contents Preface XIII 1 Introducing Quantum Fields

More information

MESOSCOPIC QUANTUM OPTICS

MESOSCOPIC QUANTUM OPTICS MESOSCOPIC QUANTUM OPTICS by Yoshihisa Yamamoto Ata Imamoglu A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Toronto Singapore Preface xi 1 Basic Concepts

More information

FYS-6306 QUANTUM THEORY OF MOLECULES AND NANOSTRUCTURES

FYS-6306 QUANTUM THEORY OF MOLECULES AND NANOSTRUCTURES i FYS-6306 QUANTUM THEORY OF MOLECULES AND NANOSTRUCTURES Credit units: 6 ECTS Lectures: 48 h Tapio Rantala, prof. Tue 10 12 SC203 SG219 8 10 SG312 FirstName.LastName@tut.fi http://www.tut.fi/~trantala/opetus/

More information

DEPARTMENT OF PHYSICS UNIVERSITY OF PUNE PUNE SYLLABUS for the M.Phil. (Physics ) Course

DEPARTMENT OF PHYSICS UNIVERSITY OF PUNE PUNE SYLLABUS for the M.Phil. (Physics ) Course DEPARTMENT OF PHYSICS UNIVERSITY OF PUNE PUNE - 411007 SYLLABUS for the M.Phil. (Physics ) Course Each Student will be required to do 3 courses, out of which two are common courses. The third course syllabus

More information

Group Theory and Its Applications in Physics

Group Theory and Its Applications in Physics T. Inui Y Tanabe Y. Onodera Group Theory and Its Applications in Physics With 72 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Contents Sections marked with

More information

Study Plan for Ph.D in Physics (2011/2012)

Study Plan for Ph.D in Physics (2011/2012) Plan Study Plan for Ph.D in Physics (2011/2012) Offered Degree: Ph.D in Physics 1. General Rules and Conditions:- This plan conforms to the regulations of the general frame of the higher graduate studies

More information

Part I. Many-Body Systems and Classical Field Theory

Part I. Many-Body Systems and Classical Field Theory Part I. Many-Body Systems and Classical Field Theory 1. Classical and Quantum Mechanics of Particle Systems 3 1.1 Introduction. 3 1.2 Classical Mechanics of Mass Points 4 1.3 Quantum Mechanics: The Harmonic

More information

Introduction to Modern Physics

Introduction to Modern Physics SECOND EDITION Introduction to Modern Physics John D. McGervey Case Western Reserve University Academic Press A Subsidiary of Harcourt Brace Jovanovich Orlando San Diego San Francisco New York London Toronto

More information

Lecture 4 Quantum mechanics in more than one-dimension

Lecture 4 Quantum mechanics in more than one-dimension Lecture 4 Quantum mechanics in more than one-dimension Background Previously, we have addressed quantum mechanics of 1d systems and explored bound and unbound (scattering) states. Although general concepts

More information

INTRODUCTION TO THE STRUCTURE OF MATTER

INTRODUCTION TO THE STRUCTURE OF MATTER INTRODUCTION TO THE STRUCTURE OF MATTER A Course in Modern Physics John J. Brehm and William J. Mullin University of Massachusetts Amherst, Massachusetts Fachberelch 5?@8hnlsdie Hochschule Darmstadt! HochschulstraSa

More information

EE 223 Applied Quantum Mechanics 2 Winter 2016

EE 223 Applied Quantum Mechanics 2 Winter 2016 EE 223 Applied Quantum Mechanics 2 Winter 2016 Syllabus and Textbook references Version as of 12/29/15 subject to revisions and changes All the in-class sessions, paper problem sets and assignments, and

More information

Department of Physics

Department of Physics Classical Mechanics PHY(C)-102 M. Sc. 1st Year (Sem. 1st) Newtonian mechanics of one and many particle systems; conservation laws, constraints, their classification; D' Alembert's principle, Lagrange's

More information

NERS 311 Current Old notes notes Chapter Chapter 1: Introduction to the course 1 - Chapter 1.1: About the course 2 - Chapter 1.

NERS 311 Current Old notes notes Chapter Chapter 1: Introduction to the course 1 - Chapter 1.1: About the course 2 - Chapter 1. NERS311/Fall 2014 Revision: August 27, 2014 Index to the Lecture notes Alex Bielajew, 2927 Cooley, bielajew@umich.edu NERS 311 Current Old notes notes Chapter 1 1 1 Chapter 1: Introduction to the course

More information

Analytical Mechanics for Relativity and Quantum Mechanics

Analytical Mechanics for Relativity and Quantum Mechanics Analytical Mechanics for Relativity and Quantum Mechanics Oliver Davis Johns San Francisco State University OXPORD UNIVERSITY PRESS CONTENTS Dedication Preface Acknowledgments v vii ix PART I INTRODUCTION:

More information

PHYSICS-PH (PH) Courses. Physics-PH (PH) 1

PHYSICS-PH (PH) Courses. Physics-PH (PH) 1 Physics-PH (PH) 1 PHYSICS-PH (PH) Courses PH 110 Physics of Everyday Phenomena (GT-SC2) Credits: 3 (3-0-0) Fundamental concepts of physics and elementary quantitative reasoning applied to phenomena in

More information

Notes on Quantum Mechanics

Notes on Quantum Mechanics Notes on Quantum Mechanics K. Schulten Department of Physics and Beckman Institute University of Illinois at Urbana Champaign 405 N. Mathews Street, Urbana, IL 61801 USA (April 18, 2000) Preface i Preface

More information

Maxwell s equations. based on S-54. electric field charge density. current density

Maxwell s equations. based on S-54. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

QUANTUM MECHANICS. Yehuda B. Band. and Yshai Avishai WITH APPLICATIONS TO NANOTECHNOLOGY AND INFORMATION SCIENCE

QUANTUM MECHANICS. Yehuda B. Band. and Yshai Avishai WITH APPLICATIONS TO NANOTECHNOLOGY AND INFORMATION SCIENCE QUANTUM MECHANICS WITH APPLICATIONS TO NANOTECHNOLOGY AND INFORMATION SCIENCE Yehuda B. Band Department of Chemistry, Department of Electro-Optics and Department of Physics, and Use Katz Institute for

More information

Quantum optics. Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik. M. Suhail Zubairy Quaid-i-Azam University

Quantum optics. Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik. M. Suhail Zubairy Quaid-i-Azam University Quantum optics Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik M. Suhail Zubairy Quaid-i-Azam University 1 CAMBRIDGE UNIVERSITY PRESS Preface xix 1 Quantum theory of radiation

More information

The Raman Effect. A Unified Treatment of the Theory of Raman Scattering by Molecules. DerekA. Long

The Raman Effect. A Unified Treatment of the Theory of Raman Scattering by Molecules. DerekA. Long The Raman Effect A Unified Treatment of the Theory of Raman Scattering by Molecules DerekA. Long Emeritus Professor ofstructural Chemistry University of Bradford Bradford, UK JOHN WILEY & SONS, LTD Vll

More information

Florian Scheck. Quantum Physics. With 76 Figures, 102 Exercises, Hints and Solutions

Florian Scheck. Quantum Physics. With 76 Figures, 102 Exercises, Hints and Solutions Quantum Physics Florian Scheck Quantum Physics With 76 Figures, 102 Exercises, Hints and Solutions 1 3 Professor Dr. Florian Scheck Universität Mainz Institut für Physik, Theoretische Elementarteilchenphysik

More information

Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era

Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era Peter van der Straten Universiteit Utrecht, The Netherlands and Harold Metcalf State University of New York, Stony Brook This

More information

M.Sc. Physics

M.Sc. Physics --------------------------------------- M.Sc. Physics Curriculum & Brief Syllabi (2012) --------------------------------------- DEPARTMENT OF PHYSICS NATIONAL INSTITUTE OF TECHNOLOGY CALICUT CURRICULUM

More information

Symmetries in Quantum Physics

Symmetries in Quantum Physics Symmetries in Quantum Physics U. Fano Department of Physics and James Franck Institute University of Chicago Chicago, Illinois A. R. P. Rau Department of Physics and Astronomy louisiana State University

More information

Contents. Preface to the First Edition Preface to the Second Edition

Contents. Preface to the First Edition Preface to the Second Edition Contents Preface to the First Edition Preface to the Second Edition Notes xiii xv xvii 1 Basic Concepts 1 1.1 History 1 1.1.1 The Origins of Nuclear Physics 1 1.1.2 The Emergence of Particle Physics: the

More information

PHYSICS. Course Syllabus. Section 1: Mathematical Physics. Subject Code: PH. Course Structure. Electromagnetic Theory

PHYSICS. Course Syllabus. Section 1: Mathematical Physics. Subject Code: PH. Course Structure. Electromagnetic Theory PHYSICS Subject Code: PH Course Structure Sections/Units Topics Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7 Section 8 Mathematical Physics Classical Mechanics Electromagnetic

More information

Attempts at relativistic QM

Attempts at relativistic QM Attempts at relativistic QM based on S-1 A proper description of particle physics should incorporate both quantum mechanics and special relativity. However historically combining quantum mechanics and

More information

GROUP THEORY IN PHYSICS

GROUP THEORY IN PHYSICS GROUP THEORY IN PHYSICS Wu-Ki Tung World Scientific Philadelphia Singapore CONTENTS CHAPTER 1 CHAPTER 2 CHAPTER 3 CHAPTER 4 PREFACE INTRODUCTION 1.1 Particle on a One-Dimensional Lattice 1.2 Representations

More information

Contents. Appendix A Strong limit and weak limit 35. Appendix B Glauber coherent states 37. Appendix C Generalized coherent states 41

Contents. Appendix A Strong limit and weak limit 35. Appendix B Glauber coherent states 37. Appendix C Generalized coherent states 41 Contents Preface 1. The structure of the space of the physical states 1 1.1 Introduction......................... 1 1.2 The space of the states of physical particles........ 2 1.3 The Weyl Heisenberg algebra

More information

Chemistry 483 Lecture Topics Fall 2009

Chemistry 483 Lecture Topics Fall 2009 Chemistry 483 Lecture Topics Fall 2009 Text PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon A. Background (M&S,Chapter 1) Blackbody Radiation Photoelectric effect DeBroglie Wavelength Atomic

More information

Contents. 1 Basic Equations 1. Acknowledgment. 1.1 The Maxwell Equations Constitutive Relations 11

Contents. 1 Basic Equations 1. Acknowledgment. 1.1 The Maxwell Equations Constitutive Relations 11 Preface Foreword Acknowledgment xvi xviii xix 1 Basic Equations 1 1.1 The Maxwell Equations 1 1.1.1 Boundary Conditions at Interfaces 4 1.1.2 Energy Conservation and Poynting s Theorem 9 1.2 Constitutive

More information

DEPARTMENT OF PHYSICS

DEPARTMENT OF PHYSICS Department of Physics 1 DEPARTMENT OF PHYSICS Office in Engineering Building, Room 124 (970) 491-6206 physics.colostate.edu (http://www.physics.colostate.edu) Professor Jacob Roberts, Chair Undergraduate

More information

PHYSICAL SCIENCES EXAM SCHEME TIME: 3 HOURS MAXIMUM MARKS: 200

PHYSICAL SCIENCES EXAM SCHEME TIME: 3 HOURS MAXIMUM MARKS: 200 CSIR-UGC (NET) EXAM FOR AWARD OF JUNIOR RESEARCH FELLOWSHIP AND ELIGIBILITY FOR LECTURERSHIP PHYSICAL SCIENCES EXAM SCHEME TIME: 3 HOURS MAXIMUM MARKS: 200 CSIR-UGC (NET) Exam for Award of Junior Research

More information

CHAPTER 1. SPECIAL RELATIVITY AND QUANTUM MECHANICS

CHAPTER 1. SPECIAL RELATIVITY AND QUANTUM MECHANICS CHAPTER 1. SPECIAL RELATIVITY AND QUANTUM MECHANICS 1.1 PARTICLES AND FIELDS The two great structures of theoretical physics, the theory of special relativity and quantum mechanics, have been combined

More information

Spectra of Atoms and Molecules. Peter F. Bernath

Spectra of Atoms and Molecules. Peter F. Bernath Spectra of Atoms and Molecules Peter F. Bernath New York Oxford OXFORD UNIVERSITY PRESS 1995 Contents 1 Introduction 3 Waves, Particles, and Units 3 The Electromagnetic Spectrum 6 Interaction of Radiation

More information

Introduction to Modern Quantum Optics

Introduction to Modern Quantum Optics Introduction to Modern Quantum Optics Jin-Sheng Peng Gao-Xiang Li Huazhong Normal University, China Vfe World Scientific» Singapore* * NewJerseyL Jersey* London* Hong Kong IX CONTENTS Preface PART I. Theory

More information

An Introduction to the Standard Model of Particle Physics

An Introduction to the Standard Model of Particle Physics An Introduction to the Standard Model of Particle Physics W. N. COTTINGHAM and D. A. GREENWOOD Ж CAMBRIDGE UNIVERSITY PRESS Contents Preface. page xiii Notation xv 1 The particle physicist's view of Nature

More information

which implies that we can take solutions which are simultaneous eigen functions of

which implies that we can take solutions which are simultaneous eigen functions of Module 1 : Quantum Mechanics Chapter 6 : Quantum mechanics in 3-D Quantum mechanics in 3-D For most physical systems, the dynamics is in 3-D. The solutions to the general 3-d problem are quite complicated,

More information

An Introduction to. Nuclear Physics. Yatramohan Jana. Alpha Science International Ltd. Oxford, U.K.

An Introduction to. Nuclear Physics. Yatramohan Jana. Alpha Science International Ltd. Oxford, U.K. An Introduction to Nuclear Physics Yatramohan Jana Alpha Science International Ltd. Oxford, U.K. Contents Preface Acknowledgement Part-1 Introduction vii ix Chapter-1 General Survey of Nuclear Properties

More information

Modern Physics for Scientists and Engineers International Edition, 4th Edition

Modern Physics for Scientists and Engineers International Edition, 4th Edition Modern Physics for Scientists and Engineers International Edition, 4th Edition http://optics.hanyang.ac.kr/~shsong Review: 1. THE BIRTH OF MODERN PHYSICS 2. SPECIAL THEORY OF RELATIVITY 3. THE EXPERIMENTAL

More information

Nuclear Physics for Applications

Nuclear Physics for Applications Stanley C. Pruss'm Nuclear Physics for Applications A Model Approach BICENTENNIAL WILEY-VCH Verlag GmbH & Co. KGaA VII Table of Contents Preface XIII 1 Introduction 1 1.1 Low-Energy Nuclear Physics for

More information

Elementary Lectures in Statistical Mechanics

Elementary Lectures in Statistical Mechanics George DJ. Phillies Elementary Lectures in Statistical Mechanics With 51 Illustrations Springer Contents Preface References v vii I Fundamentals: Separable Classical Systems 1 Lecture 1. Introduction 3

More information

Maxwell s equations. electric field charge density. current density

Maxwell s equations. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

INTRODUCTION TO NUCLEAR AND PARTICLE PHYSICS

INTRODUCTION TO NUCLEAR AND PARTICLE PHYSICS INTRODUCTION TO NUCLEAR AND PARTICLE PHYSICS ASHOK DAS THOMAS FERBEL University of Rochester JOHN WILEY & SONS, INC. NEW YORK CHICHESTER BRISBANE TORONTO SINGAPORE CONTENTS Preface and Introduction Apologies

More information

Introduction to Elementary Particles

Introduction to Elementary Particles David Criffiths Introduction to Elementary Particles Second, Revised Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Preface to the First Edition IX Preface to the Second Edition XI Formulas and Constants

More information

Nuclear and Particle Physics

Nuclear and Particle Physics Nuclear and Particle Physics W. S. С Williams Department of Physics, University of Oxford and St Edmund Hall, Oxford CLARENDON PRESS OXFORD 1991 Contents 1 Introduction 1.1 Historical perspective 1 1.2

More information

ATOMIC AND LASER SPECTROSCOPY

ATOMIC AND LASER SPECTROSCOPY ALAN CORNEY ATOMIC AND LASER SPECTROSCOPY CLARENDON PRESS OXFORD 1977 Contents 1. INTRODUCTION 1.1. Planck's radiation law. 1 1.2. The photoelectric effect 4 1.3. Early atomic spectroscopy 5 1.4. The postulates

More information

joint density of states, 189, 235

joint density of states, 189, 235 Index A absorption, 188 90, 195, 226, 231 37, 253, 257, 298, 348, 412 14, 417, 519 22 saturation, 349 two-photon, 231 adjoint, 96, 480, 484 Airy functions, 42 43, 529 30 Ångstrom, 15 angular momentum,

More information

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt Spin Dynamics Basics of Nuclear Magnetic Resonance Second edition Malcolm H. Levitt The University of Southampton, UK John Wiley &. Sons, Ltd Preface xxi Preface to the First Edition xxiii Introduction

More information

Generalization to Absence of Spherical Symmetry p. 48 Scattering by a Uniform Sphere (Mie Theory) p. 48 Calculation of the [characters not

Generalization to Absence of Spherical Symmetry p. 48 Scattering by a Uniform Sphere (Mie Theory) p. 48 Calculation of the [characters not Scattering of Electromagnetic Waves p. 1 Formalism and General Results p. 3 The Maxwell Equations p. 3 Stokes Parameters and Polarization p. 4 Definition of the Stokes Parameters p. 4 Significance of the

More information

Conclusion. 109m Ag isomer showed that there is no such broadening. Because one can hardly

Conclusion. 109m Ag isomer showed that there is no such broadening. Because one can hardly Conclusion This small book presents a description of the results of studies performed over many years by our research group, which, in the best period, included 15 physicists and laboratory assistants

More information

Chemistry 881 Lecture Topics Fall 2001

Chemistry 881 Lecture Topics Fall 2001 Chemistry 881 Lecture Topics Fall 2001 Texts PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon MATHEMATICS for PHYSICAL CHEMISTRY, Mortimer i. Mathematics Review (M, Chapters 1,2,3 & 4; M&S,

More information

1 The Quantum Anharmonic Oscillator

1 The Quantum Anharmonic Oscillator 1 The Quantum Anharmonic Oscillator Perturbation theory based on Feynman diagrams can be used to calculate observables in Quantum Electrodynamics, like the anomalous magnetic moment of the electron, and

More information

is the minimum stopping potential for which the current between the plates reduces to zero.

is the minimum stopping potential for which the current between the plates reduces to zero. Module 1 :Quantum Mechanics Chapter 2 : Introduction to Quantum ideas Introduction to Quantum ideas We will now consider some experiments and their implications, which introduce us to quantum ideas. The

More information

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015)

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015) Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015) Interaction of x-ray with matter: - Photoelectric absorption - Elastic (coherent) scattering (Thomson Scattering) - Inelastic (incoherent) scattering

More information

PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES

PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES Jasprit Singh University of Michigan McGraw-Hill, Inc. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London Madrid Mexico Milan Montreal

More information

Solutions to exam : 1FA352 Quantum Mechanics 10 hp 1

Solutions to exam : 1FA352 Quantum Mechanics 10 hp 1 Solutions to exam 6--6: FA35 Quantum Mechanics hp Problem (4 p): (a) Define the concept of unitary operator and show that the operator e ipa/ is unitary (p is the momentum operator in one dimension) (b)

More information

QUANTUM MECHANICS USING COMPUTER ALGEBRA

QUANTUM MECHANICS USING COMPUTER ALGEBRA QUANTUM MECHANICS USING COMPUTER ALGEBRA Includes Sample Programs in C++, SymbolicC++, Maxima, Maple, and Mathematica 2nd Edition This page intentionally left blank QUANTUM MECHANICS USING COMPUTER ALGEBRA

More information

TENTATIVE SYLLABUS INTRODUCTION

TENTATIVE SYLLABUS INTRODUCTION Physics 615: Overview of QFT Fall 2010 TENTATIVE SYLLABUS This is a tentative schedule of what we will cover in the course. It is subject to change, often without notice. These will occur in response to

More information

Classical Electrodynamics

Classical Electrodynamics Classical Electrodynamics Third Edition John David Jackson Professor Emeritus of Physics, University of California, Berkeley JOHN WILEY & SONS, INC. Contents Introduction and Survey 1 I.1 Maxwell Equations

More information

Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction

Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction Lecture 5 Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction WS0/3: Introduction to Nuclear and Particle Physics,, Part I I. Angular Momentum Operator Rotation R(θ): in polar coordinates the

More information

Paradigms in Physics: Quantum Mechanics

Paradigms in Physics: Quantum Mechanics Paradigms in Physics: Quantum Mechanics David H. McIntyre Corinne A. Manogue Janet Tate Oregon State University 23 November 2010 Copyright 2010 by David H. McIntyre, Corinne A. Manogue, Janet Tate CONTENTS

More information

Frank Y. Wang. Physics with MAPLE. The Computer Algebra Resource for Mathematical Methods in Physics. WILEY- VCH WILEY-VCH Verlag GmbH & Co.

Frank Y. Wang. Physics with MAPLE. The Computer Algebra Resource for Mathematical Methods in Physics. WILEY- VCH WILEY-VCH Verlag GmbH & Co. Frank Y. Wang Physics with MAPLE The Computer Algebra Resource for Mathematical Methods in Physics WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA k Preface Guide for Users Bibliography XI XVII XIX 1 Introduction

More information

Light and Vacuum Downloaded from by on 11/22/17. For personal use only.

Light and Vacuum Downloaded from  by on 11/22/17. For personal use only. This page intentionally left blank World Scientific Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ

More information

The Klein-Gordon equation

The Klein-Gordon equation Lecture 8 The Klein-Gordon equation WS2010/11: Introduction to Nuclear and Particle Physics The bosons in field theory Bosons with spin 0 scalar (or pseudo-scalar) meson fields canonical field quantization

More information

Quantum Mysteries. Scott N. Walck. September 2, 2018

Quantum Mysteries. Scott N. Walck. September 2, 2018 Quantum Mysteries Scott N. Walck September 2, 2018 Key events in the development of Quantum Theory 1900 Planck proposes quanta of light 1905 Einstein explains photoelectric effect 1913 Bohr suggests special

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Matter-Radiation Interaction

Matter-Radiation Interaction Matter-Radiation Interaction The purpose: 1) To give a description of the process of interaction in terms of the electronic structure of the system (atoms, molecules, solids, liquid or amorphous samples).

More information