Fractional Integrals Involving Generalized Polynomials And Multivariable Function

Size: px
Start display at page:

Download "Fractional Integrals Involving Generalized Polynomials And Multivariable Function"

Transcription

1 IOSR Joual of ateatcs (IOSRJ) ISSN: Volue, Issue 5 (Jul-Aug 0), PP 05- wwwosoualsog Factoal Itegals Ivolvg Geealzed Poloals Ad ultvaable Fucto D Neela Pade ad Resa Ka Deatet of ateatcs APS uvest Rewa ada Pades,Ida Abstact:Ou a of ts ae s to fd a Eulea Itegal ad a a teoe based o te factoal oeato assocated wt geealzed oloal ad a ultvaable I-fucto avg geeal aguets Te teoe ovdes exteso of vaous esults Soe secal cases ae also gve Kewods-Factoaltegal,Eulea tegal,ultvaable I-fucto,Rea-Louvlle oeato,laucella fucto I Itoducto Te Rea-Louvlle oeato of factoal tegato R f of ode s defed b xd f = Γ x t f t dt A equvalet fo of Beta fucto s t a t b dt = a+b B a, b Wee,R (x<),re (a)>0, Re(b)>0 To ove te Eulea tegals, we use te followg foula () () (t x) a ( t) b ( t + q ) ρ ( t + q ) ρ dt = x a+b B a, b ( x + q ) e ( x + x q)e F () D [a, ρ ρ ; a + b, x ρ x ρ ] (3) x+q x+q Wee F D s Laucella fucto Wee x, R (x<) ;, q ρ ε C = R e a, R e b > 0 ad ax [ x ρ P x+q Te tegal eesetato of F D s defed as, x ρ P x+q ] < (π) ( x ) ξ ( x ) ξ dξ dξ Γ a Γ b Γ b Γ c F D Γ a+ξ + ξ Γ b+ξ Γ(b+ξ ) Γ(c+ξ + ξ ) Now ( t + q) α = (x + q) α + (t x) x +q Sce Γ A Γ(B) Γ(c), (t + q) α = (x +q) α Γ( α) π F A, B, C; Z = Γ π Γ (, q, αεc, x, tεr ad ag x +q a, b b, c, x x =, Γ ξ Γ ξ α = (x + q) α F α,,, (t x) Γ A+ Γ(B+ ) Γ(c+ ) α) (t x) x +q d te oles of Γ fo tose f Γ α Foula (3), ca be ovded wt te el of (), (4) ad (5) Te geealzed oloal defed b Svastava[8] s as follows x +q Γ Z d (5) < π ad at of tegato s ecessa suc a ae so as to seaate wwwosoualsog 5 Page

2 Factoal Itegals Ivolvg Geealzed Poloals Ad ultvaable Fucto S N N x x N = α =0 N α =0 ( N ) α ( N ) α B N, α,, N, α x α x α (6) Wee, N = 0,,, =, ae abta ostve teges ad te coeffcets B N, α,, N, α ae abta costats Hee s a ostve tege ad 0 0 would ea zeos II ULTI-VARIABLE I-FUNCTION It s defed ad eeseted te followg ae:- 0, I z z = I : 0, 3,,0,,,,,q : 3,q 3,,,q,,q,q Z a ; α,α a 3 ; α, 3,α 3 a ; α :,,α 3,, a,α a,α Z b ; β,β : β 3 ; β 3,β 3 β ; β,q,q3,β,q, b,β q b,β Wee, φ (ξ )= q = q ( b ),,q L L ξ ξ Ψ ξ ξ z ξ z ξ dξ dξ ( a ( b ) ( b ) ( b ( a (7) ) ) 3 ( a ) ( a3 3 ) ( a 3 ( a ) ( a3 3 ) ( a 3 q ) Te covegece ad ote detals of ultvaable I-fucto, see Pasad[4] 3 3 ad ) ) II a Itegal Te a Itegal to be establsed ee s λ μ x t t S N N W N α =0 x t λ t μ t a t + q t b ς t + q ς N N α N α α =0!α!α I wwwosoualsog + q ρ z t γ t t + q c z t t t + q c dt = 6 Page

3 Factoal Itegals Ivolvg Geealzed Poloals Ad ultvaable Fucto α B N, α,, N, α x α 0, x W I :0, 3 0, ++,,,,0,0,q : 3,q 3 ++,q ++:,q,q, 0, 0, R X,X,X 3, a α,α,, a 3 α 3,α 3,α 3, 3, a,α,α,0, 0, a,,α, a,α, ; ; ; R b β,β,q, b 3 β 3,β 3,β 3,q3 (), b,β,β,0, 0 X 4,X 5,(b,β ),q b,β,q,q, 0, (0,) Wee W = ( ) a+b ( + q ) (8) W = ( ) ) ( ( + q ) () ς α X = [ a λ α ; γ γ, ] X = b μ α ;,0 0 X 3 = + ρ + ς () α ; C C (), 0 0 X 4 = + ρ + ς () α ; C C (), 0 0 X 5 = [ a b λ + μ α ; γ +, γ +, ],, Z ( ) γ + ( + q ) c R = Z ( ) γ + ( + q ) c () R = ( ) +q ( ) +q Te followg ae te codtos of valdt of tegal (8) ), ε R <, γ, ; c (), λ, μ, ς () ε R +, ρ εr, q ε C, z εc ( =, = ) ) ax q ( - ) < 3) R e a + γ b > 0, = b, R e b + > 0, = B wwwosoualsog B 7 Page

4 Factoal Itegals Ivolvg Geealzed Poloals Ad ultvaable Fucto 4) ag z ( + q ) c < T π Wee T = () α () () = () + 3 α () + + α 3 () q ( < t <, = ) () + β () + β () 3 = 3 + q 3 q () β () + α () = () + α 3 () β () α () q () β = + = + III PROOF I ode to ove tegal (8),exad ultvaable I-fucto tes of ell-baes te of cotou tegal b (7), geealzed oloal b(6)now tecagg te ode of suato ad tegato (wc s essble ude te codtos of valdt stated above), We get te followg fo:- α () α () N N α =0 α =0 ( N ) α! α ( N ) α! α B N α,, N α x α x α X πw ξ ξ (ξ ) Z ξ Z t a+ λ α L L t b+ μ α + s = ξ s s = ( t + q ) + s = γ s ξ s () + σ α (s ) s = c ξs dt dξ dξ Now usg te foula (3) fo e tegal e, (t x) a ( t) b ( t + q ) ρ ( t + q ) ρ dt = x xa+b Ba,b(x+q)e (x+q)e FD() a, ρ ρ ;a+b, xx+q xx+q () Ad covetg te Laucella fucto F D tegal fo fo equato (4) ad afte slfcato,we get te equed esult: IV SPACIAL CASES:- If we set γ = 0 = = γ ad λ = 0 = = λ, te tegal (8) educes to N = E S N N t a t b x t μ t + q ς x t μ α =0 N N α N α!α!α 0, I :0, 3 0, ++,,,,0,0,q : 3,q 3 ++,q ++:,q,q, 0, 0, t + q ς I t + q ρ z t t + q c z t α =0 B N, α,, N, α x α x α E t + q c wwwosoualsog 8 Page

5 L A,A,A 3, a α,α, L b β,β, b 3 β 3,q Factoal Itegals Ivolvg Geealzed Poloals Ad ultvaable Fucto, a 3 α 3,β 3,β 3,α 3,α 3, 3, b,β,q3 (), a,α,α,0, 0,(a,α ), a,,α (),β,0, 0 A 4,A 5,(b,q,β ),q b,β, (); ; ;,q, 0, (0,) Wee, W = a+b W = μ α + q A = [ a; 0 0, ] + q ρ ς α A = b μ α ; ζ ζ,0 0 A 3 = + ρ + ς () α ; C C (), 0 0, A 4 = + ρ + ς α ; C C, 0 0 A 5 = [ a b L = Z ( ) ζ Z ( ) ζ μ α ; ζ ζ, ( + q ) c ( + q ) c (), L = ( ) +q ( ) +q Fo ζ = 0 = = ζ ad μ = 0 = μ, te tegal (8) educes to λ x t S N N x t λ t + q t a ς t + q ς N N α N α!α!α 0, I :0, 3 0, ++,,,,0,0,q : 3,q 3 ++,q ++:,q,q, 0, 0, I t b + q ρ z t γ t + q c z t γ t + q c α =0 B N, α,, N, α x α x α F N = Γ(b)F α =0 wwwosoualsog 9 Page

6 B,B, a α,α, b β,β,q, b 3 β 3 Factoal Itegals Ivolvg Geealzed Poloals Ad ultvaable Fucto, a 3 α 3,β 3,β 3,α 3,α 3, 3,q3 (), a,α,α,0, 0,(a,,α ), a,α ; ; ; Q, b,β,β (),0, 0 X 4,X 5,(b,q,β ),q b,β, 0, (0,) Q Wee, F = ( ) a+b ( + q ) ρ F = λ α + q ς α B = a λ α ; γ γ, B = + ρ + ς α ; C C, 0 0, B 3 = + ρ + ς () α ; C C (), 0 0, B 4 = [ a b Q = Z ( ) γ Z ( ) γ λ α ; γ γ, ( + q ) c ( + q ) c () Q = ( ) +q ( ) +q 3 We ζ = 0 = = ζ = 0 = γ = γ ad λ = 0 = μ, =, te tegal (8) educes to x S N N t + q ς t + q ς I t a t b z t + q c t + q c x z N N α N α!α!α 0, I :0, 3 0, ++,,,,0,0,q : 3,q 3 ++,q ++:,q,q, 0, 0, + q ρ α =0 B N, α,, N, α x α x α G D,D, a α,α, R R b β,β,q, b 3 β 3, a 3 α 3,α 3,α 3, 3,β 3,β 3,q3, b,β,β N = Γ(b)G α =0 (), a,α,α,0, 0,(a,,α ), a,α (),0, 0 X 3,X 4,(b,q,β ) b,β, (); ; ;,q, 0, (0,) wwwosoualsog 0 Page

7 Wee, G = ( ) a+b Factoal Itegals Ivolvg Geealzed Poloals Ad ultvaable Fucto ( + q ) ρ G = + q ς α D = a; 0 0, D = + ρ + ς α ; C C, 0 0 D 3 = + ρ + ς () α ; C C (), 0 0 D 4 = [ a b; 0 0, Z ( + q ) c R = R = Z ( + q ) c ( ) +q ( ) +q Let f t = t a S N N Te, D b f = D b f Γ b S N N Γ b (),, V AIN THEORE t + q ρ x t λ t + q ς x t λ b t f t dt t a t b t + q ς I t + q ρ x t λ t + q ς x t λ t + q ς I z t γ t + q c z t γ t + q c z t γ t + q c z t γ t + q c wwwosoualsog Page

8 N = I Factoal Itegals Ivolvg Geealzed Poloals Ad ultvaable Fucto α =0 N N α N α!α!α 0, I :0, 3 0, ++,,,,0,0,q : 3,q 3 ++,q ++:,q,q, 0, 0, α =0 B N, α,, N, α x α x α I H K,H, a α,α K b β,β,q, a 3,α 3, b 3,β 3,α 3,α 3, 3,β 3,β 3,q3 (), a,α,α,0, 0,(a,,α ), a,α (),0, 0 H 3,H 4,(b,q,β ),q b,β, b,β,β, (); ; ;,q, 0, (0,) Wee, G = ( ) a+b G = H = a λ α + q ( + q ) ρ λ α ; γ γ, ς α H = + ρ + ς α ; C C, 0 0 H 3 = + ρ + ς () α ; C C (), 0 0 H 4 = [ a b λ α ; γ γ, K = Z ( ) γ Z ( ) γ ( + q ) c ( + q ) c () ( ) +q K = ( ) +q Codtos of valdt of te teoe ae te sae as stated Eulea Itegal Secal case B secalzg te vaous aaetes, we get soe ow ad uow esults Refeces [] YN Pasad, ultvaable I-Fucto, Vaa Pasad Ausada Pata 9(986) 3 35 [] H Svastava ad A Hussa, Factoal tegato of te H-Fucto of seveal vaable, coute, at, Al 30(995),73-85 [3] VBL Cauasa ad VK Sgal,Factoal tegato of ceta secal fuctos,taag Jat35(004),3- [4] APPudov,YuA Bcov ad OIacev,Itegals ad sees,voli,eleeta Fuctos,Godo ad Beac,Newo- Lodo-Pas-oteux-Too,986 [5] Sago ad RKSaxea,Ufed factoal tegal foula fo te ultvaable H-fucto,JFactCalc5 (9999),9-07 [6] RK Saxea ad KNsoto,Factoal tegal foula fo te H-fucto,JFactCalc 3 (994),65-74 [7] RK Saxea ad Sago, Factoal tegal foula fo te H-fucto II,JFactCalc 6 (994),37-4 [8] HSvastava ad CDaoust,Ceta geealzed Neua exasos assocated wt te Kae de Feet fucto,nedelacadwe-tecidagat 3 (969), [9] H Svastava, KC Guta ad SP Goal,Te H-fuctos of Oe ad Two Vaables wt Alcatos,Sout Asa Publses,New Del-adas,98,, wwwosoualsog Page

Some Integrals Pertaining Biorthogonal Polynomials and Certain Product of Special Functions

Some Integrals Pertaining Biorthogonal Polynomials and Certain Product of Special Functions Global Joual o Scece Fote Reeach atheatc ad Deco Scece Volue Iue Veo Te : Double Bld ee Reewed Iteatoal Reeach Joual ublhe: Global Joual Ic SA Ole ISSN: 49-466 & t ISSN: 975-5896 Soe Itegal etag Bothogoal

More information

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures.

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures. Lectue 4 8. MRAC Desg fo Affe--Cotol MIMO Systes I ths secto, we cosde MRAC desg fo a class of ult-ut-ult-outut (MIMO) olea systes, whose lat dyacs ae lealy aaetezed, the ucetates satsfy the so-called

More information

= y and Normed Linear Spaces

= y and Normed Linear Spaces 304-50 LINER SYSTEMS Lectue 8: Solutos to = ad Nomed Lea Spaces 73 Fdg N To fd N, we eed to chaacteze all solutos to = 0 Recall that ow opeatos peseve N, so that = 0 = 0 We ca solve = 0 ecusvel backwads

More information

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1 Scholas Joual of Egeeg ad Techology (SJET) Sch. J. Eg. Tech. 0; (C):669-67 Scholas Academc ad Scetfc Publshe (A Iteatoal Publshe fo Academc ad Scetfc Resouces) www.saspublshe.com ISSN -X (Ole) ISSN 7-9

More information

FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL SEQUENCES

FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL SEQUENCES Joual of Appled Matheatcs ad Coputatoal Mechacs 7, 6(), 59-7 www.ac.pcz.pl p-issn 99-9965 DOI:.75/jac.7..3 e-issn 353-588 FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL

More information

XII. Addition of many identical spins

XII. Addition of many identical spins XII. Addto of may detcal sps XII.. ymmetc goup ymmetc goup s the goup of all possble pemutatos of obects. I total! elemets cludg detty opeato. Each pemutato s a poduct of a ceta fte umbe of pawse taspostos.

More information

NONDIFFERENTIABLE MATHEMATICAL PROGRAMS. OPTIMALITY AND HIGHER-ORDER DUALITY RESULTS

NONDIFFERENTIABLE MATHEMATICAL PROGRAMS. OPTIMALITY AND HIGHER-ORDER DUALITY RESULTS HE PUBLISHING HOUSE PROCEEDINGS OF HE ROMANIAN ACADEMY, See A, OF HE ROMANIAN ACADEMY Volue 9, Nube 3/8,. NONDIFFERENIABLE MAHEMAICAL PROGRAMS. OPIMALIY AND HIGHER-ORDER DUALIY RESULS Vale PREDA Uvety

More information

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof MATEC Web of Cofeeces ICIEA 06 600 (06) DOI: 0.05/mateccof/0668600 The ea Pobablty Desty Fucto of Cotuous Radom Vaables the Real Numbe Feld ad Its Estece Poof Yya Che ad Ye Collee of Softwae, Taj Uvesty,

More information

Lecture 10: Condensed matter systems

Lecture 10: Condensed matter systems Lectue 0: Codesed matte systems Itoducg matte ts codesed state.! Ams: " Idstgushable patcles ad the quatum atue of matte: # Cosequeces # Revew of deal gas etopy # Femos ad Bosos " Quatum statstcs. # Occupato

More information

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx Iteatoal Joual of Mathematcs ad Statstcs Iveto (IJMSI) E-ISSN: 3 4767 P-ISSN: 3-4759 www.jms.og Volume Issue 5 May. 4 PP-44-5 O EP matces.ramesh, N.baas ssocate Pofesso of Mathematcs, ovt. ts College(utoomous),Kumbakoam.

More information

Professor Wei Zhu. 1. Sampling from the Normal Population

Professor Wei Zhu. 1. Sampling from the Normal Population AMS570 Pofesso We Zhu. Samplg fom the Nomal Populato *Example: We wsh to estmate the dstbuto of heghts of adult US male. It s beleved that the heght of adult US male follows a omal dstbuto N(, ) Def. Smple

More information

Some results and conjectures about recurrence relations for certain sequences of binomial sums.

Some results and conjectures about recurrence relations for certain sequences of binomial sums. Soe results ad coectures about recurrece relatos for certa sequeces of boal sus Joha Cgler Faultät für Matheat Uverstät We A-9 We Nordbergstraße 5 Joha Cgler@uveacat Abstract I a prevous paper [] I have

More information

A GENERAL CLASS OF ESTIMATORS UNDER MULTI PHASE SAMPLING

A GENERAL CLASS OF ESTIMATORS UNDER MULTI PHASE SAMPLING TATITIC IN TRANITION-ew sees Octobe 9 83 TATITIC IN TRANITION-ew sees Octobe 9 Vol. No. pp. 83 9 A GENERAL CLA OF ETIMATOR UNDER MULTI PHAE AMPLING M.. Ahed & Atsu.. Dovlo ABTRACT Ths pape deves the geeal

More information

VIII Dynamics of Systems of Particles

VIII Dynamics of Systems of Particles VIII Dyacs of Systes of Patcles Cete of ass: Cete of ass Lea oetu of a Syste Agula oetu of a syste Ketc & Potetal Eegy of a Syste oto of Two Iteactg Bodes: The Reduced ass Collsos: o Elastc Collsos R whee:

More information

Homonuclear Diatomic Molecule

Homonuclear Diatomic Molecule Homouclea Datomc Molecule Eegy Dagam H +, H, He +, He A B H + eq = Agstom Bg Eegy kcal/mol A B H eq = Agstom Bg Eegy kcal/mol A B He + eq = Agstom Bg Eegy kcal/mol A He eq = Bg Eegy B Kcal mol 3 Molecula

More information

University of Pavia, Pavia, Italy. North Andover MA 01845, USA

University of Pavia, Pavia, Italy. North Andover MA 01845, USA Iteatoal Joual of Optmzato: heoy, Method ad Applcato 27-5565(Pt) 27-6839(Ole) wwwgph/otma 29 Global Ifomato Publhe (HK) Co, Ltd 29, Vol, No 2, 55-59 η -Peudoleaty ad Effcecy Gogo Gog, Noma G Rueda 2 *

More information

General Method for Calculating Chemical Equilibrium Composition

General Method for Calculating Chemical Equilibrium Composition AE 6766/Setzma Sprg 004 Geeral Metod for Calculatg Cemcal Equlbrum Composto For gve tal codtos (e.g., for gve reactats, coose te speces to be cluded te products. As a example, for combusto of ydroge wt

More information

QUASI-STATIC TRANSIENT THERMAL STRESSES IN A DIRICHLET S THIN HOLLOW CYLINDER WITH INTERNAL MOVING HEAT SOURCE

QUASI-STATIC TRANSIENT THERMAL STRESSES IN A DIRICHLET S THIN HOLLOW CYLINDER WITH INTERNAL MOVING HEAT SOURCE Iteatoal Joual of Pyss ad Mateatal Sees ISSN: 77-111 (Ole) A Oe Aess, Ole Iteatoal Joual Aalable at tt://www.bte.og/js.t 014 Vol. 4 (1) Jauay-Ma,. 188-19/Solae ad Duge Resea Atle QUASI-STATIC TRANSIENT

More information

Fredholm Type Integral Equations with Aleph-Function. and General Polynomials

Fredholm Type Integral Equations with Aleph-Function. and General Polynomials Iteto Mthetc Fou Vo. 8 3 o. 989-999 HIKI Ltd.-h.co Fedho Te Iteg uto th eh-fucto d Gee Poo u J K.J. o Ittute o Mgeet tude & eech Mu Id u5@g.co Kt e K.J. o Ittute o Mgeet tude & eech Mu Id dehuh_3@hoo.co

More information

The Mathematics of Portfolio Theory

The Mathematics of Portfolio Theory The Matheatcs of Portfolo Theory The rates of retur of stocks, ad are as follows Market odtos state / scearo) earsh Neutral ullsh Probablty 0. 0.5 0.3 % 5% 9% -3% 3% % 5% % -% Notato: R The retur of stock

More information

Chapter 2: Descriptive Statistics

Chapter 2: Descriptive Statistics Chapte : Decptve Stattc Peequte: Chapte. Revew of Uvaate Stattc The cetal teecy of a oe o le yetc tbuto of a et of teval, o hghe, cale coe, ofte uaze by the athetc ea, whch efe a We ca ue the ea to ceate

More information

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE O The Covegece Theoems... (Muslm Aso) ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE Muslm Aso, Yosephus D. Sumato, Nov Rustaa Dew 3 ) Mathematcs

More information

A PAIR OF HIGHER ORDER SYMMETRIC NONDIFFERENTIABLE MULTIOBJECTIVE MINI-MAXMIXED PROGRAMMING PROBLEMS

A PAIR OF HIGHER ORDER SYMMETRIC NONDIFFERENTIABLE MULTIOBJECTIVE MINI-MAXMIXED PROGRAMMING PROBLEMS Iteatoal Joal of Cote Scece ad Cocato Vol. 3, No., Jaa-Je 0,. 9-5 A PAIR OF HIGHER ORDER SYMMERIC NONDIFFERENIABLE MULIOBJECIVE MINI-MAXMIXED PROGRAMMING PROBLEMS Aa Ka ath ad Gaat Dev Deatet of Matheatcs,

More information

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S Fomulae Fo u Pobablty By OP Gupta [Ida Awad We, +91-9650 350 480] Impotat Tems, Deftos & Fomulae 01 Bascs Of Pobablty: Let S ad E be the sample space ad a evet a expemet espectvely Numbe of favouable evets

More information

Sebastián Martín Ruiz. Applications of Smarandache Function, and Prime and Coprime Functions

Sebastián Martín Ruiz. Applications of Smarandache Function, and Prime and Coprime Functions Sebastá Martí Ruz Alcatos of Saradache Fucto ad Pre ad Core Fuctos 0 C L f L otherwse are core ubers Aerca Research Press Rehoboth 00 Sebastá Martí Ruz Avda. De Regla 43 Choa 550 Cadz Sa Sarada@telele.es

More information

Recent Advances in Computers, Communications, Applied Social Science and Mathematics

Recent Advances in Computers, Communications, Applied Social Science and Mathematics Recet Advaces Computes, Commucatos, Appled ocal cece ad athematcs Coutg Roots of Radom Polyomal Equatos mall Itevals EFRAI HERIG epatmet of Compute cece ad athematcs Ael Uvesty Cete of amaa cece Pa,Ael,4487

More information

χ be any function of X and Y then

χ be any function of X and Y then We have show that whe we ae gve Y g(), the [ ] [ g() ] g() f () Y o all g ()() f d fo dscete case Ths ca be eteded to clude fuctos of ay ube of ado vaables. Fo eaple, suppose ad Y ae.v. wth jot desty fucto,

More information

21(2007) Adílson J. V. Brandão 1, João L. Martins 2

21(2007) Adílson J. V. Brandão 1, João L. Martins 2 (007) 30-34 Recuece Foulas fo Fboacc Sus Adílso J. V. Badão, João L. Mats Ceto de Mateátca, Coputa cão e Cog cão, Uvesdade Fedeal do ABC, Bazl.adlso.badao@ufabc.edu.b Depataeto de Mateátca, Uvesdade Fedeal

More information

Exponential Generating Functions - J. T. Butler

Exponential Generating Functions - J. T. Butler Epoetal Geeatg Fuctos - J. T. Butle Epoetal Geeatg Fuctos Geeatg fuctos fo pemutatos. Defto: a +a +a 2 2 + a + s the oday geeatg fucto fo the sequece of teges (a, a, a 2, a, ). Ep. Ge. Fuc.- J. T. Butle

More information

International Journal of Mathematics Trends and Technology (IJMTT) Volume 47 Number 1 July 2017

International Journal of Mathematics Trends and Technology (IJMTT) Volume 47 Number 1 July 2017 Iteatioal Joual of Matheatics Teds ad Techology (IJMTT) Volue 47 Nube July 07 Coe Metic Saces, Coe Rectagula Metic Saces ad Coo Fixed Poit Theoes M. Sivastava; S.C. Ghosh Deatet of Matheatics, D.A.V. College

More information

Overview. Review Superposition Solution. Review Superposition. Review x and y Swap. Review General Superposition

Overview. Review Superposition Solution. Review Superposition. Review x and y Swap. Review General Superposition ylcal aplace Soltos ebay 6 9 aplace Eqato Soltos ylcal Geoety ay aetto Mechacal Egeeg 5B Sea Egeeg Aalyss ebay 6 9 Ovevew evew last class Speposto soltos tocto to aal cooates Atoal soltos of aplace s eqato

More information

Fairing of Parametric Quintic Splines

Fairing of Parametric Quintic Splines ISSN 46-69 Eglad UK Joual of Ifomato ad omputg Scece Vol No 6 pp -8 Fag of Paametc Qutc Sples Yuau Wag Shagha Isttute of Spots Shagha 48 ha School of Mathematcal Scece Fuda Uvesty Shagha 4 ha { P t )}

More information

An Unconstrained Q - G Programming Problem and its Application

An Unconstrained Q - G Programming Problem and its Application Joual of Ifomato Egeeg ad Applcatos ISS 4-578 (pt) ISS 5-0506 (ole) Vol.5, o., 05 www.ste.og A Ucostaed Q - G Pogammg Poblem ad ts Applcato M. He Dosh D. Chag Tved.Assocate Pofesso, H L College of Commece,

More information

SUBSEQUENCE CHARACTERIZAT ION OF UNIFORM STATISTICAL CONVERGENCE OF DOUBLE SEQUENCE

SUBSEQUENCE CHARACTERIZAT ION OF UNIFORM STATISTICAL CONVERGENCE OF DOUBLE SEQUENCE Reseach ad Coucatos atheatcs ad atheatcal ceces Vol 9 Issue 7 Pages 37-5 IN 39-6939 Publshed Ole o Novebe 9 7 7 Jyot cadec Pess htt//yotacadecessog UBEQUENCE CHRCTERIZT ION OF UNIFOR TTITIC CONVERGENCE

More information

A New Result On A,p n,δ k -Summabilty

A New Result On A,p n,δ k -Summabilty OSR Joual of Matheatics (OSR-JM) e-ssn: 2278-5728, p-ssn:239-765x. Volue 0, ssue Ve. V. (Feb. 204), PP 56-62 www.iosjouals.og A New Result O A,p,δ -Suabilty Ripeda Kua &Aditya Kua Raghuashi Depatet of

More information

Chapter 3. Differentiation 3.2 Differentiation Rules for Polynomials, Exponentials, Products and Quotients

Chapter 3. Differentiation 3.2 Differentiation Rules for Polynomials, Exponentials, Products and Quotients 3.2 Dfferetato Rules 1 Capter 3. Dfferetato 3.2 Dfferetato Rules for Polyomals, Expoetals, Proucts a Quotets Rule 1. Dervatve of a Costat Fucto. If f as te costat value f(x) = c, te f x = [c] = 0. x Proof.

More information

Difference Sets of Null Density Subsets of

Difference Sets of Null Density Subsets of dvces Pue Mthetcs 95-99 http://ddoog/436/p37 Pulshed Ole M (http://wwwscrpog/oul/p) Dffeece Sets of Null Dest Susets of Dwoud hd Dsted M Hosse Deptet of Mthetcs Uvest of Gul Rsht I El: hd@gulc h@googlelco

More information

Some Different Perspectives on Linear Least Squares

Some Different Perspectives on Linear Least Squares Soe Dfferet Perspectves o Lear Least Squares A stadard proble statstcs s to easure a respose or depedet varable, y, at fed values of oe or ore depedet varables. Soetes there ests a deterstc odel y f (,,

More information

V. Hemalatha, V. Mohana Selvi,

V. Hemalatha, V. Mohana Selvi, Iteratoal Joural of Scetfc & Egeerg Research, Volue 6, Issue, Noveber-0 ISSN - SUPER GEOMETRIC MEAN LABELING OF SOME CYCLE RELATED GRAPHS V Healatha, V Mohaa Selv, ABSTRACT-Let G be a graph wth p vertces

More information

Discrete Pseudo Almost Periodic Solutions for Some Difference Equations

Discrete Pseudo Almost Periodic Solutions for Some Difference Equations Advaces Pue Matheatcs 8-7 do:46/ a44 Publshed Ole July (htt://wwwscrpog/joual/a) Dscete Pseudo Alost Peodc Solutos fo Soe Dffeece Equatos Abstact Elhad At Dads * Khall Ezzb Lahce Lhach Uvesty Cad Ayyad

More information

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi Assgmet /MATH 47/Wte Due: Thusday Jauay The poblems to solve ae umbeed [] to [] below Fst some explaatoy otes Fdg a bass of the colum-space of a max ad povg that the colum ak (dmeso of the colum space)

More information

A Remark on the Uniform Convergence of Some Sequences of Functions

A Remark on the Uniform Convergence of Some Sequences of Functions Advaces Pure Mathematcs 05 5 57-533 Publshed Ole July 05 ScRes. http://www.scrp.org/joural/apm http://dx.do.org/0.436/apm.05.59048 A Remark o the Uform Covergece of Some Sequeces of Fuctos Guy Degla Isttut

More information

ELEMENTS OF NUMBER THEORY. In the following we will use mainly integers and positive integers. - the set of integers - the set of positive integers

ELEMENTS OF NUMBER THEORY. In the following we will use mainly integers and positive integers. - the set of integers - the set of positive integers ELEMENTS OF NUMBER THEORY I the followg we wll use aly tegers a ostve tegers Ζ = { ± ± ± K} - the set of tegers Ν = { K} - the set of ostve tegers Oeratos o tegers: Ato Each two tegers (ostve tegers) ay

More information

CS 2750 Machine Learning. Lecture 7. Linear regression. CS 2750 Machine Learning. Linear regression. is a linear combination of input components x

CS 2750 Machine Learning. Lecture 7. Linear regression. CS 2750 Machine Learning. Linear regression. is a linear combination of input components x CS 75 Mache Learg Lecture 7 Lear regresso Mlos Hauskrecht los@cs.ptt.edu 59 Seott Square CS 75 Mache Learg Lear regresso Fucto f : X Y s a lear cobato of put copoets f + + + K d d K k - paraeters eghts

More information

Born-Oppenheimer Approximation. Kaito Takahashi

Born-Oppenheimer Approximation. Kaito Takahashi o-oppehee ppoato Kato Takahah toc Ut Fo quatu yte uch a ecto ad olecule t eae to ue ut that ft the=tomc UNT Ue a of ecto (ot kg) Ue chage of ecto (ot coulob) Ue hba fo agula oetu (ot kg - ) Ue 4pe 0 fo

More information

a s*:?:; -A: le London Dyers ^CleanefSt * S^d. per Y ard. -P W ..n 1 0, , c t o b e e d n e sd *B A J IllW6fAi>,EB. E D U ^ T IG r?

a s*:?:; -A: le London Dyers ^CleanefSt * S^d. per Y ard. -P W ..n 1 0, , c t o b e e d n e sd *B A J IllW6fAi>,EB. E D U ^ T IG r? ? 9 > 25? < ( x x 52 ) < x ( ) ( { 2 2 8 { 28 ] ( 297 «2 ) «2 2 97 () > Q ««5 > «? 2797 x 7 82 2797 Q z Q (

More information

Journal Of Inequalities And Applications, 2008, v. 2008, p

Journal Of Inequalities And Applications, 2008, v. 2008, p Ttle O verse Hlbert-tye equaltes Authors Chagja, Z; Cheug, WS Ctato Joural Of Iequaltes Ad Alcatos, 2008, v. 2008,. 693248 Issued Date 2008 URL htt://hdl.hadle.et/0722/56208 Rghts Ths work s lcesed uder

More information

Non-degenerate Perturbation Theory

Non-degenerate Perturbation Theory No-degeerate Perturbato Theory Proble : H E ca't solve exactly. But wth H H H' H" L H E Uperturbed egevalue proble. Ca solve exactly. E Therefore, kow ad. H ' H" called perturbatos Copyrght Mchael D. Fayer,

More information

Solutions to problem set ); (, ) (

Solutions to problem set ); (, ) ( Solutos to proble set.. L = ( yp p ); L = ( p p ); y y L, L = yp p, p p = yp p, + p [, p ] y y y = yp + p = L y Here we use for eaple that yp, p = yp p p yp = yp, p = yp : factors that coute ca be treated

More information

Department of Mathematics UNIVERSITY OF OSLO. FORMULAS FOR STK4040 (version 1, September 12th, 2011) A - Vectors and matrices

Department of Mathematics UNIVERSITY OF OSLO. FORMULAS FOR STK4040 (version 1, September 12th, 2011) A - Vectors and matrices Deartet of Matheatcs UNIVERSITY OF OSLO FORMULAS FOR STK4040 (verso Seteber th 0) A - Vectors ad atrces A) For a x atrx A ad a x atrx B we have ( AB) BA A) For osgular square atrces A ad B we have ( )

More information

ON THE EXTENSION OF WEAK ARMENDARIZ RINGS RELATIVE TO A MONOID

ON THE EXTENSION OF WEAK ARMENDARIZ RINGS RELATIVE TO A MONOID wwweo/voue/vo9iue/ijas_9 9f ON THE EXTENSION OF WEAK AENDAIZ INGS ELATIVE TO A ONOID Eye A & Ayou Eoy Dee of e Nowe No Uvey Lzou 77 C Dee of e Uvey of Kou Ou Su E-: eye76@o; you975@yooo ABSTACT Fo oo we

More information

Multiple Choice Test. Chapter Adequacy of Models for Regression

Multiple Choice Test. Chapter Adequacy of Models for Regression Multple Choce Test Chapter 06.0 Adequac of Models for Regresso. For a lear regresso model to be cosdered adequate, the percetage of scaled resduals that eed to be the rage [-,] s greater tha or equal to

More information

Strong Result for Level Crossings of Random Polynomials. Dipty Rani Dhal, Dr. P. K. Mishra. Department of Mathematics, CET, BPUT, BBSR, ODISHA, INDIA

Strong Result for Level Crossings of Random Polynomials. Dipty Rani Dhal, Dr. P. K. Mishra. Department of Mathematics, CET, BPUT, BBSR, ODISHA, INDIA Iteatioal Joual of Reseach i Egieeig ad aageet Techology (IJRET) olue Issue July 5 Available at http://wwwijetco/ Stog Result fo Level Cossigs of Rado olyoials Dipty Rai Dhal D K isha Depatet of atheatics

More information

GREEN S FUNCTION FOR HEAT CONDUCTION PROBLEMS IN A MULTI-LAYERED HOLLOW CYLINDER

GREEN S FUNCTION FOR HEAT CONDUCTION PROBLEMS IN A MULTI-LAYERED HOLLOW CYLINDER Joual of ppled Mathematcs ad Computatoal Mechacs 4, 3(3), 5- GREE S FUCTIO FOR HET CODUCTIO PROBLEMS I MULTI-LYERED HOLLOW CYLIDER Stasław Kukla, Uszula Sedlecka Isttute of Mathematcs, Czestochowa Uvesty

More information

Phys 2310 Fri. Oct. 23, 2017 Today s Topics. Begin Chapter 6: More on Geometric Optics Reading for Next Time

Phys 2310 Fri. Oct. 23, 2017 Today s Topics. Begin Chapter 6: More on Geometric Optics Reading for Next Time Py F. Oct., 7 Today Topc Beg Capte 6: Moe o Geometc Optc eadg fo Next Tme Homewok t Week HW # Homewok t week due Mo., Oct. : Capte 4: #47, 57, 59, 6, 6, 6, 6, 67, 7 Supplemetal: Tck ee ad e Sytem Pcple

More information

Chapter 3. Differentiation 3.3 Differentiation Rules

Chapter 3. Differentiation 3.3 Differentiation Rules 3.3 Dfferetato Rules 1 Capter 3. Dfferetato 3.3 Dfferetato Rules Dervatve of a Costat Fucto. If f as te costat value f(x) = c, te f x = [c] = 0. x Proof. From te efto: f (x) f(x + ) f(x) o c c 0 = 0. QED

More information

Strong Result for Level Crossings of Random Polynomials

Strong Result for Level Crossings of Random Polynomials IOSR Joual of haacy ad Biological Scieces (IOSR-JBS) e-issn:78-8, p-issn:19-7676 Volue 11, Issue Ve III (ay - Ju16), 1-18 wwwiosjoualsog Stog Result fo Level Cossigs of Rado olyoials 1 DKisha, AK asigh

More information

Chapter 8. Linear Momentum, Impulse, and Collisions

Chapter 8. Linear Momentum, Impulse, and Collisions Chapte 8 Lnea oentu, Ipulse, and Collsons 8. Lnea oentu and Ipulse The lnea oentu p of a patcle of ass ovng wth velocty v s defned as: p " v ote that p s a vecto that ponts n the sae decton as the velocty

More information

( t) ( t) ( t) ρ ψ ψ. (9.1)

( t) ( t) ( t) ρ ψ ψ. (9.1) Adre Toaoff, MT Departet of Cestry, 3/19/29 p. 9-1 9. THE DENSTY MATRX Te desty atrx or desty operator s a alterate represetato of te state of a quatu syste for wc we ave prevously used te wavefucto. Altoug

More information

Decomposition of Hadamard Matrices

Decomposition of Hadamard Matrices Chapter 7 Decomposto of Hadamard Matrces We hae see Chapter that Hadamard s orgal costructo of Hadamard matrces states that the Kroecer product of Hadamard matrces of orders m ad s a Hadamard matrx of

More information

Lecture 07: Poles and Zeros

Lecture 07: Poles and Zeros Lecture 07: Poles ad Zeros Defto of poles ad zeros The trasfer fucto provdes a bass for determg mportat system respose characterstcs wthout solvg the complete dfferetal equato. As defed, the trasfer fucto

More information

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n .. Soluto of Problem. M s obvously cotuous o ], [ ad ], [. Observe that M x,..., x ) M x,..., x ) )..) We ext show that M s odecreasg o ], [. Of course.) mles that M s odecreasg o ], [ as well. To show

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

Introducing Sieve of Eratosthenes as a Theorem

Introducing Sieve of Eratosthenes as a Theorem ISSN(Ole 9-8 ISSN (Prt - Iteratoal Joural of Iovatve Research Scece Egeerg ad echolog (A Hgh Imact Factor & UGC Aroved Joural Webste wwwrsetcom Vol Issue 9 Setember Itroducg Seve of Eratosthees as a heorem

More information

On Submanifolds of an Almost r-paracontact Riemannian Manifold Endowed with a Quarter Symmetric Metric Connection

On Submanifolds of an Almost r-paracontact Riemannian Manifold Endowed with a Quarter Symmetric Metric Connection Theoretcal Mathematcs & Applcatos vol. 4 o. 4 04-7 ISS: 79-9687 prt 79-9709 ole Scepress Ltd 04 O Submafolds of a Almost r-paracotact emaa Mafold Edowed wth a Quarter Symmetrc Metrc Coecto Mob Ahmad Abdullah.

More information

Random Variables and Probability Distributions

Random Variables and Probability Distributions Radom Varables ad Probablty Dstrbutos * If X : S R s a dscrete radom varable wth rage {x, x, x 3,. } the r = P (X = xr ) = * Let X : S R be a dscrete radom varable wth rage {x, x, x 3,.}.If x r P(X = x

More information

Third handout: On the Gini Index

Third handout: On the Gini Index Thrd hadout: O the dex Corrado, a tala statstca, proposed (, 9, 96) to measure absolute equalt va the mea dfferece whch s defed as ( / ) where refers to the total umber of dvduals socet. Assume that. The

More information

LOWELL WEEKI.Y JOURINAL

LOWELL WEEKI.Y JOURINAL / $ 8) 2 {!»!» X ( (!!!?! () ~ x 8» x /»!! $?» 8! ) ( ) 8 X x /! / x 9 ( 2 2! z»!!»! ) / x»! ( (»»!» [ ~!! 8 X / Q X x» ( (!»! Q ) X x X!! (? ( ()» 9 X»/ Q ( (X )!» / )! X» x / 6!»! }? ( q ( ) / X! 8 x»

More information

ON WEIGHTED INTEGRAL AND DISCRETE OPIAL TYPE INEQUALITIES

ON WEIGHTED INTEGRAL AND DISCRETE OPIAL TYPE INEQUALITIES M atheatcal I equaltes & A pplcatos Volue 19, Nuber 4 16, 195 137 do:1.7153/a-19-95 ON WEIGHTED INTEGRAL AND DISCRETE OPIAL TYPE INEQUALITIES MAJA ANDRIĆ, JOSIP PEČARIĆ AND IVAN PERIĆ Coucated by C. P.

More information

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

THE TRUNCATED RANDIĆ-TYPE INDICES

THE TRUNCATED RANDIĆ-TYPE INDICES Kragujeac J Sc 3 (00 47-5 UDC 547:54 THE TUNCATED ANDIĆ-TYPE INDICES odjtaba horba, a ohaad Al Hossezadeh, b Ia uta c a Departet of atheatcs, Faculty of Scece, Shahd ajae Teacher Trag Uersty, Tehra, 785-3,

More information

Sandwich Theorems for Mcshane Integration

Sandwich Theorems for Mcshane Integration It Joual of Math alyss, Vol 5, 20, o, 23-34 adwch Theoems fo Mcshae Itegato Ismet Temaj Pshta Uvesty Educato Faculty, Pshta, Kosovo temaj63@yahoocom go Tato Taa Polytechc Uvesty Mathematcs Egeeg Faculty,

More information

CHAPTER 5 INTEGRATION

CHAPTER 5 INTEGRATION CHAPTER 5 INTEGRATION 5.1 AREA AND ESTIMATING WITH FINITE SUMS 1. fax x Sce f s creasg o Ò!ß Ó, we use left edpots to ota lower sums ad rght edpots to ota upper sums.! )!! ( (!ˆ 4 4 4Š ˆ ˆ ˆ 4 4 )! (a)

More information

CH E 374 Computational Methods in Engineering Fall 2007

CH E 374 Computational Methods in Engineering Fall 2007 CH E 7 Computatoal Methods Egeerg Fall 007 Sample Soluto 5. The data o the varato of the rato of stagato pressure to statc pressure (r ) wth Mach umber ( M ) for the flow through a duct are as follows:

More information

Inequalities for Dual Orlicz Mixed Quermassintegrals.

Inequalities for Dual Orlicz Mixed Quermassintegrals. Advaces Pue Mathematcs 206 6 894-902 http://wwwscpog/joual/apm IN Ole: 260-0384 IN Pt: 260-0368 Iequaltes fo Dual Olcz Mxed Quemasstegals jua u chool of Mathematcs ad Computatoal cece Hua Uvesty of cece

More information

Analysis of Lagrange Interpolation Formula

Analysis of Lagrange Interpolation Formula P IJISET - Iteratoal Joural of Iovatve Scece, Egeerg & Techology, Vol. Issue, December 4. www.jset.com ISS 348 7968 Aalyss of Lagrage Iterpolato Formula Vjay Dahya PDepartmet of MathematcsMaharaja Surajmal

More information

Unique Common Fixed Point of Sequences of Mappings in G-Metric Space M. Akram *, Nosheen

Unique Common Fixed Point of Sequences of Mappings in G-Metric Space M. Akram *, Nosheen Vol No : Joural of Facult of Egeerg & echolog JFE Pages 9- Uque Coo Fed Pot of Sequeces of Mags -Metrc Sace M. Ara * Noshee * Deartet of Matheatcs C Uverst Lahore Pasta. Eal: ara7@ahoo.co Deartet of Matheatcs

More information

MULTIOBJECTIVE NONLINEAR FRACTIONAL PROGRAMMING PROBLEMS INVOLVING GENERALIZED d - TYPE-I n -SET FUNCTIONS

MULTIOBJECTIVE NONLINEAR FRACTIONAL PROGRAMMING PROBLEMS INVOLVING GENERALIZED d - TYPE-I n -SET FUNCTIONS THE PUBLIHING HOUE PROCEEDING OF THE ROMANIAN ACADEMY, eres A OF THE ROMANIAN ACADEMY Volue 8, Nuber /27,.- MULTIOBJECTIVE NONLINEAR FRACTIONAL PROGRAMMING PROBLEM INVOLVING GENERALIZED d - TYPE-I -ET

More information

A Convergence Analysis of Discontinuous Collocation Method for IAEs of Index 1 Using the Concept Strongly Equivalent

A Convergence Analysis of Discontinuous Collocation Method for IAEs of Index 1 Using the Concept Strongly Equivalent Appled ad Coputatoal Matheatcs 27; 7(-): 2-7 http://www.scecepublshggoup.co//ac do:.648/.ac.s.287.2 ISSN: 2328-565 (Pt); ISSN: 2328-563 (Ole) A Covegece Aalyss of Dscotuous Collocato Method fo IAEs of

More information

DUALITY FOR MINIMUM MATRIX NORM PROBLEMS

DUALITY FOR MINIMUM MATRIX NORM PROBLEMS HE PUBLISHING HOUSE PROCEEDINGS OF HE ROMNIN CDEMY, Seres, OF HE ROMNIN CDEMY Vole 6, Nber /2005,. 000-000 DULIY FOR MINIMUM MRI NORM PROBLEMS Vasle PRED, Crstca FULG Uverst of Bcharest, Faclt of Matheatcs

More information

Numerical Analysis Formulae Booklet

Numerical Analysis Formulae Booklet Numercal Aalyss Formulae Booklet. Iteratve Scemes for Systems of Lear Algebrac Equatos:.... Taylor Seres... 3. Fte Dfferece Approxmatos... 3 4. Egevalues ad Egevectors of Matrces.... 3 5. Vector ad Matrx

More information

Coherent Potential Approximation

Coherent Potential Approximation Coheret Potetal Approxato Noveber 29, 2009 Gree-fucto atrces the TB forals I the tght bdg TB pcture the atrx of a Haltoa H s the for H = { H j}, where H j = δ j ε + γ j. 2 Sgle ad double uderles deote

More information

VECTOR MECHANICS FOR ENGINEERS: Vector Mechanics for Engineers: Dynamics. In the current chapter, you will study the motion of systems of particles.

VECTOR MECHANICS FOR ENGINEERS: Vector Mechanics for Engineers: Dynamics. In the current chapter, you will study the motion of systems of particles. Seeth Edto CHPTER 4 VECTOR MECHNICS FOR ENINEERS: DYNMICS Fedad P. ee E. Russell Johsto, J. Systems of Patcles Lectue Notes: J. Walt Ole Texas Tech Uesty 003 The Mcaw-Hll Compaes, Ic. ll ghts eseed. Seeth

More information

RECIPROCAL POWER SUMS. Anthony Sofo Victoria University, Melbourne City, Australia.

RECIPROCAL POWER SUMS. Anthony Sofo Victoria University, Melbourne City, Australia. #A39 INTEGERS () RECIPROCAL POWER SUMS Athoy Sofo Victoia Uivesity, Melboue City, Austalia. athoy.sofo@vu.edu.au Received: /8/, Acceted: 6//, Published: 6/5/ Abstact I this ae we give a alteative oof ad

More information

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations Dervato of -Pot Block Method Formula for Solvg Frst Order Stff Ordary Dfferetal Equatos Kharul Hamd Kharul Auar, Kharl Iskadar Othma, Zara Bb Ibrahm Abstract Dervato of pot block method formula wth costat

More information

Bivariate Vieta-Fibonacci and Bivariate Vieta-Lucas Polynomials

Bivariate Vieta-Fibonacci and Bivariate Vieta-Lucas Polynomials IOSR Joural of Mathematcs (IOSR-JM) e-issn: 78-78, p-issn: 19-76X. Volume 1, Issue Ver. II (Jul. - Aug.016), PP -0 www.osrjourals.org Bvarate Veta-Fboacc ad Bvarate Veta-Lucas Polomals E. Gokce KOCER 1

More information

Born-Oppenheimer Approximation and Nonadiabatic Effects. Hans Lischka University of Vienna

Born-Oppenheimer Approximation and Nonadiabatic Effects. Hans Lischka University of Vienna Bo-Oppeheie Appoxiatio ad Noadiabatic Effects Has Lischa Uivesity of Viea Typical situatio. Fac-Codo excitatio fo the iiu of the goud state. Covetioal dyaics possibly M* ad TS 3. Coical itesectio fuel

More information

Integration by Parts for D K

Integration by Parts for D K Itertol OPEN ACCESS Jourl Of Moder Egeerg Reserc IJMER Itegrto y Prts for D K Itegrl T K Gr, S Ry 2 Deprtmet of Mtemtcs, Rgutpur College, Rgutpur-72333, Purul, West Begl, Id 2 Deprtmet of Mtemtcs, Ss Bv,

More information

Training Sample Model: Given n observations, [[( Yi, x i the sample model can be expressed as (1) where, zero and variance σ

Training Sample Model: Given n observations, [[( Yi, x i the sample model can be expressed as (1) where, zero and variance σ Stat 74 Estmato for Geeral Lear Model Prof. Goel Broad Outle Geeral Lear Model (GLM): Trag Samle Model: Gve observatos, [[( Y, x ), x = ( x,, xr )], =,,, the samle model ca be exressed as Y = µ ( x, x,,

More information

Fourth Order Four-Stage Diagonally Implicit Runge-Kutta Method for Linear Ordinary Differential Equations ABSTRACT INTRODUCTION

Fourth Order Four-Stage Diagonally Implicit Runge-Kutta Method for Linear Ordinary Differential Equations ABSTRACT INTRODUCTION Malasa Joural of Mathematcal Sceces (): 95-05 (00) Fourth Order Four-Stage Dagoall Implct Ruge-Kutta Method for Lear Ordar Dfferetal Equatos Nur Izzat Che Jawas, Fudzah Ismal, Mohamed Sulema, 3 Azm Jaafar

More information

A GENERALIZATION OF A CONJECTURE OF MELHAM. 1. Introduction The Fibonomial coefficient is, for n m 1, defined by

A GENERALIZATION OF A CONJECTURE OF MELHAM. 1. Introduction The Fibonomial coefficient is, for n m 1, defined by A GENERALIZATION OF A CONJECTURE OF MELHAM EMRAH KILIC 1, ILKER AKKUS, AND HELMUT PRODINGER 3 Abstact A genealization of one of Melha s conectues is pesented Afte witing it in tes of Gaussian binoial coefficients,

More information

FRACTIONAL CALCULUS OF GENERALIZED K-MITTAG-LEFFLER FUNCTION

FRACTIONAL CALCULUS OF GENERALIZED K-MITTAG-LEFFLER FUNCTION Joual of Rajastha Academy of Physical Scieces ISSN : 972-636; URL : htt://aos.og.i Vol.5, No.&2, Mach-Jue, 26, 89-96 FRACTIONAL CALCULUS OF GENERALIZED K-MITTAG-LEFFLER FUNCTION Jiteda Daiya ad Jeta Ram

More information

Noncommutative Solitons and Quasideterminants

Noncommutative Solitons and Quasideterminants Nocommutatve Soltos ad Quasdetemats asas HNK Nagoya Uvesty ept. o at. Teoetcal Pyscs Sema Haove o eb.8t ased o H ``NC ad's cojectue ad tegable systems NP74 6 368 ep-t/69 H ``Notes o eact mult-solto solutos

More information

Algorithms Theory, Solution for Assignment 2

Algorithms Theory, Solution for Assignment 2 Juor-Prof. Dr. Robert Elsässer, Marco Muñz, Phllp Hedegger WS 2009/200 Algorthms Theory, Soluto for Assgmet 2 http://lak.formatk.u-freburg.de/lak_teachg/ws09_0/algo090.php Exercse 2. - Fast Fourer Trasform

More information

Conditional Convergence of Infinite Products

Conditional Convergence of Infinite Products Coditioal Covegece of Ifiite Poducts William F. Tech Ameica Mathematical Mothly 106 1999), 646-651 I this aticle we evisit the classical subject of ifiite poducts. Fo stadad defiitios ad theoems o this

More information

Lecture 11: Introduction to nonlinear optics I.

Lecture 11: Introduction to nonlinear optics I. Lectue : Itoducto to olea optcs I. Pet Kužel Fomulato of the olea optcs: olea polazato Classfcato of the olea pheomea Popagato of wea optc sgals stog quas-statc felds (descpto usg eomalzed lea paametes)!

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

Applying the condition for equilibrium to this equilibrium, we get (1) n i i =, r G and 5 i

Applying the condition for equilibrium to this equilibrium, we get (1) n i i =, r G and 5 i CHEMICAL EQUILIBRIA The Thermodyamc Equlbrum Costat Cosder a reversble reacto of the type 1 A 1 + 2 A 2 + W m A m + m+1 A m+1 + Assgg postve values to the stochometrc coeffcets o the rght had sde ad egatve

More information

Physics 114 Exam 2 Fall Name:

Physics 114 Exam 2 Fall Name: Physcs 114 Exam Fall 015 Name: For gradg purposes (do ot wrte here): Questo 1. 1... 3. 3. Problem Aswer each of the followg questos. Pots for each questo are dcated red. Uless otherwse dcated, the amout

More information

Consumer theory. A. The preference ordering B. The feasible set C. The consumption decision. A. The preference ordering. Consumption bundle

Consumer theory. A. The preference ordering B. The feasible set C. The consumption decision. A. The preference ordering. Consumption bundle Thomas Soesso Mcoecoomcs Lecte Cosme theoy A. The efeece odeg B. The feasble set C. The cosmto decso A. The efeece odeg Cosmto bdle x ( 2 x, x,... x ) x Assmtos: Comleteess 2 Tastvty 3 Reflexvty 4 No-satato

More information