Evaluation of Seismic Earth Pressures at the Passive Side

Size: px
Start display at page:

Download "Evaluation of Seismic Earth Pressures at the Passive Side"

Transcription

1 The 1 th World Conference on Earthquake Engineering October -17,, Beijing, China Evaluation of Seismic Earth Pressures at the Passive Side Fei SONG 1 and Jian-Min ZHANG 1 PhD. Candidate, Institute of Geotechnical Engineering, School of Civil Engineering, Tsinghua University, Beijing. China Professor, Institute of Geotechnical Engineering, School of Civil Engineering, Tsinghua University, Beijing, China songf5@mails.tsinghua.edu.cn, zhangjm@tsinghua.edu.cn ABSTRACT : Estimation of seismic earth ressures constitutes an imortant subject of research in civil engineering. Previous studies showed strong deendence of earth ressure coefficient on lateral strain constraint of the backfill, i.e., the wall dislacement has a significant effect on seismic earth ressures acting against retaining structures. Besides, exerimental investigations and theoretical analysis indicate that when the backfill is at the assive side, the lanar sliding surface assumtion will overestimate earth resistance for higher wall friction angles, which will make structures such as sheet ile walls and their anchor blocks deending on earth ressures at the assive side for suort underdesgned. In this aer, based on seudo-static analysis and the concet of intermediate soil wedge with curved surface, a new methodology is develoed to evaluate seismic earth ressures at the assive side under any boundary strain constraint for a rigid retaining structure with translational movement. It has the advantage over the Mononobe-Okabe method since it can take into account the effect of wall dislacement on lateral earth ressures and the curved sliding surface is emloyed in the analysis. The aroach can determine the seismic earth ressure coefficient of normally consolidated cohesionless soil under any lateral deformation between the isotroic comression and the assive states. Corresonding comuter rogram is written to calculate the seismic earth ressure of a tyical retaining wall system. The results are comared with those obtained based on the assumtion of a lanar sliding surface. KEYWORDS: Seismic earth ressure, seudo-static analysis intermediate soil wedge; curved sliding surface;

2 The 1 th World Conference on Earthquake Engineering October -17,, Beijing, China 1.INTRODUCTION Evaluation of seismic earth ressures is of ractical significance for the earthquake resistant design of retaining structures such as retaining walls, sheet ile bulkheads, cofferdams, bridge abutments, and basement walls of buildings. Among the several aroaches which have develoed to solve the dynamic earth ressure roblems (e.g., Okabe, 19; Mononobe and Matsuo, 199; Matsuo and Ohara, 196; Ichihara and Matsuzawa, 1973; Wu and Finn, 1999; Richards et al., 1979&1999), the well known Mononobe-Okabe method based on seudo-static analysis and limit equilibrium theory is still most widely used to determine the seismic earth ressure on a retaining structure due to its definite advantage of simlicity. The method is a modification of Coulomb s wedge theory by taking into account the inertia forces on a sliding soil wedge caused by earthquake accelerations. Its essential effectiveness in estimating the seismic active is confirmed by a number of exeriments, field observations and redictions (Mononobe and Matsuo, 199; Ishii et al. 196; Ohara et al., 197; Seed and Whitman, 197; Sherif et al., 19; Whitman, 199&1991).However, as in Coulomb theory, the failure surface is assumed lanar in the Mononobe-Okabe solution, regardless of the fact that the most critical sliding surface may be curved. Exerimental investigations and theoretical analysis show that the most critical sliding surface is usually curved in the assive earth ressure case and the lanar sliding surface assumtion will seriously overestimate earth resistance esecially for high wall friction angles. The Mononobe-Okabe method usually rovides an unsafe rediction of the seismic assive resistance. Therefore, it is more suitable to emloy the curved sliding surface in the analysis of earth ressure at the assive side (Terzaghi, 193&1967; James and Bransby, 197; Whitman and Christian, 199). Many researchers have done a lot of exerimental and theoretical researches in this field and develoed some theories and methods for the determination of assive earth ressure (Chen and Liu 199; Soubra and Kastner, 1991; Morison and Ebeling 1995; Soubra ; Kumar 1; Subba Rao and Choudhury 5). However, one of the basic requirements of all these theories and methods is that the wall should move sufficiently to create a limit-equilibrium state in the backfill, which means they are only suitable for determining the seismic earth ressure at the limit state. But this condition is not always satisfied. In many engineering ractices, large deformation causing active or assive states cannot occur in the backfill behind a retaining structure so that the earth ressure may fall anywhere between active and assive ressures. Exerimental evidences indicate that wall movement has significant effect on magnitude and distribution of lateral earth ressure (Terzaghi, 193; Matsuo et al., 197; Sherif et al., 19&19; Ishibashi et al., 197; Fang et al., 196&199). So this imortant fact must be taken into consideration in seismic resistant design of retaining structures. Based on the analysis of the strain ath test results, Zhang et al.(199) established the relation between the lateral earth ressure coefficient and the strain increment ratio and develoed a new theory for determining the lateral earth ressure between the active and assive states. By emloying the concet intermediate soil wedge which deends on mobilized frictional resistance, Zhang et al. extended Mononobe-Okabe method to new earth ressure formulas for determining the dynamic lateral earth ressure under any lateral deformation. The method has undoubted theoretical basis and clear hysical concets and is easy for alication because of its simlicity. However, as has been discussed reviously, the intermediate soil wedge with the lanar sliding surface assumtion will result in higher earth resistance at the assive side and the overestimation may be very serious esecially when the soil-wall interface is rough. Structures such as sheet ile walls and their anchor blocks deend on earth ressures at the assive side for suort. If the suorting ressures are unconservative, the structure may be underdesigned. In the resent technical note, the revious intermediate soil wedge deending on mobilized frictional resistance with the lanar sliding surface (Zhang et al, 199) is modified to one with the sliding surface as a combination of a logarithmic siral and a straight line when the wall movement renders the backfill at the assive side. On the basis a new seudo-static methodology of analysis is develoed to determine lateral earth ressures for any intermediate state form isotroic comression to assive conditions for a rigid retaining structure with translational movement. A research comuter rogram is written to calculate the seismic earth ressure coefficient and the results are analyzed and comared with those obtained using a lanar sliding surface.

3 The 1 th World Conference on Earthquake Engineering October -17,, Beijing, China. FORMULATION OF THE METHOD The backfill soil may extend or comress with the wall dislacement, which makes the soil under different strain constraints. Roscoe (197) emhasized the imortance of strain influence on earth ressures. The model test results of James and Bransby (197) indicated that the mobilized wall fricion angle and internal friction angle of the soil are different under different wall movements, leading to the change of earth ressures acting on retaining structures. The deendence of the coefficient of lateral earth ressure on the strain increment ratio was studied and on the basis the formation mechanism of earth ressure was discussed by Zhang et al. (199). Lateral strain arameter R is used to reresent the lateral deformation of the soil, which is caused by the wall dislacement. The relation between the soil lateral strain arameter R and the wall dislacement can be estimated by the formulas roosed by Zhang et al. (199): a Δ ( Δ a Δ ) R = Δ a (.1) 1 ( Δ < Δ ) a Δ 3 ( Δ Δ ) R = Δ (.) 3 ( Δ > Δ ) In the above equations wall dislacement is rescribed minus when its direction is away from the backfill while ositive when its direction is toward the backfill. a and reresent wall dislacements required to develo active and assive earth ressures resectively and can be estimated by the available exerimental results (Terzaghi 193, Mastuo et al. 197; Sherif et al. 19 & 19, Fang et al. 196 & 199, Terashi et al.1991, Ishihara et al. 1995). a and are constants changing within the ranges: < a < 1 and < < 1 and both are recommended to take around.5. When the wall dislacement makes the backfill soil fall between active and isotroic comression states, R changes within the range:-1 R 1. While for an intermediate stress state between isotroic comression and assive stress states, there is 1 R 3. The mobilized wall friction angle δ mob changes with the lateral strain arameter R and can be estimated by the following equations suggested by Zhang (199): k1 1 R δ mob = δ a ( 1 R 1) (.3) k R 1 δ mob = δ ( 1 R 3) (.) Where k 1 and k are exonents determined by tests and they can be assigned a value of unity, i.e., k 1 =k =1, if the change in δ mob with R is assumed linear. In the equations δ a and δ reresent wall friction angles mobilized at active and assive states resectively. Zhang et al.(199) investigated the deendence of the lateral earth ressure coefficient on the strain increment ratio based on a series of strain ath tests and established the relation between the earth ressure coefficient K and the lateral strain arameter R. K K = ( 1 R 1 1 (1 K ) R ) (.5) K 1 K = 1+ ( R 1) ( 1 R 3) (.6) In which K is the earth ressure coefficient at rest and K is the assive earth ressure coefficient. When R-value is 1 or 3, the backfill is at the active or assive state and the corresonding earth ressure coefficient

4 The 1 th World Conference on Earthquake Engineering October -17,, Beijing, China is the active earth ressure coefficient K a or the assive one K. When R value is 1, the soil is at the isotroic comression stress state and the earth ressure coefficient is 1 for isotroic soils. Based the equation (5) and (6) Zhang et al.(199) extended Mononobe-Okabe theory to evaluate the seismic earth ressure for retaining walls under any lateral dislacement. However, as has been discussed, for the stress state of backfill soil between isotroic comression and assive states, with the increase of wall dislacement and mobilized wall friction angle it is more rational to emloy the intermediate sliding wedge with the curved surface for the evaluation of seismic earth ressure. Therefore, a modified method using curved sliding surfaces based on the seudo-static concet is adoted for the comutation of the seismic earth ressure coefficients at the assive side. The soil-wall and the dynamic intermediate soil wedge at the assive side for the analysis is given in Fig. 1. A dry, homogeneous, and isotroic cohesionless backfill with surcharge is assumed in the analysis. It s required to estimate the magnitude of seismic earth ressure against a rigid retaining structure of vertical height H with an inclination α to the vertical, as shown in Fig. 1, in the resence of horizontal earthquake acceleration kh. g and vertical earthquake acceleration k v. g. The ground surface is horizontal. The mobilized wall friction angle δ mob increases with the increase of wall dislacement. Horizontal and vertical seismic coefficients and k v can be determined based on an equivalent seismic coefficient (Zhang et al. 199) for considering the non-uniform seismic acceleration distribution with height of the backfill soil. Investigations show that there is a considerable reduction in the shearing resistance of the soil when the average ground acceleration exceeds a certain critical value (Okamoto, 1956; Richards, 199). In the resent analysis it is assumed that the basic soil arameters: unit weight γ and internal friction angle φ are not affected by the occurrence of an earthquake. So the seismic earth ressure coefficients resented in this technical note is only alicable for earthquake acceleration magnitude less than such critical values. Fig. 1. Dynamic intermediate soil wedge with curved surface If the wall moves toward the backfill while its dislacement is not large enough and does not reach, the shear strength of the backfill soil is not able to be fully mobilized, and therefore, a assive soil wedge cannot be formed behind the wall. However, in rincile, a soil wedge roducing the maximum lateral earth ressure against the wall exists for any given level of wall dislacement. This soil wedge at the assive side is therefore called an intermediate sliding wedge with a curved surface, as shown in Fig. 1. The sliding surface of the intermediate soil wedge OABCO is assumed to be of a comosite shae comrising an arc of the logarithmic siral AB and a straight line BC near the ground. In this case, mobilized internal friction angle of soil on the comosite sliding surface and wall friction angle mobilized are designated by φ mob and δ mob. The seismic earth ressure coefficient at the assive side can be evaluated by the equation (.6). However, as is ointed out, the seismic assive earth ressure coefficient K in equation (.6) shouldn t be determined by Mononobe-Okabe theory based on lanar sliding surface assumtion, but should be estimated by the methods based on curved sliding surface. The method roosed by Kumar () is modified and extended to include the earth ressure roduced by the following three arts: (Ⅰ) vertical inertial body force kv. W, where W is the weight of soil wedge OABCO; (Ⅱ) surcharge q. OC; (Ⅲ) seudo-static forces kh. q. OC and k v. q. OC. The detailed derivation is not given here due to the limitation of the article length. And it should be noted that the wall friction angle δ in the method should be substituted by the mobilized wall friction angle δ mob estimated by equation (.). The seismic assive earth coefficient K in equation (.6) can be obtained by this modified method. The method develoed in this article is suitable for the estimation of seismic earth ressures at the assive side acting on rigid retaining structures against isotroic normally consolidated cohesionless soil.

5 The 1 th World Conference on Earthquake Engineering October -17,, Beijing, China 3. DISCUSSION AND COMPARISON OF RESULTS Corresonding comuter code is written based on the methodology develoed above. The variation of seismic earth ressure coefficient at the assive side with horizontal seismic coefficient and wall friction angle forϕ =5, k v = and α= is resented in Fig =.1 =. =.3 =. =.5 1/9 /9 3/9 /9 5/9 6/9 7/9 /9 1 Normalized wall dislacement ( Δ / Δ ) (a) δ = 11 1 =.1 9 =. 7 6 =.3 =. = /9 /9 3/9 /9 5/9 6/9 7/9 /9 1 Δ / Δ (b) δ =φ/ =.1 =. =.3 =. =.5 1/9 /9 3/9 /9 5/9 6/9 7/9 /9 1 Δ / Δ (c) δ =φ/3 Figure Seismic earth ressure coefficients at the assive side It can be seen from Fig that when the wall dislacement toward the backfill soil makes it fall between isotroic comression and assive states (1 R 3 ),with the increase of wall dislacement level the shear strength of soil and wall friction angle is increasingly mobilized, leading to the increase of the seismic earth ressure coefficient. When = /9, R=1, the backfill is at the isotroic comression state and the earth ressure coefficient is 1 and when =, R=3, the backfill is at the assive state and the earth ressure coefficient is the assive earth ressure coefficient based on comosite sliding surface. Seismic earth ressure coefficient at the assive side decreases with increase in and decrease in δ. In order to study the effect of the shae of the sliding surface on the evaluation of seismic earth ressure coefficients, a comarison is made of seismic earth ressure coefficient values at the assive side obtained from resent study and those based on the lanar sliding surface with resect to different horizontal seismic coefficients forϕ =5,α=, k v =, which is shown in Fig. 3.

6 The 1 th World Conference on Earthquake Engineering October -17,, Beijing, China 36 3 Planar surface δ= Planar surface δ=φ/3 Planar surface δ=φ/ Planar surface δ=φ/3 Curved surface δ= Curved surface Curved surface Curved surface δ=φ/3 δ=φ/ δ=φ/3 1/9 /9 3/9 /9 5/9 6/9 7/9 /9 1 Normalized wall dislacement ( Δ / Δ ) /9 /9 3/9 /9 5/9 6/9 7/9 /9 1 Δ / Δ 36 3 (a) =.1 (b) =. 1/9 /9 3/9 /9 5/9 6/9 7/9 /9 1 Δ / (c) =.3 (d) =. Δ 1/9 /9 3/9 /9 5/9 6/9 7/9 /9 1 1/9 /9 3/9 /9 5/9 6/9 7/9 /9 1 Δ / Δ / Δ (e) =.5 Fig 3 Comarison of seismic earth ressure coefficients for φ=5, α=, k v = 3 Δ It can be seen from Fig.3 that when δ =, the results obtained by both methods are identical because in this case the focus of the log siral locates in the infinite distance from the to of the wall and the curvature of the sliding surface is very small and so the curved surface can be regarded nearly as lanar. However, when δ is not zero, the error resulted from lanar intermediate sliding wedge gradually increases when the shear strength of the soil and wall friction angle are increasingly mobilized with the increase of wall dislacement. When the

7 The 1 th World Conference on Earthquake Engineering October -17,, Beijing, China wall friction angle and the wall dislacement are small, i.e., δ <φ/ or << /9, the results based on lanar sliding surface assumtion can satisfy the recision request of the engineering. When the wall friction angle and the wall dislacement are large, the backfill soil aroaches the assive limit state, and it is reasonable for the engineers to divide the calculation results based on the lanar sliding surface by a roer safety factor in ractical design. The seismic earth ressure coefficients after reduction is similar to the ones obtained on the basis of curved or comosite sliding surface.. CONCLUSIONS A new methodology is develoed in this technical note to evaluate the seismic earth ressure coefficients for normally consolidated cohesionless backfill under any lateral deformation between the isotroic comression and assive states. The resent method has the advantage over the method roosed by Zhang et al. (199) since it is based on the concet of intermediate soil wedge with curved sliding surface. Calculation results show that when the wall friction angle and wall dislacement are large, the seismic earth ressure coefficients at the assive side obtained by the resent method are areciably smaller than those got based on lanar surface assumtion, which means that the error due to lanar assumtion is always on the unsafe side while the roosed method is more reasonable for this case. By the comarison with results based on sliding wedge with lanar surface, it is found that when the wall friction angle and wall dislacement is large, it s reasonable to divide the calculation results based on the lanar sliding surface by a roer safety factor in engineering ractices. ACKNOWLEDGEMENT The authors wish to thank the science fund for doctoral rogram of university from the Ministry of Education of China (No. 736) and National Basic Research Program of China (973 Program) (No. 7CB711) for their financial suort. REFERENCES Chen, W. F. and Liu X. L. (199). Limit analysis in soil mechanics, Elsevier, Amsterdam, The Netherlands. Fang, Y. S. and Ishibashi, I. (196). Static earth ressures with various wall movements. Journal of geotechnical engineering 1:3, Fang, Y. S., Chen T. J. and Wu, B. F. (199). Passive earth ressures with various wall movements. Journal of Geotechnical Engineering :, )Ichihara, M. and Matsuzawa, H. (1973): Earth ressure during earthquake, Soils and Foundations 13:,75-6. Ishii, Y., Arai, H. and Tsuchida, H. (196). Lateral earth ressure in an earthquake. Proceedings of the nd World Conference on Earthquake Engineering, Tokyo, 1: Ishibashi, I. and Fang, Y. S. (197): Dynamic earth ressures with different wall movement modes. Soils and Foundations 7:, 11-. Ishihara, K., Arakawa, T., Saito, T., Hada, M. and Huang, Y. (1995). Study on the earth ressure by using a large-size soil box with a movable wall. Proceedings of the 3th Jaan National Conference on Soil Mechanics and Foundation Engineering, James, R. G. and Bransby, P. L. (197). Exerimental and theoretical investigation of a assive earth ressure roblem. Geotechnique :1, Kumar, J., and Subba Rao, K.S. (1997). Passive ressure coefficients, critical failure surface and its kinematic admissibility. Geotechnique, 7:1, Kumar, J. (1).Seismic assive earth ressure coefficients for sands. Canadian Geotechnical Journal 3:,76-1. Matsuo, H. and Ohara, S. (196). Lateral earth ressure and stability of quay walls during earthquakes. Proceedings of nd World Conference on Earthquake Engineering, Tokyo, 1:5-13. Matsuo, M., Kenmochi, S. and Yagi, H. (197). Exerimental study on earth ressure of retaining wall by field

8 The 1 th World Conference on Earthquake Engineering October -17,, Beijing, China tests. Soils and foundations 1:3, 7-1. Mononobe, N., and Matsuo, H. (199). On the determination of earth ressure during earthquakes. Proceedings of the World Engineering Congress 9, Morrison, E. E., and Ebeling, R. M. (1995). Limit equilibrium comutation of dynamic assive earth ressure. Canadian Geotechnical Journal, 3:3, 1~7. Ohara, S., Maehara, H. and Nagata, H. (197). On seismic active earth ressures (in Jaanese). Tsuchi-to-Kiso1:, Okamaoto, S. (1956). Bearing caacity of sandy soil and lateral earth ressure during earthquakes. Proceedings of the 1st World Conference on Earthquake Engineering, California, 1-6 Okabe, S. (19): General theory on earth ressure and seismic stability of retaining wall and dam. Journal of the Jaan Society of Civil Engineering 1:6, Richards, R. Jr., and Elms, D. G. (1979). Seismic behavior of gravity retaining walls. Journal of the Geotechnical Engineering Division15:, 9-6. Richards, R., Elms, D.G., and Budhu, M. (199). Dynamic fluidization of soils. Journal of Geotechnical Engineering, 1:5, Richards, R. Jr., Huang, C., and Fishman, K. L. (1999). Seismic earth ressure on retaining structures. Journal of Geotechnical and Geoenvironmental Engineering 5:9, Roscoe, K. H., (197). The influence of strains in soil mechanics, Geotechnique, :,9-17. Seed, H. B. and Whitman, R.V. (197). Design of earth retaining structures for dynamic loads. Proceedings of Secialty Conference on Lateral stress in the Ground and Design of Earth Retaining Structures, Sherif, A., Ishibashi, I. and Lee C. D. (19). Earth ressures against rigid retaining walls. Journal of geotechnical engineering 1:GT5, Sherif, M. A. and Fang Y. S. (19). Dynamic earth ressures on walls rotating about the to, Soils and foundations :, Soubra, A.H., Kastner,R.(1991). Passive earth ressure coefficients in seismic areas by the limit analysis method, Soil Dynamics and Earthquake engineering V, Soubra, A.H. (). Static and seismic assive earth ressure coefficients on rigid retaining structures, Canadian Geotechnical Journal 37:, Subba Rao, K.S. and Choudhury, D. S. M. (5). Seismic assive earth ressures in soils. Journal of geotechnical and geoenvironmental engineering. 131:1, Terashi, M., Kitazume,M. and Matsunaga, Y. (1991).Centrifuge modeling on assive earth ressure of sand. Proceedings of the 6th Jaan National Conference on Soil Mechanics and Foundation Engineering, Terzaghi, K. (193). Large retaining wall tests, Engineering News Record, Terzaghi, K. (193). Theoretical Soil Mechanics, Wiley, New York. Terzaghi, K. and Peck, R.B. (1967): Soil mechanics in engineering ractice, Wiley, New York. Whitman, R. V. (199). Seismic design and behavior of gravity retaining walls, Proceedings of ASCE secialty Conference on Design and Performance of Earth Retaining Structures, Ithaca, N.Y., 17-. Whitman, R. V. and Christian, J. T. (199): Seismic resonse of retaining structures, Symosium on Seismic Design for World Port, Port of Los Angeles, Los Angeles, California. Whitman, R. V. (1991). Seismic design of earth retaining structures, Proceedings of International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, Rolla, Missouri, Wu, G. and Finn, W.D.L. (1999): Seismic lateral ressures for design of rigid walls, Canadian Geotechnical Journal, 36: 59-5 Zhang, J. M., Shamoto, Y. and Tokimatsu, K. (199a). Evaluation of earth ressure under any lateral deformation. Soils and Foundations 3:1, Zhang, J. M., Shamoto, Y. and Tokimatsu, K. (199b).Seismic earth ressure theory for retaining walls under any lateral dislacement. Soils and Foundations, 3:,13-3. Zhang, J.-M., Y Shamoto & K Tokimatsu (199c): Earth ressures on rigid walls during earthquakes, ASCE Geotechnical Secial Publication 75:,

Objectives. In this section you will learn the following. Rankine s theory. Coulomb s theory. Method of horizontal slices given by Wang (2000)

Objectives. In this section you will learn the following. Rankine s theory. Coulomb s theory. Method of horizontal slices given by Wang (2000) Objectives In this section you will learn the following Rankine s theory Coulomb s theory Method of horizontal slices given by Wang (2000) Distribution of the earth pressure Height of application of the

More information

Keywords: pile, liquefaction, lateral spreading, analysis ABSTRACT

Keywords: pile, liquefaction, lateral spreading, analysis ABSTRACT Key arameters in seudo-static analysis of iles in liquefying sand Misko Cubrinovski Deartment of Civil Engineering, University of Canterbury, Christchurch 814, New Zealand Keywords: ile, liquefaction,

More information

Evaluation of Unsaturated Layer Effect on Seismic Analysis of Unbraced Sheet Pile Wall

Evaluation of Unsaturated Layer Effect on Seismic Analysis of Unbraced Sheet Pile Wall Open Journal of Marine Science, 2017, 7, 300-316 http://www.scirp.org/journal/ojms ISSN Online: 2161-7392 ISSN Print: 2161-7384 Evaluation of Unsaturated Layer Effect on Seismic Analysis of Unbraced Sheet

More information

file:///d /suhasini/suha/office/html2pdf/ _editable/slides/module%202/lecture%206/6.1/1.html[3/9/2012 4:09:25 PM]

file:///d /suhasini/suha/office/html2pdf/ _editable/slides/module%202/lecture%206/6.1/1.html[3/9/2012 4:09:25 PM] Objectives_template Objectives In this section you will learn the following Introduction Different Theories of Earth Pressure Lateral Earth Pressure For At Rest Condition Movement of the Wall Different

More information

KEY ISSUES IN THE ANALYSIS OF PILES IN LIQUEFYING SOILS

KEY ISSUES IN THE ANALYSIS OF PILES IN LIQUEFYING SOILS 4 th International Conference on Earthquake Geotechnical Engineering June 2-28, 27 KEY ISSUES IN THE ANALYSIS OF PILES IN LIQUEFYING SOILS Misko CUBRINOVSKI 1, Hayden BOWEN 1 ABSTRACT Two methods for analysis

More information

Analysis of Inclined Strip Anchors in Sand Based on the Block Set Mechanism

Analysis of Inclined Strip Anchors in Sand Based on the Block Set Mechanism Analysis of Inclined Strip Anchors in Sand Based on the Block Set Mechanism S. B. Yu 1,a, J. P. Hambleton 1,b, and S. W. Sloan 1,c 1 ARC Centre of Excellence for Geotechnical Science and Engineering, The

More information

Seismic stability analysis of quay walls: Effect of vertical motion

Seismic stability analysis of quay walls: Effect of vertical motion Proc. 18 th NZGS Geotechnical Symposium on Soil-Structure Interaction. Ed. CY Chin, Auckland J. Yang Department of Civil Engineering, The University of Hong Kong, Hong Kong. Keywords: earthquakes; earth

More information

Lower bound solutions for bearing capacity of jointed rock

Lower bound solutions for bearing capacity of jointed rock Comuters and Geotechnics 31 (2004) 23 36 www.elsevier.com/locate/comgeo Lower bound solutions for bearing caacity of jointed rock D.J. Sutcliffe a, H.S. Yu b, *, S.W. Sloan c a Deartment of Civil, Surveying

More information

An Analytical Method for Static Earth Pressure Distribution against Rectangular Shallow Tunnels Using Lateral Deformation

An Analytical Method for Static Earth Pressure Distribution against Rectangular Shallow Tunnels Using Lateral Deformation RESEARCH ARTICLE OPEN ACCESS An Analytical Method for Static Earth Pressure Distribution against Rectangular Shallow Tunnels Using Lateral Deformation Farzad Habibbeygi*, Amin Chegenizadeh*, Hamid Nikraz*

More information

Comparison Study of Static and Dynamic Earth Pressure behind the Retaining Wall

Comparison Study of Static and Dynamic Earth Pressure behind the Retaining Wall IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 232-334X, Volume 12, Issue 3 Ver. I (May. - Jun. 215), PP 77-84 www.iosrjournals.org Comparison Study of Static and

More information

Geotechnical Earthquake Engineering

Geotechnical Earthquake Engineering Geotechnical Earthquake Engineering by Dr. Deepankar Choudhury Humboldt Fellow, JSPS Fellow, BOYSCAST Fellow Professor Department of Civil Engineering IIT Bombay, Powai, Mumbai 400 076, India. Email: dc@civil.iitb.ac.in

More information

DETERMINATION OF UPPER BOUND LIMIT ANALYSIS OF THE COEFFICIENT OF LATERAL PASSIVE EARTH PRESSURE IN THE CONDITION OF LINEAR MC CRITERIA

DETERMINATION OF UPPER BOUND LIMIT ANALYSIS OF THE COEFFICIENT OF LATERAL PASSIVE EARTH PRESSURE IN THE CONDITION OF LINEAR MC CRITERIA DETERMINATION OF UPPER BOUND LIMIT ANALYSIS OF THE COEFFICIENT OF LATERAL PASSIVE EARTH PRESSURE IN THE CONDITION OF LINEAR MC CRITERIA Ghasemloy Takantapeh Sasan, *Akhlaghi Tohid and Bahadori Hadi Department

More information

Design of Isolated Bridges from the Viewpoint of Collapse under Extreme Earthquakes

Design of Isolated Bridges from the Viewpoint of Collapse under Extreme Earthquakes Design of Isolated Bridges from the Viewoint of Collase under Extreme Earthquakes D.W. Chang, Y.T. Lin, C.H. Peng, C.Y. Liou CECI Engineering Consultants, Inc., Taiwan T.Y. Lee National Central University,

More information

An analytical expression for the dynamic active thrust from c-φ soil backfill on retaining walls with wall friction and adhesion

An analytical expression for the dynamic active thrust from c-φ soil backfill on retaining walls with wall friction and adhesion Geomechanics and Engineering, Vol. 4, No. 3 (2012) 209-218 209 Technical Note An analytical expression for the dynamic active thrust from c-φ soil backfill on retaining walls with wall friction and adhesion

More information

INTRODUCING THE SHEAR-CAP MATERIAL CRITERION TO AN ICE RUBBLE LOAD MODEL

INTRODUCING THE SHEAR-CAP MATERIAL CRITERION TO AN ICE RUBBLE LOAD MODEL Symosium on Ice (26) INTRODUCING THE SHEAR-CAP MATERIAL CRITERION TO AN ICE RUBBLE LOAD MODEL Mohamed O. ElSeify and Thomas G. Brown University of Calgary, Calgary, Canada ABSTRACT Current ice rubble load

More information

Where αh and αv are the horizontal and vertical pseudostatic k h, k v = coefficient of horizontal and vertical pseudostatic

Where αh and αv are the horizontal and vertical pseudostatic k h, k v = coefficient of horizontal and vertical pseudostatic International Journal of Scientific & Engineering Research, Volume 5, Issue 12, December-2014 75 Seismic Active Earth Pressure behind Retaining Wall Roshni John 1, K. Preethakumari 2, Pankaj Sethi 3 1

More information

Flexible Pipes in Trenches with Stiff Clay Walls

Flexible Pipes in Trenches with Stiff Clay Walls Flexible Pies in Trenches with Stiff Clay Walls D. A. Cameron University of South Australia, South Australia, Australia J. P. Carter University of Sydney, New South Wales, Australia Keywords: flexible

More information

Study of Seismic Behaviour of Retaining Walls

Study of Seismic Behaviour of Retaining Walls Study of Seismic Behaviour of Retaining Walls Pratyush P.G. Student, Department of Civil Engineering, MMM University of Technology, Gorakhpur, Uttar Pradesh, India ABSTRACT: Determination of seismic active

More information

Failure mechanisms and corresponding shape factors of shallow foundations

Failure mechanisms and corresponding shape factors of shallow foundations -4 June 06, Near East University, Nicosia, North Cyrus Failure mechanisms and corresonding shae factors of shallow foundations Stefan Van Baars University of Luxembourg KEYWORDS: Footings; Shallow Foundations;

More information

PSEUDO-STATIC ANALYSIS OF PILES IN LIQUEFIABLE SOILS: PARAMETRIC EVALUATION OF LIQUEFIED LAYER PROPERTIES Hayden J. Bowen 1 and Misko Cubrinovski 2

PSEUDO-STATIC ANALYSIS OF PILES IN LIQUEFIABLE SOILS: PARAMETRIC EVALUATION OF LIQUEFIED LAYER PROPERTIES Hayden J. Bowen 1 and Misko Cubrinovski 2 234 PSEUDO-STATIC ANALYSIS OF PILES IN LIQUEFIABLE SOILS: PARAMETRIC EVALUATION OF LIQUEFIED LAYER PROPERTIES Hayden J. Bowen 1 and Misko Cubrinovski 2 SUMMARY In this aer, seudo-static analysis of iles

More information

LATERAL DISPLACEMENTS OF COMMONLY FOUND GRAVITY RETAINING WALLS IN SRI LANKA DUE TO SEISMIC ACTION

LATERAL DISPLACEMENTS OF COMMONLY FOUND GRAVITY RETAINING WALLS IN SRI LANKA DUE TO SEISMIC ACTION LATERAL DISPLACEMENTS OF COMMONLY FOUND GRAVITY RETAINING WALLS IN SRI LANKA DUE TO SEISMIC ACTION Gopinath Kathiravelu, Graduate Research Student, Department of Civil Engineering, University of Moratuwa

More information

Displacement of gravity retaining walls under seismic loading

Displacement of gravity retaining walls under seismic loading Displacement of gravity retaining walls under seismic loading M. Okamura, Y. Saito, K. Tamura Public Works Research Institute, Tsukuba-shi, 35-8516, Japan. O. Matsuo National Institute for Land and Infrastructure

More information

COMPARISON OF FREQUENCY DEPENDENT EQUIVALENT LINEAR ANALYSIS METHODS

COMPARISON OF FREQUENCY DEPENDENT EQUIVALENT LINEAR ANALYSIS METHODS October 2-7, 28, Beijing, China COMPARISON OF FREQUENCY DEPENDENT EQUIVALENT LINEAR ANALYSIS METHODS Dong-Yeo Kwak Chang-Gyun Jeong 2 Duhee Park 3 and Sisam Park 4 Graduate student, Det. of Civil Engineering,

More information

Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 51 Earth Pressure Theories II

Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 51 Earth Pressure Theories II Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 51 Earth Pressure Theories II Welcome to lecture number two on earth pressure theories.

More information

Estimating Laterally Loaded Pile Response

Estimating Laterally Loaded Pile Response Estimating Laterally Loaded Pile Resonse C. Y. Lee, PhD Deartment of Civil Engineering College of Engineering Universiti Tenaga Nasional ABSTRACT A simlified and ractical aroach for estimating the laterally

More information

Active Earth Pressure on Retaining Wall Rotating About Top

Active Earth Pressure on Retaining Wall Rotating About Top INTERNATIONAL JOURNAL OF GEOLOGY Volume 9, 05 Active Earth Pressure on Retaining Wall Rotating About Top Ahad Ouria and Sajjad Sepehr Abstract Traditional methods for calculation of lateral earth pressure

More information

LATERAL EARTH PRESSURE AND RETAINING STRUCTURES

LATERAL EARTH PRESSURE AND RETAINING STRUCTURES Topic Outline LATERAL EARTH PRESSURE AND RETAINING STRUCTURES Types of retaining structures Lateral earth pressure Earth pressure at rest Rankine s Theory Coulomb s Theory Cullman s graphic solution Braced

More information

EARTH PRESSURES AGAINST RIGID RETAINING WALLS IN THE MODE OF ROTATION ABOUT BASE BY APPLYING ZERO-EXTENSION LINE THEORY

EARTH PRESSURES AGAINST RIGID RETAINING WALLS IN THE MODE OF ROTATION ABOUT BASE BY APPLYING ZERO-EXTENSION LINE THEORY EARTH PRESSURES AGAINST RIGID RETAINING WALLS IN THE MODE OF ROTATION ABOUT BASE BY APPLYING ZERO-EXTENSION LINE THEORY Morshedi S.M., Ghahramani A. 2, Anvar S.A. 2 and Jahanandish M. 2 Department of Geotechnical

More information

UNIT V. The active earth pressure occurs when the wall moves away from the earth and reduces pressure.

UNIT V. The active earth pressure occurs when the wall moves away from the earth and reduces pressure. UNIT V 1. Define Active Earth pressure. The active earth pressure occurs when the wall moves away from the earth and reduces pressure. 2. Define Passive Earth pressure. The passive earth pressure occurs

More information

Computation of Passive Earth Pressure Coefficients for a Horizontal Cohesionless Backfill Using the Method of Slices

Computation of Passive Earth Pressure Coefficients for a Horizontal Cohesionless Backfill Using the Method of Slices Cloud Publications International Journal of Advanced Civil Engineering and Architecture Research 213, Volume 2, Issue 1, pp. 32-41, Article ID Tech-131 Research Article Open Access Computation of Passive

More information

Active static and seismic earth pressure for c φ soils

Active static and seismic earth pressure for c φ soils Active static and seismic earth pressure for c φ soils Magued Iskander, PhD, PE, F.ASCE Professor & Head, Civil & Urban Engineering Department Motivation Methods based on Mononobe-Okabe method: Require

More information

Seismic Analysis of Retaining Structures. Nanjundaswamy P. Department of Civil Engineering S J College of Engineering, Mysore

Seismic Analysis of Retaining Structures. Nanjundaswamy P. Department of Civil Engineering S J College of Engineering, Mysore Seismic Analysis of Retaining Structures Nanjundaswamy P. Department of Civil Engineering S J College of Engineering, Mysore pnswamy@yahoo.com Retaining Walls Retaining Walls. Where? Retaining Walls. Road

More information

A Numerical Method for Critical Buckling Load for a Beam Supported on Elastic Foundation

A Numerical Method for Critical Buckling Load for a Beam Supported on Elastic Foundation A Numerical Method for Critical Buckling Load for a Beam Suorted on Elastic Foundation Guo-ing Xia Institute of Bridge Engineering, Dalian University of Technology, Dalian, Liaoning Province, P. R. China

More information

An elasto-plastic model to describe the undrained cyclic behavior of saturated sand with initial static shear

An elasto-plastic model to describe the undrained cyclic behavior of saturated sand with initial static shear University of Wollongong Research Online Faculty of Engineering - Paers (Archive) Faculty of Engineering and Information Sciences 211 An elasto-lastic model to describe the undrained cyclic behavior of

More information

GEOTECHNICAL ENGINEERING ECG 503 LECTURE NOTE ANALYSIS AND DESIGN OF RETAINING STRUCTURES

GEOTECHNICAL ENGINEERING ECG 503 LECTURE NOTE ANALYSIS AND DESIGN OF RETAINING STRUCTURES GEOTECHNICAL ENGINEERING ECG 503 LECTURE NOTE 07 3.0 ANALYSIS AND DESIGN OF RETAINING STRUCTURES LEARNING OUTCOMES Learning outcomes: At the end of this lecture/week the students would be able to: Understand

More information

Seismic Earth Pressures under Restrained Condition

Seismic Earth Pressures under Restrained Condition Seismic Earth Pressures under Restrained Condition Fred Yi, PhD, PE Chief Engineer C.H.J., Incorporated Table of Contents Introduction Review of Previous Studies Purpose of This Study Pseudostatic Numerical

More information

Development of self-adaptively loading for planetary roller traction-drive transmission

Development of self-adaptively loading for planetary roller traction-drive transmission Available online www.jocr.com Journal of Chemical and Pharmaceutical Research, 013, 5(9):498-506 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Develoment of self-adatively loading for lanetary

More information

On the Fluid Dependence of Rock Compressibility: Biot-Gassmann Refined

On the Fluid Dependence of Rock Compressibility: Biot-Gassmann Refined Downloaded 0/9/3 to 99.86.4.8. Redistribution subject to SEG license or coyright; see Terms of Use at htt://library.seg.org/ On the luid Deendence of Rock Comressibility: Biot-Gassmann Refined Leon Thomsen,

More information

SHAPE OPTOMIZATION OF H-BEAM FLANGE FOR MAXIMUM PLASTIC ENERGY DISSIPATION

SHAPE OPTOMIZATION OF H-BEAM FLANGE FOR MAXIMUM PLASTIC ENERGY DISSIPATION The Fourth China-Jaan-Korea Joint Symosium on Otimization of Structural and Mechanical Systems Kunming, Nov. 6-9, 2006, China SHAPE OPTOMIZATION OF H-BEAM FLANGE FOR MAXIMUM PLASTIC ENERGY DISSIPATION

More information

Determination of Pile Bearing Capacity By In Situ Tests

Determination of Pile Bearing Capacity By In Situ Tests Determination of Pile Bearing Caacity By In Situ Tests Qani V. Kadiri Faculty of Civil Engineering and Architecture, Prishtinë, Kosova Abstract - Jablanica is located in the western art of Kosovo along

More information

A compression line for soils with evolving particle and pore size distributions due to particle crushing

A compression line for soils with evolving particle and pore size distributions due to particle crushing Russell, A. R. (2011) Géotechnique Letters 1, 5 9, htt://dx.doi.org/10.1680/geolett.10.00003 A comression line for soils with evolving article and ore size distributions due to article crushing A. R. RUSSELL*

More information

Seismic Bearing Capacity and Settlements of Foundations

Seismic Bearing Capacity and Settlements of Foundations Seismic Bearing Capacity and Settlements of Foundations Arun Prabodh Yadav 1, Dr. S. M. Ali Jawaid 2 P.G. Student, Department of Civil Engineering, MMM University of Technology, Gorakhpur, Uttar Pradesh,

More information

STRESS-STRAIN-DILATANCY RELATIONSHIPS OF NORMALLY CONSOLIDATED DHAKA CLAY

STRESS-STRAIN-DILATANCY RELATIONSHIPS OF NORMALLY CONSOLIDATED DHAKA CLAY International Journal of GEOMATE, Nov., 28 Vol.5, Issue 5,.88-94 Geotec., Const. Mat. & Env., DOI: htts://doi.org/.266/28.5.7332 ISSN: 286-2982 (Print), 286-299 (Online), Jaan STRESS-STRAIN-DILATANCY RELATIONSHIPS

More information

Comparative study on different walking load models

Comparative study on different walking load models Comarative study on different walking load models *Jining Wang 1) and Jun Chen ) 1), ) Deartment of Structural Engineering, Tongji University, Shanghai, China 1) 1510157@tongji.edu.cn ABSTRACT Since the

More information

Adam Paweł Zaborski. 8 Plasticity. reloading. 1. Bauschinger s effect. 2. unchanged yielding limit. 3. isotropic hardening

Adam Paweł Zaborski. 8 Plasticity. reloading. 1. Bauschinger s effect. 2. unchanged yielding limit. 3. isotropic hardening 8 lasticity Introduction Definitions loading/unloading/reloading words commonly used in lasticity lastic strain a ermanent strain that doesn t vanish after unloading, lastically assive rocess a rocess

More information

HORIZONTAL IMPEDANCE FUNCTIONS OF INCLINED SINGLE PILES

HORIZONTAL IMPEDANCE FUNCTIONS OF INCLINED SINGLE PILES HORIZONTAL IMPEDANCE FUNCTIONS OF INCLINED SINGLE PILES Chandra Shekhar GOIT 1) and Masato SAITOH 1) 1) Foundations and Earthquake Lab., Deartment of Civil and Environmental Engineering, Saitama University

More information

NUMERICAL ANALYSIS OF PASSIVE EARTH PRESSURES WITH INTERFACES

NUMERICAL ANALYSIS OF PASSIVE EARTH PRESSURES WITH INTERFACES III European Conference on Computational Mechanics Solids, Structures and Coupled Problems in Engineering C.A. Mota Soares et.al. (eds.) Lisbon, Portugal, 5-8 June 2006 NUMERICAL ANALYSIS OF PASSIVE EARTH

More information

Liquefaction Potential Variations Influenced by Building Constructions

Liquefaction Potential Variations Influenced by Building Constructions Earth Science Research; Vol. 1, No. 2; 2012 ISSN 1927-0542 E-ISSN 1927-0550 Published by Canadian Center of Science and Education Liquefaction Potential Variations Influenced by Building Constructions

More information

BENDING INDUCED VERTICAL OSCILLATIONS DURING SEISMIC RESPONSE OF RC BRIDGE PIERS

BENDING INDUCED VERTICAL OSCILLATIONS DURING SEISMIC RESPONSE OF RC BRIDGE PIERS BENDING INDUCED VERTICAL OSCILLATIONS DURING SEISMIC RESPONSE OF RC BRIDGE PIERS Giulio RANZO 1, Marco PETRANGELI And Paolo E PINTO 3 SUMMARY The aer resents a numerical investigation on the behaviour

More information

Foundation Analysis LATERAL EARTH PRESSURE

Foundation Analysis LATERAL EARTH PRESSURE Foundation Analysis LATERAL EARTH PRESSURE INTRODUCTION Vertical or near-vertical slopes of soil are supported by retaining walls, cantilever sheet-pile walls, sheet-pile bulkheads, braced cuts, and other

More information

Time Domain Calculation of Vortex Induced Vibration of Long-Span Bridges by Using a Reduced-order Modeling Technique

Time Domain Calculation of Vortex Induced Vibration of Long-Span Bridges by Using a Reduced-order Modeling Technique 2017 2nd International Conference on Industrial Aerodynamics (ICIA 2017) ISBN: 978-1-60595-481-3 Time Domain Calculation of Vortex Induced Vibration of Long-San Bridges by Using a Reduced-order Modeling

More information

LATERAL EARTH PRESSURE

LATERAL EARTH PRESSURE . INTRODUCTION Retaining structures commonly used in foundation engineering, such as retaining walls, basement walls and bulkheads to support almost vertical slopes of earth masses. Proper design and construction

More information

Dynamic Soil Pressures on Embedded Retaining Walls: Predictive Capacity Under Varying Loading Frequencies

Dynamic Soil Pressures on Embedded Retaining Walls: Predictive Capacity Under Varying Loading Frequencies 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Dynamic Soil Pressures on Embedded Retaining Walls: Predictive Capacity Under Varying Loading

More information

A SIMPLE PLASTICITY MODEL FOR PREDICTING TRANSVERSE COMPOSITE RESPONSE AND FAILURE

A SIMPLE PLASTICITY MODEL FOR PREDICTING TRANSVERSE COMPOSITE RESPONSE AND FAILURE THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS A SIMPLE PLASTICITY MODEL FOR PREDICTING TRANSVERSE COMPOSITE RESPONSE AND FAILURE K.W. Gan*, M.R. Wisnom, S.R. Hallett, G. Allegri Advanced Comosites

More information

New Analytical l Solutions for Gravitational ti and Seismic Earth Pressures. George Mylonakis Associate Professor

New Analytical l Solutions for Gravitational ti and Seismic Earth Pressures. George Mylonakis Associate Professor New Analytical l Solutions for Gravitational ti and Seismic Earth Pressures George Mylonakis Associate Professor Department of Civil Engineering, University of Patras, Greece Charles Augustin Coulomb (1736-1806)

More information

AB Engineering Manual

AB Engineering Manual AB Engineering Manual Allan Block Retaining Walls Excerptfrom theabengineeringmanualforretainingwals CHAPTER FIVE Seismic Analysis Introduction In seismic design we take a dynamic force and analyze it

More information

Numerical and experimental investigation on shot-peening induced deformation. Application to sheet metal forming.

Numerical and experimental investigation on shot-peening induced deformation. Application to sheet metal forming. Coyright JCPDS-International Centre for Diffraction Data 29 ISSN 197-2 511 Numerical and exerimental investigation on shot-eening induced deformation. Alication to sheet metal forming. Florent Cochennec

More information

Deformation Effect Simulation and Optimization for Double Front Axle Steering Mechanism

Deformation Effect Simulation and Optimization for Double Front Axle Steering Mechanism 0 4th International Conference on Comuter Modeling and Simulation (ICCMS 0) IPCSIT vol. (0) (0) IACSIT Press, Singaore Deformation Effect Simulation and Otimization for Double Front Axle Steering Mechanism

More information

Effect of structural design on fundamental frequency of reinforced-soil retaining walls

Effect of structural design on fundamental frequency of reinforced-soil retaining walls Soil Dynamics and Earthquake Engineering 19 (2000) 137 157 www.elsevier.com/locate/soildyn Effect of structural design on fundamental frequency of reinforced-soil retaining walls K. Hatami*, R.J. Bathurst

More information

The Travails of the Average Geotechnical Engineer Using the National Seismic Hazard Maps

The Travails of the Average Geotechnical Engineer Using the National Seismic Hazard Maps The Travails of the Average Geotechnical Engineer Using the National Seismic Hazard Maps Marshall Lew Amec Foster Wheeler Environment & Infrastructure Los Angeles, California Amec Foster Wheeler 2015.

More information

u y

u y VO., NO., FEBRUARY 8 ISSN 89-668 6-8 Asian Research Publishing Network (ARPN). All rights reserved. NON-NEWTONIAN EFFECTS OF OAD CARRYING CAPACITY AND FRICTIONA FORCE USING RABINOWITS FUID ON TE PERFORMANCE

More information

Pressure-sensitivity Effects on Toughness Measurements of Compact Tension Specimens for Strain-hardening Solids

Pressure-sensitivity Effects on Toughness Measurements of Compact Tension Specimens for Strain-hardening Solids American Journal of Alied Sciences (9): 19-195, 5 ISSN 1546-939 5 Science Publications Pressure-sensitivity Effects on Toughness Measurements of Comact Tension Secimens for Strain-hardening Solids Abdulhamid

More information

Seismic Slope Stability

Seismic Slope Stability ISSN (e): 2250 3005 Volume, 06 Issue, 04 April 2016 International Journal of Computational Engineering Research (IJCER) Seismic Slope Stability Mohammad Anis 1, S. M. Ali Jawaid 2 1 Civil Engineering,

More information

5.5 The concepts of effective lengths

5.5 The concepts of effective lengths 5.5 The concets of effective lengths So far, the discussion in this chater has been centred around in-ended columns. The boundary conditions of a column may, however, be idealized in one the following

More information

Modelling a Partly Filled Road Tanker during an Emergency Braking

Modelling a Partly Filled Road Tanker during an Emergency Braking Proceedings of the World Congress on Engineering and Comuter Science 217 Vol II, October 25-27, 217, San Francisco, USA Modelling a Partly Filled Road Tanker during an Emergency Braking Frank Otremba,

More information

APPLICATION OF ZERO EXTENSION LINE IN BEARING CAPACITY

APPLICATION OF ZERO EXTENSION LINE IN BEARING CAPACITY APPLICATION OF ZERO EXTENSION LINE IN BEARING CAPACITY L. Behpoor A. Ghahramani Faculty Member, Department of Civil Engineering, Shiraz University, Shiraz, lran Faculty Member, Department of Civil Engineering,

More information

STATISTICAL DISTRIBUTION OF FLOOR RESPONSE SPECTRA DUE TO DIFFERENT TYPES OF EARTHQUAKES GROUND MOTIONS

STATISTICAL DISTRIBUTION OF FLOOR RESPONSE SPECTRA DUE TO DIFFERENT TYPES OF EARTHQUAKES GROUND MOTIONS STATISTICAL DISTRIBUTION OF FLOOR RESPONSE SPECTRA DUE TO DIFFERENT TYPES OF EARTHQUAKES GROUND MOTIONS ABSTRACT: SR Uma, John Zhao and Andrew King Institute of Geological & Nuclear Sciences, Lower Hutt,

More information

Geo-E2010 Advanced Soil Mechanics L Wojciech Sołowski. 07 March 2017

Geo-E2010 Advanced Soil Mechanics L Wojciech Sołowski. 07 March 2017 Geo-E2010 Advanced Soil Mechanics L Wojciech Sołowski 07 March 2017 Soil modeling: critical state soil mechanics and Modified Cam Clay model Outline 1. Refresh of the theory of lasticity 2. Critical state

More information

Jaky s formula was often used to calculate the earth pressure at-rest behind a

Jaky s formula was often used to calculate the earth pressure at-rest behind a Chapter 2 LITERATURE REVIEW Jaky s formula was often used to calculate the earth pressure at-rest behind a retaining wall. However, the theory to estimate the lateral earth pressure on retaining wall near

More information

CREEP AND SHRINKAGE EFFECT ON THE DYNAMIC ANALYSIS OF REINFORCED CONCRETE SLAB-AND-BEAM STRUCTURES

CREEP AND SHRINKAGE EFFECT ON THE DYNAMIC ANALYSIS OF REINFORCED CONCRETE SLAB-AND-BEAM STRUCTURES ECCM 99 Euroean Conference on Comutational Mechanics August 31 Setember 3 München, Germany CREEP AND SHRINKAGE EFFECT ON THE DYNAMIC ANALYSIS OF REINFORCED CONCRETE SLABANDBEAM STRUCTURES Evangelos J.

More information

SEISMIC PASSIVE EARTH PRESSURE WITH VARYING SHEAR MODULUS: PSEUDO-DYNAMIC APPROACH

SEISMIC PASSIVE EARTH PRESSURE WITH VARYING SHEAR MODULUS: PSEUDO-DYNAMIC APPROACH IGC 29, Guntur, INDIA SEISMIC PASSIE EART PRESSURE WIT ARYING SEAR MODULUS: PSEUDO-DYNAMIC APPROAC P. Gos Assistant Professor, Deartment of Ciil Engineering, Indian Institute of Tecnology Kanur, Kanur

More information

Numerical simulation of bird strike in aircraft leading edge structure using a new dynamic failure model

Numerical simulation of bird strike in aircraft leading edge structure using a new dynamic failure model Numerical simulation of bird strike in aircraft leading edge structure using a new dynamic failure model Q. Sun, Y.J. Liu, R.H, Jin School of Aeronautics, Northwestern Polytechnical University, Xi an 710072,

More information

Finite Element Analysis of V-Bending of Polypropylene Using Hydrostatic-Pressure-Dependent Plastic Constitutive Equation*

Finite Element Analysis of V-Bending of Polypropylene Using Hydrostatic-Pressure-Dependent Plastic Constitutive Equation* Materials Transactions, Vol. 48, No. 1 (7). 6 to 664 #7 The Jaan Society for Technology of Plasticity Finite Element Analysis of V-Bending of Polyroylene Using Hydrostatic-Pressure-Deendent Plastic onstitutive

More information

A NUMERICAL MODEL OF FINITE DIFFERENCE (F.D) FOR DYNAMIC PILE DRIVING

A NUMERICAL MODEL OF FINITE DIFFERENCE (F.D) FOR DYNAMIC PILE DRIVING A NUMERICAL MODEL OF FINITE DIFFERENCE (F.D) FOR DYNAMIC PILE DRIVING *Amir Taban 1, Masoud Mirmohammad Sadeghi 2 and Mohammad Ali Roshan Zamir 3 1 Deartment of Civil Engineering, Isfahan (Khorasgan) Branch,

More information

TILTING FAILURE OF RETAINING WALLS INCLUDING P-DELTA EFFECT AND APPLICATION TO KOBE WALLS

TILTING FAILURE OF RETAINING WALLS INCLUDING P-DELTA EFFECT AND APPLICATION TO KOBE WALLS TILTING FAILURE OF RETAINING WALLS INCLUDING P-DELTA EFFECT AND APPLICATION TO KOBE WALLS R RICHARDS.JR 1, K L FISHMAN, J B MANDER 3 And D YAO 4 SUMMARY The purpose of the research described in this paper

More information

Upper bound seismic rotational stability analysis of gravity retaining walls considering embedment depth

Upper bound seismic rotational stability analysis of gravity retaining walls considering embedment depth J. Cent. South Univ. (05) : 4083 4089 DOI: 0.007/s77-05-953-4 Upper bound seismic rotational stability analysis of gravity retaining walls considering embedment depth LIU Jie( 刘杰 ),, HUNG Da( 黄达 ), 3,

More information

Paper C Exact Volume Balance Versus Exact Mass Balance in Compositional Reservoir Simulation

Paper C Exact Volume Balance Versus Exact Mass Balance in Compositional Reservoir Simulation Paer C Exact Volume Balance Versus Exact Mass Balance in Comositional Reservoir Simulation Submitted to Comutational Geosciences, December 2005. Exact Volume Balance Versus Exact Mass Balance in Comositional

More information

arxiv: v1 [physics.data-an] 26 Oct 2012

arxiv: v1 [physics.data-an] 26 Oct 2012 Constraints on Yield Parameters in Extended Maximum Likelihood Fits Till Moritz Karbach a, Maximilian Schlu b a TU Dortmund, Germany, moritz.karbach@cern.ch b TU Dortmund, Germany, maximilian.schlu@cern.ch

More information

Objectives. In this section you will learn the following. Development of Bearing Capacity Theory. Terzaghi's Bearing Capacity Theory

Objectives. In this section you will learn the following. Development of Bearing Capacity Theory. Terzaghi's Bearing Capacity Theory Objectives In this section you will learn the following Development of Bearing Capacity Theory Terzaghi's Bearing Capacity Theory Assumptions in Terzaghi s Bearing Capacity Theory. Meyerhof's Bearing Capacity

More information

Homogeneous and Inhomogeneous Model for Flow and Heat Transfer in Porous Materials as High Temperature Solar Air Receivers

Homogeneous and Inhomogeneous Model for Flow and Heat Transfer in Porous Materials as High Temperature Solar Air Receivers Excert from the roceedings of the COMSOL Conference 1 aris Homogeneous and Inhomogeneous Model for Flow and Heat ransfer in orous Materials as High emerature Solar Air Receivers Olena Smirnova 1 *, homas

More information

Effect of geometry on flow structure and pressure drop in pneumatic conveying of solids along horizontal ducts

Effect of geometry on flow structure and pressure drop in pneumatic conveying of solids along horizontal ducts Journal of Scientific LAÍN & Industrial SOMMERFELD Research: PNEUMATIC CONVEYING OF SOLIDS ALONG HORIZONTAL DUCTS Vol. 70, February 011,. 19-134 19 Effect of geometry on flow structure and ressure dro

More information

Embedment Depth Effect on the Shallow Foundation - Fault Rupture Interaction

Embedment Depth Effect on the Shallow Foundation - Fault Rupture Interaction Embedment Depth Effect on the Shallow Foundation - Fault Rupture Interaction M. Ashtiani & A. Ghalandarzadeh Faculty of Civil Engineering, University of Tehran, Iran SUMMARY: The 1999 earthquakes in Turkey

More information

Seismic design of bridges

Seismic design of bridges NATIONAL TECHNICAL UNIVERSITY OF ATHENS LABORATORY FOR EARTHQUAKE ENGINEERING Seismic design of bridges Lecture 3 Ioannis N. Psycharis Capacity design Purpose To design structures of ductile behaviour

More information

NUMERICAL STUDY OF THE DYNAMIC ACTIVE LATERAL EARTH PRESSURE COEFFI- CIENT OF COHESIVE SOILS

NUMERICAL STUDY OF THE DYNAMIC ACTIVE LATERAL EARTH PRESSURE COEFFI- CIENT OF COHESIVE SOILS NUMERICAL STUDY OF THE DYNAMIC ACTIVE LATERAL EARTH PRESSURE COEFFI- CIENT OF COHESIVE SOILS Mehrab Jesmani P.E., Koury Engineering & Testing Inc. Chino, CA, USA E-mail: mehrabjesmani@gmail.com Hossein

More information

SIMPLIFIED SEISMIC ANALYSIS OF WOODFRAME STRUCTURES

SIMPLIFIED SEISMIC ANALYSIS OF WOODFRAME STRUCTURES 3 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 24 Paer No. 245 SIMPLIFIED SEISMIC ANALYSIS OF WOODFRAME STRUCTURES Bryan FOLZ and Andre FILIATRAULT 2 SUMMARY A simle

More information

The theories to estimate lateral earth pressure due to a strip surcharge loading will

The theories to estimate lateral earth pressure due to a strip surcharge loading will Chapter LITERATURE REVIEW The theories to estimate lateral earth pressure due to a strip surcharge loading will be introduced in this chapter. Commonly geotechnical engineers apply the equations suggested

More information

A Simple And Efficient FEM-Implementation Of The Modified Mohr-Coulomb Criterion Clausen, Johan Christian; Damkilde, Lars

A Simple And Efficient FEM-Implementation Of The Modified Mohr-Coulomb Criterion Clausen, Johan Christian; Damkilde, Lars Aalborg Universitet A Simle And Efficient FEM-Imlementation Of The Modified Mohr-Coulomb Criterion Clausen, Johan Christian; Damkilde, Lars Published in: Proceedings of the 9th Nordic Seminar on Comutational

More information

Canadian Geotechnical Journal. Dynamic modulus characteristics of saturated clays under variable confining pressure

Canadian Geotechnical Journal. Dynamic modulus characteristics of saturated clays under variable confining pressure Dynamic modulus characteristics of saturated clays under variable confining ressure Journal: Canadian Geotechnical Journal Manuscrit ID cgj-216-441.r1 Manuscrit Tye: Note Date Submitted by the Author:

More information

Reinforced Soil Structures Reinforced Soil Walls. Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai

Reinforced Soil Structures Reinforced Soil Walls. Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai Geosynthetics and Reinforced Soil Structures Reinforced Soil Walls continued Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai e-mail: gopalkr@iitm.ac.inac in Outline of the Lecture

More information

A Comparison between Biased and Unbiased Estimators in Ordinary Least Squares Regression

A Comparison between Biased and Unbiased Estimators in Ordinary Least Squares Regression Journal of Modern Alied Statistical Methods Volume Issue Article 7 --03 A Comarison between Biased and Unbiased Estimators in Ordinary Least Squares Regression Ghadban Khalaf King Khalid University, Saudi

More information

SAMARIS. Draft report

SAMARIS. Draft report SAMARIS Work Package 5 - Performance based secifications Selection and evaluation of models for rediction of ermanent deformations of unbound granular materials in road avements Draft reort Pierre Hornych

More information

On the Prediction of Material Failure in LS-DYNA : A Comparison Between GISSMO and DIEM

On the Prediction of Material Failure in LS-DYNA : A Comparison Between GISSMO and DIEM 13 th International LS-YNA Users Conference Session: Constitutive Modeling On the Prediction of Material Failure in LS-YNA : A Comarison Between GISSMO and IEM Filie Andrade¹, Markus Feucht², Andre Haufe¹

More information

δq T = nr ln(v B/V A )

δq T = nr ln(v B/V A ) hysical Chemistry 007 Homework assignment, solutions roblem 1: An ideal gas undergoes the following reversible, cyclic rocess It first exands isothermally from state A to state B It is then comressed adiabatically

More information

Main Menu. Summary (1)

Main Menu. Summary (1) Elastic roerty changes of bitumen reservoir during steam injection Ayato Kato*, University of Houston, higenobu Onozuka, JOGMEC, and Toru Nakayama, JAPEX ummary Elastic roerty changes of bitumen reservoir

More information

EARTH PRESSURES ON RETAINING STRUCTURES

EARTH PRESSURES ON RETAINING STRUCTURES 12-1 12. EARTH PRESSURES ON RETAINING STRUCTURES 12.1 Active Pressure and Passive Pressure When a sudden change in level of the ground surface is to be provided for some purpose a retaining structure is

More information

EFFECT OF CONTACT PRESSURE ON LIQUEFACTION RESISTANCE OF SOIL

EFFECT OF CONTACT PRESSURE ON LIQUEFACTION RESISTANCE OF SOIL International Journal of Civil Engineering and Technology (IJCIET) Volume 9, Issue 8, August 208,. 543-554, Article ID: IJCIET_09_08_55 Available online at htt://www.iaeme.com/ijciet/issues.as?jtye=ijciet&vtye=9&itye=8

More information

Optimisation of Pressure Loss and Flow Distribution at Pipe Bifurcation

Optimisation of Pressure Loss and Flow Distribution at Pipe Bifurcation ISSN 9 86 Volume, Issue 9 Setember 07 Otimisation of Pressure Loss and Flow Distribution at Pie Bifurcation Dr. Nagaraj Sitaram Professor, Deartment of Civil Engineering,School of Engineering Technology,

More information

Effect of Wall Flexibility on Dynamic Response of Concrete Rectangular Liquid Storage Tanks under Horizontal and Vertical Ground Motions

Effect of Wall Flexibility on Dynamic Response of Concrete Rectangular Liquid Storage Tanks under Horizontal and Vertical Ground Motions Effect of Wall Flexibility on Dynamic Resonse of Concrete Rectangular Liquid Storage Tanks under Horizontal and Vertical Ground Motions A. R. Ghaemmaghami 1 and M. R. Kianoush 2 Abstract: In this study,

More information

Study of the circulation theory of the cooling system in vertical evaporative cooling generator

Study of the circulation theory of the cooling system in vertical evaporative cooling generator 358 Science in China: Series E Technological Sciences 006 Vol.49 No.3 358 364 DOI: 10.1007/s11431-006-0358-1 Study of the circulation theory of the cooling system in vertical evaorative cooling generator

More information

Analysis of cold rolling a more accurate method

Analysis of cold rolling a more accurate method Analysis of cold rolling a more accurate method 1.1 Rolling of stri more accurate slab analysis The revious lecture considered an aroximate analysis of the stri rolling. However, the deformation zone in

More information