13. PETROLOGY OF BASALTS FROM DEEP SEA DRILLING PROJECT, LEG 38

Size: px
Start display at page:

Download "13. PETROLOGY OF BASALTS FROM DEEP SEA DRILLING PROJECT, LEG 38"

Transcription

1 . PETROLOGY OF BASALTS FROM DEEP SEA DRILLING PROJECT, LEG W.I. Ridley, M.R. Perfit, and ML. Adams, LamontDoherty Geological Observatory, Columbia University, Palisades, New York INTRODUCTION We have determined the bulk composition of basalt samples drilled during Leg. These data provide a basis for discussion of trace element abundances, Sr isotopic compositions, and mineral chemistry. Basaltic basement was collected at tes,,,,,,, 0. Most of the basalts examined have textures that indicate rapid cooling, evidenced by the presence of glass and skeletalshaped olivine and Plagioclase grains. Samples from te are finegrained, subophitic basalts with microphenocrysts of Plagioclase and olivine. Variolitic, amygdaloidal basalt occurs at te containing sparse phenocrysts of altered olivine. Basalt at te is uniformly subophitic with occasional phenocrysts. At least two textural varieties were observed at te : an upper basalt with subophitic to holocrystalline texture, and a lower basalt with a coarse diabase texture. This texture also characterizes the diabase samples examined from te. Finegrained basalts from te are highly altered compared to fresher, aphyric samples from tes and 0. MAJOR ELEMENT CHEMISTRY Major elements were determined on fused glass samples by electron microprobe. θ values were computed so that θ = 0. total iron as. Analyses are computed on an Hθfree basis. Two basalts (GAST, KNIPPA) were run as secondary standards during the analysis of the Leg samples. Data are shown in Table. Basalts at te are quartz tholeiites with low O, K O, and /+ (*) ratios of. Chemically similar basalts were analyzed from te, except for slightly higher AIO values (%%) and higher * ratios (). Plagioclase tholeiites occur at te with greater than % AIO, low total, and high * ratios (). In contrast, samples from te are more alkalic, with % θ, somewhat higher KO, low total and low, but variable, * ratios (). Chemically similar basalt occurs at te. The diabase samples at te are titaniapoor olivine tholeiites, but are enriched in KO relative to tholeiites from other sites. KO enrichment may be due to deuteric alteration. These diabase samples also have high * ratios. One sample () is extremely enriched in and θ, with a lesser enrichment in KO and depletion in. We interpret this as a strongly fractionated facies of the diabase. Two samples from te are tholeiites with above average values and high * ratios (0). Typical lowtitania tholeiites were analyzed from tes and 0 with * ratios between. The overall sample population contains both quartz tholeiites and olivine tholeiites; the latter are close to being silica oversaturated. Samples from tes,,,, 0 have bulk compositions similar to many other oceanic tholeiites, and their variations in AIO, KO, and * ratio probably reflect minor removal or addition of Plagioclase and olivine together with the effects of halmyrolysis. However, those samples with high * ratios (,, ) show no signs of excess olivine and appear to be the most primitive basalts sampled. Several samples are titania rich, but are essentially tholeiites rather than alkalic basalts. These samples also have the lowest * ratios, low, and high KO and may represent basalt magmas that have undergone low pressure fractionation. TRACE ELEMENT CHEMISTRY The abundance of Rb, Sr, Zr, and Y were determined by Xray fluorescence techniques and are shown in Table. Tholeiites from tes,, and have ppm Rb, which, together with low KO contents, suggests that halmyrolysis has had little effect on basalts at these sites. Y contents ( ppm) and Zr (0 ppm) are uniformly low, and together with the low Sr values for te and basalts confirm that these samples are typical oceanic tholeiites. The Sr and AIO contents of samples from te may result from minor Plagioclase accumulation. Samples from te show fold enrichment in Zr and.fold enrichment in Sr over typical oceanic tholeiites, but Rb and Y are not strikingly enriched. Higher than normal Zr was also observed in te basalt, but Rb remained low. Diabases at te show marked enrichment in Rb ( ppm), but this is not accompanied by enrichment in Zr ( ppm) or Y ( ppm), although Sr values are rather high ( ppm). High Rb and Sr contents also characterize te samples, but Y remains low ( ppm) and Zr is variable but not exceptionally high. The trace element composition of te basalts are typical of oceanic tholeiites; Rb is low ( ppm) as are Sr ( ppm) and Zr ( ppm), whereas Y is more varied ( ppm). At te 0, trace element contents show no internal consistency, low Rb ( ppm) and Y ( ppm) are associated with high Zr ( ppm) and Sr ( ppm). Generally the behavior of the lithophile (LIL) trace elements is consistent with the bulk chemistry in that samples designated as typical oceanic tholeiites show appropriate low concentrations of LIL elements. In contrast, those samples with high θ contents show consistently high concentrations of Zr and Y and, in some cases, Sr. Even under the most favorable conditions of fractional crystallization, inspection of the

2 J to TABLE Major Element Composition and CIPW Norms of Leg Samples C O O K O as IeO loo + O = I QZ OR AB AN DI HY OL MT IL CO ;OX te (CoreSection)

3 PETROLOGY OF BASALTS TABLE Trace Element Abundances in Leg Sample (Interval in cm),, 0,, 0,,,, 0,,,, 0, 0,,,,, 0, 0 Rb Sr 0 Y 0 Zr 0 0 Basalts Rb/Sr Zr/Y trace element abundances and within the constraints afforded by the major element data, it would not be possible to derive the titaniarich and LIL elementrich basalts by fractional crystallization of a typical oceanic tholeiite. Rather, it seems that these magmas may be derivatives of a compositionally distinct (and unsampled) parent magma whose mantle source was chemically different from that of typical oceanic tholeiites. MINERAL CHEMISTRY We have determined the range of compositions of the major mineral phases in representative samples of each basalt type from each site. Mineral determinations utilized an ARLEMX microprobe with appropriate application of instrumental and Bencebee matrix corrections. Data are tabulated in Table (Plagioclase), Table (pyroxenes), and Table (irontitanium oxides). w samples contained fresh olivine, and no useful data could be determined for this mineral. Generally the minerals show a limited range of compositions as a consequence of relatively rapid cooling. As might be expected, the most extensive mineral zoning was measured from te and samples which are coarser grained than samples from other sites. Variations in major endmember components of pyroxenes are shown in Figure. The pyroxenes are dominantly calcic diopsidic augites, no lowcalcium pyroxenes were detected. The zoning trends result in depletion in the wollastonite component which is not invariably associated with iron enrichment. These trends are in contrast to the ironenrichment trends at relatively constant wollastonite content observed for many volcanic and plutonic pyroxenes. It is also noted that some of the pyroxenes fall within the twopyroxene field boundary as defined by the trend for calciumrich pyroxenes from the Skaergaard intrusion. In the Leg samples, it appears that relatively rapid cooling initiated rapid crystal growth and consequently metastable compositional trends developed. gnificant deviations from stable crystallization are also indicated by the contents of minor elements,,. Rapidly cooled pyroxenes are highly aluminous and contrast TABLE A Plagioclase in Basalts at te θ A O 0 K K An 0 0 / Note:, = microlites; = (edge), = (core) phenocryst; = microlites; = weakly zoned phenocrysts; = microlites.

4 W. I. RIDLEY, M. R. PERFIT, ML. ADAMS TABLE B Plagioclases in Basalts at te S Oi O A O N»θ K O Tofil S Ml K An / Note: = (core) phenocryst; = zoned phenocryst; = (core) phenocryst; = (core) phenocryst; = (core) phenocryst;, = (core) phenocryst; (edge) (core) = zoned phenocryst; (edge) (core) = phenocryst; (edge), (core) = phenocryst; (edge) (core) = phenocryst;, = (core) microphenocryst; (edge) (core) = phenocryst; (core) (edge) = phenocryst; (core), (edge) = phenocryst;, = (core) phenocryst. with the lower contents of more slowly cooled pyroxenes. nce the basalts show little variation in bulk AIO content, and there is no obvious relationship between pyroxene minor element content and bulk composition, it can be concluded that the latter is not the dominant factor in determining pyroxene compositions. A brief survey was made of Plagioclase compositions in selected basalts. Results are shown in Table. Plagioclase phenocrysts in te basalts have calcic cores (Anβo zoned to AΠÓO). Groundmass microlites range from Amo to An and probably range down to at least AΠÓO. Variations in phenocryst composition in te basalts suggests a complex history of Plagioclase crystallization. There are two compositional groups of phenocrysts, one with Amo core composition and a second with AΠÓO core composition. Zoning is quite pronounced with rims of Am composition. At te, Plagioclase phenocrysts have An composition and may be continuously zoned to An. This represents the most extreme compositional variability in any of the basalts analyzed. l of the plagioclases contain minor amounts of,, and. Generally there is a positive correlation between An content and and abundances. In addition, the / ratio decreases with decreasing An content. The highest / ratios are associated with quenched Plagioclase in te basalts. Probably the partitioning of and into the Plagioclase is not an equilibrium process for these plagioclases. We have also briefly examined the oxides in these basalts. Surprisingly, most contain primary ilmenite with minor or no titanomagnetite. Analysis of coexisting ilmenite and titanomagnetite could only be accomplished in the coarse diabase at te, indicating crystallization parameters of C and F0 = I0. " atm. SUMMARY l basaltic rocks are either quartz or olivine tholeiites which are best divided on AIO and Ch contents. In terms of major elements and limited trace element abundances, samples from tes, and are abyssal tholeiites typical of basalts dredged from active midoceanic ridges. Samples from tes,, and are highalumina tholeiites, but some have high / ratios that serve to distinguish them from highalumina abyssal tholeiites. Basalts with distinctly higher KO, θ, and overall greater enrichment in lithophile trace elements, occur at tes,, and possibly 0. Diabase at te appears to contain patches of high Ch material which may represent local segregations of in situ fractionated liquid. Phase chemical studies indicate the ubiquity of Plagioclase and pyroxene, general lack of olivine, and rarity of titanomagnetite relative to ilmenite. Compositional zoning is most pronounced in Plagioclase phenocrysts which may have grown largely prior to eruption. Compositional zoning is not extensive in the pyroxenes which are all diopsidic augites, and trends are indicative of rather fast, metastable crystallization. Minor element abundances in both Plagioclase (,, ) and pyroxene (,, ) indicate an influence of bulk mineral chemistry, but also cooling rate has had a large effect.

5 PETROLOGY OF BASALTS , , , TABLE B Continued , , , , , TABLE A Pyroxenes in Basalts at tes and 0 0 O O O Ai A VI ZTet rtions Note:, = Phenocrysts;, = groundmass grains; = center to edge of phenocrysts; = center of phenocryst; = center to edge of phenocrysts.

6 W. I. RIDLEY, M. R. PERFIT, ML. ADAMS TABLE B Pyroxenes in Basalts at te and O A O O A IV VI ZTet Ltions Note: Edge to center of phenocryst. TABLE C Pyroxenes in Basalts at te O O O VI STet Stions , Note:, = Edge and center of phenocryst; = center of small phenocryst;, = edge and center of phenocryst;, groundmass grains; = phenocrysts.

7 PETROLOGY OF BASALTS TABLE D Pyroxenes in Basalts at te O O O A IV VI ETet Etions = , O O A IV A VI ETet Etions Note: = Edge to center, phenocryst;, = edge to center, phenocryst; = edge to center, phenocryst;, = groundmass microlites;, = edge and center of phenocryst;, = center and edge of phenocryst; = inclusion in Plagioclase; = microphenocrysts.

8 W. I. RIDLEY, M. R. PERFIT, ML. ADAMS TABLE E Pyroxenes in Basalts at te O O O VI Tet Ztions O O O IV VI ZTet Etions Note: = Edgecenter of phenocrysts, = center of phenocryst; = centeredge of phenocryst;, = center of phenocrysts; = individual phenocrysts; = center of phenocrysts; = center to edge of phenocryst; = center to edge of phenocryst.

9 PETROLOGY OF BASALTS TABLE Spinels in Leg ;\ Basalts te θ A O O O % Ulv. % RO..... Ilmenite Basis θ log fθ..0 T C 0 Λ Vio% v Figure. Pyroxene compositions in Leg basalts in terms of quadrilateral components diopside (Dl)enstatite (EN)ferrosuite (FS)hedenbergite (HD). The size of the triangles is an indication of the amount of components other than the above present in the pyroxene. These "other" components are due to solid solutions of,, and in the pyroxene structure.

Igneous and Metamorphic Rock Forming Minerals. Department of Geology Mr. Victor Tibane SGM 210_2013

Igneous and Metamorphic Rock Forming Minerals. Department of Geology Mr. Victor Tibane SGM 210_2013 Igneous and Metamorphic Rock Forming Minerals Department of Geology Mr. Victor Tibane 1 SGM 210_2013 Grotzinger Jordan Understanding Earth Sixth Edition Chapter 4: IGNEOUS ROCKS Solids from Melts 2011

More information

Textures of Igneous Rocks

Textures of Igneous Rocks Page 1 of 6 EENS 212 Prof. Stephen A. Nelson Petrology Tulane University This document last updated on 12-Feb-2004 Introduction to Igneous Rocks An igneous rock is any crystalline or glassy rock that forms

More information

GEOL 2312 Igneous and Metamorphic Petrology Spring 2016 Score / 58. Midterm 1 Chapters 1-10

GEOL 2312 Igneous and Metamorphic Petrology Spring 2016 Score / 58. Midterm 1 Chapters 1-10 GEOL 2312 Igneous and Metamorphic Petrology Name KEY Spring 2016 Score / 58 Midterm 1 Chapters 1-10 1) Name two things that petrologists want to know about magmas (1 pt) Formation, source, composition,

More information

GLY 155 Introduction to Physical Geology, W. Altermann. Grotzinger Jordan. Understanding Earth. Sixth Edition

GLY 155 Introduction to Physical Geology, W. Altermann. Grotzinger Jordan. Understanding Earth. Sixth Edition Grotzinger Jordan Understanding Earth Sixth Edition Chapter 4: IGNEOUS ROCKS Solids from Melts 2011 by W. H. Freeman and Company Chapter 4: Igneous Rocks: Solids from Melts 1 About Igneous Rocks Igneous

More information

Engineering Geology ECIV 2204

Engineering Geology ECIV 2204 Engineering Geology ECIV 2204 Instructor : Dr. Jehad Hamad 2017-2016 Chapter (3) Igneous Rocks Chapter 3: Rocks: Materials of the Solid Earth Igneous Rocks Chapter 3: Rocks: Materials of the Solid Earth

More information

Petrogenetic Constraints at Mount Rainier Volcano, Washington

Petrogenetic Constraints at Mount Rainier Volcano, Washington Petrogenetic Constraints at Mount Rainier Volcano, Washington S. C. Kuehn and P. R. Hooper, Department of Geology, Washington State University, Pullman, WA A. E. Eggers and C. Kerrick, Department of Geology,

More information

PETROGENESIS OF A SERIES OF MAFIC SHEETS WITHIN THE VINALHAVEN PLUTON, VINALHAVEN ISLAND, MAINE

PETROGENESIS OF A SERIES OF MAFIC SHEETS WITHIN THE VINALHAVEN PLUTON, VINALHAVEN ISLAND, MAINE PETROGENESIS OF A SERIES OF MAFIC SHEETS WITHIN THE VINALHAVEN PLUTON, VINALHAVEN ISLAND, MAINE DANIEL HAWKINS Western Kentucky University Research Advisor: Andrew Wulff INTRODUCTION Round Point, in the

More information

INTRODUCTION ROCK COLOR

INTRODUCTION ROCK COLOR LAST NAME (ALL IN CAPS): FIRST NAME: 6. IGNEOUS ROCKS Instructions: Some rocks that you would be working with may have sharp edges and corners, therefore, be careful when working with them! When you are

More information

BASEMENT ROCK SYNTHESIS: GEOCHEMISTRY, PETROLOGY, PHYSICAL PROPERTIES, AND PALEOMAGNETISM

BASEMENT ROCK SYNTHESIS: GEOCHEMISTRY, PETROLOGY, PHYSICAL PROPERTIES, AND PALEOMAGNETISM 64. BASEMENT ROCK SYNTHESIS: GEOCHEMISTRY, PETROLOGY, PHYSICAL PROPERTIES, AND PALEOMAGNETISM Stanley R. Hart, Carnegie Institution of Washington, Washington, D.C. INTRODUCTION The general objectives of

More information

COMPO- SITION. Euhedral skeletal. Twinned, zoned. Euhedral. Calcic. Anhedral. Mafic. brown clay.

COMPO- SITION. Euhedral skeletal. Twinned, zoned. Euhedral. Calcic. Anhedral. Mafic. brown clay. SITE 9-9A-24X-CC (Piece,-2 cm) ROCK NAME: Basaltic vitrophyre. GRAIN : y to 2.2 mm. TEXTURE: Spherulitic; microporphyritic; subophitic. WHERE SAMPLED: At top of contact with volcaniclastic. Green clay

More information

VOLCANIC STRATIGRAPHY AND PETROLOGY OF THE NORTHERN SNAEFELLSNES RIFT, SOUTHERN LAXÁRDALSFJÖLL, ICELAND

VOLCANIC STRATIGRAPHY AND PETROLOGY OF THE NORTHERN SNAEFELLSNES RIFT, SOUTHERN LAXÁRDALSFJÖLL, ICELAND VOLCANIC STRATIGRAPHY AND PETROLOGY OF THE NORTHERN SNAEFELLSNES RIFT, SOUTHERN LAXÁRDALSFJÖLL, ICELAND LEBN SCHUYLER Whitman College Sponsor: John Winter INTRODUCTION Iceland is exposed above sea level

More information

Imagine the first rock and the cycles that it has been through.

Imagine the first rock and the cycles that it has been through. A rock is a naturally formed, consolidated material usually composed of grains of one or more minerals The rock cycle shows how one type of rocky material gets transformed into another The Rock Cycle Representation

More information

Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100

Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100 Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100 Ray Rector - Instructor Major Concepts 1) Igneous rocks form directly from the crystallization of a magma or lava 2)

More information

How 2 nd half labs will work

How 2 nd half labs will work How 2 nd half labs will work Continue to use your mineral identification skills Learn to describe, classify, interpret rock hand samples: Igneous sedimentary metamorphic volcanic plutonic (1 week) (1 wk)

More information

GEOL 2312 Igneous and Metamorphic Petrology Spring 2009 Sc ore / 40

GEOL 2312 Igneous and Metamorphic Petrology Spring 2009 Sc ore / 40 GEOL 2312 Igneous and Metamorphic Petrology Name Spring 2009 Sc ore / 40 QUIZ 3 1) Name two geologic features that provide physical evidence for the mineralogy of the earth s mantle (2 pts) Ophiolites,

More information

Block: Igneous Rocks. From this list, select the terms which answer the following questions.

Block: Igneous Rocks. From this list, select the terms which answer the following questions. Geology 12 Name: Mix and Match: Igneous Rocks Refer to the following list. Block: porphyritic volatiles mafic glassy magma mixing concordant discontinuous reaction series igneous vesicular partial melting

More information

Essentials of Geology, 11e

Essentials of Geology, 11e Essentials of Geology, 11e Igneous Rocks and Intrusive Activity Chapter 3 Instructor Jennifer Barson Spokane Falls Community College Geology 101 Stanley Hatfield Southwestern Illinois College Characteristics

More information

The Nature of Igneous Rocks

The Nature of Igneous Rocks The Nature of Igneous Rocks Form from Magma Hot, partially molten mixture of solid liquid and gas Mineral crystals form in the magma making a crystal slush Gases - H 2 O, CO 2, etc. - are dissolved in

More information

Worked Example of Batch Melting: Rb and Sr

Worked Example of Batch Melting: Rb and Sr Worked Example of Batch Melting: Rb and Sr Basalt with the mode: Table 9.2. Conversion from mode to weight percent Mineral Mode Density Wt prop Wt% ol 15 3.6 54 0.18 cpx 33 3.4 112.2 0.37 plag 51 2.7 137.7

More information

IGNEOUS ROCKS. SECTION 5.1 What are igneous rocks?

IGNEOUS ROCKS. SECTION 5.1 What are igneous rocks? Date Period Name IGNEOUS ROCKS SECTION.1 What are igneous rocks? In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. basaltic

More information

26. TEXTURAL AND COMPOSITIONAL VARIATIONS IN DOLERITE UNITS FROM HOLE 395A

26. TEXTURAL AND COMPOSITIONAL VARIATIONS IN DOLERITE UNITS FROM HOLE 395A 26. TEXTURAL AND CMPSITINAL VARIATINS IN DLERITE UNITS FRM HLE 395A G. Propach, S. Lee, and E. Prosser, Mineralogisch-Petrographisches Institut der Universitàt München, Theresienstr. 4, D-8000 München

More information

Lecture 3 Rocks and the Rock Cycle Dr. Shwan Omar

Lecture 3 Rocks and the Rock Cycle Dr. Shwan Omar Rocks A naturally occurring aggregate of one or more minerals (e.g., granite), or a body of non-crystalline material (e.g., obsidian glass), or of solid organic material (e.g., coal). Rock Cycle A sequence

More information

Origin of Basaltic Magma. Geology 346- Petrology

Origin of Basaltic Magma. Geology 346- Petrology Origin of Basaltic Magma Geology 346- Petrology 2 principal types of basalt in the ocean basins Tholeiitic Basalt and Alkaline Basalt Table 10-1 Common petrographic differences between tholeiitic and alkaline

More information

12. ABUNDANCES OF RARE EARTHS AND OTHER TRACE ELEMENTS LEG 46 BASALTS (DSDP)

12. ABUNDANCES OF RARE EARTHS AND OTHER TRACE ELEMENTS LEG 46 BASALTS (DSDP) 2. ABUNDANCES OF RARE EARTHS AND OTHER TRACE ELEMENTS LEG 6 BASALTS (DSDP) R. Emmermann and H. Puchelt, Institut für Petrographie und Geochemie der Universitàt (T.H.) Karlsruhe, Germany ABSTRACT On a total

More information

Rocks. Types of Rocks

Rocks. Types of Rocks Rocks Rocks are the most common material on Earth. They are naturally occurring aggregates of one or more minerals. 1 Igneous rocks, Types of Rocks Sedimentary rocks and Metamorphic rocks. 2 1 3 4 2 IGNEOUS

More information

Supplementary Materials Detail Petrographic Description

Supplementary Materials Detail Petrographic Description Supplementary Materials Detail Petrographic Description Figure S1 shows the results of a thin section analysis of all samples from Ijen Crater. All samples had a porphyritic texture composed of plagioclase,

More information

Name Class Date STUDY GUIDE FOR CONTENT MASTERY

Name Class Date STUDY GUIDE FOR CONTENT MASTERY Igneous Rocks What are igneous rocks? In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. extrusive igneous rock intrusive

More information

Chapter 4 8/27/2013. Igneous Rocks. and Intrusive Igneous Activity. Introduction. The Properties and Behavior of Magma and Lava

Chapter 4 8/27/2013. Igneous Rocks. and Intrusive Igneous Activity. Introduction. The Properties and Behavior of Magma and Lava Introduction Chapter 4 Igneous rocks form by the cooling of magma (or lava). Large parts of the continents and all the oceanic crust are composed of. and Intrusive Igneous Activity The Properties and Behavior

More information

Pyroxenes (Mg, Fe 2+ ) 2 Si 2 O 6 (monoclinic) and. MgSiO 3 FeSiO 3 (orthorhombic) Structure (Figure 2 of handout)

Pyroxenes (Mg, Fe 2+ ) 2 Si 2 O 6 (monoclinic) and. MgSiO 3 FeSiO 3 (orthorhombic) Structure (Figure 2 of handout) Pyroxenes (Mg, Fe 2+ ) 2 Si 2 O 6 (monoclinic) and 20 MgSiO 3 FeSiO 3 (orthorhombic) Structure (Figure 2 of handout) Chain silicate eg Diopside Mg and Fe ions link SiO 3 chains The chain runs up and down

More information

Chapter - IV PETROGRAPHY. Petrographic studies are an integral part of any structural or petrological studies in

Chapter - IV PETROGRAPHY. Petrographic studies are an integral part of any structural or petrological studies in Chapter - IV PETROGRAPHY 4.1. Introduction Petrographic studies are an integral part of any structural or petrological studies in identifying the mineral assemblages, assigning nomenclature and identifying

More information

6. IGNEOUS ROCKS AND VOLCANIC HAZARDS

6. IGNEOUS ROCKS AND VOLCANIC HAZARDS LAST NAME (ALL IN CAPS): FIRST NAME: 6. IGNEOUS ROCKS AND VOLCANIC HAZARDS Instructions: Refer to Laboratory 5 in your lab book on pages 129-152 to answer the questions in this work sheet. Your work will

More information

APHYRIC BASALTS Petrography. Present address: Dept, of Geol. and Geog., Univ. of Massachusetts,

APHYRIC BASALTS Petrography. Present address: Dept, of Geol. and Geog., Univ. of Massachusetts, 20. THE PETROGRAPHY, MINERAL CHEMISTRY, AND ONE-ATMOSPHERE PHASE RELATIONS OF BASALTS FROM SITE 395 Michael A. Dungan and Philip E. Long, NRC Resident Research Associate, NASA Johnson Space Center, Houston,

More information

Student Name: College: Grade:

Student Name: College: Grade: Student Name: College: Grade: Physical Geology Laboratory IGNEOUS MINERALS AND ROCKS IDENTIFICATION - INTRODUCTION & PURPOSE: In this lab you will learn to identify igneous rocks in hand samples from their

More information

CHAPTER ROCK WERE FORMED

CHAPTER ROCK WERE FORMED HOW CHAPTER 3 ROCK WERE FORMED 1 I. Modern geology- 1795 A. James Hutton- 1. uniformitarianism- "the present is the key to the past" a. b. the geologic processes now at work were also active in the past

More information

CHAPTER ROCK WERE FORMED

CHAPTER ROCK WERE FORMED HOW CHAPTER 5 ROCK WERE FORMED 1 I. Modern geology- 1795 A. James Hutton- 1. uniformitarianism- "the present is the key to the past" a. b. the geologic processes now at work were also active in the past

More information

FACTS FOR DIAMOND OCCURRENCE IN KIMBERLITES

FACTS FOR DIAMOND OCCURRENCE IN KIMBERLITES KIMBERLITES Kimberlite is an ultrabasic olivine-rich igneous rock called peridotite. Peridotites occur at great depths in the earth in a layer called the mantle (100-135 miles below the surface). At this

More information

Name Class Date STUDY GUIDE FOR CONTENT MASTERY

Name Class Date STUDY GUIDE FOR CONTENT MASTERY Igneous Rocks What are igneous rocks? In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. extrusive igneous rock intrusive

More information

SECTION 5: THIN SECTIONS

SECTION 5: THIN SECTIONS SECTION 5: THIN SECTIONS 142-864A-1M-01 (0-10 cm) OBSERVER: BR GRAIN : Microcrystalline. TEXTURE: Spherulitic (variolitic) to microlitic (no glass). WHERE SAMPLED: Unit 1 COMPO srnon 0.2-1 mm Euhedral,

More information

Petrographic Investigation of Two Float Samples from the Goldstake Property, Northern Ontario. Prepared for: Mr. Robert Dillman

Petrographic Investigation of Two Float Samples from the Goldstake Property, Northern Ontario. Prepared for: Mr. Robert Dillman Petrographic Investigation of Two Float Samples from the Goldstake Property, Northern Ontario Prepared for: Mr. Robert Dillman by Jim Renaud Renaud Geological Consulting Ltd. 21272 Denfield Road London,

More information

Trace Elements. Today s lecture

Trace Elements. Today s lecture Trace Elements 300 Ni 200 ppm 100 0 300 Zr 200 100 0 40 50 60 70 80 SiO 2 wt. % Updates: M&M due date: Tuesday Today s lecture Topics: Trace element compositions Trace element behavior Partitioning Spider(

More information

Lecture 24 Hawaii. Hawaii

Lecture 24 Hawaii. Hawaii Lecture 24 Hawaii Friday, April 22 nd 2005 Hawaii The Hawaiian Islands, in the middle of the Pacific Ocean, are volcanic islands at the end of a long chain of submerged volcanoes. These volcanoes get progressively

More information

Igneous petrology EOSC 321

Igneous petrology EOSC 321 Igneous petrology EOSC 321 Laboratory 2: Determination of plagioclase composition. Mafic and intermediate plutonic rocks Learning Goals. After this Lab, you should be able: Determine plagioclase composition

More information

34. PETROLOGY OF BASALTS FROM SITE 487, DEEP SEA DRILLING PROJECT LEG 66, MIDDLE AMERICA TRENCH AREA OFF MEXICO 1

34. PETROLOGY OF BASALTS FROM SITE 487, DEEP SEA DRILLING PROJECT LEG 66, MIDDLE AMERICA TRENCH AREA OFF MEXICO 1 34. PETRLGY F BASALTS FRM SITE 487, DEEP SEA DRILLING PRJECT LEG 66, MIDDLE AMERICA TRENCH AREA FF MEXIC 1 Shoji Arai, Institute of Geosciences, Faculty of Science, Shizuoka University, Shizuoka, 422 Japan

More information

The 3 types of rocks:

The 3 types of rocks: Igneous Rocks and Intrusive Igneous Activity The 3 types of rocks:! Sedimentary! Igneous! Metamorphic Marble 1 10/7/15 SEDIMENTARY ROCKS Come from rocks sediments (rock fragments, sand, silt, etc.) Fossils

More information

EPS 50 Lab 2: Igneous Rocks Grotzinger and Jordan, Chapter 4

EPS 50 Lab 2: Igneous Rocks Grotzinger and Jordan, Chapter 4 Name: EPS 50 Lab 2: Igneous Rocks Grotzinger and Jordan, Chapter 4 Introduction In the previous lab, we learned about mineral characteristics, properties and identities as well as the three basic rock

More information

Rocks: Materials of the Solid Earth

Rocks: Materials of the Solid Earth 1 Rocks: Materials of the Solid Earth Presentation modified from: Instructor Resource Center on CD-ROM, Foundations of Earth Science,, 4 th Edition, Lutgens/Tarbuck, Rock Cycle Igneous Rocks Today 2 Rock

More information

29. CHEMICAL ZONATION OF PLAGIOCLASE PHENOCRYSTS FROM LEG 51, 52, AND 53 BASALTS

29. CHEMICAL ZONATION OF PLAGIOCLASE PHENOCRYSTS FROM LEG 51, 52, AND 53 BASALTS 29. CHEMICAL ZONATION OF PLAGIOCLASE PHENOCRYSTS FROM LEG 51, 52, AND BASALTS Claire Bollinger and Michel Semet, Laboratoire de Géochimie et Cosmochimie, Institut de Physique du Globe de Paris, Département

More information

Name Petrology Spring 2006

Name Petrology Spring 2006 Igneous rocks lab Part I Due Tuesday 3/7 Igneous rock classification and textures For each of the rocks below, describe the texture, determine whether the rock is plutonic or volcanic, and describe its

More information

This work follows the international standard nomenclature (IUGS) in naming the

This work follows the international standard nomenclature (IUGS) in naming the CHAPTER FIVE: PETROGRAPHY This work follows the international standard nomenclature (IUGS) in naming the different Platreef rock types. It should be noted that new lithologies not described in chapter

More information

LAB 9: ULTRAMAFIC ROCKS, CUMULATES AND MELT SOURCES

LAB 9: ULTRAMAFIC ROCKS, CUMULATES AND MELT SOURCES Geology 316 (Petrology) (03/26/2012) Name LAB 9: ULTRAMAFIC ROCKS, CUMULATES AND MELT SOURCES INTRODUCTION Ultramafic rocks are igneous rocks containing less than 10% felsic minerals (quartz + feldspars

More information

Earth Science 11: Earth Materials: Rock Cycle

Earth Science 11: Earth Materials: Rock Cycle Name: Date: Earth Science 11: Earth Materials: Rock Cycle Chapter 2, pages 44 to 46 2.1: Rock Cycle What is a Rock? A solid mass of mineral or mineral-like matter that occurs naturally as part of our planet

More information

Senior Thesis MINERAL COMPONENT ANALYSIS OF THE EGERSUND DIKE SYSTEM IN SOUTHERN NORWAY. by Douglas A. Davis Winter 1994

Senior Thesis MINERAL COMPONENT ANALYSIS OF THE EGERSUND DIKE SYSTEM IN SOUTHERN NORWAY. by Douglas A. Davis Winter 1994 Senior Thesis MINERAL COMPONENT ANALYSIS OF THE EGERSUND DIKE SYSTEM IN SOUTHERN NORWAY by Douglas A. Davis Winter 1994 Submitted as partial fulfillment of the requirements for the degree of Bachelor of

More information

Earth Science 232 Petrography

Earth Science 232 Petrography Earth Science 232 Petrography Course notes by Shaun Frape and Alec Blyth Winter 2002 1 Petrology - Introduction Some Definitions Petra Greek for rock Logos Greek for disclosure or explanation Petrology

More information

Page 499 PERCENT PRESENT. SIZE (mm) PERCENT ORIGINAL COMPO- SITION MORPHOLOGY COMMENTS

Page 499 PERCENT PRESENT. SIZE (mm) PERCENT ORIGINAL COMPO- SITION MORPHOLOGY COMMENTS 168-1025B-11X-CC (Piece 2, 028-040 cm) ROCK NAME: Aphyric plagioclase-pyroxene-olivine basalt GRAIN SIZE: Aphanitic: microcrystalline TEXTURE: Sheaf-spherulitic to intersertal. SIZE (mm) Olivine Tr Tr

More information

Lecture 38. Igneous geochemistry. Read White Chapter 7 if you haven t already

Lecture 38. Igneous geochemistry. Read White Chapter 7 if you haven t already Lecture 38 Igneous geochemistry Read White Chapter 7 if you haven t already Today. Magma mixing/afc 2. Spot light on using the Rare Earth Elements (REE) to constrain mantle sources and conditions of petrogenesis

More information

Igneous Rock. Magma Chamber Large pool of magma in the lithosphere

Igneous Rock. Magma Chamber Large pool of magma in the lithosphere Igneous Rock Magma Molten rock under the surface Temperature = 600 o 1400 o C Magma Chamber Large pool of magma in the lithosphere Magma chamber - most all magma consists of silicon and oxygen (silicate)

More information

Lab 4 - Identification of Igneous Rocks

Lab 4 - Identification of Igneous Rocks Lab 4 - Identification of Igneous Rocks Page - Introduction A rock is a substance made up of one or more different minerals. Thus an essential part of rock identification is the ability to correctly recognize

More information

Differentiation and magma mixing on Kilauea s east rift zone: a further look at the eruptions of 1955 and Part II.

Differentiation and magma mixing on Kilauea s east rift zone: a further look at the eruptions of 1955 and Part II. Bull Volcanol (16) 57: 602 60 Q Springer-Verlag 16 ORIGINAL AER T. L. Wright 7 R. T. Helz Differentiation and magma mixing on Kilauea s east rift zone: a further look at the eruptions of 155 and 160. art

More information

What is the Workflow for Hard Rock Visual Core Description and How Will it Benefit from CoreWall?

What is the Workflow for Hard Rock Visual Core Description and How Will it Benefit from CoreWall? What is the Workflow for Hard Rock Visual Core Description and How Will it Benefit from CoreWall? Clive R. Neal Department of Civil Eng. & Geological Sciences, University of Notre Dame, Notre Dame, IN

More information

Lab 3 - Identification of Igneous Rocks

Lab 3 - Identification of Igneous Rocks Lab 3 - Identification of Igneous Rocks Page - 1 Introduction A rock is a substance made up of one or more different minerals. Thus an essential part of rock identification is the ability to correctly

More information

29. COMPOSITIONS OF BASALTIC GLASSES FROM THE EAST PACIFIC RISE AND SIQUEIROS FRACTURE ZONE, NEAR 9 N

29. COMPOSITIONS OF BASALTIC GLASSES FROM THE EAST PACIFIC RISE AND SIQUEIROS FRACTURE ZONE, NEAR 9 N 29. COMPOSITIONS OF BASALTIC GLASSES FROM THE EAST PACIFIC RISE AND SIQUEIROS FRACTURE ZONE, NEAR 9 N James H. Natland, Deep Sea Drilling Project, Scripps Institution of Oceanography, University of California,

More information

EESC 4701: Igneous and Metamorphic Petrology IGNEOUS ROCK CLASSIFICATION LAB 2 HANDOUT

EESC 4701: Igneous and Metamorphic Petrology IGNEOUS ROCK CLASSIFICATION LAB 2 HANDOUT EESC 4701: Igneous and Metamorphic Petrology IGNEOUS ROCK CLASSIFICATION LAB 2 HANDOUT Sources: University of Washington, Texas A&M University, University of Southern Alabama What is an igneous rock (a

More information

Partial melting of mantle peridotite

Partial melting of mantle peridotite Partial melting of mantle peridotite 1100 1200 1300 1400 1500 (TºC) Depth (km) 50 100 150 Plag lherzolite (ol-opx-cpx-pl) Spinel lherzolite (Ol-opx-cpx-sp) Garnet lherzolite (Ol-opx-cpx-gar) Graphite Diamond

More information

MACRORYTHMIC GABBRO TO GRANITE CYCLES OF CLAM COVE VINALHAVEN INTRUSION, MAINE

MACRORYTHMIC GABBRO TO GRANITE CYCLES OF CLAM COVE VINALHAVEN INTRUSION, MAINE MACRORYTHMIC GABBRO TO GRANITE CYCLES OF CLAM COVE VINALHAVEN INTRUSION, MAINE NICK CUBA Amherst College Sponsor: Peter Crowley INTRODUCTION The rocks of the layered gabbro-diorite unit of the Silurian

More information

Larsen, H.C., Duncan, R.A., Allan, J.F., Brooks, K. (Eds.), 1999 Proceedings of the Ocean Drilling Program, Scientific Results, Vol.

Larsen, H.C., Duncan, R.A., Allan, J.F., Brooks, K. (Eds.), 1999 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. Larsen, H.C., Duncan, R.A., Allan, J.F., Brooks, K. (Eds.), 1999 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 163 9. LOW-PRESSURE MELTING STUDIES OF BASALT AND BASALTIC ANDESITE

More information

High-T heating stage: application for igneous petrogenesis and mantle processes - melt inclusions as key tools -

High-T heating stage: application for igneous petrogenesis and mantle processes - melt inclusions as key tools - High-T heating stage: application for igneous petrogenesis and mantle processes - melt inclusions as key tools - SZABÓ, Csaba Lithosphere Fluid Research Lab (LRG), Department of Petrology and Geochemistry,

More information

Chapter Introduction Lesson 1 The Continental Drift Hypothesis Lesson 2 Development of a Theory Lesson 3 The Theory of Plate Tectonics Chapter

Chapter Introduction Lesson 1 The Continental Drift Hypothesis Lesson 2 Development of a Theory Lesson 3 The Theory of Plate Tectonics Chapter Chapter Introduction Lesson 1 The Continental Drift Hypothesis Lesson 2 Development of a Theory Lesson 3 The Theory of Plate Tectonics Chapter Wrap-Up Arctic_Images/Getty Images What is the theory of plate

More information

Engineering Geology. Igneous rocks. Hussien Al - deeky

Engineering Geology. Igneous rocks. Hussien Al - deeky Igneous rocks Hussien Al - deeky 1 The Geology Definition of Rocks In Geology Rock is defined as the solid material forming the outer rocky shell or crust of the earth. There are three major groups of

More information

Chapter 9: Trace Elements

Chapter 9: Trace Elements Chapter 9: Trace Elements Note magnitude of major element changes Figure 8.2. Harker variation diagram for 310 analyzed volcanic rocks from Crater Lake (Mt. Mazama), Oregon Cascades. Data compiled by Rick

More information

1 - C Systems. The system H 2 O. Heat an ice at 1 atm from-5 to 120 o C. Heat vs. Temperature

1 - C Systems. The system H 2 O. Heat an ice at 1 atm from-5 to 120 o C. Heat vs. Temperature 1 - C Systems The system H 2 O Heat an ice at 1 atm from-5 to 120 o C Heat vs. Temperature Fig. 6.7. After Bridgman (1911) Proc. Amer. Acad. Arts and Sci., 5, 441-513; (1936) J. Chem. Phys., 3, 597-605;

More information

UNIT-3 PETROLOGY QUESTIONS AND ANSWERS 1. What is mean by Rock? It is defined as natural solid massive aggregates of minerals forming the crust of the earth 2. Define Petrology? The branch of geology dealing

More information

Chapter 4 Rocks & Igneous Rocks

Chapter 4 Rocks & Igneous Rocks Chapter 4 Rocks & Igneous Rocks Rock Definition A naturally occurring consolidated mixture of one or more minerals e.g, marble, granite, sandstone, limestone Rock Definition Must naturally occur in nature,

More information

Plate tectonics, rock cycle

Plate tectonics, rock cycle Dikes, Antarctica Rock Cycle Plate tectonics, rock cycle The Rock Cycle A rock is a naturally formed, consolidated material usually composed of grains of one or more minerals The rock cycle shows how one

More information

27. PETROGRAPHY OF BASALTS FROM DEEP SEA DRILLING PROJECT LEG Marjorie S. Goldfarb, School of Oceanography, University of Washington 2

27. PETROGRAPHY OF BASALTS FROM DEEP SEA DRILLING PROJECT LEG Marjorie S. Goldfarb, School of Oceanography, University of Washington 2 27. PETROGRAPHY OF BASALTS FROM DEEP SEA DRILLING PROJECT LEG 92 1 Marjorie S. Goldfarb, School of Oceanography, University of Washington 2 ABSTRACT Studies of thin sections of basalts from Sites 597,

More information

Earth Science 11: Minerals

Earth Science 11: Minerals lname: Date: Earth Science 11: Minerals Purpose: Text Pages: I can identify and classify minerals using their physical and chemical properties 90-111 *This is recommended reading! Matter and Atoms (5.1)

More information

IV. Governador Valadares clinopyroxenite, 158 grams find

IV. Governador Valadares clinopyroxenite, 158 grams find IV. Governador Valadares clinopyroxenite, 158 grams find Figure IV-1. Photograph of Governador Valadares (158 grams) from Dr. Fernanda Ferrucci via Dr. Giuseppe Cavarretta. Photo taken by L. Spinozzi.

More information

A Brief Review of the Geology of Monhegan Island, Maine

A Brief Review of the Geology of Monhegan Island, Maine Maine Geologic Facts and Localities April, 2010 A Brief Review of the Geology of Monhegan Island, Maine 43 45 58.95 N, 69 18 47.45 W Text by R. G. Marvinney, Department of Agriculture, Conservation & Forestry

More information

Page 1. Name: 1) Which diagram best shows the grain size of some common sedimentary rocks?

Page 1. Name: 1) Which diagram best shows the grain size of some common sedimentary rocks? Name: 1) Which diagram best shows the grain size of some common sedimentary rocks? 1663-1 - Page 1 5) The flowchart below illustrates the change from melted rock to basalt. 2) Which processes most likely

More information

SEA-FLOOR SPREADING. In the 1950 s and early 1960 s detailed study of the oceans revealed the following surprising information:-

SEA-FLOOR SPREADING. In the 1950 s and early 1960 s detailed study of the oceans revealed the following surprising information:- SEA-FLOOR SPREADING In the 1950 s and early 1960 s detailed study of the oceans revealed the following surprising information:- Detailed bathymetric (depth) studies showed that there was an extensive submarine

More information

Basaltic and Gabbroic Rocks

Basaltic and Gabbroic Rocks Page 1 of 18 EENS 212 Prof. Stephen A. Nelson Basaltic and Gabbroic Rocks Petrology Tulane University This document last updated on 04-Mar-2004 Although basaltic and gabbroic rocks are found in nearly

More information

Chapter 9: Trace Elements

Chapter 9: Trace Elements Lecture 13 Introduction to Trace Elements Wednesday, March 9, 2005 Chapter 9: Trace Elements Note magnitude of major element changes Figure 8-2. Harker variation diagram for 310 analyzed volcanic rocks

More information

C = 3: Ternary Systems: Example 1: Ternary Eutectic

C = 3: Ternary Systems: Example 1: Ternary Eutectic Phase Equilibrium C = 3: Ternary Systems: Example 1: Ternary Eutectic Adding components, becomes increasingly difficult to depict 1-C: P - T diagrams easy 2-C: isobaric T-X, isothermal P-X 3-C:?? Still

More information

EAS 4550: Geochemistry Problem Set 4 Solutions Due Sept. 27, 2017

EAS 4550: Geochemistry Problem Set 4 Solutions Due Sept. 27, 2017 1. Interaction parameters for the enstatite diopside solid solution have been determined as follows: WH-En = 34.0 kj/mol, WH-Di = 24.74 kj/mol (assume WV and WS are 0). (a) Use the asymmetric solution

More information

Quiz 1. 3) Which of the following planetary bodies has the least number of impact craters on its surface? A) Mercury B) Mars C) the Moon D) Earth

Quiz 1. 3) Which of the following planetary bodies has the least number of impact craters on its surface? A) Mercury B) Mars C) the Moon D) Earth Quiz 1 1) Earth's atmosphere is unique among the moons and planets in that A) it has a nitrogen (N2) rich atmosphere. B) it is rich in oxygen (O2) and nitrogen (N2). C) it is rich in carbon dioxide because

More information

Mineral/feature Modal% Size, morphology, distinguishing optical properties

Mineral/feature Modal% Size, morphology, distinguishing optical properties Sample#: FIL 10-1 Rock Name: Olivine bearing, vesiculated 2-Px basaltic andesite Hand-specimen description: Highly porphyritic and vesiculated (1-5mm) medium-grained dark grey groundmass with abundant

More information

Hole 340-U1393A-1H Section 1, Top of Section: 0.0 CSF-A (m)

Hole 340-U1393A-1H Section 1, Top of Section: 0.0 CSF-A (m) Hole 4-U9A-H Section, Top of Section:. CSF-A (m) Dark volcaniclastic coarse to very coarse sand, with rare granules (up to 4 mm), mainly andesitic lava with rare carbonate grains. Similar in composition

More information

67. PHASE CHEMISTRY STUDIES ON GABBRO AND PERIDOTITE ROCKS FROM SITE 334, DSDP LEG 37

67. PHASE CHEMISTRY STUDIES ON GABBRO AND PERIDOTITE ROCKS FROM SITE 334, DSDP LEG 37 67. PHASE CHEMISTRY STUDIES N GABBR AND PERIDTITE RCKS FRM SITE 334, DSDP LEG 37 R.F. Symes, J.C. Bevan, and R. Hutchison, Department of Mineralogy, British Museum (Natural History, London, England INTRDUCTIN

More information

EARTH SCIENCE. Geology, the Environment and the Universe. Chapter 5: Igneous Rocks

EARTH SCIENCE. Geology, the Environment and the Universe. Chapter 5: Igneous Rocks EARTH SCIENCE Geology, the Environment and the Universe Chapter 5: Igneous Rocks CHAPTER 5 Igneous Rocks Section 5.1 What are igneous rocks? Section 5.2 Classification of Igneous Rocks Click a hyperlink

More information

Effect of tectonic setting on chemistry of mantle-derived melts

Effect of tectonic setting on chemistry of mantle-derived melts Effect of tectonic setting on chemistry of mantle-derived melts Lherzolite Basalt Factors controlling magma composition Composition of the source Partial melting process Fractional crystallization Crustal

More information

ANALYSIS OF GEOLOGIC MATERIALS USING RIETVELD QUANTIATIVE X-RAY DIFFRACTION

ANALYSIS OF GEOLOGIC MATERIALS USING RIETVELD QUANTIATIVE X-RAY DIFFRACTION Copyright JCPDS - International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Volume 46. 204 ANALYSIS OF GEOLOGIC MATERIALS USING RIETVELD QUANTIATIVE X-RAY DIFFRACTION Robin M. Gonzalez,

More information

Lunar Glossary. Note to the User: Glossary

Lunar Glossary. Note to the User: Glossary Lunar Glossary Note to the User: A number of terms are unique to lunar science or are at least used in a specialized sense. The following brief glossary is an attempt to define these unique terms plus

More information

Name Class Date. In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements.

Name Class Date. In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. CHAPTER 5 Igneous Rocks SECTION 5.1 What are igneous rocks? In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. basaltic

More information

Abstract. 1. Introduction

Abstract. 1. Introduction Abstract 1. Introduction 2. Geological position and host volcanics 3. Summary of primary mineralogy of Tirich and other peridotites of Dzhilinda River Figure 1. Composition of clinopyroxenes from the Dzhilinda

More information

THE PROBLEM OF THE QUARTZ DOLERITES: SOME SIGNIFICANT FACTS CONCERNING MINERAL VOLUME, GRAIN SIZE AND FABRle

THE PROBLEM OF THE QUARTZ DOLERITES: SOME SIGNIFICANT FACTS CONCERNING MINERAL VOLUME, GRAIN SIZE AND FABRle PAPERS AND PROCEEDINGS OF THE ROYAL SOCIETY OF TASMANIA. VOLUME 91 THE PROBLEM OF THE QUARTZ DOLERITES: SOME SIGNIFICANT FACTS CONCERNING MINERAL VOLUME, GRAIN SIZE AND FABRle GERMAINE By A. JOPLIN Australian

More information

Lithology: Olivine-rich gabbro medium grained Observer: Texture: granular Ave. grain size: medium grained [345] Shape Habit Comments

Lithology: Olivine-rich gabbro medium grained Observer: Texture: granular Ave. grain size: medium grained [345] Shape Habit Comments THIN SECTION LABEL ID: 179-1105A-1R-2-W 88/91-TSB-TSS Piece no.: #02 TS no.: Igneous Medium-grained olivine gabbronorite; plagioclase chadacryst within orthopyroxene oikocryst; rims of olivine and clinopyroxene

More information

25. MAJOR AND TRACE ELEMENTS AND Nd AND Sr ISOTOPE GEOCHEMISTRY OF BASALTS FROM THE DEEP SEA DRILLING PROJECT LEG 74 WALVIS RIDGE TRANSECT 1

25. MAJOR AND TRACE ELEMENTS AND Nd AND Sr ISOTOPE GEOCHEMISTRY OF BASALTS FROM THE DEEP SEA DRILLING PROJECT LEG 74 WALVIS RIDGE TRANSECT 1 25. MAJOR AND TRACE ELEMENTS AND Nd AND Sr ISOTOPE GEOCHEMISTRY OF BASALTS FROM THE DEEP SEA DRILLING PROJECT LEG 74 WALVIS RIDGE TRANSECT 1 S. H. Richardson, Center for Geoalchemy, Department of Earth

More information

Overview of the KAHT system. Ian E.M. Smith, School of Environment, University of Auckland

Overview of the KAHT system. Ian E.M. Smith, School of Environment, University of Auckland Overview of the KAHT system Ian E.M. Smith, School of Environment, University of Auckland Tonga-Kermadec-New Zealand Arc Developed on the Pacific - Australian convergent margin Mainly intraoceanic except

More information

High-T T heating stage: : application for igneous petrogenesis and mantle processes - melt inclusions as key tools -

High-T T heating stage: : application for igneous petrogenesis and mantle processes - melt inclusions as key tools - High-T T heating stage: : application for igneous petrogenesis and mantle processes - melt inclusions as key tools - SZABÓ, Csaba Lithosphere Fluid Research Lab (LRG), Department of Petrology and Geochemistry,

More information

23. GEOCHEMICAL RESULTS FOR BASALTS FROM SITES 253 AND 254

23. GEOCHEMICAL RESULTS FOR BASALTS FROM SITES 253 AND 254 23. GEOCHEMICAL RESULTS FOR BASALTS FROM SITES 253 AND 254 Fred A. Frey and Chien Min Sung, Department of Earth and Planetary Science, Massachusetts Institute of Technology, Cambridge, Massachusetts INTRODUCTION

More information

Lecture 37. Igneous geochemistry. Crystallization Let's look at how we use differences in element distribution to understand crystallization process.

Lecture 37. Igneous geochemistry. Crystallization Let's look at how we use differences in element distribution to understand crystallization process. Reading White Chapter 7 Lecture 37 Igneous geochemistry Today: Using trace elements to study 1. crystallization 2. melting Crystallization Let's look at how we use differences in element distribution to

More information