Global space-time statistics of sea surface temperature estimated from AMSR-E data

Size: px
Start display at page:

Download "Global space-time statistics of sea surface temperature estimated from AMSR-E data"

Transcription

1 GEOPHYSICAL RESEARCH LETTERS, VOL. 31,, doi: /2004gl020317, 2004 Global space-time statistics of sea surface temperature estimated from AMSR-E data K. Hosoda Earth Observation Research and Application Center, Japan Aerospace Exploration Agency, Tokyo, Japan H. Kawamura Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University, Sendai, Japan Received 21 April 2004; accepted 4 August 2004; published 2 September [1] Sea surface temperature (SST) data of one year from Advanced Microwave Scanning Radiometer for EOS (AMSR-E) are used to estimate statistically spatial and temporal scales of the global SST field. Using anomalies from the climatological annual SST variation, correlation coefficients in the horizontal space and time are calculated. Decorrelation scales, defined as an e-folding scale of SST anomalies, and signal-to-noise ratio are derived as functions of regional positions and calendar months. We assumed that the autocorrelation function of SST anomaly has anisotropic Gaussian characteristics in space-time domain. We evaluated the space-time scales and statistical errors in the SST data by fitting Gaussian function to the correlation coefficients using a least square method. Resultant zonal, meridional and temporal decorrelation scales range degree, degree and day, respectively. The scales show geographical and seasonal differences, which means that dominant SST variability in the global oceans depends on regions and seasons. INDEX TERMS: 4504 Oceanography: Physical: Air/sea interactions (0312); 4299 Oceanography: General: General or miscellaneous; 4599 Oceanography: Physical: General or miscellaneous. Citation: Hosoda, K., and H. Kawamura (2004), Global space-time statistics of sea surface temperature estimated from AMSR-E data, Geophys. Res. Lett., 31,, doi: /2004gl Introduction [2] Requirements for spatial and temporal resolutions of near-real-time sea surface temperature(sst) product are 100 km and 1 day for numerical weather prediction (WMO World Weather Watch 4th Long Term Plan, ) and 10 km and less than 1 day (diurnal cycle resolved) for ocean data assimilation [Le Traon et al., 2001]. [3] Satellite observations offer great advantages, especially in terms of spatial and temporal coverage, to develop SST products suitable to the above requirements. Using microwave and infrared SST measurements, Guan and Kawamura [2004] produced, through an objective analysis, a test product of high-resolution cloud-free SST, which is called New Generation SST version 1.0 (hereafter NGSST ver. 1.0). [4] Objective mapping or optimal interpolation was first introduced by [Gandin, 1963] to produce a systematic procedure for the production of gridded maps of meteorological Copyright 2004 by the American Geophysical Union /04/2004GL parameters. Oceanographic application of this method was provided by Bretherton et al. [1976]. The method has been widely used for mapping of water temperature fields [e.g., Reynolds and Smith, 1994; White, 1995], sea surface height anomaly [e.g., Le Traon et al., 1998; Ducet et al., 2000]. If the covariance used in the objective mapping is that of the data field, then it is optimal in the sense that it minimizes the mean square error of the objective estimates. [5] The method requires knowledge of the signal and noise variance and of the spatial-temporal autocorrelation function for the fields of interest. Because early efforts to estimate these statistics of SST and subsurface temperature fields [Reynolds and Smith, 1994; White, 1995] specifically addressed relatively long-term variability (annual to interannual), the spatial and temporal scales they obtained are larger than 500 km and a few months. Adequate statistics of SST fields that address short-term variability (intra-seasonal) should be used for production of a high-resolution SST dataset. For producing the NGSST ver. 1.0, Guan and Kawamura [2004] used a homogeneous and isotropic autocorrelation function for all seasons and regions from trial and error. Since their definition is only a technical solution and does not have theoretical basis, it is necessary to derive the autocorrelation function from data. In addition, it is expected that the SST variability depends on thermal conditions in the upper layer of ocean and on the oceanic and atmospheric disturbances, which changes their features seasonally and regionally. Therefore, it is necessary to discuss seasonality and regionality of the statistics of SST. We have estimated the decorrelation scale of SST variability in the Kuroshio region south of Japan (K. Hosoda and H. Kawamura, Seasonal variation of space/time statistics of short-term sea surface temperature variability in the Kuroshio region, submitted to Journal of Oceanography, 2004, hereinafter referred to as Hosoda and Kawamura, submitted manuscript, 2004), identifying the regional and seasonal change of scales. Here, we extend the analysis of decorrelation scale globally, using SST data observed by Advanced Microwave Scanning Radiometer for EOS (AMSR-E) aboard Aqua. In this study, it is assumed that climatological SST is used as the first guess of the optimum interpolation using the statistics derived here. [6] AMSR-E is a multi-frequency microwave radiometer that detects microwave emissions from the earth s surface and atmosphere. Microwaves penetrate clouds with little attenuation, giving an uninterrupted view of the ocean surface such as SST-cooling produced by hurricanes observed by Tropical Rainfall Measuring Mission/TRMM Microwave Imager (TRMM/TMI) [Wentz et al., 2000]. 1of5

2 HOSODA AND KAWAMURA: GLOBAL STATISTICS OF SST FROM AMSR-E Figure 1. (a) (b): An example of SST (a) and SSTA (b). (c) The geophysical distribution of SSTA variance. Contour interval is 0.5K. Therefore, microwave measurements provides a high-availability SST data compared with the infrared measurements which are limited by cloud presence [Guan and Kawamura, 2003]. Shibata et al. [1999] pointed out that TRMM/TMI has a problem for low temperature observation since its measurements at 10 GHz has low sensitivity toward SST if it is less than 10 C. Since 6 GHz measurements of AMSR-E improve the SST estimation at low temperature, it is appropriate for estimating statistics of SST globally. A. Shibata (SST algorithm developments Removal of ocean wind effect, submitted to Italian Journal of Remote Sensing, 2004) described the algorithm of deriving SST from AMSR-E data and showed that root mean square of difference between buoy observation and AMSR-derived SSTs is 0.59 K. While the spatial resolution of microwave measurements is sparse, our previous study on the decorrelation scales in the Kuroshio region (Hosoda and Kawamura, submitted manuscript, 2004) revealed that the scales are mainly determined by large-scale atmospheric forcings. Therefore, it is expected that the seasonal/regional characteristics could be derived from the analysis using AMSR-E. In this study, we use Reynolds climatological SST (daily long term mean data are available from noaa.gov/cdc/data.reynolds_sst.html) [Reynolds and Smith, 1994] as annual signal, whose resolution is 1 1 and 1 day. Figure 1b is an example of SSTA fields calculated from Figure 1a. Figure 1c shows the geographical distribution of SSTA variance in all the analyzed period. [9] The auto-correlation matrices are calculated using SSTA at each (latitude longitude) grid as a function of position x = (x, y, t) and relative position xl = (xl, yl, tl), where x and y are the longitude and latitude, t is the month, xl and yl are the longitudinal and latitudinal distances, and tl is the temporal difference. Ranges of spatial and temporal differences are ±7.5 ±10 (latitude longitude) and ±5 days, respectively. [10] We introduce the following assumption to calculate the SSTA decorrelation scale. For the period in which the correlation matrices are calculated, mean of the error at a position is assumed to be zero and to be a random noise. Then the correlation coefficients of the error are zero, if the temporal difference and/or spatial distance are not zero. In order to estimate the decorrelation scale of SSTA variation, the correlation matrix of observed SSTA variation is assumed to be anisotropic Gaussian as a function of a relative position xl: rðx; xl Þ ¼ exp a1 x2l þ a2 y2l þ a3 tl2 þa4 yl tl þ a5 tl xl þ a6 xl yl þ a7 Þ ; ð2þ where aj = aj(x) (j = 1,..,7) are the coefficients, which are derived as a function of a position x, using least-mean-square 2. Data and Method [7] We use AMSR-E SST data from June 1, 2002 to May 31, 2003 to derive the decorrelation scales globally. The spatial and temporal resolution is and 1 day. Before the calculation of correlations, the optimal interpolation is used for filling the gap between the orbit. The correlation function used in the interpolation is the Gaussian function with decorrelation scales of 100 km and 1 day. [8] Figure 1a shows an example of SST field. The annual signal, with spatial scales as large as 1000 km, is the most significant in the SST variation. It is necessary to eliminate influences of the annual large-scale SST change, because we focus on the small-scale variations of SST. Therefore, we calculate SST anomaly (SSTA) from annual signal: SSTA ¼ SST climatological annual signal: ð1þ Figure 2. An example of correlation matrix and fitted Gaussian function. Color and thin lines (contour interval is 0.2) denote the correlation coefficients. Thick and thickbroken lines are 0.5 and 0.25 contours of the fitted function. 2 of 5

3 HOSODA AND KAWAMURA: GLOBAL STATISTICS OF SST FROM AMSR-E approximation to the feature of the coefficient matrix. The zonal and meridional spatial scales at this point are about 2.35 and 1.47, respectively. The temporal scale is 2.93 days. With the coefficients a4, a5 and a6, the fitted function can describe the tilt of axes, which means anisotropy and propagation of phenomena. 3. Result Figure 3. The spatial decorrelation scales computed from April data. The elliptic contour shows the range of the correlation coefficient 1/e on a zero time lag plane. Each ellipse is drawn at 10 5 grid. method. Since the function, which is used in Kuragano and Kamachi [2000], can describe anisotropy, we adopt it as the first guess in this study. Including the coefficient a6 in equation (2) allows the major axes of the ellipse on x y plane not to be forced to lie along the x and y axes. The coefficients a4 and a5 describes the migration of peak correlation. Decorrelation scales in this manuscript are defined as so-called e-folding scale, where the correlation function at the scale reaches a value of exp( 1): pffiffiffiffi Decorrelation scale 1= ai ði ¼ 1; 2; 3Þ: ð3þ Signal-to-noise ratio (SNR) is estimated from equation (2) as, SNR pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi expð a7 Þ=½1 expð a7 Þ : ð4þ Note that we define the SNR as a ratio of standard deviation, not a ratio of variance in equation (4). [11] Figure 2 shows the correlation coefficient matrix of the SSTA and the fitted function at 35 N, 215 E, as an example. The fitted Gaussian function shows a good [12] Figure 3 shows an example of the spatial decorrelation scales as the elliptic function: a1x2l + a2y2l + a6xlyl = 1. This function means the 1/e contour of the fitted function at zero temporal lag plane if a7 = 0. Figure 3 indicates that the spatial scales are anisotropic and inhomogeneous. The global distributions of zonal and meridional decorrelation scales are given in Figures 4a and 4b, respectively. For clarifying the seasonal change, we select a month from each season: June, September, December and March. Although the intra-seasonal change is also found, it is weaker than the seasonal change. [13] The zonal scale is in the range of degrees, while the meridional scale is degrees. In the most region, the zonal scales are longer than the meridional scales. In contrast, the zonal scale in the tropical region is smaller than those in the other regions. In the eastern tropical Pacific and the tropical Atlantic, the zonal scale is as small as 1.5 degrees for almost all season. Seasonal and regional variability of the zonal scale is high, while that of the meridional scale is relatively weak. Seasonal change of the zonal scale is the most significant in the Antarctic Circumpolar Current (ACC) region, where it is as large as 3.0 degree in summer (December). In the western boundary regions, the zonal scales tend to be small in winter (east of Argentina in June, the Gulf stream and the Kuroshio regions in December). [14] In general,the temporal scale ranges from 1.5 to 3.0 days. Its regional and seasonal variability is not so high as that of the zonal scale. Longer temporal scales are found at the eastern tropical Pacific, where the zonal scale is small. Figure 4. Global distributions of zonal (a), meridional (b), temporal decorrelation scales (c) and signal-to-noise ratio (d) for June, September, December and March. Units are degree for spatial scales (a and b), days for temporal scale (c). Signal-to-noise ratio is non-dimensional. The contour interval is 0.5 for all figures. 3 of 5

4 HOSODA AND KAWAMURA: GLOBAL STATISTICS OF SST FROM AMSR-E Figure 5. Latitude-time diagrams of zonal (a), meridional (b), temporal decorrelation scale (c) and signal-to-noise ratio (d). Units are degree for spatial scales (a and b), days for temporal scale (c). Signal-to-noise ratio is non-dimensional. The contour interval is 0.1 for all figures. In the ACC region in summer, where the zonal scale is longer than 2.5 degree, the temporal scale is as small as 1.0 days. Therefore, it is suggested that the smaller the zonal scale is, the longer the temporal scale is. [15] The geographical distribution of SNR of SSTA variation is given in Figure 4d. The values are as small as , which is same order as the results by White [1995], who estimated the statistics for surface and subsurface temperature variability. The large SNRs are found, in summer of each hemisphere, at the mid-latitude accompanied by the longer zonal scales. The SNRs are larger in the regions where the spatial decorrelation scales are larger because of the greater intensity of signals. [16] In order to investigate overall seasonal features of statistics, latitudinally-averaged scales and SNR are shown in Figure 5. In the low-latitude regions, the spatial scales are small and temporal scale becomes longer in the winter in the northern hemisphere. The zonal scales become long in the warming season in the mid-latitude regions. Maxima of the zonal scale in south hemisphere are longer than those in the northern hemisphere, since the zonal scales in the ACC region are large as mentioned-above. The seasonal dependency of meridional and temporal scales is smaller than that of zonal scales. The temporal scales are longer when the zonal scales becomes smaller in the mid-latitude regions. The variability of SNR is similar to that of the zonal scales, as mentioned-above. 4. Summary and Discussion [17] The global decorrelation scales and SNR of SST variation are estimated from one-year AMSR-E data. The zonal scale is in the range of degrees, while the meridional scale is degrees. The temporal scale is days. The SNR is in the range of The seasonal and regional variabilities are strong in the zonal scale and SNR, while those of the meridional and temporal scales are not so much. The zonal scale becomes larger in warm season at mid-latitude. [18] In this paper we used one-year SST data derived from AMSR-E to examine the statistical features of SST variation, since it can observe SST fields globally including the ares under clouds. The further analysis using multi-year data is needed for discussions on interannual variability. To consider the influence of ENSO-scale variability, the length of data should be as long as a decade. Although the observation range is limited in the low-latitude region, TRMM/TMI data may be useful for discussion of interannual variation of the decorrelation scales. Another problem is that the filling process is used in this study to avoid the influence of availability of data according to the satellite orbit. Another solution to fill the gaps is to use multi-satellite observations. Moreover, the analysis using a longer time series could also provide discussions on the statistical significance of the result given in this paper. The discussions are important since it is possible that the seasonal and regional variabilities have less statistical significance. The results in this study need to be viewed with caution until a longer time series is available to properly assess the statistical significance. [19] It is necessary to study the mechanisms behind seasonal/regional variabilities in the decorrelation scales derived in this study. The variations of SST in short-term periods are dominated by the atmospheric forcings and oceanic turbulence, understanding of which may be essential for producing the high-resolution satellite-based SSTs and predicting the short-term SST variations using them. [20] Acknowledgments. We acknowledge two anonymous reviewers for their helpful comments. This study is supported by the ADEOS-II project of JAXA Japan, and Category 7 of MEXT PR2002 Project for Sustainable Coexistence of Human, Nature and the Earth and Special Coordination Fund for Promoting Science and Technology New Generation SST of MEXT, Japan. References Bretherton, F., R. Davis, and C. Fandry (1976), A technique for objective analysis and design of oceanographic experiments applied to MODE-73, Deep Sea Res., 23, Ducet, N., P. Y. Le Traon, and G. Reverdin (2000), Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2, J. Geophys. Res., 105, 19,477 19,498. Gandin, L. S. (1963), Objective Analysis of Meteorological Field, 286 pp., Gidrometeorol. Izdate stvo, Leningrad, USSR. Guan, L., and H. Kawamura (2003), SST availabilities of satellite infrared and microwave measurements, J. Oceanogr., 59, Guan, L., and H. Kawamura (2004), Merging satellite infrared and microwave SSTs Methodology and evaluation of the new SST, J. Oceanogr., in press. Kuragano, T., and M. Kamachi (2000), Global statistical space-time scales of oceanic variability estimated from the TOPEX/POSEIDON altimeter data, J. Geophys. Res., 105, Le Traon, P. Y., F. Nadal, and N. Ducet (1998), An improved mapping method of multisatellite altimeter data, J. Atmos. Oceanic Technol., 15, Le Traon, P. Y., M. Rienecker, N. R. Smith et al. (2001), Operational oceanography and prediction: A GODAE perspective, in Observing the Ocean in the 21st Century, chap. 6.2, pp , GODAE Proj. Off., Melbourne, Australia. 4of5

5 HOSODA AND KAWAMURA: GLOBAL STATISTICS OF SST FROM AMSR-E Reynolds, R. W., and T. M. Smith (1994), Improved global sea surface temperature analysis using optimum interpolation, J. Clim., 7, Shibata, A., A. Imaoka, M. Kachi, and H. Murakami (1999), SST observation by TRMM Microwave Imager aboard Tropical Rain Measuring Mission (in Japanese), Umi no Kenkyu, 8, Wentz, F. J., C. Gentemann, D. Smith, and D. Chelton (2000), Satellite measurements of sea surface temperature through clouds, Science, 288, White, W. B. (1995), Design of global observing system for gyre-scale upper ocean temperature variability, Prog. Oceanogr., 36, K. Hosoda, Earth Observation Research and Application Center, Japan Aerospace Exploration Agency, Triton Square Office Tower 22F, Harumi, Chuo-ku, Tokyo , Japan. H. Kawamura, Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University, Aoba-ku, Sendai , Japan. 5of5

Time-Dependent Spatial Wavenumber Spectra Derived from Merged Sea Surface Temperature Data

Time-Dependent Spatial Wavenumber Spectra Derived from Merged Sea Surface Temperature Data Journal of Oceanography, Vol. 60, pp. 43 to 51, 004 Time-Dependent Spatial Wavenumber Spectra Derived from Merged Sea Surface Temperature Data KOHTARO HOSODA* and HIROSHI KAWAMURA Center for Atmospheric

More information

CHAPTER 2 DATA AND METHODS. Errors using inadequate data are much less than those using no data at all. Charles Babbage, circa 1850

CHAPTER 2 DATA AND METHODS. Errors using inadequate data are much less than those using no data at all. Charles Babbage, circa 1850 CHAPTER 2 DATA AND METHODS Errors using inadequate data are much less than those using no data at all. Charles Babbage, circa 185 2.1 Datasets 2.1.1 OLR The primary data used in this study are the outgoing

More information

Altimeter s Capability of Reconstructing Realistic Eddy Fields Using Space-Time Optimum Interpolation

Altimeter s Capability of Reconstructing Realistic Eddy Fields Using Space-Time Optimum Interpolation Journal of Oceanography, Vol. 59, pp. 765 to 781, 2003 Altimeter s Capability of Reconstructing Realistic Eddy Fields Using Space-Time Optimum Interpolation TSURANE KURAGANO* and MASAFUMI KAMACHI Oceanographic

More information

Interannual trends in the Southern Ocean sea surface temperature and sea level from remote sensing data

Interannual trends in the Southern Ocean sea surface temperature and sea level from remote sensing data RUSSIAN JOURNAL OF EARTH SCIENCES, VOL. 9, ES3003, doi:10.2205/2007es000283, 2007 Interannual trends in the Southern Ocean sea surface temperature and sea level from remote sensing data S. A. Lebedev 1,2

More information

Daily OI SST Trip Report Richard W. Reynolds National Climatic Data Center (NCDC) Asheville, NC July 29, 2005

Daily OI SST Trip Report Richard W. Reynolds National Climatic Data Center (NCDC) Asheville, NC July 29, 2005 Daily OI SST Trip Report Richard W. Reynolds National Climatic Data Center (NCDC) Asheville, NC July 29, 2005 I spent the month of July 2003 working with Professor Dudley Chelton at the College of Oceanic

More information

Richard W. Reynolds * NOAA National Climatic Data Center, Asheville, North Carolina

Richard W. Reynolds * NOAA National Climatic Data Center, Asheville, North Carolina 8.1 A DAILY BLENDED ANALYSIS FOR SEA SURFACE TEMPERATURE Richard W. Reynolds * NOAA National Climatic Data Center, Asheville, North Carolina Kenneth S. Casey NOAA National Oceanographic Data Center, Silver

More information

Time Scales for SST over the Global Ocean

Time Scales for SST over the Global Ocean GEOPHYSICAL RESEARCH LETTERS, VOL.???, XXXX, DOI:10.1029/, 1 Time Scales for SST over the Global Ocean C. N. Barron and A. B. Kara 2 3 Oceanography Division, Naval Research Laboratory, Stennis Space Center,

More information

Anticyclonic Eddy Revealing Low Sea Surface Temperature in the Sea South of Japan: Case Study of the Eddy Observed in

Anticyclonic Eddy Revealing Low Sea Surface Temperature in the Sea South of Japan: Case Study of the Eddy Observed in Journal of Oceanography, Vol. 6, pp. 663 to 671, 4 Anticyclonic Eddy Revealing Low Sea Surface Temperature in the Sea South of Japan: Case Study of the Eddy Observed in 1999 KOHTARO HOSODA 1 * and KIMIO

More information

UC Irvine Faculty Publications

UC Irvine Faculty Publications UC Irvine Faculty Publications Title A linear relationship between ENSO intensity and tropical instability wave activity in the eastern Pacific Ocean Permalink https://escholarship.org/uc/item/5w9602dn

More information

Characteristics of Storm Tracks in JMA s Seasonal Forecast Model

Characteristics of Storm Tracks in JMA s Seasonal Forecast Model Characteristics of Storm Tracks in JMA s Seasonal Forecast Model Akihiko Shimpo 1 1 Climate Prediction Division, Japan Meteorological Agency, Japan Correspondence: ashimpo@naps.kishou.go.jp INTRODUCTION

More information

Investigate the influence of the Amazon rainfall on westerly wind anomalies and the 2002 Atlantic Nino using QuikScat, Altimeter and TRMM data

Investigate the influence of the Amazon rainfall on westerly wind anomalies and the 2002 Atlantic Nino using QuikScat, Altimeter and TRMM data Investigate the influence of the Amazon rainfall on westerly wind anomalies and the 2002 Atlantic Nino using QuikScat, Altimeter and TRMM data Rong Fu 1, Mike Young 1, Hui Wang 2, Weiqing Han 3 1 School

More information

Eddy-resolving Simulation of the World Ocean Circulation by using MOM3-based OGCM Code (OFES) Optimized for the Earth Simulator

Eddy-resolving Simulation of the World Ocean Circulation by using MOM3-based OGCM Code (OFES) Optimized for the Earth Simulator Chapter 1 Atmospheric and Oceanic Simulation Eddy-resolving Simulation of the World Ocean Circulation by using MOM3-based OGCM Code (OFES) Optimized for the Earth Simulator Group Representative Hideharu

More information

An observational study of the impact of the North Pacific SST on the atmosphere

An observational study of the impact of the North Pacific SST on the atmosphere Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L18611, doi:10.1029/2006gl026082, 2006 An observational study of the impact of the North Pacific SST on the atmosphere Qinyu Liu, 1 Na

More information

FORA-WNP30. FORA_WNP30_JAMSTEC_MRI DIAS en

FORA-WNP30. FORA_WNP30_JAMSTEC_MRI DIAS en FORA-WNP30 1. IDENTIFICATION INFORMATION Edition 1.0 Metadata Identifier 2. CONTACT FORA-WNP30 2.1 CONTACT on DATASET FORA_WNP30_JAMSTEC_MRI20170725130550-DIAS20170725102541-en Address JAMSTEC/CEIST 3173-25,

More information

Quality control methods for KOOS operational sea surface temperature products

Quality control methods for KOOS operational sea surface temperature products Acta Oceanol. Sin., 2016, Vol. 35, No. 2, P. 11 18 DOI: 10.1007/s13131-016-0807-z http://www.hyxb.org.cn E-mail: hyxbe@263.net Quality control methods for KOOS operational sea surface temperature products

More information

From El Nino to Atlantic Nino: pathways as seen in the QuikScat winds

From El Nino to Atlantic Nino: pathways as seen in the QuikScat winds From El Nino to Atlantic Nino: pathways as seen in the QuikScat winds Rong Fu 1, Lei Huang 1, Hui Wang 2 Presented by Nicole Smith-Downey 1 1 Jackson School of Geosciences, The University of Texas at Austin

More information

Eddy-induced meridional heat transport in the ocean

Eddy-induced meridional heat transport in the ocean GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L20601, doi:10.1029/2008gl035490, 2008 Eddy-induced meridional heat transport in the ocean Denis L. Volkov, 1 Tong Lee, 1 and Lee-Lueng Fu 1 Received 28 July 2008;

More information

APPENDIX 2 OVERVIEW OF THE GLOBAL PRECIPITATION MEASUREMENT (GPM) AND THE TROPICAL RAINFALL MEASURING MISSION (TRMM) 2-1

APPENDIX 2 OVERVIEW OF THE GLOBAL PRECIPITATION MEASUREMENT (GPM) AND THE TROPICAL RAINFALL MEASURING MISSION (TRMM) 2-1 APPENDIX 2 OVERVIEW OF THE GLOBAL PRECIPITATION MEASUREMENT (GPM) AND THE TROPICAL RAINFALL MEASURING MISSION (TRMM) 2-1 1. Introduction Precipitation is one of most important environmental parameters.

More information

Tropical stratospheric zonal winds in ECMWF ERA-40 reanalysis, rocketsonde data, and rawinsonde data

Tropical stratospheric zonal winds in ECMWF ERA-40 reanalysis, rocketsonde data, and rawinsonde data GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L09806, doi:10.1029/2004gl022328, 2005 Tropical stratospheric zonal winds in ECMWF ERA-40 reanalysis, rocketsonde data, and rawinsonde data Mark P. Baldwin Northwest

More information

FORA-WNP30. FORA_WNP30_JAMSTEC_MRI DIAS en

FORA-WNP30. FORA_WNP30_JAMSTEC_MRI DIAS en FORA-WNP30 1. TITLE Edition 1.0 Metadata Identifier 2. CONTACT FORA-WNP30 2.1 CONTACT on DATASET FORA_WNP30_JAMSTEC_MRI20160708144420-DIAS20160706142617-en Address JAMSTEC/CEIST 3173-25, Showa-machi, Kanazawa-ku,

More information

FUTURE PROJECTIONS OF PRECIPITATION CHARACTERISTICS IN ASIA

FUTURE PROJECTIONS OF PRECIPITATION CHARACTERISTICS IN ASIA FUTURE PROJECTIONS OF PRECIPITATION CHARACTERISTICS IN ASIA AKIO KITOH, MASAHIRO HOSAKA, YUKIMASA ADACHI, KENJI KAMIGUCHI Meteorological Research Institute Tsukuba, Ibaraki 305-0052, Japan It is anticipated

More information

Blended Sea Surface Winds Product

Blended Sea Surface Winds Product 1. Intent of this Document and POC Blended Sea Surface Winds Product 1a. Intent This document is intended for users who wish to compare satellite derived observations with climate model output in the context

More information

2013 ATLANTIC HURRICANE SEASON OUTLOOK. June RMS Cat Response

2013 ATLANTIC HURRICANE SEASON OUTLOOK. June RMS Cat Response 2013 ATLANTIC HURRICANE SEASON OUTLOOK June 2013 - RMS Cat Response Season Outlook At the start of the 2013 Atlantic hurricane season, which officially runs from June 1 to November 30, seasonal forecasts

More information

The minimisation gives a set of linear equations for optimal weights w:

The minimisation gives a set of linear equations for optimal weights w: 4. Interpolation onto a regular grid 4.1 Optimal interpolation method The optimal interpolation method was used to compute climatological property distributions of the selected standard levels on a regular

More information

P6.13 GLOBAL AND MONTHLY DIURNAL PRECIPITATION STATISTICS BASED ON PASSIVE MICROWAVE OBSERVATIONS FROM AMSU

P6.13 GLOBAL AND MONTHLY DIURNAL PRECIPITATION STATISTICS BASED ON PASSIVE MICROWAVE OBSERVATIONS FROM AMSU P6.13 GLOBAL AND MONTHLY DIURNAL PRECIPITATION STATISTICS BASED ON PASSIVE MICROWAVE OBSERVATIONS FROM AMSU Frederick W. Chen*, David H. Staelin, and Chinnawat Surussavadee Massachusetts Institute of Technology,

More information

Quasi-Biennial Oscillation Modes Appearing in the Tropical Sea Water Temperature and 700mb Zonal Wind* By Ryuichi Kawamura

Quasi-Biennial Oscillation Modes Appearing in the Tropical Sea Water Temperature and 700mb Zonal Wind* By Ryuichi Kawamura December 1988 R. Kawamura 955 Quasi-Biennial Oscillation Modes Appearing in the Tropical Sea Water Temperature and 700mb Zonal Wind* By Ryuichi Kawamura Environmental Research Center University of Tsukuba

More information

Lecture 1. Amplitude of the seasonal cycle in temperature

Lecture 1. Amplitude of the seasonal cycle in temperature Lecture 6 Lecture 1 Ocean circulation Forcing and large-scale features Amplitude of the seasonal cycle in temperature 1 Atmosphere and ocean heat transport Trenberth and Caron (2001) False-colour satellite

More information

Characteristics of Global Precipitable Water Revealed by COSMIC Measurements

Characteristics of Global Precipitable Water Revealed by COSMIC Measurements Characteristics of Global Precipitable Water Revealed by COSMIC Measurements Ching-Yuang Huang 1,2, Wen-Hsin Teng 1, Shu-Peng Ho 3, Ying-Hwa Kuo 3, and Xin-Jia Zhou 3 1 Department of Atmospheric Sciences,

More information

High initial time sensitivity of medium range forecasting observed for a stratospheric sudden warming

High initial time sensitivity of medium range forecasting observed for a stratospheric sudden warming GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl044119, 2010 High initial time sensitivity of medium range forecasting observed for a stratospheric sudden warming Yuhji Kuroda 1 Received 27 May

More information

Validation of Microwave Sea Surface Temperature Measurements for Climate Purposes

Validation of Microwave Sea Surface Temperature Measurements for Climate Purposes 73 Validation of Microwave Sea Surface Temperature Measurements for Climate Purposes DETLEF STAMMER Physical Oceanography Research Division, Scripps Institution of Oceanography, La Jolla, California FRANK

More information

Development of a Coupled Atmosphere-Ocean-Land General Circulation Model (GCM) at the Frontier Research Center for Global Change

Development of a Coupled Atmosphere-Ocean-Land General Circulation Model (GCM) at the Frontier Research Center for Global Change Chapter 1 Atmospheric and Oceanic Simulation Development of a Coupled Atmosphere-Ocean-Land General Circulation Model (GCM) at the Frontier Research Center for Global Change Project Representative Tatsushi

More information

Impact of atmospheric CO 2 doubling on the North Pacific Subtropical Mode Water

Impact of atmospheric CO 2 doubling on the North Pacific Subtropical Mode Water GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L06602, doi:10.1029/2008gl037075, 2009 Impact of atmospheric CO 2 doubling on the North Pacific Subtropical Mode Water Hyun-Chul Lee 1,2 Received 19 December 2008;

More information

The Climatology of Clouds using surface observations. S.G. Warren and C.J. Hahn Encyclopedia of Atmospheric Sciences.

The Climatology of Clouds using surface observations. S.G. Warren and C.J. Hahn Encyclopedia of Atmospheric Sciences. The Climatology of Clouds using surface observations S.G. Warren and C.J. Hahn Encyclopedia of Atmospheric Sciences Gill-Ran Jeong Cloud Climatology The time-averaged geographical distribution of cloud

More information

Validation of Daily Amplitude of Sea Surface Temperature Evaluated with a Parametric Model Using Satellite Data

Validation of Daily Amplitude of Sea Surface Temperature Evaluated with a Parametric Model Using Satellite Data Journal of Oceanography, Vol. 59, pp. 637 to 644, 003 Short Contribution Validation of Daily Amplitude of Sea Surface Temperature Evaluated with a Parametric Model Using Satellite Data YOSHIMI KAWAI* and

More information

El Niño, South American Monsoon, and Atlantic Niño links as detected by a. TOPEX/Jason Observations

El Niño, South American Monsoon, and Atlantic Niño links as detected by a. TOPEX/Jason Observations El Niño, South American Monsoon, and Atlantic Niño links as detected by a decade of QuikSCAT, TRMM and TOPEX/Jason Observations Rong Fu 1, Lei Huang 1, Hui Wang 2, Paola Arias 1 1 Jackson School of Geosciences,

More information

sensors ISSN by MDPI

sensors ISSN by MDPI Sensors 26, 6, 235-248 sensors ISSN 1424-822 26 by MDPI http://www.mdpi.org/sensors Special Issue on Satellite Altimetry: New Sensors and New Application Edited by Ge Chen and Graham D. Quartly Full Research

More information

P2.57 PRECIPITATION STRUCTURE IN MIDLATITUDE CYCLONES

P2.57 PRECIPITATION STRUCTURE IN MIDLATITUDE CYCLONES P2.57 PRECIPITATION STRUCTURE IN MIDLATITUDE CYCLONES Paul R. Field 1, Robert Wood 2 1. National Center for Atmospheric Research, Boulder, Colorado. 2. University of Washington, Seattle, Washington. 1.

More information

Air Temperature at Ocean Surface Derived from Surface-Level Humidity

Air Temperature at Ocean Surface Derived from Surface-Level Humidity Journal of Oceanography Vol. 51, pp. 619 to 634. 1995 Air Temperature at Ocean Surface Derived from Surface-Level Humidity MASAHISA KUBOTA* and AKIRA SHIKAUCHI** School of Marine Science and Technology,

More information

Changes in Southern Hemisphere rainfall, circulation and weather systems

Changes in Southern Hemisphere rainfall, circulation and weather systems 19th International Congress on Modelling and Simulation, Perth, Australia, 12 16 December 2011 http://mssanz.org.au/modsim2011 Changes in Southern Hemisphere rainfall, circulation and weather systems Frederiksen,

More information

Title. Author(s)Minobe, Shoshiro. Issue Date Doc URL. Type. Note. File Information. Updated Assessments of the 1998/99 Climate Change ov

Title. Author(s)Minobe, Shoshiro. Issue Date Doc URL. Type. Note. File Information. Updated Assessments of the 1998/99 Climate Change ov Title Updated Assessments of the 998/99 Climate Change ov Author(s)Minobe, Shoshiro Issue Date 24 Doc URL http://hdl.handle.net/25/3853 Type proceedings Note International Symposium on "Dawn of a New Natural

More information

Inter-comparison of Historical Sea Surface Temperature Datasets

Inter-comparison of Historical Sea Surface Temperature Datasets Inter-comparison of Historical Sea Surface Temperature Datasets Sayaka Yasunaka 1, Kimio Hanawa 2 1 Center for Climate System Research, University of Tokyo, Japan 2 Graduate School of Science, Tohoku University,

More information

Surface winds, divergence, and vorticity in stratocumulus regions using QuikSCAT and reanalysis winds

Surface winds, divergence, and vorticity in stratocumulus regions using QuikSCAT and reanalysis winds GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L08105, doi:10.1029/2004gl019768, 2004 Surface winds, divergence, and vorticity in stratocumulus regions using QuikSCAT and reanalysis winds B. D. McNoldy, P. E.

More information

C

C C 0.8 0.4 0.2 0.0-0.2-0.6 Fig. 1. SST-wind relation in the North Pacific and Atlantic Oceans. Left panel: COADS SST (color shade), surface wind vectors, and SLP regressed upon the Pacific Decadal Oscillation

More information

Is the basin wide warming in the North Atlantic Ocean related to atmospheric carbon dioxide and global warming?

Is the basin wide warming in the North Atlantic Ocean related to atmospheric carbon dioxide and global warming? Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl042743, 2010 Is the basin wide warming in the North Atlantic Ocean related to atmospheric carbon dioxide and global

More information

The Formation of Precipitation Anomaly Patterns during the Developing and Decaying Phases of ENSO

The Formation of Precipitation Anomaly Patterns during the Developing and Decaying Phases of ENSO ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2010, VOL. 3, NO. 1, 25 30 The Formation of Precipitation Anomaly Patterns during the Developing and Decaying Phases of ENSO HU Kai-Ming and HUANG Gang State Key

More information

What kind of stratospheric sudden warming propagates to the troposphere?

What kind of stratospheric sudden warming propagates to the troposphere? What kind of stratospheric sudden warming propagates to the troposphere? Ken I. Nakagawa 1, and Koji Yamazaki 2 1 Sapporo District Meteorological Observatory, Japan Meteorological Agency Kita-2, Nishi-18,

More information

Impact of TRMM SSTs on a Climate-Scale SST Analysis

Impact of TRMM SSTs on a Climate-Scale SST Analysis 2938 JOURNAL OF CLIMATE Impact of TRMM SSTs on a Climate-Scale SST Analysis RICHARD W. REYNOLDS NOAA/NESDIS/National Climatic Data Center, Asheville, North Carolina CHELLE L. GENTEMANN AND FRANK WENTZ

More information

Cold air outbreak over the Kuroshio Extension Region

Cold air outbreak over the Kuroshio Extension Region Cold air outbreak over the Kuroshio Extension Region Jensen, T. G. 1, T. Campbell 1, T. A. Smith 1, R. J. Small 2 and R. Allard 1 1 Naval Research Laboratory, 2 Jacobs Engineering NRL, Code 7320, Stennis

More information

Academic Editors: Xiaofeng Li and Prasad S. Thenkabail Received: 26 August 2016; Accepted: 6 November 2016; Published: 21 November 2016

Academic Editors: Xiaofeng Li and Prasad S. Thenkabail Received: 26 August 2016; Accepted: 6 November 2016; Published: 21 November 2016 Article Global Daily High-Resolution Satellite-Based Foundation Sea Surface Temperature Dataset: Development and Validation against Two Definitions of Foundation SST Kohtaro Hosoda * and Futoki Sakaida

More information

Fig Operational climatological regions and locations of stations

Fig Operational climatological regions and locations of stations 1. Explanatory notes 1.1 About the Annual Report on Climate System The Japan Meteorological Agency (JMA) has published the Annual Report on Climate System (CD-ROM version) since 1997. From 2008, a new

More information

Skewed Occurrence Frequency of Water Temperature and Salinity in the Subarctic Regions

Skewed Occurrence Frequency of Water Temperature and Salinity in the Subarctic Regions Journal of Oceanography, Vol. 59, pp. 9 to 99, 3 Skewed Occurrence Frequency of Water Temperature and Salinity in the Subarctic Regions SACHIKO OGUMA *, TORU SUZUKI, SYDNEY LEVITUS and YUTAKA NAGATA Marine

More information

Atmospheric driving forces for the Agulhas Current in the subtropics

Atmospheric driving forces for the Agulhas Current in the subtropics Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L15605, doi:10.1029/2007gl030200, 2007 Atmospheric driving forces for the Agulhas Current in the subtropics A. Fetter, 1 J. R. E. Lutjeharms,

More information

GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L20110, doi: /2004gl020843, 2004

GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L20110, doi: /2004gl020843, 2004 GEOPHYSICAL RESEARCH LETTERS, VOL. 31,, doi:10.1029/2004gl020843, 2004 A Poisson regression model approach to predicting tropical cyclogenesis in the Australian/southwest Pacific Ocean region using the

More information

Trajectory of Mesoscale Eddies in the Kuroshio Recirculation Region

Trajectory of Mesoscale Eddies in the Kuroshio Recirculation Region Journal of Oceanography, Vol. 57, pp. 471 to 480, 2001 Trajectory of Mesoscale Eddies in the Kuroshio Recirculation Region NAOTO EBUCHI 1 * and KIMIO HANAWA 2 1 Center for Atmospheric and Oceanic Studies,

More information

3. Carbon Dioxide (CO 2 )

3. Carbon Dioxide (CO 2 ) 3. Carbon Dioxide (CO 2 ) Basic information on CO 2 with regard to environmental issues Carbon dioxide (CO 2 ) is a significant greenhouse gas that has strong absorption bands in the infrared region and

More information

Decadal variability in the Kuroshio and Oyashio Extension frontal regions in an eddy-resolving OGCM

Decadal variability in the Kuroshio and Oyashio Extension frontal regions in an eddy-resolving OGCM Decadal variability in the Kuroshio and Oyashio Extension frontal regions in an eddy-resolving OGCM Masami Nonaka 1, Hisashi Nakamura 1,2, Youichi Tanimoto 1,3, Takashi Kagimoto 1, and Hideharu Sasaki

More information

Why Has the Land Memory Changed?

Why Has the Land Memory Changed? 3236 JOURNAL OF CLIMATE VOLUME 17 Why Has the Land Memory Changed? QI HU ANDSONG FENG Climate and Bio-Atmospheric Sciences Group, School of Natural Resource Sciences, University of Nebraska at Lincoln,

More information

JMA s Seasonal Prediction of South Asian Climate for Summer 2018

JMA s Seasonal Prediction of South Asian Climate for Summer 2018 JMA s Seasonal Prediction of South Asian Climate for Summer 2018 Atsushi Minami Tokyo Climate Center (TCC) Japan Meteorological Agency (JMA) Contents Outline of JMA s Seasonal Ensemble Prediction System

More information

John Steffen and Mark A. Bourassa

John Steffen and Mark A. Bourassa John Steffen and Mark A. Bourassa Funding by NASA Climate Data Records and NASA Ocean Vector Winds Science Team Florida State University Changes in surface winds due to SST gradients are poorly modeled

More information

NOTES AND CORRESPONDENCE. El Niño Southern Oscillation and North Atlantic Oscillation Control of Climate in Puerto Rico

NOTES AND CORRESPONDENCE. El Niño Southern Oscillation and North Atlantic Oscillation Control of Climate in Puerto Rico 2713 NOTES AND CORRESPONDENCE El Niño Southern Oscillation and North Atlantic Oscillation Control of Climate in Puerto Rico BJÖRN A. MALMGREN Department of Earth Sciences, University of Göteborg, Goteborg,

More information

The aerosol- and water vapor-related variability of precipitation in the West Africa Monsoon

The aerosol- and water vapor-related variability of precipitation in the West Africa Monsoon The aerosol- and water vapor-related variability of precipitation in the West Africa Monsoon Jingfeng Huang *, C. Zhang and J. M. Prospero Rosenstiel School of Marine and Atmospheric Science, University

More information

Development of Super High Resolution Global and Regional Climate Models

Development of Super High Resolution Global and Regional Climate Models Development of Super High Resolution Global and Regional Climate Models Project Representative Akira Noda Meteorological Research Institute Authors Akira Noda 1, Shoji Kusunoki 1 and Masanori Yoshizaki

More information

ATSR SST Observations of the Tropical Pacific Compared with TOPEX/Poseidon Sea Level Anomaly

ATSR SST Observations of the Tropical Pacific Compared with TOPEX/Poseidon Sea Level Anomaly ATSR SST Observations of the Tropical Pacific Compared with TOPEX/Poseidon Sea Level Anomaly J.P.Angell and S.P.Lawrence Earth Observation Science Group, Dept. Physics and Astronomy, Space Research Centre,

More information

Contents of this file

Contents of this file Geophysical Research Letters Supporting Information for Future changes in tropical cyclone activity in high-resolution large-ensemble simulations Kohei Yoshida 1, Masato Sugi 1, Ryo Mizuta 1, Hiroyuki

More information

Impacts of Climate Change on Autumn North Atlantic Wave Climate

Impacts of Climate Change on Autumn North Atlantic Wave Climate Impacts of Climate Change on Autumn North Atlantic Wave Climate Will Perrie, Lanli Guo, Zhenxia Long, Bash Toulany Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS Abstract

More information

GFDL, NCEP, & SODA Upper Ocean Assimilation Systems

GFDL, NCEP, & SODA Upper Ocean Assimilation Systems GFDL, NCEP, & SODA Upper Ocean Assimilation Systems Jim Carton (UMD) With help from Gennady Chepurin, Ben Giese (TAMU), David Behringer (NCEP), Matt Harrison & Tony Rosati (GFDL) Description Goals Products

More information

Observations and Modeling of SST Influence on Surface Winds

Observations and Modeling of SST Influence on Surface Winds Observations and Modeling of SST Influence on Surface Winds Dudley B. Chelton and Qingtao Song College of Oceanic and Atmospheric Sciences Oregon State University, Corvallis, OR 97331-5503 chelton@coas.oregonstate.edu,

More information

Japanese Programs on Space and Water Applications

Japanese Programs on Space and Water Applications Japanese Programs on Space and Water Applications Tamotsu IGARASHI Remote Sensing Technology Center of Japan June 2006 COPUOS 2006 Vienna International Centre Water-related hazards/disasters may occur

More information

Characteristics of the Satellite-Derived Sea Surface Temperature in the Oceans around Japan

Characteristics of the Satellite-Derived Sea Surface Temperature in the Oceans around Japan Journal of Oceanography, Vol. 53, pp. 161 to 172. 1997 Characteristics of the Satellite-Derived Sea Surface Temperature in the Oceans around Japan YOSHIMI KAWAI and HIROSHI KAWAMURA Center for Atmospheric

More information

NOTES AND CORRESPONDENCE A Quasi-Stationary Appearance of 30 to 40 Day Period in the Cloudiness Fluctuations during the Summer Monsoon over India

NOTES AND CORRESPONDENCE A Quasi-Stationary Appearance of 30 to 40 Day Period in the Cloudiness Fluctuations during the Summer Monsoon over India June 1980 T. Yasunari 225 NOTES AND CORRESPONDENCE A Quasi-Stationary Appearance of 30 to 40 Day Period in the Cloudiness Fluctuations during the Summer Monsoon over India By Tetsuzo Yasunari The Center

More information

Journal of Coastal Develpopment ISSN :

Journal of Coastal Develpopment ISSN : Volume 15, Number 1,October 2011 : 1-8 Original Paper INTRASEASONAL VARIATIONS OF NEAR-SURFACE ZONAL CURRENT OBSERVED IN THE SOUTH-EASTERN EQUATORIAL INDIAN OCEAN Iskhaq Iskandar Department of Physics,

More information

SE Atlantic SST variability and southern African climate

SE Atlantic SST variability and southern African climate SE Atlantic SST variability and southern African climate Chris Reason Oceanography Dept, Univ. Cape Town Overview of southern African climate and tropical Atlantic SST South American monsoon, Benguela

More information

PRMS WHITE PAPER 2014 NORTH ATLANTIC HURRICANE SEASON OUTLOOK. June RMS Event Response

PRMS WHITE PAPER 2014 NORTH ATLANTIC HURRICANE SEASON OUTLOOK. June RMS Event Response PRMS WHITE PAPER 2014 NORTH ATLANTIC HURRICANE SEASON OUTLOOK June 2014 - RMS Event Response 2014 SEASON OUTLOOK The 2013 North Atlantic hurricane season saw the fewest hurricanes in the Atlantic Basin

More information

Pacific Storm Track at Different Horizontal Resolutions Snap-shot of Column Liquid Water Content

Pacific Storm Track at Different Horizontal Resolutions Snap-shot of Column Liquid Water Content Color Plates Pacific Storm Track at Different Horizontal Resolutions Snap-shot of Column Liquid Water Content Fig. 2.8 A snapshot of the cyclone frontal-system by a nonhydrostatic model run with two very

More information

Winter Forecast for GPC Tokyo. Shotaro TANAKA Tokyo Climate Center (TCC) Japan Meteorological Agency (JMA)

Winter Forecast for GPC Tokyo. Shotaro TANAKA Tokyo Climate Center (TCC) Japan Meteorological Agency (JMA) Winter Forecast for 2013 2014 GPC Tokyo Shotaro TANAKA Tokyo Climate Center (TCC) Japan Meteorological Agency (JMA) NEACOF 5, October 29 November 1, 2013 1 Outline 1. Numerical prediction 2. Interannual

More information

An Introduction to Coupled Models of the Atmosphere Ocean System

An Introduction to Coupled Models of the Atmosphere Ocean System An Introduction to Coupled Models of the Atmosphere Ocean System Jonathon S. Wright jswright@tsinghua.edu.cn Atmosphere Ocean Coupling 1. Important to climate on a wide range of time scales Diurnal to

More information

(Received 9 June 1997; in revised form 29 August 1997; accepted 29 August 1997)

(Received 9 June 1997; in revised form 29 August 1997; accepted 29 August 1997) Journal of Oceanography, Vol. 53, pp. 623 to 631. 1997 Trends and Interannual Variability of Surface Layer Temperature in the Indian Sector of the Southern Ocean Observed by Japanese Antarctic Research

More information

Improved Fields of Satellite-Derived Ocean Surface Turbulent Fluxes of Energy and Moisture

Improved Fields of Satellite-Derived Ocean Surface Turbulent Fluxes of Energy and Moisture Improved Fields of Satellite-Derived Ocean Surface Turbulent Fluxes of Energy and Moisture First year report on NASA grant NNX09AJ49G PI: Mark A. Bourassa Co-Is: Carol Anne Clayson, Shawn Smith, and Gary

More information

A role of eddies in formation and transport of North Pacific Subtropical Mode Water

A role of eddies in formation and transport of North Pacific Subtropical Mode Water 1 A role of eddies in formation and transport of North Pacific Subtropical Mode Water Hiroki Uehara 1, Toshio Suga 1,2, Kimio Hanawa 1 and Nobuyuki Shikama 2 1 Department of Geophysics, Graduate School

More information

Applications of an ensemble Kalman Filter to regional ocean modeling associated with the western boundary currents variations

Applications of an ensemble Kalman Filter to regional ocean modeling associated with the western boundary currents variations Applications of an ensemble Kalman Filter to regional ocean modeling associated with the western boundary currents variations Miyazawa, Yasumasa (JAMSTEC) Collaboration with Princeton University AICS Data

More information

Local versus non-local atmospheric weather noise and the North Pacific SST variability

Local versus non-local atmospheric weather noise and the North Pacific SST variability Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L14706, doi:10.1029/2007gl030206, 2007 Local versus non-local atmospheric weather noise and the North Pacific SST variability Sang-Wook

More information

The role of teleconnections in extreme (high and low) precipitation events: The case of the Mediterranean region

The role of teleconnections in extreme (high and low) precipitation events: The case of the Mediterranean region European Geosciences Union General Assembly 2013 Vienna, Austria, 7 12 April 2013 Session HS7.5/NP8.4: Hydroclimatic Stochastics The role of teleconnections in extreme (high and low) events: The case of

More information

East-west SST contrast over the tropical oceans and the post El Niño western North Pacific summer monsoon

East-west SST contrast over the tropical oceans and the post El Niño western North Pacific summer monsoon GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L15706, doi:10.1029/2005gl023010, 2005 East-west SST contrast over the tropical oceans and the post El Niño western North Pacific summer monsoon Toru Terao Faculty

More information

Convective scheme and resolution impacts on seasonal precipitation forecasts

Convective scheme and resolution impacts on seasonal precipitation forecasts GEOPHYSICAL RESEARCH LETTERS, VOL. 30, NO. 20, 2078, doi:10.1029/2003gl018297, 2003 Convective scheme and resolution impacts on seasonal precipitation forecasts D. W. Shin, T. E. LaRow, and S. Cocke Center

More information

Recent Results with the GFDL High- Resolution Coupled Modeling Systems

Recent Results with the GFDL High- Resolution Coupled Modeling Systems Recent Results with the GFDL High- Resolution Coupled Modeling Systems Presented by Gabriel Vecchi GFDL/NOAA Princeton, NJ USA Reference: Delworth, T.L., A. Rosati, W. Anderson, A. Adcroft, V. Balaji,

More information

HYBRID DECADE-MEAN GLOBAL SEA LEVEL WITH MESOSCALE RESOLUTION. University of Hawaii, Honolulu, Hawaii, U.S.A.

HYBRID DECADE-MEAN GLOBAL SEA LEVEL WITH MESOSCALE RESOLUTION. University of Hawaii, Honolulu, Hawaii, U.S.A. HYBRID DECADE-MEAN GLOBAL SEA LEVEL WITH MESOSCALE RESOLUTION Nikolai A. Maximenko 1 and Pearn P. Niiler 2 1 International Pacific Research Center, School of Ocean and Earth Science and Technology, University

More information

Objective Determination of Feature Resolution in an SST Analysis. Richard W. Reynolds (NOAA, CICS) Dudley B. Chelton (Oregon State University)

Objective Determination of Feature Resolution in an SST Analysis. Richard W. Reynolds (NOAA, CICS) Dudley B. Chelton (Oregon State University) Objective Determination of Feature Resolution in an SST Analysis Richard W. Reynolds (NOAA, CICS) Dudley B. Chelton (Oregon State University) 1 What is an Analysis? An analysis is a field produced on a

More information

lecture 11 El Niño/Southern Oscillation (ENSO) Part II

lecture 11 El Niño/Southern Oscillation (ENSO) Part II lecture 11 El Niño/Southern Oscillation (ENSO) Part II SYSTEM MEMORY: OCEANIC WAVE PROPAGATION ASYMMETRY BETWEEN THE ATMOSPHERE AND OCEAN The atmosphere and ocean are not symmetrical in their responses

More information

ASSIMILATION EXPERIMENTS WITH DATA FROM THREE CONICALLY SCANNING MICROWAVE INSTRUMENTS (SSMIS, AMSR-E, TMI) IN THE ECMWF SYSTEM

ASSIMILATION EXPERIMENTS WITH DATA FROM THREE CONICALLY SCANNING MICROWAVE INSTRUMENTS (SSMIS, AMSR-E, TMI) IN THE ECMWF SYSTEM ASSIMILATION EXPERIMENTS WITH DATA FROM THREE CONICALLY SCANNING MICROWAVE INSTRUMENTS (SSMIS, AMSR-E, TMI) IN THE ECMWF SYSTEM Niels Bormann 1, Graeme Kelly 1, Peter Bauer 1, and Bill Bell 2 1 ECMWF,

More information

A cloud-free, satellite-derived, sea surface temperature analysis for the West Florida Shelf

A cloud-free, satellite-derived, sea surface temperature analysis for the West Florida Shelf GEOPHYSICAL RESEARCH LETTERS, VOL. 30, NO. 15, 1811, doi:10.1029/2003gl017673, 2003 A cloud-free, satellite-derived, sea surface temperature analysis for the West Florida Shelf Ruoying He, Robert H. Weisberg,

More information

Project of Strategic Interest NEXTDATA. Deliverables D1.3.B and 1.3.C. Final Report on the quality of Reconstruction/Reanalysis products

Project of Strategic Interest NEXTDATA. Deliverables D1.3.B and 1.3.C. Final Report on the quality of Reconstruction/Reanalysis products Project of Strategic Interest NEXTDATA Deliverables D1.3.B and 1.3.C Final Report on the quality of Reconstruction/Reanalysis products WP Coordinator: Nadia Pinardi INGV, Bologna Deliverable authors Claudia

More information

Impact of Argo, SST, and altimeter data on an eddy-resolving ocean reanalysis

Impact of Argo, SST, and altimeter data on an eddy-resolving ocean reanalysis Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L19601, doi:10.1029/2007gl031549, 2007 Impact of Argo, SST, and altimeter data on an eddy-resolving ocean reanalysis Peter R. Oke 1 and

More information

Ocean Reanalysis and its Application to Water Mass Analyses in the Pacific

Ocean Reanalysis and its Application to Water Mass Analyses in the Pacific Ocean Reanalysis and its Application to Water Mass Analyses in the Pacific Masafumi Kamachi 1, Satoshi Matsumoto 1, Toshiya Nakano 1, Yosuke Fujii 1, Norihisa Usui 1, and Tamaki Yasuda 2 1 Oceanographic

More information

Reversal of Arctic Oscillation pattern and its relation to extreme hot summer in Japan in 2010

Reversal of Arctic Oscillation pattern and its relation to extreme hot summer in Japan in 2010 Reversal of Arctic Oscillation pattern and its relation to extreme hot summer in Japan in 2010 Climate and Ecosystems Dynamics Division Department of Environmental Science & Technology Mie University 507322

More information

The SeaFlux Turbulent Flux Dataset Version 1.0 Documentation

The SeaFlux Turbulent Flux Dataset Version 1.0 Documentation The SeaFlux Turbulent Flux Dataset The SeaFlux Turbulent Flux Dataset Version 1.0 Documentation Carol Anne Clayson1 J. Brent Roberts2 Alec S. Bogdanoff1,3 1. Woods Hole Oceanographic Institution, Woods

More information

PICTURE OF THE MONTH. Satellite Imagery of Sea Surface Temperature Cooling in the Wake of Hurricane Edouard (1996)

PICTURE OF THE MONTH. Satellite Imagery of Sea Surface Temperature Cooling in the Wake of Hurricane Edouard (1996) 2716 MONTHLY WEATHER REVIEW VOLUME 125 PICTURE OF THE MONTH Satellite Imagery of Sea Surface Temperature Cooling in the Wake of Hurricane Edouard (1996) FRANK M. MONALDO Applied Physics Laboratory, The

More information

CHINESE JOURNAL OF GEOPHYSICS. Analysis of the characteristic time scale during ENSO. LIU Lin 1,2, YU Wei2Dong 2

CHINESE JOURNAL OF GEOPHYSICS. Analysis of the characteristic time scale during ENSO. LIU Lin 1,2, YU Wei2Dong 2 49 1 2006 1 CHINESE JOURNAL OF GEOPHYSICS Vol. 49, No. 1 Jan., 2006,. ENSO., 2006, 49 (1) : 45 51 Liu L, Yu W D. Analysis of the characteristic time scale during ENSO. Chinese J. Geophys. (in Chinese),

More information

General Circulation. Nili Harnik DEES, Lamont-Doherty Earth Observatory

General Circulation. Nili Harnik DEES, Lamont-Doherty Earth Observatory General Circulation Nili Harnik DEES, Lamont-Doherty Earth Observatory nili@ldeo.columbia.edu Latitudinal Radiation Imbalance The annual mean, averaged around latitude circles, of the balance between the

More information

M. Ballarotta 1, L. Brodeau 1, J. Brandefelt 2, P. Lundberg 1, and K. Döös 1. This supplementary part includes the Figures S1 to S16 and Table S1.

M. Ballarotta 1, L. Brodeau 1, J. Brandefelt 2, P. Lundberg 1, and K. Döös 1. This supplementary part includes the Figures S1 to S16 and Table S1. Supplementary Information: Last Glacial Maximum World-Ocean simulations at eddy-permitting and coarse resolutions: Do eddies contribute to a better consistency between models and paleo-proxies? M. Ballarotta

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 5 August 2013

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 5 August 2013 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 5 August 2013 Outline Overview Recent Evolution and Current Conditions Oceanic Niño Index

More information