STENTEC B.V. Load set calculation Dowec 6MW

Size: px
Start display at page:

Download "STENTEC B.V. Load set calculation Dowec 6MW"

Transcription

1 Raadgevend Ingenieursbureau Stentec B.V. Hollingerstraat CA Heeg The Netherlands Tel Fax Date of release: 03 January 2003 STENTEC B.V. Load set calculation Dowec 6MW R45.04/01.03/03 CD C45.04/01.03/03 W. Kuik This copy belongs to: Stentec B.V. / NEG Micon /ECN

2 Quality Internal control Date Signature Report Ing. (HE) 3 January 2003 Authorisation Ir. W. Kuik (WK) 3 January 2003 This document is made for NEG Micon and ECN. Stentec will only present the results of the calculation to NEG Micon and ECN. R45.04/01.03/03 Stentec, page 2

3 Summary This report contains a load set calculation and design variation calculations for the DOWEC 6 MW wind turbine. The wind turbine is modelled in Phatas IV by ECN. The calculations of the baseline wind turbine are performed with executable phat6mw.exe dated For the design variations other executables were used. The load set is programmed by Stentec B.V. according ref. [2] description. The resulting fatigue and ultimate loads are presented in time response diagrams, extreme values tables, statistics and VBC tables (1Hz equivalent signals), generated by Stentec B.V. s post processing program ADAP. All results are stored on CD C45.04/01.03/03. The results of the design variation calculations are stored on CD C45.04/01.03/03 and are used to generate cost of energy tables. The decisive values can be used for optimalisation and design detailling. R45.04/01.03/03 Stentec, page 3

4 Contents Quality...2 Summary...3 Contents Introduction Wind turbine Wind turbine modelling Load set Introduction Definitions of the quantities Forces, moments and deflections User defined parameters Results Maximum tower foot bending moment Extreme tables Hz equivalent signals Design variations Cost of energy Structural pitch Cost of energy Tower eigenfrequencies Cost of energy Turbine control Cost of energy Tapered blade Cost of energy Low Lambda control Cost of energy Conclusion References Appendix A. Phatas file listing...25 Appendix B. Load cases listing...26 Appendix C. Plot of loadcase GrEog1Voc...31 Appendix D. Tables structural pitch Appendix E. Tables tower frequencies...41 Appendix F. Tables pitch control Appendix G. Tables tapered blade...59 Appendix H. Low Lambda control Appendix I. Plots tower eigenfrequencies Appendix J. Base line control versus Peak Shave control R45.04/01.03/03 Stentec, page 4

5 1 Introduction In order to calculate the strength of a wind turbine a set of loads and load combinations is prescribed by the certification authority. This report describes the load set and results according to IEC2 class C and DNV regulations for the DOWEC 6 MW wind turbine. It is the purpose that the fatigue and ultimate strength of the wind turbine comply with this standard. The wind speeds and turbulence intensities that are used for the load set are given by NEG Micon and ECN ref. [2]. R45.04/01.03/03 Stentec, page 5

6 2 Wind turbine The DOWEC MW6 wind turbine is a three-bladed off shore wind turbine with a rotor diameter of 129 m. and a rated power of 6 MW. The turbine start up wind speed is 4 m/s and has a nominal wind speed of 12.1 m/s. Rated rotor speed is rpm. The blades on this variable speed wind turbine are controlled by an active pitch control system. Normal pitching speed is 5º /sec. while emergency speed is 10º /sec. The hub height of the DOWEC is 91.4 m. above sea level. Total height of the tower is m. from the sea bottom. A description of the DOWEC wind turbine can be found in ref. [3] and ref. [14]. 2.1 Wind turbine modelling The DOWEC 6 MW wind turbine has been modelled with the dynamic response program Phatas IV by ECN. An overview of the used program and input files can be found in Appendix A. For the simulation the DOWEC wind turbine with 21 meter foundation was used without hydrodynamic loading. R45.04/01.03/03 Stentec, page 6

7 3 Load set. 3.1 Introduction. A loadset has been defined by NEG Micon and ECN, ref. [2]. The load cases are based on IEC2 class C regulations and DNV regulations for off shore wind turbines. According this load set description Stentec B.V. made two series of input files for Phatas IV, one for the fatigue calculations and the other for ultimate loads calculations. Stochastic wind models were generated with Swifti Definitions of the quantities. The definition of the quantities is according to the blade, hub and tower co-ordinate system of the Terms of Reference ref. [4]. A short description of the used quantities in Phatas is given below. R45.04/01.03/03 Stentec, page 7

8 3.3 Forces, moments and deflections. Phatas notation Unit Description Table 1: Blade co-ordinate system Mxb[i], Myb[i] [knm] Total moment of blade i around the blade foot in x and y-direction of the rotating blade co-ordinate system, non-pitching. Mxb[i]-p, Myb[i]-p [knm] Total moment of blade i around the blade foot in x and y-direction of the rotating blade co-ordinate system, pitching. Tip disp. flap [i] [mm] Total displacement of tip of blade [i] in X-direction. Tip disp. lag [i] [mm] Total displacement of tip of blade [i] in Y-direction. Table 2: Hub co-ordinate system Fxn, Fyn, Fzn [kn] Total force at a predefined location behind the rotor centre in x, y and z-direction of the non rotating hub co-ordinate system. Mxn, Myn, Mzn [knm] Total moment around the x, y and z-direction at a predefined location behind the rotor centre of the non rotating hub co-ordinate system. Fxn-r, Fyn-r, Fzn-r [kn] Total force at a predefined location behind the rotor centre in x, y and z-direction, rotating rotor co-ordinate system. Mxn-r, Myn-r, Mzn-r [knm] Total moment around the x, y and z-direction at a predefined location behind the rotor centre, rotating rotor co-ordinate system. Torsional [deg] deformation rotor shaft Rotor angular [deg/s2] acceleration Axial force, rotor [kn] Axial aerodynamic force on the rotor Aero power, rotor [kw] Aerodynamic power on the rotor Pitch angle [i] [deg] Pitch angle of blade [i], angle blade tip with respect to the rotor plane (θ). R45.04/01.03/03 Stentec, page 8

9 Table 3: Tower co-ordinate system Phatas notation Unit Description Mxt, Myt, Mzt [knm] Total moment around the (x,) y and z-direction of the tower coordinate system at the intersection between the horizontal axis at a specified height above the tower base and the tower Z-axis. X-defl, Y-defll [mm], [deg] Displacement in the X, Y direction, at a specified height above the tower base. Yaw angle [deg] Yaw angle with respect to tower top. Yaw rate [deg/s] Wind-speed, hub [m/s] Wind speed at hub height Wind direction [deg] Actual wind direction at hub with respect to the rotor shaft Gen. shaft power [kw] Power through the generator shaft. Rotorspeed [rpm] Speed of rotation of the rotor (positive is clockwise) (Ω). Azimuth angle [deg] Rotational angle of blade 1 with respect to the Z-axis 3.4 User defined parameters In Phatas it is possible to determine deflections, moments and stresses at specified locations in tower, nacelle and blades. Table 5: Tower parameters Phatas notation Unit Location above Description tower foot Mxt[1], Myt[1] [knm] 0.0 m foundation base (sea floor) Mxt[2], Myt[2] [knm] m yaw bearing R45.04/01.03/03 Stentec, page 9

10 Table 6 : Nacelle parameters Phatas notation Unit Location aft of hub Description Mxn[1], Myn[1], Mzn[1], [knm], 0.0 m rotor centre Fxn[1], Fyn[1], Fzn[1] [kn] Mxn-r[1], Myn-r[1], Mzn-r[1] [knm] 0.0 m rotor centre Table 7: Blade parameters Phatas notation Unit Location from Description blade foot Mxb[i], Myb[i] [knm] m rotor centre Mxb[i]-p[01], [knm] 0.20 m blade root Myb[i]-p[01] Mxb[i]-p[02], [knm] m blade cross section Myb[i]-p[02] tip displ. flap[i] [mm] m blade tip tip displ. lag[i] [mm] m blade tip R45.04/01.03/03 Stentec, page 10

11 4 Results After the PhatasIV calculations the digital output files were converted in ASCI format with the Phatas postprocessor PHPOST.exe. PHPOST can convert 128 variables maximum per postprocessing run. Stentec B.V. s post processor ADAP was used to generate extreme values tables, statistics and for fatigue analysis 1Hz equivalent signals. The extreme values were extracted from all load cases of the ulitmate and fatigue load set. For the fatigue analysis only load cases 12 a/b, 18a/b and 24a/b were examined. These are considered to be the decisive load cases for optimalisation. 4.1 Maximum tower foot bending moment According IEC simulations are performed with the wind turbine idling at a windspeed (stochastic model) of 41.5 m/s. Each load case is calculated with a different wind direction. To improve the idling of the model, the pitch angle of the blades is set at 85º. The maximum resulting tower foot bending moments are: Table 8: Ultimate tower foot bending moments Variable Extreme Ldcase 2 Ldcase 3 Ldcase 4 Ldcase Mxt[01] E E E E50315 Myt[01] E E E E50195 all values in knm, load factor = 1.00 The load case E50335 generates the highest tower foot bending moment. This load case is repeated 8 times, but for each load case a different stochastic model is used. The maximum tower bending moments are: Table 9: Ultimate tower foot bending moments Variable Mxt[01] Myt[01] all values in knm, load factor = 1.00 From these values it can be determined that the mean maximum tower foot bending moment Mxt[01] is: knm. It has to be noted that this value is not the absolute highest value. When looking at the extreme values tables load case GrEog1Voc generates the highest tower foot bending moment Myt[01], which is knm (with = 1.00). For a plot of this loadcase see Appendix C. R45.04/01.03/03 Stentec, page 11

12 4.2 Extreme tables Of the most important design parameters the extreme values are: Table 10: All parameters, absolute extreme values. without with Variable Unit Extreme Loadcase Extreme Loadcase Mxt[01] knm E E Myt[01] knm GrEog1Voc GrEog1Voc Mxt[02] knm PrloVe1k PrloVe1k Myt[02] knm EcdVrb EcdVrb Mxn knm PrloVe1h EmShVr Myn knm EcdVrb EcdVrb Mzn knm Sh2bVr EcdVrb Mxn-r knm PrloVe1h EmShVr Myn-r knm EcdVrb EcdVrb Mzn-r knm EcdVrb EcdVrb Fxn kn Eog50Vr Eog50Vr Fyn kn E E Fzn kn E E50165 Mxb[1] knm E E Myb[1] knm EcdVrb EcdVrb Mxb[2] knm E E Myb[2] knm EcdVrb EcdVrb Mxb[3] knm E E50025 Myb[3] knm BfinVr Eog50_12 Mxb[1]-p[01] knm BfinVo GrEog1Vrb Mxb[1]-p[02] knm E E50275 Mxb[2]-p[01] knm EcdVrb EcdVrb Mxb[2]-p[02] knm EcdVrb EcdVrb Mxb[3]-p[01] knm GrEog1Voc GrEog1Voc Mxb[3]-p[02] knm GrEog1Voc GrEog1Voc Myb[1]-p[01] knm Eog50_ Eog50_12 Myb[1]-p[02] knm Eog50_ Eog50_12 Myb[2]-p[01] knm BfinVr EcdVrb Myb[2]-p[02] knm EcdVrb EcdVrb Myb[3]-p[01] knm BfinVr EcdVrb Myb[3]-p[02] knm BfinVr Eog50Vr Tip displ. flap[1] mm EcdVrb Tip displ. flap[2] mm EcdVrb Tip displ. flap[3] mm Eog50Vo Tip displ. lag[1] mm E Tip displ. lag[2] mm E50025 Tip displ. lag[3] mm E R45.04/01.03/03 Stentec, page 12

13 4.3 1 Hz equivalent signals Of the fatigue load set the following load cases are selected for the optimalisation process: 012, 018, and 024. The most important design parameters are analysed by rain flow counting the signal for damage assessment and the determination of a 1 Hz equivalent signal. This procedure will be repeated for design variations. By comparing values conclusions can be made about the improvement of the design. The results of the calculations of the base line are presented in the following table: R45.04/01.03/03 Stentec, page 13

14 Table 11: 1 Hz equivalent signals. 1Hz equivalent values Variable unit matl curve loadcase 012 loadcase 018 loadcase 024 Fxn kn M Fyn kn M Fzn kn M Mxn knm M Mxn-r knm M Myn knm M Myn-r knm M Mzn knm M Mzn-r knm M Mxb[1] knm M Mxb[1]-p[01] knm M Mxb[1]-p[02] knm M Mxb[2] knm M Mxb[2]-p[01] knm M Mxb[2]-p[02] knm M Mxb[3] knm M Mxb[3]-p[01] knm M Mxb[3]-p[02] knm M Myb[1] knm M Myb[1]-p[01] knm M Myb[1]-p[02] knm M Myb[2] knm M Myb[2]-p[01] knm M Myb[2]-p[02] knm M Myb[3] knm M Myb[3]-p[01] knm M Myb[3]-p[02] knm M Mzb[1] knm M Mzb[1]-p[01] knm M Mzb[1]-p[02] knm M Mzb[2] knm M Mzb[2]-p[01] knm M Mzb[2]-p[02] knm M Mzb[3] knm M Mzb[3]-p[01] knm M Mzb[3]-p[02] knm M Mxt[01] knm M Mxt[02] knm M Myt[02] knm M Myt[01] knm M Mzt[01] knm M Mzt[02] knm M R45.04/01.03/03 Stentec, page 14

15 5 Design variations. By altering Phatas IV input files and/or executables by ECN and Stentec, design variations are created. These are compared with the baseline DOWEC turbine. Not the whole load set is used, but just the load cases that have caused the highest loads. The following load cases are chosen to calculate the design variations: 012, 018, 024, 1B-5Vo, E50025, E50335, EcdVrb, Eog50-12, GrEog1Voc. 5.1 Cost of energy. To clarify the results, the cost of energy per design is calculated according ref. [9], chapter 5. The cost of a wind turbine can be broken down in cost per component. Important design (and cost) drivers of a component are the extreme and fatigue loads it has to withstand. A further break down is achieved by weighing the several loads. By comparing load changes with the baseline configuration an estimation can be made about the change in cost of the wind turbine. Table 12: Influence of parameters on wind turbine cost. cost of wind turbine component (%) design driver load parameter blade 6 gearbox 5 tower 16 component cost contribution (%) extreme flat moment Myb[1]-p[01] fatigue edge moment 1Hz-Mxb[2]-p[01] average torque Mxn mean extreme tilt moment foot Myt[01] fatigue tilt moment top 1Hz-Myt[02] contribution to wind turbine cost (%) If the change in annual yield is known as well, the cost of energy can be calculated by dividing the wind turbine cost by the yield: Influence of design variation on cost of energy = (change in wind turbine cost) (change in annual yield) It must be noted that these variations are one dimensional and therefore very crude. For example a tip speed variation would be more effective with a blade design adapted to that speed. But in this case the only change is the tip speed. The results should not be judged for their values, but used as a guideline to further develop the 6MW DOWEC. 5.2 Structural pitch. By changing the position and rotation of the girders in the blades, the stiffness properties are changed. The changed behaviour of the blades should result in smaller tip deflection and a decrease of fatigue and extreme loads. 4 redesigns (ref [10]) are calculated : tr+5-5, girders 0.5 o rotated, at tip girder suction side 0.5m to aft and girder pressure side 0.5 m forward. tt+5, girders 0.5 o rotated, at tip girder suction side and girder pressure side 0.5 m aft. R45.04/01.03/03 Stentec, page 15

16 tt+5-5, girders 0.5 o rotated, at root girder suction side 0.5m forward and girder pressure side 0.5 m aft. tt-5+5, girders 0.5 o rotated, at root girder suction side 0.5m to aft and girder pressure side 0.5 m forward. The modified turbine models are tested with load cases 008, 012, 018 and 024, 231 and 234. Load case 231 is a stochastic windspeed of 12 m/s with 20 o yaw, 234 a stochastic windspeed of 25 m/s with 20 o yaw. To prevent interference of the blades with the turbine, the dynamic behaviour of the tower has been switched off. Also the baseline loadcases have been recalculated with tower dynamics off. This explains the difference in baseline loads in the table below, compared to the other variations.the results of the simulations are stored on CD C45.04/01.03/03. The extreme and fatigue tables can be found in Appendix D as well Cost of energy. The calculation of the cost of energy can only be based on the fatigue and extreme loads of the blades. Gearbox loads, tower loads and energy production are not taken into account because the aerodynamics of the blades are not changed and the tower dynamics are off. Therefore it is assumed that these parameters have not changed. Based on the changed loads the results in relative turbine costs are as follows: Table 13: Structural pitch, cost of energy. blade parameter baseline tt-5+5 relative turbine costs tr+5-5 relative turbine costs tt+5 relative turbine costs tt+5-5 relative turbine costs knm % % % % % % % % Myb[1]-p[01] Hz-Mxb[1]-p[01] total 0.03 total 0.04 total 0.02 total The influence of the design variations on the cost of energy is similar to the relative turbine costs. R45.04/01.03/03 Stentec, page 16

17 5.3 Tower eigenfrequencies. The influence of the tower eigenfrequencies on the turbine behaviour is investigated by creating 8 new tower models with the following eigenfrequencies: 0.150, 0.175, 0.200, 0.225, 0.250, 0.300, and Hz. The clamping stiffness and material properties of the baseline tower were modified iteratively to alter the eigenfrequency. The frequencies were calculated with Phatas IV. The results of the load case calculations can be found on CD C45.04/01.03/03. The extreme and fatigue tables can be found in Appendix E as well Cost of energy. Compared to the baseline gearbox loads and annual energy production have not changed. Only blade and tower loads were used to determine the change in turbine costs. When comparing the towers the following table can be made: Table 14: Tower eigenfrequencies, cost of energy. relative turbine costs relative turbine costs relative turbine costs relative turbine costs parameter baseline twrfreq twrfreq twrfreq twrfreq blade knm % % % % % % % % Myb[1]-p[01] Hz-Mxb[2]-p[01] tower Myt[01] Hz-Myt[02] total total total total relative turbine costs relative turbine costs relative turbine costs relative turbine costs parameter baseline twrfreq twrfreq twrfreq twrfreq blade knm % % % % % % % % Myb[1]-p[01] Hz-Mxb[2]-p[01] tower Myt[01] Hz-Myt[02] total total total total The influence of the design variations on the cost of energy is similar to the relative turbine costs. What this table doesn t show is a resonance of the tower with the e.f. The 1P oscillation happens at * 60 = 12rpm. Since this is very close to the nominal rpm of rpm, considerable fatigue damage is the result. The DOWEC wind turbine cuts out at 14rpm, so the lowest possible tower e.f. should be above 14 / 60 = 0.233Hz. R45.04/01.03/03 Stentec, page 17

18 Plots in Appendix I show the behaviour of several towers. 5.4 Turbine control. Three alternative controls are modelled (ref. [11]) and calculated, a High Tip Speed (HTS), Low Tip Speed (LTS) and a Peak Shave (PS) control. The HTS turbine runs with a nominal speed of rpm at Vr=11.7 m/s. The LTS turbine runs with rpm at Vr=12.3 m/s. The first eigenfrequency of the tower of the HTS control turbine is increased from to Hz. This will prevent undesired excitations due to the higher nominal speed. The PS control does not change the rpm, but limits the maximum axial force on the hub in this case by opening the blade pitch 2 degrees at Vr. The design of the PS control is based on ref. [15]. The results of the load case calculations can be found on CD C45.04/01.03/03. The extreme and fatigue tables can be found in Appendix F as well Cost of energy. For the cost of energy of the HTS and LTS control the average gearbox torque and the annual production is calculated. The average gearbox torque is determined by calculating the average torque of the generator power curve from the Phatas input file DowecHTS.inp and DowecLTS.inp. Phatas IV is used to create a PV curve of the HTS and LTS control. Consequently with the Phatas post processing program Eprod the annual production is calculated. The results are presented in the table below. Table 15: HTS and LTS control, cost of energy. High Tip Speed control relative turbine costs Low Tip Speed control relative turbine costs parameter baseline Blade knm % % % % Myb[1]-p[01] Hz-Mxb[2]-p[01] gearbox Mxn mean tower Myt[01] Hz-Myt[02] total 0.24 total annual production baseline HTS change (%) LTS change (%) Gwh HTS control, change in cost of energy (%) LTS control, change in cost of energy (%) 1.47 R45.04/01.03/03 Stentec, page 18

19 For the PS control the generator torque table is not changed. Therefore only the blade- and tower parameters and the annual production is taken into account for the calculation of the cost of energy. The results are presented in the table below. Table 16, PS control, cost of energy. parameter baseline Peak Shave control relative turbine costs Blade knm % % Myb[1]-p[01] Hz-Mxb[2]-p[01] Tower Myt[01] Hz-Myt[02] total annual production baseline PS change (%) Gwh PS control, change in cost of energy (%) 1.44 It was expected that the PS control would give greater benefits. Analysis of the load cases and the results show that the axial force (Fxn) is only reduced with 6.10% at loadcase 12PS, compared to the baseline loadcase 12. When running a simple test loadcase with a linear changing wind from 4 to 25 m/s, the Fxn at Vr is even higher than that of the base line as can be seen in Appendix J. It must be concluded that the present peak shave control for the 6MW DOWEC does not work properly. It must be revised and tested prior to drawing conclusions. R45.04/01.03/03 Stentec, page 19

20 5.5 Tapered blade. ECN has designed a blade with more taper than the baseline blade, ref [12]. The cone angle is changed to 2.4 o. The input file DowecR6.inp is revised to reflect the new blade design. The turbine control is the same as the baseline. The results of the load case calculations can be found on CD C45.04/01.03/03. The extreme and fatigue tables can be found in Appendix G as well Cost of energy. The blade- and tower parameters and the annual production are taken into account for the calculation of the cost of energy. The average gearbox torque is similar to the baseline. It does not have an effect on the cost of energy. The results are presented in the table below. Table 17, Tapered blade, cost of energy. parameter baseline Tapered blade relative turbine costs blade knm % % Myb[1]-p[01] Hz-Mxb[2]-p[01] tower Myt[01] Hz-Myt[02] total annual production baseline Tapered blade change (%) Gwh Tapered blade, change in cost of energy R45.04/01.03/03 Stentec, page 20

21 5.6 Low Lambda control. With the Low Lambda control (LL) the rated (wished) rotorspeed changes with the magnitude of the wind. At high wind the rotorspeed is lower than for example at Vr. This will decrease fatigue damage, but also makes it possible to keep the wind turbine in operation at windspeeds higher than Vo (baseline). An other option is to investigate the effects of an increased rated rotorspeed from Vi until Vr. For this design variation no new turbine control is programmed, but output from the turbine control variations (par. 5.4) has been used to create new load sets. The following load sets have been created: Table 18: Load sets contents baseline loadcase occurrence(%) mean windspeed P mean [kw] Low Lambda 1 loadcase occurrence(%) mean windspeed P mean [kw] LTS LTS LL Low Lambda 2 loadcase occurrence(%) mean windspeed P mean [kw] LTS LL Low Lambda 3 loadcase occurrence(%) mean windspeed P mean [kw] 012HTS LL Low Lambda 4 loadcase occurrence(%) mean windspeed P mean [kw] 012HTS HTS LL Low Lambda 5 loadcase occurrence(%) mean windspeed P mean [kw] 012HTS LTS LL R45.04/01.03/03 Stentec, page 21

22 The standard load cases apply to a rotorspeed of rpm, the LTS (Low Tip Speed) load cases rpm and the HTS (High Tip Speed) loadcases to rpm. For this Low Lambda analysis load case 027LL was generated to assess the fatigue damage of a LTS turbine at a stochastic windspeed of 27 m/s (wished rotorspeed at rpm). The occurrence of the load case is based on a Rayleigh distribution with a Vm of 9.2 m/s. The P mean is the average generator power of the load case and is used to calculate the yearly production. The results of the load case calculations can be found on CD C45.04/01.03/03. The 1Hz equivalent fatigue tables can be found in Appendix H as well Cost of energy. The blade- and tower parameters and the annual production are taken into account for the calculation of the cost of energy. The annual production is calculated by ADAP using the occurance and mean power from table 18. The average gearbox torque could not be used, since the rotorspeed-shaft torque table differs per loadcase. Also extreme values are not available because the loadsets consisted only of fatigue loadcases. The results are presented in the table below. Table 19: Cost of energy Low Lambda control variations. Low Lambda 1 change in Low Lambda change in Low Lambda 3 change in Low Lambda 4 change in Low Lambda 5 change in 100% loadcase change cost 2 change cost change cost change cost change cost blade knm % % % % % % % % % % Myb[i]-p[01] Eog50-12 n.a. n.a. n.a. n.a. n.a. 1Hz-Mxb[i]-p[01] all gearbox Mxn mean n.a. n.a. n.a. n.a. n.a. tower Myt[01] GrEog1Voc n.a. n.a. n.a. n.a. n.a. 1Hz-Myt[02] all total total total 0.05 total 0.15 total 0.02 annual production baseline LL1 change (%) LL2 change (%) LL3 change (%) LL4 change (%) LL5 change (%) MWh LL1 loadset, influence on cost of energy 0.42 LL2 loadset, influence on cost of energy 0.04 LL3 loadset, influence on cost of energy 2.76 LL4 loadset, influence on cost of energy 3.17 LL5 loadset, influence on cost of energy 2.92 Based on the simplified Low Lambda load sets and the cost of energy model, it can be concluded that only LL1 has a reasonable decrease in fatigue damage. But because the annual production is lower, the cost of energy increases. LL3 to LL5 even cause more fatigue damage than the baseline while production is lower than the baseline. R45.04/01.03/03 Stentec, page 22

23 6 Conclusion. Based on the turbine description of ECN ref. [3] a PhatasIV load set has been generated. With the results of this final load set the components of the turbine can be checked by NEG Micon or ECN for ultimate and fatigue loads according to the IEC and DNV regulations. From the results of the load cases it is shown that the turbine behaviour is conform the load set description given by NEG Micon ref. [2]. But the extreme loads are not in accordance with the expectations. When table 10 is compared with ref. [13] it can be concluded that the maximum tower top tilt moment Myt[02] is 1.7 times higher than calculated statically. The highest tower bottom tilt moment Myt[01] is 2.5 times higher than expected. A possible cause for this large difference might be the ECN modelling that allows short generator overshoots while originally the 6MW was considered to be an absolute highest value. Key load cases are used to calculate DOWEC design variations. Of the most important parameters tables with extreme values and 1Hz equivalent signals can be found on CD C45.04/01.03/03. To make the large amount of data understandable, it has been used to calculate relative turbine costs and changes in cost of energy. It is shown that tower frequency and turbine control have the largest influence on the cost of energy. An increase or decrease in tower frequency of more than 0.1Hz, a lower tipspeed or the use of peak shaving will have a beneficial influence on the cost of energy of the 6MW DOWEC. R45.04/01.03/03 Stentec, page 23

24 References. [1] Handbook Reporting and Communication Handbook Reporting and Communication Engineering consultancy Stentec B.V., March 2002, Report nr. R6.20/02..01/02, H.P. Haring, Stentec BV. [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] Load set description DOWEC 6MW DOWEC 6 MW predesign Terms of Reference IEC ed. 2. Phatas-IV users manual ADAP manual B. Hendriks NM3000-LMH46-5 blade design H.J. Kooijman J.M. Peeringa Tapered LMH-64-5 blade Data6MWV2.doc DOWEC 6MW design overview Load set description DOWEC 6MW turbine DOWEC-F1W2-JP-02-62/00-P, version 0, , H.F. Veldkamp (NEG Micon), J.M. Peeringa (ECN). DOWEC 6 MW pre-design. Aero-elastic modelling of the DOWEC 6 MW pre-design in PHATAS. DOWEC-F1W2-HJK /2, ECN-CX-135, april 2002, H.J.T. Kooijman, C. Lindenburg, D. Winkelaar. Terms of reference DOWEC, Pre-EET number doc, 176-FG- R0300/V1, F. Goezinne IEC , second edition, PHATAS-IV user s manual, release jul-2001, draft, October 15, 2001, C. Lindenburg ADAP manual, R6.20/01.01/01, June 2002, B.F. Boersma,, Stentec B.V. DOWEC: load variations, , B. Hendriks, ECN Aerodynamic Parameter Sensitivity Study, ECN-C , May 2001, C. Lindenburg, E. Bot, H.B. Hendriks, ECN DOWEC 6MW, sensitivity analysis structural pitch, , H.J. Kooijman, ECN Alternatieve DOWEC regelingen, , J.M. Peeringa, ECN 6MW Blade Variant With Increased Taper, ECN-Wind DOWEC- Note, August 2002, C. Lindenburg, ECN Estimated data for 6MWe turbine with 129 m rotor diameter, , F. Goezinne, NEG Micon. DOWEC 6MW design overview, ,, Stentec B.V. [15] Ultieme Bladhoek Regeling Eindverslag van het UPC project, Stentec rapport R052.01/ , , W. Kuik, R.C. Wegerif, Stentec BV R45.04/01.03/03 Stentec, page 24

25 Appendix A. Phatas file listing Overview used Phatas files Phatas file name file date phat6mw.exe phpost.exe blade_6mw_r5.inp DOWEC_6MW_R5.inp dowecr6.inp found_21m.inp defphat cylin cylin DU21_A DU25_A DU30_A DU35_A DU40_A NA64_A R45.04/01.03/03 Stentec, page 25

26 Appendix C. Plot of loadcase GrEog1Voc. R45.04/01.03/03 Stentec, page 31

27 Appendix D. Tables structural pitch. Structural pitch, absolute extreme values 25 m/s, 20 degr. yaw Ldcase: tt tr tt tt+5-5 Extreme Extreme Extreme Extreme Extreme Variable [knm] [knm] [knm] [knm] Mxb[1]-p[01] Mxb[1]-p[02] Mxb[1]-p[03] Mxb[2]-p[01] Mxb[2]-p[02] Mxb[2]-p[03] Mxb[3]-p[01] Mxb[3]-p[02] Mxb[3]-p[03] Myb[1]-p[01] Myb[1]-p[02] Myb[1]-p[03] Myb[2]-p[01] Myb[2]-p[02] Myb[2]-p[03] Myb[3]-p[01] Myb[3]-p[02] Myb[3]-p[03] Mxb[1] Mxb[2] Mxb[3] Myb[1] Myb[2] Myb[3] [mm] [mm] [mm] [mm] [mm] Tip displ. flap[1] Tip disp. flap[2] Tip disp. flap[3] Tip displ. lag[1] Tip displ. lag[2] Tip displ. lag[3] R45.04/01.03/03 Stentec, page 32

28 Structural pitch, absolute extreme values 12 m/s, 20 degr. yaw Ldcase: tt tr tt tt+5-5 Extreme Extreme Extreme Extreme Extreme Variable [knm] [knm] [knm] [knm] [knm] Mxb[1]-p[01] Mxb[1]-p[02] Mxb[1]-p[03] Mxb[2]-p[01] Mxb[2]-p[02] Mxb[2]-p[03] Mxb[3]-p[01] Mxb[3]-p[02] Mxb[3]-p[03] Myb[1]-p[01] Myb[1]-p[02] Myb[1]-p[03] Myb[2]-p[01] Myb[2]-p[02] Myb[2]-p[03] Myb[3]-p[01] Myb[3]-p[02] Myb[3]-p[03] Mxb[1] Mxb[2] Mxb[3] Myb[1] Myb[2] Myb[3] [mm] [mm] [mm] [mm] [mm] Tip displ. flap[1] Tip disp. flap[2] Tip disp. flap[3] Tip displ. lag[1] Tip displ. lag[2] Tip displ. lag[3] R45.04/01.03/03 Stentec, page 33

29 Structural pitch, absolute extreme values 24 m/s Ldcase: tt tr tt tt+5-5 Extreme Extreme Extreme Extreme Extreme Variable [knm] [knm] [knm] [knm] [knm] Mxb[1]-p[01] Mxb[1]-p[02] Mxb[1]-p[03] Mxb[2]-p[01] Mxb[2]-p[02] Mxb[2]-p[03] Mxb[3]-p[01] Mxb[3]-p[02] Mxb[3]-p[03] Myb[1]-p[01] Myb[1]-p[02] Myb[1]-p[03] Myb[2]-p[01] Myb[2]-p[02] Myb[2]-p[03] Myb[3]-p[01] Myb[3]-p[02] Myb[3]-p[03] Mxb[1] Mxb[2] Mxb[3] Myb[1] Myb[2] Myb[3] [mm] [mm] [mm] [mm] [mm] Tip displ. flap[1] Tip disp. flap[2] Tip disp. flap[3] Tip displ. lag[1] Tip displ. lag[2] Tip displ. lag[3] R45.04/01.03/03 Stentec, page 34

30 Structural pitch, absolute extreme values 18 m/s Ldcase: tt tr tt tt+5-5 Extreme Extreme Extreme Extreme Extreme Variable [knm] [knm] [knm] [knm] [knm] Mxb[1]-p[01] Mxb[1]-p[02] Mxb[1]-p[03] Mxb[2]-p[01] Mxb[2]-p[02] Mxb[2]-p[03] Mxb[3]-p[01] Mxb[3]-p[02] Mxb[3]-p[03] Myb[1]-p[01] Myb[1]-p[02] Myb[1]-p[03] Myb[2]-p[01] Myb[2]-p[02] Myb[2]-p[03] Myb[3]-p[01] Myb[3]-p[02] Myb[3]-p[03] Mxb[1] Mxb[2] Mxb[3] Myb[1] Myb[2] Myb[3] [mm] [mm] [mm] [mm] [mm] Tip displ. flap[1] Tip disp. flap[2] Tip disp. flap[3] Tip displ. lag[1] Tip displ. lag[2] Tip displ. lag[3] R45.04/01.03/03 Stentec, page 35

31 Structural pitch, absolute extreme values 12 m/s Ldcase: tt tr tt tt+5-5 Extreme Extreme Extreme Extreme Extreme Variable [knm] [knm] [knm] [knm] [knm] Mxb[1]-p[01] Mxb[1]-p[02] Mxb[1]-p[03] Mxb[2]-p[01] Mxb[2]-p[02] Mxb[2]-p[03] Mxb[3]-p[01] Mxb[3]-p[02] Mxb[3]-p[03] Myb[1]-p[01] Myb[1]-p[02] Myb[1]-p[03] Myb[2]-p[01] Myb[2]-p[02] Myb[2]-p[03] Myb[3]-p[01] Myb[3]-p[02] Myb[3]-p[03] Mxb[1] Mxb[2] Mxb[3] Myb[1] Myb[2] Myb[3] [mm] [mm] [mm] [mm] [mm] Tip displ. flap[1] Tip disp. flap[2] Tip disp. flap[3] Tip displ. lag[1] Tip displ. lag[2] Tip displ. lag[3] R45.04/01.03/03 Stentec, page 36

32 Structural pitch, absolute extreme values 8 m/s Ldcase: tt tr tt tt+5-5 Extreme Extreme Extreme Extreme Extreme Variable [knm] [knm] [knm] [knm] [knm] Mxb[1]-p[01] Mxb[1]-p[02] Mxb[1]-p[03] Mxb[2]-p[01] Mxb[2]-p[02] Mxb[2]-p[03] Mxb[3]-p[01] Mxb[3]-p[02] Mxb[3]-p[03] Myb[1]-p[01] Myb[1]-p[02] Myb[1]-p[03] Myb[2]-p[01] Myb[2]-p[02] Myb[2]-p[03] Myb[3]-p[01] Myb[3]-p[02] Myb[3]-p[03] Mxb[1] Mxb[2] Mxb[3] Myb[1] Myb[2] Myb[3] [mm] [mm] [mm] [mm] [mm] Tip displ. flap[1] Tip disp. flap[2] Tip disp. flap[3] Tip displ. lag[1] Tip displ. lag[2] Tip displ. lag[3] R45.04/01.03/03 Stentec, page 37

33 Structural pitch, 1 Hz equivalent values 24 m/s Ldcase tt tr tt tt+5-5 Variable [knm] [knm] [knm] [knm] [knm] Mxb[1]-p[01] Mxb[1]-p[02] Mxb[1]-p[03] Mxb[2]-p[01] Mxb[2]-p[02] Mxb[2]-p[03] Mxb[3]-p[01] Mxb[3]-p[02] Mxb[3]-p[03] Myb[1]-p[01] Myb[1]-p[02] Myb[1]-p[03] Myb[2]-p[01] Myb[2]-p[02] Myb[2]-p[03] Myb[3]-p[01] Myb[3]-p[02] Myb[3]-p[03] Mxb[1] Mxb[2] Mxb[3] Myb[1] Myb[2] Myb[3] Material M10 K100 R45.04/01.03/03 Stentec, page 38

34 Structural pitch, 1 Hz equivalent values 18 m/s Ldcase tt tr tt tt+5-5 Variable [knm] [knm] [knm] [knm] [knm] Mxb[1]-p[01] Mxb[1]-p[02] Mxb[1]-p[03] Mxb[2]-p[01] Mxb[2]-p[02] Mxb[2]-p[03] Mxb[3]-p[01] Mxb[3]-p[02] Mxb[3]-p[03] Myb[1]-p[01] Myb[1]-p[02] Myb[1]-p[03] Myb[2]-p[01] Myb[2]-p[02] Myb[2]-p[03] Myb[3]-p[01] Myb[3]-p[02] Myb[3]-p[03] Mxb[1] Mxb[2] Mxb[3] Myb[1] Myb[2] Myb[3] Material M10 K100 R45.04/01.03/03 Stentec, page 39

35 Structural pitch, 1 Hz equivalent values 12 m/s Ldcase tt tr tt tt+5-5 Variable [knm] [knm] [knm] [knm] [knm] Mxb[1]-p[01] Mxb[1]-p[02] Mxb[1]-p[03] Mxb[2]-p[01] Mxb[2]-p[02] Mxb[2]-p[03] Mxb[3]-p[01] Mxb[3]-p[02] Mxb[3]-p[03] Myb[1]-p[01] Myb[1]-p[02] Myb[1]-p[03] Myb[2]-p[01] Myb[2]-p[02] Myb[2]-p[03] Myb[3]-p[01] Myb[3]-p[02] Myb[3]-p[03] Mxb[1] Mxb[2] Mxb[3] Myb[1] Myb[2] Myb[3] Material M10 K100 R45.04/01.03/03 Stentec, page 40

36 Appendix E. Tables tower frequencies Tower frequencies, absolute extreme values 1B-5Vo Variable unit baseline _150 % _175 % _200 % _225 % _250 % _300 % _350 % _400 % Fxn kn Fyn kn Fzn kn Mxn knm Mxn-r knm Myn knm Myn-r knm Mzn knm Mzn-r knm Mxb[1] knm Mxb[1]-p[01] knm Mxb[1]-p[02] knm Mxb[2] knm Mxb[2]-p[01] knm Mxb[2]-p[02] knm Mxb[3] knm Mxb[3]-p[01] knm Mxb[3]-p[02] knm Myb[1] knm Myb[1]-p[01] knm Myb[1]-p[02] knm Myb[2] knm Myb[2]-p[01] knm Myb[2]-p[02] knm Myb[3] knm Myb[3]-p[01] knm Myb[3]-p[02] knm Mzb[1] knm Mzb[1]-p[01] knm Mzb[1]-p[02] knm Mzb[2] knm Mzb[2]-p[01] knm Mzb[2]-p[02] knm Mzb[3] knm Mzb[3]-p[01] knm Mzb[3]-p[02] knm Mxt[01] knm Mxt[02] knm Myt[02] knm Myt[01] knm Mzt[01] knm Mzt[02] knm Tip displ. flap[1] mm Tip disp. flap[2] mm Tip disp. flap[3] mm Tip displ. lag[1] mm Tip displ. lag[2] mm Tip displ. lag[3] mm X-defl[01] mm X-defl[02] mm Y-defl[01] mm Y-defl[02] mm R45.04/01.03/03 Stentec, page 41

37 Tower frequencies, absolute extreme values EcdVrb Variable unit baseline _150 % _175 % _200 % _225 % _250 % _300 % _350 % _400 % Fxn kn Fyn kn Fzn kn Mxn knm Mxn-r knm Myn knm Myn-r knm Mzn knm Mzn-r knm Mxb[1] knm Mxb[1]-p[01] knm Mxb[1]-p[02] knm Mxb[2] knm Mxb[2]-p[01] knm Mxb[2]-p[02] knm Mxb[3] knm Mxb[3]-p[01] knm Mxb[3]-p[02] knm Myb[1] knm Myb[1]-p[01] knm Myb[1]-p[02] knm Myb[2] knm Myb[2]-p[01] knm Myb[2]-p[02] knm Myb[3] knm Myb[3]-p[01] knm Myb[3]-p[02] knm Mzb[1] knm Mzb[1]-p[01] knm Mzb[1]-p[02] knm Mzb[2] knm Mzb[2]-p[01] knm Mzb[2]-p[02] knm Mzb[3] knm Mzb[3]-p[01] knm Mzb[3]-p[02] knm Mxt[01] knm Mxt[02] knm Myt[02] knm Myt[01] knm Mzt[01] knm Mzt[02] knm Tip displ. flap[1] mm Tip disp. flap[2] mm Tip disp. flap[3] mm Tip displ. lag[1] mm Tip displ. lag[2] mm Tip displ. lag[3] mm X-defl[01] mm X-defl[02] mm Y-defl[01] mm Y-defl[02] mm R45.04/01.03/03 Stentec, page 42

38 Tower frequencies, absolute extreme values Eog50_12 Variable unit baseline _150 % _175 % _200 % _225 % _250 % _300 % _350 % _400 % Fxn kn Fyn kn Fzn kn Mxn knm Mxn-r knm Myn knm Myn-r knm Mzn knm Mzn-r knm Mxb[1] knm Mxb[1]-p[01] knm Mxb[1]-p[02] knm Mxb[2] knm Mxb[2]-p[01] knm Mxb[2]-p[02] knm Mxb[3] knm Mxb[3]-p[01] knm Mxb[3]-p[02] knm Myb[1] knm Myb[1]-p[01] knm Myb[1]-p[02] knm Myb[2] knm Myb[2]-p[01] knm Myb[2]-p[02] knm Myb[3] knm Myb[3]-p[01] knm Myb[3]-p[02] knm Mzb[1] knm Mzb[1]-p[01] knm Mzb[1]-p[02] knm Mzb[2] knm Mzb[2]-p[01] knm Mzb[2]-p[02] knm Mzb[3] knm Mzb[3]-p[01] knm Mzb[3]-p[02] knm Mxt[01] knm Mxt[02] knm Myt[02] knm Myt[01] knm Mzt[01] knm Mzt[02] knm Tip displ. flap[1] mm Tip disp. flap[2] mm Tip disp. flap[3] mm Tip displ. lag[1] mm Tip displ. lag[2] mm Tip displ. lag[3] mm X-defl[01] mm X-defl[02] mm Y-defl[01] mm Y-defl[02] mm R45.04/01.03/03 Stentec, page 43

39 Tower frequencies, absolute extreme values GrEog1Voc Variable unit baseline _150 % _175 % _200 % _225 % _250 % _300 % _350 % _400 % Fxn kn Fyn kn Fzn kn Mxn knm Mxn-r knm Myn knm Myn-r knm Mzn knm Mzn-r knm Mxb[1] knm Mxb[1]-p[01] knm Mxb[1]-p[02] knm Mxb[2] knm Mxb[2]-p[01] knm Mxb[2]-p[02] knm Mxb[3] knm Mxb[3]-p[01] knm Mxb[3]-p[02] knm Myb[1] knm Myb[1]-p[01] knm Myb[1]-p[02] knm Myb[2] knm Myb[2]-p[01] knm Myb[2]-p[02] knm Myb[3] knm Myb[3]-p[01] knm Myb[3]-p[02] knm Mzb[1] knm Mzb[1]-p[01] knm Mzb[1]-p[02] knm Mzb[2] knm Mzb[2]-p[01] knm Mzb[2]-p[02] knm Mzb[3] knm Mzb[3]-p[01] knm Mzb[3]-p[02] knm Mxt[01] knm Mxt[02] knm Myt[02] knm Myt[01] knm Mzt[01] knm Mzt[02] knm Tip displ. flap[1] mm Tip disp. flap[2] mm Tip disp. flap[3] mm Tip displ. lag[1] mm Tip displ. lag[2] mm Tip displ. lag[3] mm X-defl[01] mm X-defl[02] mm Y-defl[01] mm Y-defl[02] mm R45.04/01.03/03 Stentec, page 44

40 Tower frequencies, absolute extreme values E50025 Variable unit baseline _150 % _175 % _200 % _225 % _250 % _300 % _350 % _400 % Fxn kn Fyn kn Fzn kn Mxn knm Mxn-r knm Myn knm Myn-r knm Mzn knm Mzn-r knm Mxb[1] knm Mxb[1]-p[01] knm Mxb[1]-p[02] knm Mxb[2] knm Mxb[2]-p[01] knm Mxb[2]-p[02] knm Mxb[3] knm Mxb[3]-p[01] knm Mxb[3]-p[02] knm Myb[1] knm Myb[1]-p[01] knm Myb[1]-p[02] knm Myb[2] knm Myb[2]-p[01] knm Myb[2]-p[02] knm Myb[3] knm Myb[3]-p[01] knm Myb[3]-p[02] knm Mzb[1] knm Mzb[1]-p[01] knm Mzb[1]-p[02] knm Mzb[2] knm Mzb[2]-p[01] knm Mzb[2]-p[02] knm Mzb[3] knm Mzb[3]-p[01] knm Mzb[3]-p[02] knm Mxt[01] knm Mxt[02] knm Myt[02] knm Myt[01] knm Mzt[01] knm Mzt[02] knm Tip displ. flap[1] mm Tip disp. flap[2] mm Tip disp. flap[3] mm Tip displ. lag[1] mm Tip displ. lag[2] mm Tip displ. lag[3] mm X-defl[01] mm X-defl[02] mm Y-defl[01] mm Y-defl[02] mm R45.04/01.03/03 Stentec, page 45

41 Tower frequencies, absolute extreme values E50335 Variable unit baseline _150 % _175 % _200 % _225 % _250 % _300 % _350 % _400 % Fxn kn Fyn kn Fzn kn Mxn knm Mxn-r knm Myn knm Myn-r knm Mzn knm Mzn-r knm Mxb[1] knm Mxb[1]-p[01] knm Mxb[1]-p[02] knm Mxb[2] knm Mxb[2]-p[01] knm Mxb[2]-p[02] knm Mxb[3] knm Mxb[3]-p[01] knm Mxb[3]-p[02] knm Myb[1] knm Myb[1]-p[01] knm Myb[1]-p[02] knm Myb[2] knm Myb[2]-p[01] knm Myb[2]-p[02] knm Myb[3] knm Myb[3]-p[01] knm Myb[3]-p[02] knm Mzb[1] knm Mzb[1]-p[01] knm Mzb[1]-p[02] knm Mzb[2] knm Mzb[2]-p[01] knm Mzb[2]-p[02] knm Mzb[3] knm Mzb[3]-p[01] knm Mzb[3]-p[02] knm Mxt[01] knm Mxt[02] knm Myt[02] knm Myt[01] knm Mzt[01] knm Mzt[02] knm Tip displ. flap[1] mm Tip disp. flap[2] mm Tip disp. flap[3] mm Tip displ. lag[1] mm Tip displ. lag[2] mm Tip displ. lag[3] mm X-defl[01] mm X-defl[02] mm Y-defl[01] mm Y-defl[02] mm R45.04/01.03/03 Stentec, page 46

42 Tower frequencies, 1Hz equivalent values 24 m/s Variable unit mat. curve bline % % % % % % % % Fxn kn M Fyn kn M Fzn kn M Mxn knm M Mxn-r knm M Myn knm M Myn-r knm M Mzn knm M Mzn-r knm M Mxb[1] knm M Mxb[1]-p[01] knm M Mxb[1]-p[02] knm M Mxb[2] knm M Mxb[2]-p[01] knm M Mxb[2]-p[02] knm M Mxb[3] knm M Mxb[3]-p[01] knm M Mxb[3]-p[02] knm M Myb[1] knm M Myb[1]-p[01] knm M Myb[1]-p[02] knm M Myb[2] knm M Myb[2]-p[01] knm M Myb[2]-p[02] knm M Myb[3] knm M Myb[3]-p[01] knm M Myb[3]-p[02] knm M Mzb[1] knm M Mzb[1]-p[01] knm M Mzb[1]-p[02] knm M Mzb[2] knm M Mzb[2]-p[01] knm M Mzb[2]-p[02] knm M Mzb[3] knm M Mzb[3]-p[01] knm M Mzb[3]-p[02] knm M Mxt[01] knm M Mxt[02] knm M Myt[02] knm M Myt[01] knm M Mzt[01] knm M Mzt[02] knm M R45.04/01.03/03 Stentec, page 47

43 Tower frequencies, 1Hz equivalent values 18 m/s Variable unit matl curve bline % % % % % % % % Fxn kn M Fyn kn M Fzn kn M Mxn knm M Mxn-r knm M Myn knm M Myn-r knm M Mzn knm M Mzn-r knm M Mxb[1] knm M Mxb[1]-p[01] knm M Mxb[1]-p[02] knm M Mxb[2] knm M Mxb[2]-p[01] knm M Mxb[2]-p[02] knm M Mxb[3] knm M Mxb[3]-p[01] knm M Mxb[3]-p[02] knm M Myb[1] knm M Myb[1]-p[01] knm M Myb[1]-p[02] knm M Myb[2] knm M Myb[2]-p[01] knm M Myb[2]-p[02] knm M Myb[3] knm M Myb[3]-p[01] knm M Myb[3]-p[02] knm M Mzb[1] knm M Mzb[1]-p[01] knm M Mzb[1]-p[02] knm M Mzb[2] knm M Mzb[2]-p[01] knm M Mzb[2]-p[02] knm M Mzb[3] knm M Mzb[3]-p[01] knm M Mzb[3]-p[02] knm M Mxt[01] knm M Mxt[02] knm M Myt[02] knm M Myt[01] knm M Mzt[01] knm M Mzt[02] knm M R45.04/01.03/03 Stentec, page 48

44 Tower frequencies, 1Hz equivalent values 12 m/s Variable unit matl curve bline % % % % % % % % Fxn kn M Fyn kn M Fzn kn M Mxn knm M Mxn-r knm M Myn knm M Myn-r knm M Mzn knm M Mzn-r knm M Mxb[1] knm M Mxb[1]-p[01] knm M Mxb[1]-p[02] knm M Mxb[2] knm M Mxb[2]-p[01] knm M Mxb[2]-p[02] knm M Mxb[3] knm M Mxb[3]-p[01] knm M Mxb[3]-p[02] knm M Myb[1] knm M Myb[1]-p[01] knm M Myb[1]-p[02] knm M Myb[2] knm M Myb[2]-p[01] knm M Myb[2]-p[02] knm M Myb[3] knm M Myb[3]-p[01] knm M Myb[3]-p[02] knm M Mzb[1] knm M Mzb[1]-p[01] knm M Mzb[1]-p[02] knm M Mzb[2] knm M Mzb[2]-p[01] knm M Mzb[2]-p[02] knm M Mzb[3] knm M Mzb[3]-p[01] knm M Mzb[3]-p[02] knm M Mxt[01] knm M Mxt[02] knm M Myt[02] knm M Myt[01] knm M Mzt[01] knm M Mzt[02] knm M R45.04/01.03/03 Stentec, page 49

45 Appendix F. Tables pitch control. Pitch control, absolute extreme values 1B-5Vo Variable Unit baseline 1B-5VoHTS % 1B-5VoLTS % 1b5vo_PS % Fxn kn Fyn kn Fzn kn Mxn knm Mxn-r knm Myn knm Myn-r knm Mzn knm Mzn-r knm Mxb[1] knm Mxb[1]-p[01] knm Mxb[1]-p[02] knm Mxb[2] knm Mxb[2]-p[01] knm Mxb[2]-p[02] knm Mxb[3] knm Mxb[3]-p[01] knm Mxb[3]-p[02] knm Myb[1] knm Myb[1]-p[01] knm Myb[1]-p[02] knm Myb[2] knm Myb[2]-p[01] knm Myb[2]-p[02] knm Myb[3] knm Myb[3]-p[01] knm Myb[3]-p[02] knm Mzb[1] knm Mzb[1]-p[01] knm Mzb[1]-p[02] knm Mzb[2] knm Mzb[2]-p[01] knm Mzb[2]-p[02] knm Mzb[3] knm Mzb[3]-p[01] knm Mzb[3]-p[02] knm Mxt[01] knm Mxt[02] knm Myt[02] knm Myt[01] knm Mzt[01] knm Mzt[02] knm Tip displ. flap[1] mm Tip disp. flap[2] mm Tip disp. flap[3] mm Tip displ. lag[1] mm Tip displ. lag[2] mm Tip displ. lag[3] mm X-defl[01] mm X-defl[02] mm Y-defl[01] mm Y-defl[02] mm NOTE: 1B-5VoLTS brake_overspeed on 14.0 rpm to prevent early shut down R45.04/01.03/03 Stentec, page 50

46 Pitch control, absolute extreme values E50025 Variable Unit baseline E50025HTS % E50025LTS % E50025_PS % Fxn kn Fyn kn Fzn kn Mxn knm Mxn-r knm Myn knm Myn-r knm Mzn knm Mzn-r knm Mxb[1] knm Mxb[1]-p[01] knm Mxb[1]-p[02] knm Mxb[2] knm Mxb[2]-p[01] knm Mxb[2]-p[02] knm Mxb[3] knm Mxb[3]-p[01] knm Mxb[3]-p[02] knm Myb[1] knm Myb[1]-p[01] knm Myb[1]-p[02] knm Myb[2] knm Myb[2]-p[01] knm Myb[2]-p[02] knm Myb[3] knm Myb[3]-p[01] knm Myb[3]-p[02] knm Mzb[1] knm Mzb[1]-p[01] knm Mzb[1]-p[02] knm Mzb[2] knm Mzb[2]-p[01] knm Mzb[2]-p[02] knm Mzb[3] knm Mzb[3]-p[01] knm Mzb[3]-p[02] knm Mxt[01] knm Mxt[02] knm Myt[02] knm Myt[01] knm Mzt[01] knm Mzt[02] knm Tip displ. flap[1] mm Tip disp. flap[2] mm Tip disp. flap[3] mm Tip displ. lag[1] mm Tip displ. lag[2] mm Tip displ. lag[3] mm X-defl[01] mm X-defl[02] mm Y-defl[01] mm Y-defl[02] mm R45.04/01.03/03 Stentec, page 51

47 Pitch control, absolute extreme values E50335 Variable Unit baseline E50335HTS % E50335LTS % E50335_PS % Fxn kn Fyn kn Fzn kn Mxn knm Mxn-r knm Myn knm Myn-r knm Mzn knm Mzn-r knm Mxb[1] knm Mxb[1]-p[01] knm Mxb[1]-p[02] knm Mxb[2] knm Mxb[2]-p[01] knm Mxb[2]-p[02] knm Mxb[3] knm Mxb[3]-p[01] knm Mxb[3]-p[02] knm Myb[1] knm Myb[1]-p[01] knm Myb[1]-p[02] knm Myb[2] knm Myb[2]-p[01] knm Myb[2]-p[02] knm Myb[3] knm Myb[3]-p[01] knm Myb[3]-p[02] knm Mzb[1] knm Mzb[1]-p[01] knm Mzb[1]-p[02] knm Mzb[2] knm Mzb[2]-p[01] knm Mzb[2]-p[02] knm Mzb[3] knm Mzb[3]-p[01] knm Mzb[3]-p[02] knm Mxt[01] knm Mxt[02] knm Myt[02] knm Myt[01] knm Mzt[01] knm Mzt[02] knm Tip displ. flap[1] mm Tip disp. flap[2] mm Tip disp. flap[3] mm Tip displ. lag[1] mm Tip displ. lag[2] mm Tip displ. lag[3] mm X-defl[01] mm X-defl[02] mm Y-defl[01] mm Y-defl[02] mm R45.04/01.03/03 Stentec, page 52

48 Pitch control, absolute extreme values EcdVrb Variable Unit baseline EcdVrbHTS % EcdVrbLTS % EcdVrb_PS % Fxn kn Fyn kn Fzn kn Mxn knm Mxn-r knm Myn knm Myn-r knm Mzn knm Mzn-r knm Mxb[1] knm Mxb[1]-p[01] knm Mxb[1]-p[02] knm Mxb[2] knm Mxb[2]-p[01] knm Mxb[2]-p[02] knm Mxb[3] knm Mxb[3]-p[01] knm Mxb[3]-p[02] knm Myb[1] knm Myb[1]-p[01] knm Myb[1]-p[02] knm Myb[2] knm Myb[2]-p[01] knm Myb[2]-p[02] knm Myb[3] knm Myb[3]-p[01] knm Myb[3]-p[02] knm Mzb[1] knm Mzb[1]-p[01] knm Mzb[1]-p[02] knm Mzb[2] knm Mzb[2]-p[01] knm Mzb[2]-p[02] knm Mzb[3] knm Mzb[3]-p[01] knm Mzb[3]-p[02] knm Mxt[01] knm Mxt[02] knm Myt[02] knm Myt[01] knm Mzt[01] knm Mzt[02] knm Tip displ. flap[1] mm Tip disp. flap[2] mm Tip disp. flap[3] mm Tip displ. lag[1] mm Tip displ. lag[2] mm Tip displ. lag[3] mm X-defl[01] mm X-defl[02] mm Y-defl[01] mm Y-defl[02] mm R45.04/01.03/03 Stentec, page 53

49 Pitch control, absolute extreme values Eog50_12 Variable Unit baseline Eog50_12HTS % Eog50_12LTS % Eog50_12_PS % Fxn kn Fyn kn Fzn kn Mxn knm Mxn-r knm Myn knm Myn-r knm Mzn knm Mzn-r knm Mxb[1] knm Mxb[1]-p[01] knm Mxb[1]-p[02] knm Mxb[2] knm Mxb[2]-p[01] knm Mxb[2]-p[02] knm Mxb[3] knm Mxb[3]-p[01] knm Mxb[3]-p[02] knm Myb[1] knm Myb[1]-p[01] knm Myb[1]-p[02] knm Myb[2] knm Myb[2]-p[01] knm Myb[2]-p[02] knm Myb[3] knm Myb[3]-p[01] knm Myb[3]-p[02] knm Mzb[1] knm Mzb[1]-p[01] knm Mzb[1]-p[02] knm Mzb[2] knm Mzb[2]-p[01] knm Mzb[2]-p[02] knm Mzb[3] knm Mzb[3]-p[01] knm Mzb[3]-p[02] knm Mxt[01] knm Mxt[02] knm Myt[02] knm Myt[01] knm Mzt[01] knm Mzt[02] knm Tip displ. flap[1] mm Tip disp. flap[2] mm Tip disp. flap[3] mm Tip displ. lag[1] mm Tip displ. lag[2] mm Tip displ. lag[3] mm X-defl[01] mm X-defl[02] mm Y-defl[01] mm Y-defl[02] mm R45.04/01.03/03 Stentec, page 54

50 Pitch control, absolute extreme values GrEog1Voc Variable Unit baseline GrEog1VocHTS % GrEog1VocLTS % GrEog1Voc_PS % Fxn kn Fyn kn Fzn kn Mxn knm Mxn-r knm Myn knm Myn-r knm Mzn knm Mzn-r knm Mxb[1] knm Mxb[1]-p[01] knm Mxb[1]-p[02] knm Mxb[2] knm Mxb[2]-p[01] knm Mxb[2]-p[02] knm Mxb[3] knm Mxb[3]-p[01] knm Mxb[3]-p[02] knm Myb[1] knm Myb[1]-p[01] knm Myb[1]-p[02] knm Myb[2] knm Myb[2]-p[01] knm Myb[2]-p[02] knm Myb[3] knm Myb[3]-p[01] knm Myb[3]-p[02] knm Mzb[1] knm Mzb[1]-p[01] knm Mzb[1]-p[02] knm Mzb[2] knm Mzb[2]-p[01] knm Mzb[2]-p[02] knm Mzb[3] knm Mzb[3]-p[01] knm Mzb[3]-p[02] knm Mxt[01] knm Mxt[02] knm Myt[02] knm Myt[01] knm Mzt[01] knm Mzt[02] knm Tip displ. flap[1] mm Tip disp. flap[2] mm Tip disp. flap[3] mm Tip displ. lag[1] mm Tip displ. lag[2] mm Tip displ. lag[3] mm X-defl[01] mm X-defl[02] mm Y-defl[01] mm Y-defl[02] mm R45.04/01.03/03 Stentec, page 55

51 Pitch control, 24 m/s 1Hz equivalent values Variable unit mat.curve baseline 024HTS % 024LTS % 024PS % Fxn kn M Fyn kn M Fzn kn M Mxn knm M Mxn-r knm M Myn knm M Myn-r knm M Mzn knm M Mzn-r knm M Mxb[1] knm M Mxb[1]-p[01] knm M Mxb[1]-p[02] knm M Mxb[2] knm M Mxb[2]-p[01] knm M Mxb[2]-p[02] knm M Mxb[3] knm M Mxb[3]-p[01] knm M Mxb[3]-p[02] knm M Myb[1] knm M Myb[1]-p[01] knm M Myb[1]-p[02] knm M Myb[2] knm M Myb[2]-p[01] knm M Myb[2]-p[02] knm M Myb[3] knm M Myb[3]-p[01] knm M Myb[3]-p[02] knm M Mzb[1] knm M Mzb[1]-p[01] knm M Mzb[1]-p[02] knm M Mzb[2] knm M Mzb[2]-p[01] knm M Mzb[2]-p[02] knm M Mzb[3] knm M Mzb[3]-p[01] knm M Mzb[3]-p[02] knm M Mxt[01] knm M Mxt[02] knm M Myt[02] knm M Myt[01] knm M Mzt[01] knm M Mzt[02] knm M R45.04/01.03/03 Stentec, page 56

52 Pitch control, 18 m/s 1Hz equivalent values Variable unit mat.curve baseline 018HTS % 018LTS % 018PS % Fxn kn M Fyn kn M Fzn kn M Mxn knm M Mxn-r knm M Myn knm M Myn-r knm M Mzn knm M Mzn-r knm M Mxb[1] knm M Mxb[1]-p[01] knm M Mxb[1]-p[02] knm M Mxb[2] knm M Mxb[2]-p[01] knm M Mxb[2]-p[02] knm M Mxb[3] knm M Mxb[3]-p[01] knm M Mxb[3]-p[02] knm M Myb[1] knm M Myb[1]-p[01] knm M Myb[1]-p[02] knm M Myb[2] knm M Myb[2]-p[01] knm M Myb[2]-p[02] knm M Myb[3] knm M Myb[3]-p[01] knm M Myb[3]-p[02] knm M Mzb[1] knm M Mzb[1]-p[01] knm M Mzb[1]-p[02] knm M Mzb[2] knm M Mzb[2]-p[01] knm M Mzb[2]-p[02] knm M Mzb[3] knm M Mzb[3]-p[01] knm M Mzb[3]-p[02] knm M Mxt[01] knm M Mxt[02] knm M Myt[02] knm M Myt[01] knm M Mzt[01] knm M Mzt[02] knm M R45.04/01.03/03 Stentec, page 57

53 Pitch control, 12 m/s 1Hz equivalent values Variable unit mat.curve baseline 012HTS % 012LTS % 012PS % Fxn kn M Fyn kn M Fzn kn M Mxn knm M Mxn-r knm M Myn knm M Myn-r knm M Mzn knm M Mzn-r knm M Mxb[1] knm M Mxb[1]-p[01] knm M Mxb[1]-p[02] knm M Mxb[2] knm M Mxb[2]-p[01] knm M Mxb[2]-p[02] knm M Mxb[3] knm M Mxb[3]-p[01] knm M Mxb[3]-p[02] knm M Myb[1] knm M Myb[1]-p[01] knm M Myb[1]-p[02] knm M Myb[2] knm M Myb[2]-p[01] knm M Myb[2]-p[02] knm M Myb[3] knm M Myb[3]-p[01] knm M Myb[3]-p[02] knm M Mzb[1] knm M Mzb[1]-p[01] knm M Mzb[1]-p[02] knm M Mzb[2] knm M Mzb[2]-p[01] knm M Mzb[2]-p[02] knm M Mzb[3] knm M Mzb[3]-p[01] knm M Mzb[3]-p[02] knm M Mxt[01] knm M Mxt[02] knm M Myt[02] knm M Myt[01] knm M Mzt[01] knm M Mzt[02] knm M R45.04/01.03/03 Stentec, page 58

54 Appendix G. Tables tapered blade. Tapered blade, absolute extreme values 1B-5Vo Variable Unit baseline 1B-5VoB % Fxn kn Fyn kn Fzn kn Mxn knm Mxn-r knm Myn knm Myn-r knm Mzn knm Mzn-r knm Mxb[1] knm Mxb[1]-p[01] knm Mxb[1]-p[02] knm Mxb[2] knm Mxb[2]-p[01] knm Mxb[2]-p[02] knm Mxb[3] knm Mxb[3]-p[01] knm Mxb[3]-p[02] knm Myb[1] knm Myb[1]-p[01] knm Myb[1]-p[02] knm Myb[2] knm Myb[2]-p[01] knm Myb[2]-p[02] knm Myb[3] knm Myb[3]-p[01] knm Myb[3]-p[02] knm Mzb[1] knm Mzb[1]-p[01] knm Mzb[1]-p[02] knm Mzb[2] knm Mzb[2]-p[01] knm Mzb[2]-p[02] knm Mzb[3] knm Mzb[3]-p[01] knm Mzb[3]-p[02] knm Mxt[01] knm Mxt[02] knm Myt[02] knm Myt[01] knm Mzt[01] knm Mzt[02] knm Tip displ. flap[1] mm Tip disp. flap[2] mm Tip disp. flap[3] mm Tip displ. lag[1] mm Tip displ. lag[2] mm Tip displ. lag[3] mm X-defl[01] mm X-defl[02] mm Y-defl[01] mm Y-defl[02] mm R45.04/01.03/03 Stentec, page 59

55 Tapered blade, absolute extreme values E50025 Variable Unit baseline E50025B % Fxn kn Fyn kn Fzn kn Mxn knm Mxn-r knm Myn knm Myn-r knm Mzn knm Mzn-r knm Mxb[1] knm Mxb[1]-p[01] knm Mxb[1]-p[02] knm Mxb[2] knm Mxb[2]-p[01] knm Mxb[2]-p[02] knm Mxb[3] knm Mxb[3]-p[01] knm Mxb[3]-p[02] knm Myb[1] knm Myb[1]-p[01] knm Myb[1]-p[02] knm Myb[2] knm Myb[2]-p[01] knm Myb[2]-p[02] knm Myb[3] knm Myb[3]-p[01] knm Myb[3]-p[02] knm Mzb[1] knm Mzb[1]-p[01] knm Mzb[1]-p[02] knm Mzb[2] knm Mzb[2]-p[01] knm Mzb[2]-p[02] knm Mzb[3] knm Mzb[3]-p[01] knm Mzb[3]-p[02] knm Mxt[01] knm Mxt[02] knm Myt[02] knm Myt[01] knm Mzt[01] knm Mzt[02] knm Tip displ. flap[1] mm Tip disp. flap[2] mm Tip disp. flap[3] mm Tip displ. lag[1] mm Tip displ. lag[2] mm Tip displ. lag[3] mm X-defl[01] mm X-defl[02] mm Y-defl[01] mm Y-defl[02] mm R45.04/01.03/03 Stentec, page 60

56 Tapered blade, absolute extreme values E50335 Variable Unit baseline E50335B % Fxn kn Fyn kn Fzn kn Mxn knm Mxn-r knm Myn knm Myn-r knm Mzn knm Mzn-r knm Mxb[1] knm Mxb[1]-p[01] knm Mxb[1]-p[02] knm Mxb[2] knm Mxb[2]-p[01] knm Mxb[2]-p[02] knm Mxb[3] knm Mxb[3]-p[01] knm Mxb[3]-p[02] knm Myb[1] knm Myb[1]-p[01] knm Myb[1]-p[02] knm Myb[2] knm Myb[2]-p[01] knm Myb[2]-p[02] knm Myb[3] knm Myb[3]-p[01] knm Myb[3]-p[02] knm Mzb[1] knm Mzb[1]-p[01] knm Mzb[1]-p[02] knm Mzb[2] knm Mzb[2]-p[01] knm Mzb[2]-p[02] knm Mzb[3] knm Mzb[3]-p[01] knm Mzb[3]-p[02] knm Mxt[01] knm Mxt[02] knm Myt[02] knm Myt[01] knm Mzt[01] knm Mzt[02] knm Tip displ. flap[1] mm Tip disp. flap[2] mm Tip disp. flap[3] mm Tip displ. lag[1] mm Tip displ. lag[2] mm Tip displ. lag[3] mm X-defl[01] mm X-defl[02] mm Y-defl[01] mm Y-defl[02] mm R45.04/01.03/03 Stentec, page 61

57 Tapered blade, absolute extreme values EcdVrb Variable Unit baseline EcdVrbB % Fxn kn Fyn kn Fzn kn Mxn knm Mxn-r knm Myn knm Myn-r knm Mzn knm Mzn-r knm Mxb[1] knm Mxb[1]-p[01] knm Mxb[1]-p[02] knm Mxb[2] knm Mxb[2]-p[01] knm Mxb[2]-p[02] knm Mxb[3] knm Mxb[3]-p[01] knm Mxb[3]-p[02] knm Myb[1] knm Myb[1]-p[01] knm Myb[1]-p[02] knm Myb[2] knm Myb[2]-p[01] knm Myb[2]-p[02] knm Myb[3] knm Myb[3]-p[01] knm Myb[3]-p[02] knm Mzb[1] knm Mzb[1]-p[01] knm Mzb[1]-p[02] knm Mzb[2] knm Mzb[2]-p[01] knm Mzb[2]-p[02] knm Mzb[3] knm Mzb[3]-p[01] knm Mzb[3]-p[02] knm Mxt[01] knm Mxt[02] knm Myt[02] knm Myt[01] knm Mzt[01] knm Mzt[02] knm Tip displ. flap[1] mm Tip disp. flap[2] mm Tip disp. flap[3] mm Tip displ. lag[1] mm Tip displ. lag[2] mm Tip displ. lag[3] mm X-defl[01] mm X-defl[02] mm Y-defl[01] mm Y-defl[02] mm R45.04/01.03/03 Stentec, page 62

58 Tapered blade, absolute extreme values Eog50_12 Variable Unit baseline Eog50_12B % Fxn kn Fyn kn Fzn kn Mxn knm Mxn-r knm Myn knm Myn-r knm Mzn knm Mzn-r knm Mxb[1] knm Mxb[1]-p[01] knm Mxb[1]-p[02] knm Mxb[2] knm Mxb[2]-p[01] knm Mxb[2]-p[02] knm Mxb[3] knm Mxb[3]-p[01] knm Mxb[3]-p[02] knm Myb[1] knm Myb[1]-p[01] knm Myb[1]-p[02] knm Myb[2] knm Myb[2]-p[01] knm Myb[2]-p[02] knm Myb[3] knm Myb[3]-p[01] knm Myb[3]-p[02] knm Mzb[1] knm Mzb[1]-p[01] knm Mzb[1]-p[02] knm Mzb[2] knm Mzb[2]-p[01] knm Mzb[2]-p[02] knm Mzb[3] knm Mzb[3]-p[01] knm Mzb[3]-p[02] knm Mxt[01] knm Mxt[02] knm Myt[02] knm Myt[01] knm Mzt[01] knm Mzt[02] knm Tip displ. flap[1] mm Tip disp. flap[2] mm Tip disp. flap[3] mm Tip displ. lag[1] mm Tip displ. lag[2] mm Tip displ. lag[3] mm X-defl[01] mm X-defl[02] mm Y-defl[01] mm Y-defl[02] mm R45.04/01.03/03 Stentec, page 63

59 Tapered blade, absolute extreme values GrEog1Voc Variable Unit baseline GrEog1VocB % Fxn kn Fyn kn Fzn kn Mxn knm Mxn-r knm Myn knm Myn-r knm Mzn knm Mzn-r knm Mxb[1] knm Mxb[1]-p[01] knm Mxb[1]-p[02] knm Mxb[2] knm Mxb[2]-p[01] knm Mxb[2]-p[02] knm Mxb[3] knm Mxb[3]-p[01] knm Mxb[3]-p[02] knm Myb[1] knm Myb[1]-p[01] knm Myb[1]-p[02] knm Myb[2] knm Myb[2]-p[01] knm Myb[2]-p[02] knm Myb[3] knm Myb[3]-p[01] knm Myb[3]-p[02] knm Mzb[1] knm Mzb[1]-p[01] knm Mzb[1]-p[02] knm Mzb[2] knm Mzb[2]-p[01] knm Mzb[2]-p[02] knm Mzb[3] knm Mzb[3]-p[01] knm Mzb[3]-p[02] knm Mxt[01] knm Mxt[02] knm Myt[02] knm Myt[01] knm Mzt[01] knm Mzt[02] knm Tip displ. flap[1] mm Tip disp. flap[2] mm Tip disp. flap[3] mm Tip displ. lag[1] mm Tip displ. lag[2] mm Tip displ. lag[3] mm X-defl[01] mm X-defl[02] mm Y-defl[01] mm Y-defl[02] mm R45.04/01.03/03 Stentec, page 64

60 Tapered blade, 24 m/s 1Hz equivalent values Variable unit mat.curve baseline 024B % Fxn kn M Fyn kn M Fzn kn M Mxn knm M Mxn-r knm M Myn knm M Myn-r knm M Mzn knm M Mzn-r knm M Mxb[1] knm M Mxb[1]-p[01] knm M Mxb[1]-p[02] knm M Mxb[2] knm M Mxb[2]-p[01] knm M Mxb[2]-p[02] knm M Mxb[3] knm M Mxb[3]-p[01] knm M Mxb[3]-p[02] knm M Myb[1] knm M Myb[1]-p[01] knm M Myb[1]-p[02] knm M Myb[2] knm M Myb[2]-p[01] knm M Myb[2]-p[02] knm M Myb[3] knm M Myb[3]-p[01] knm M Myb[3]-p[02] knm M Mzb[1] knm M Mzb[1]-p[01] knm M Mzb[1]-p[02] knm M Mzb[2] knm M Mzb[2]-p[01] knm M Mzb[2]-p[02] knm M Mzb[3] knm M Mzb[3]-p[01] knm M Mzb[3]-p[02] knm M Mxt[01] knm M Mxt[02] knm M Myt[02] knm M Myt[01] knm M Mzt[01] knm M Mzt[02] knm M R45.04/01.03/03 Stentec, page 65

61 Tapered blade, 18 m/s 1Hz equivalent values Variable unit mat.curve baseline 018B % Fxn kn M Fyn kn M Fzn kn M Mxn knm M Mxn-r knm M Myn knm M Myn-r knm M Mzn knm M Mzn-r knm M Mxb[1] knm M Mxb[1]-p[01] knm M Mxb[1]-p[02] knm M Mxb[2] knm M Mxb[2]-p[01] knm M Mxb[2]-p[02] knm M Mxb[3] knm M Mxb[3]-p[01] knm M Mxb[3]-p[02] knm M Myb[1] knm M Myb[1]-p[01] knm M Myb[1]-p[02] knm M Myb[2] knm M Myb[2]-p[01] knm M Myb[2]-p[02] knm M Myb[3] knm M Myb[3]-p[01] knm M Myb[3]-p[02] knm M Mzb[1] knm M Mzb[1]-p[01] knm M Mzb[1]-p[02] knm M Mzb[2] knm M Mzb[2]-p[01] knm M Mzb[2]-p[02] knm M Mzb[3] knm M Mzb[3]-p[01] knm M Mzb[3]-p[02] knm M Mxt[01] knm M Mxt[02] knm M Myt[02] knm M Myt[01] knm M Mzt[01] knm M Mzt[02] knm M R45.04/01.03/03 Stentec, page 66

62 Tapered blade, 12 m/s 1Hz equivalent values Variable unit mat.curve baseline 012B % Fxn kn M Fyn kn M Fzn kn M Mxn knm M Mxn-r knm M Myn knm M Myn-r knm M Mzn knm M Mzn-r knm M Mxb[1] knm M Mxb[1]-p[01] knm M Mxb[1]-p[02] knm M Mxb[2] knm M Mxb[2]-p[01] knm M Mxb[2]-p[02] knm M Mxb[3] knm M Mxb[3]-p[01] knm M Mxb[3]-p[02] knm M Myb[1] knm M Myb[1]-p[01] knm M Myb[1]-p[02] knm M Myb[2] knm M Myb[2]-p[01] knm M Myb[2]-p[02] knm M Myb[3] knm M Myb[3]-p[01] knm M Myb[3]-p[02] knm M Mzb[1] knm M Mzb[1]-p[01] knm M Mzb[1]-p[02] knm M Mzb[2] knm M Mzb[2]-p[01] knm M Mzb[2]-p[02] knm M Mzb[3] knm M Mzb[3]-p[01] knm M Mzb[3]-p[02] knm M Mxt[01] knm M Mxt[02] knm M Myt[02] knm M Myt[01] knm M Mzt[01] knm M Mzt[02] knm M R45.04/01.03/03 Stentec, page 67

63 Appendix H. Low Lambda control. Low Lambda control, 1Hz equivalent values baseline Low Lambda % Low Lambda 2 % Low Lambda 3 % Low Lambda 4 % Low Lambda 5 % Variable Fxn Fyn Fzn Mxn Mxn-r Myn Myn-r Mzn Mzn-r Mxb[1] Mxb[1]-p[01] Mxb[1]-p[02] Mxb[2] Mxb[2]-p[01] Mxb[2]-p[02] Mxb[3] Mxb[3]-p[01] Mxb[3]-p[02] Myb[1] Myb[1]-p[01] Myb[1]-p[02] Myb[2] Myb[2]-p[01] Myb[2]-p[02] Myb[3] Myb[3]-p[01] Myb[3]-p[02] Mzb[1] Mzb[1]-p[01] Mzb[1]-p[02] Mzb[2] Mzb[2]-p[01] Mzb[2]-p[02] Mzb[3] Mzb[3]-p[01] Mzb[3]-p[02] Mxt[01] Mxt[02] Myt[02] Myt[01] Mzt[01] Mzt[02] R45.04/01.03/03 Stentec, page 68

64 Appendix I. Plots tower eigenfrequencies. Tower eigenfrequency 0.175Hz, production loadcase 12 m/s stochastic. Tower eigenfrequency 0.200Hz, production loadcase 12 m/s stochastic. R45.04/01.03/03 Stentec, page 69

65 Tower eigenfrequency 0.225Hz, production loadcase 12 m/s stochastic. Tower eigenfrequency 0.250Hz, production loadcase 12 m/s stochastic. R45.04/01.03/03 Stentec, page 70

66 Tower eigenfrequency 0.300Hz, production loadcase 12 m/s stochastic. Tower eigenfrequency 0.350Hz, production loadcase 12 m/s stochastic. R45.04/01.03/03 Stentec, page 71

67 Appendix J. Base line control versus Peak Shave control. Base line pitch control. Peak Shave pitch control. R45.04/01.03/03 Stentec, page 72

Engineering Tripos Part IB. Part IB Paper 8: - ELECTIVE (2)

Engineering Tripos Part IB. Part IB Paper 8: - ELECTIVE (2) Engineering Tripos Part IB SECOND YEAR Part IB Paper 8: - ELECTIVE (2) MECHANICAL ENGINEERING FOR RENEWABLE ENERGY SYSTEMS Examples Paper 2 Wind Turbines, Materials, and Dynamics All questions are of Tripos

More information

Identification of structural non-linearities due to large deflections on a 5MW wind turbine blade

Identification of structural non-linearities due to large deflections on a 5MW wind turbine blade Identification of structural non-linearities due to large deflections on a 5MW wind turbine blade V. A. Riziotis and S. G. Voutsinas National Technical University of Athens 9 Heroon Polytechniou str.,

More information

STRUCTURAL PITCH FOR A PITCH-TO-VANE CONTROLLED WIND TURBINE ROTOR

STRUCTURAL PITCH FOR A PITCH-TO-VANE CONTROLLED WIND TURBINE ROTOR ECN-C--03-087 STRUCTURAL PITCH FOR A PITCH-TO-VANE CONTROLLED WIND TURBINE ROTOR DAMPBLADE project, task 3.4: Design application, sensitivity analysis and aeroelastic tailoring C. Lindenburg M.H. Hansen

More information

Aeroelastic effects of large blade deflections for wind turbines

Aeroelastic effects of large blade deflections for wind turbines Aeroelastic effects of large blade deflections for wind turbines Torben J. Larsen Anders M. Hansen Risoe, National Laboratory Risoe, National Laboratory P.O. Box 49, 4 Roskilde, Denmark P.O. Box 49, 4

More information

Effect of linear and non-linear blade modelling techniques on simulated fatigue and extreme loads using Bladed

Effect of linear and non-linear blade modelling techniques on simulated fatigue and extreme loads using Bladed Journal of Physics: Conference Series PAPER OPEN ACCESS Effect of linear and non-linear blade modelling techniques on simulated fatigue and extreme loads using Bladed To cite this article: Alec Beardsell

More information

Structural Analysis of Wind Turbine Blades

Structural Analysis of Wind Turbine Blades Structural Analysis of Wind Turbine Blades 2 nd Supergen Wind Educational Seminar Manchester 04 Mar 2009 Paul Bonnet Geoff Dutton Energy Research Unit Rutherford Appleton Laboratory STFC [1] Approach [2]

More information

Adaptive Control of Variable-Speed Variable-Pitch Wind Turbines Using RBF Neural Network

Adaptive Control of Variable-Speed Variable-Pitch Wind Turbines Using RBF Neural Network Schulich School of Engineering Department of Mechanical and Manufacturing Engineering Adaptive Control of Variable-Speed Variable-Pitch Wind Turbines Using RBF Neural Network By: Hamidreza Jafarnejadsani,

More information

Power output: 6 750kW=4500kW Location: Top of Taikoyama, Kyoto prefecture, Japan. Terrain condition: Complex mountainous area

Power output: 6 750kW=4500kW Location: Top of Taikoyama, Kyoto prefecture, Japan. Terrain condition: Complex mountainous area Introduction Power output: 6 75kW=45kW Location: Top of Taikoyama, Kyoto prefecture, Japan 1 2 3 4 5 6 5m 45.94m Fracture section Terrain condition: Complex mountainous area m History: Nov, 21: Power generation

More information

Numerical Study on Performance of Innovative Wind Turbine Blade for Load Reduction

Numerical Study on Performance of Innovative Wind Turbine Blade for Load Reduction Numerical Study on Performance of Innovative Wind Turbine Blade for Load Reduction T. Maggio F. Grasso D.P. Coiro This paper has been presented at the EWEA 011, Brussels, Belgium, 14-17 March 011 ECN-M-11-036

More information

Fatigue Failure Accident of Wind Turbine Tower in Taikoyama Wind Farm

Fatigue Failure Accident of Wind Turbine Tower in Taikoyama Wind Farm Fatigue Failure Accident of Wind Turbine Tower in Taikoyama Wind Farm Yin LIU 1, Takeshi ISHIHARA 2 1,2 Department of Civil Engineering, School of Engineering, the University of Tokyo, Tokyo, Japan Abstract

More information

Numerical Study on Performance of Curved Wind Turbine Blade for Loads Reduction

Numerical Study on Performance of Curved Wind Turbine Blade for Loads Reduction Numerical Study on Performance of Curved Wind Turbine Blade for Loads Reduction T. Maggio F. Grasso D.P. Coiro 13th International Conference Wind Engineering (ICWE13), 10-15 July 011, Amsterdam, the Netherlands.

More information

Reduction of computational cost for design of wind turbine tower against fatigue failure

Reduction of computational cost for design of wind turbine tower against fatigue failure No. E-13-AAA- Reduction of computational cost for design of wind turbine tower against fatigue failure Ali R. Fathi, Hamid R. Lari, Abbas Elahi Wind turbine Technology Development Center Niroo Research

More information

Anomaly detection of a horizontal wind turbine using an Extended Kalman Filter

Anomaly detection of a horizontal wind turbine using an Extended Kalman Filter . Title Anomaly detection of a horizontal wind turbine using an Extended Kalman Filter 1. Introduction Loads that have a disproportionate impact on the components and structure of a wind turbine can be

More information

Wind Turbine Control

Wind Turbine Control Wind Turbine Control W. E. Leithead University of Strathclyde, Glasgow Supergen Student Workshop 1 Outline 1. Introduction 2. Control Basics 3. General Control Objectives 4. Constant Speed Pitch Regulated

More information

Individual Pitch Control of A Clipper Wind Turbine for Blade In-plane Load Reduction

Individual Pitch Control of A Clipper Wind Turbine for Blade In-plane Load Reduction Individual Pitch Control of A Clipper Wind Turbine for Blade In-plane Load Reduction Shu Wang 1, Peter Seiler 1 and Zongxuan Sun Abstract This paper proposes an H individual pitch controller for the Clipper

More information

Some effects of large blade deflections on aeroelastic stability

Some effects of large blade deflections on aeroelastic stability 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition 5-8 January 29, Orlando, Florida AIAA 29-839 Some effects of large blade deflections on aeroelastic stability

More information

Steady State Comparisons HAWC2 v12.2 vs HAWCStab2 v2.12

Steady State Comparisons HAWC2 v12.2 vs HAWCStab2 v2.12 Downloaded from orbit.dtu.dk on: Jan 29, 219 Steady State Comparisons v12.2 vs v2.12 Verelst, David Robert; Hansen, Morten Hartvig; Pirrung, Georg Publication date: 216 Document Version Publisher's PDF,

More information

Towards Pitch-Scheduled Drive Train Damping in Variable-Speed, Horizontal-Axis Large Wind Turbines

Towards Pitch-Scheduled Drive Train Damping in Variable-Speed, Horizontal-Axis Large Wind Turbines Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 25 Seville, Spain, December 12-15, 25 MoIB18.6 Towards Pitch-Scheduled Drive Train Damping in Variable-Speed,

More information

Using Pretwist to Reduce Power Loss of Bend-Twist Coupled Blades

Using Pretwist to Reduce Power Loss of Bend-Twist Coupled Blades Downloaded from orbit.dtu.dk on: Jan 2, 219 Using Pretwist to Reduce Power Loss of Bend-Twist Coupled Blades Stäblein, Alexander; Tibaldi, Carlo; Hansen, Morten Hartvig Published in: Proceedings of the

More information

θ α W Description of aero.m

θ α W Description of aero.m Description of aero.m Determination of the aerodynamic forces, moments and power by means of the blade element method; for known mean wind speed, induction factor etc. Simplifications: uniform flow (i.e.

More information

Validation of Offshore load simulations using measurement data from the DOWNVInD project

Validation of Offshore load simulations using measurement data from the DOWNVInD project Validation of Offshore load simulations using measurement data from the DOWNVInD project M. Seidel, F. Ostermann REpower Systems AG Franz-Lenz-Str., 49084 Osnabrück, Germany Mail: m.seidel@repower.de Curvers,

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. GTE 2016 Q. 1 Q. 9 carry one mark each. D : SOLID MECHNICS Q.1 single degree of freedom vibrating system has mass of 5 kg, stiffness of 500 N/m and damping coefficient of 100 N-s/m. To make the system

More information

SAMCEF For ROTORS. Chapter 1 : Physical Aspects of rotor dynamics. This document is the property of SAMTECH S.A. MEF A, Page 1

SAMCEF For ROTORS. Chapter 1 : Physical Aspects of rotor dynamics. This document is the property of SAMTECH S.A. MEF A, Page 1 SAMCEF For ROTORS Chapter 1 : Physical Aspects of rotor dynamics This document is the property of SAMTECH S.A. MEF 101-01-A, Page 1 Table of Contents rotor dynamics Introduction Rotating parts Gyroscopic

More information

Safe Operation and Emergency Shutdown of Wind Turbines

Safe Operation and Emergency Shutdown of Wind Turbines Safe Operation and Emergency Shutdown of Wind Turbines Andreas Søndergaard Pedersen Christian Sigge Steiniche Intelligent Autonomous Systems, Master Thesis May 212 Department of Electronic Systems Aalborg

More information

8 Lidars and wind turbine control

8 Lidars and wind turbine control 8 Lidars and wind turbine control David Schlipf, Oliver Bischoff, Martin Hofsäß, Andreas Rettenmeier, Juan José Trujillo, and Martin Kühn Endowed Chair of Wind Energy, Institute of Aircraft Design, Universität

More information

Individual Pitch Control for Load Mitigation

Individual Pitch Control for Load Mitigation Individual Pitch Control for Load Mitigation Master s Thesis Stefan Jespersen & Randy Oldenbürger Aalborg University, Esbjerg, 2017 Department of Energy Technology Department of Energy Technology Aalborg

More information

FIS Specifications for Flex Poles (Edition May 2008) Original Text: German

FIS Specifications for Flex Poles (Edition May 2008) Original Text: German FIS Specifications for Flex Poles (Edition May 2008) Original Text: German 1 Field of Application and Basic Information The following FIS specifications for flex poles are intended to ensure that flex

More information

Influence of Superelement Support Structure Modeling on the Loads on an Offshore Wind Turbine with a Jacket Support Structure

Influence of Superelement Support Structure Modeling on the Loads on an Offshore Wind Turbine with a Jacket Support Structure Journal of Ocean and Wind Energy (ISSN 2310-3604) Copyright by The International Society of Offshore and Polar Engineers Vol. 1, No. 3, August 2014, pp. 153 160 http://www.isope.org/publications Influence

More information

Machinery Requirements for Polar Class Ships

Machinery Requirements for Polar Class Ships (August 2006) (Rev.1 Jan 2007) (Corr.1 Oct 2007) Machinery Requirements for Polar Class Ships.1 Application * The contents of this Chapter apply to main propulsion, steering gear, emergency and essential

More information

Analysis of aeroelastic loads and their contributions to fatigue damage

Analysis of aeroelastic loads and their contributions to fatigue damage Journal of Physics: Conference Series OPEN ACCESS Analysis of aeroelastic loads and their contributions to fatigue damage To cite this article: L Bergami and M Gaunaa 214 J. Phys.: Conf. Ser. 555 127 View

More information

Accelerated fatigue testing of LM 19.1 blades

Accelerated fatigue testing of LM 19.1 blades Downloaded from orbit.dtu.dk on: Sep 26, 2018 Accelerated fatigue testing of LM 19.1 blades Kristensen, Ole Jesper Dahl; Jørgensen, E. Publication date: 2003 Document Version Publisher's PDF, also known

More information

Performance of Disturbance Augmented Control Design in Turbulent Wind Conditions

Performance of Disturbance Augmented Control Design in Turbulent Wind Conditions Performance of Disturbance Augmented Control Design in Turbulent Wind Conditions Ahmet Arda Ozdemir, Peter J. Seiler, Gary J. Balas Department of Aerospace Engineering and Mechanics, University of Minnesota,

More information

Dynamic Responses of Jacket Type Offshore Wind Turbines using Decoupled and Coupled Models

Dynamic Responses of Jacket Type Offshore Wind Turbines using Decoupled and Coupled Models Dynamic Responses of Jacket Type Offshore Wind Turbines using Decoupled and Coupled Models Muk Chen Ong (Professor) Erin Elizabeth Bachynski (Assoc. Professor) Ole David Økland (Senior Scientist) SINTEF

More information

APPENDIX A. CONVENTIONS, REFERENCE SYSTEMS AND NOTATIONS

APPENDIX A. CONVENTIONS, REFERENCE SYSTEMS AND NOTATIONS APPENDIX A. CONVENTIONS, REFERENCE SYSTEMS AND NOTATIONS A.1 Introduction This appendix describes the sign conventions, reference systems and notations to be used within the IEA Annex XIV Field Rotor Aerodynamics.

More information

Safety-factor Calibration for Wind Turbine Extreme Loads

Safety-factor Calibration for Wind Turbine Extreme Loads WIND ENERGY Wind Energ. 2008; 11:601 612 Published online in Wiley Interscience (www.interscience.wiley.com).306 Research Article Safety-factor Calibration for Wind Turbine Extreme Loads Patrick Moriarty*,

More information

Dynamic Characteristics of Wind Turbine Blade

Dynamic Characteristics of Wind Turbine Blade Dynamic Characteristics of Wind Turbine Blade Nitasha B. Chaudhari PG Scholar, Mechanical Engineering Department, MES College Of Engineering,Pune,India. Abstract this paper presents a review on the dynamic

More information

Structural Dynamics of Offshore Wind Turbines subject to Extreme Wave Loading

Structural Dynamics of Offshore Wind Turbines subject to Extreme Wave Loading Structural Dynamics of Offshore Wind Turbines subject to Extreme Wave Loading N ROGERS Border Wind Limited, Hexham, Northumberland SYNOPSIS With interest increasing in the installation of wind turbines

More information

Reduction of the rotor blade root bending moment and increase of the rotational-speed strength of a 5 MW IPC wind turbine based on a stochastic

Reduction of the rotor blade root bending moment and increase of the rotational-speed strength of a 5 MW IPC wind turbine based on a stochastic Chart 1 Reduction of the rotor blade root bending moment and increase of the rotational-speed strength of a 5 MW IPC wind turbine based on a stochastic disturbance observer By : Taha Fouda Supervised by:

More information

Aero-Hydro-Elastic Simulation Platform for Wave Energy Systems and floating Wind Turbines

Aero-Hydro-Elastic Simulation Platform for Wave Energy Systems and floating Wind Turbines Downloaded from orbit.dtu.dk on: Nov 4, 218 Aero-Hydro-Elastic Simulation Platform for Wave Energy Systems and floating Wind Turbines Kallesøe, Bjarne Skovmose Publication date: 211 Document Version Publisher's

More information

H ROBUST CONTROLLER FOR WIND TURBINE POWER BOOSTING

H ROBUST CONTROLLER FOR WIND TURBINE POWER BOOSTING 27 ROBUST CONTROLLER FOR WIND TURBINE POWER BOOSTING H ROBUST CONTROLLER FOR WIND TURBINE POWER BOOSTING Group members: (adebes5@student.aau.dk) (dborde5@student.aau.dk) Supervisor Assoc. Prof. Mohsen

More information

Active tower damping and pitch balancing design, simulation and field test

Active tower damping and pitch balancing design, simulation and field test Journal of Physics: Conference Series OPEN ACCESS Active tower damping and pitch balancing design, simulation and field test To cite this article: Daniel Duckwitz and Martin Shan 2014 J. Phys.: Conf. Ser.

More information

Unsteady structural behaviour of small wind turbine blades Samuel Evans Supervisor: A/Prof Philip Clausen

Unsteady structural behaviour of small wind turbine blades Samuel Evans Supervisor: A/Prof Philip Clausen Unsteady structural behaviour of small wind turbine blades Samuel Evans Supervisor: A/Prof Philip Clausen samuel.evans@uon.edu.au +61 2 492 16187 The University of Newcastle University Drive Callaghan

More information

Blade modelling, lifetime assessment, and health monitoring

Blade modelling, lifetime assessment, and health monitoring Blade modelling, lifetime assessment, and health monitoring Dr Geoff Dutton Energy Research Unit (ERU) Rutherford Appleton Laboratory (RAL) Science and Technology Facilities Council (STFC) With acknowledgements

More information

NASTRAN Analysis of a Turbine Blade and Comparison with Test and Field Data

NASTRAN Analysis of a Turbine Blade and Comparison with Test and Field Data 75-GT-77 I Copyright 1975 by ASME $3. PER COPY author(s). $1. TO ASME MEMBERS The Society shall not be responsible for statements or opinions advanced in papers or in discussion at meetings of the Society

More information

Parameter Design of High Speed Coupling for 6 MW Wind Turbine Considering Torsional Vibration

Parameter Design of High Speed Coupling for 6 MW Wind Turbine Considering Torsional Vibration Parameter Design of High Speed Coupling for 6 MW Wind Turbine Considering Torsional Vibration JongHun Kang 1, Junwoo Bae 2, Seungkeun Jeong 3, SooKeun Park 4 and Hyoung Woo Lee 1 # 1 Department of Mechatronics

More information

NX Nastran 10. Rotor Dynamics User s Guide

NX Nastran 10. Rotor Dynamics User s Guide NX Nastran 10 Rotor Dynamics User s Guide Proprietary & Restricted Rights Notice 2014 Siemens Product Lifecycle Management Software Inc. All Rights Reserved. This software and related documentation are

More information

A comparison study of the two-bladed partial pitch turbine during normal operation and an extreme gust conditions

A comparison study of the two-bladed partial pitch turbine during normal operation and an extreme gust conditions Journal of Physics: Conference Series OPEN ACCESS A comparison study of the two-bladed partial pitch turbine during normal operation and an extreme gust conditions To cite this article: T Kim et al 2014

More information

Time-Varying Dynamic Properties of Offshore Wind Turbines Evaluated by Modal Testing

Time-Varying Dynamic Properties of Offshore Wind Turbines Evaluated by Modal Testing Time-Varying Dynamic Properties of Offshore Wind Turbines Evaluated by Modal Testing M. Damgaard *, L.V. Andersen Ɨ, L.B. Ibsen Ɨ * Technology and Engineering Solutions, Vestas Wind Systems A/S, Denmark

More information

ENGR 4011 Resistance & Propulsion of Ships Assignment 4: 2017

ENGR 4011 Resistance & Propulsion of Ships Assignment 4: 2017 Question 1a. Values of forward speed, propeller thrust and torque measured during a propeller open water performance test are presented in the table below. The model propeller was 0.21 meters in diameter

More information

Foundation models for the dynamic response of offshore wind turbines

Foundation models for the dynamic response of offshore wind turbines Marine Renewable Energy Conference (MAREC), Newcastle, UK, September 00. Foundation models for the dynamic response of offshore wind turbines. M.B. Zaaijer, MSc Delft University of Technology, The Netherlands

More information

TECHNICAL SPECIFICATION

TECHNICAL SPECIFICATION TECHNICAL SPECIFICATION IEC TS 61400-13 First edition 2001-06 Wind turbine generator systems Part 13: Measurement of mechanical loads Aérogénérateurs Partie 13: Mesure des charges mécaniques Reference

More information

Stability Analysis of Pitch-regulated, Variable Speed Wind Turbines in Closed Loop Operation Using a Linear Eigenvalue Approach

Stability Analysis of Pitch-regulated, Variable Speed Wind Turbines in Closed Loop Operation Using a Linear Eigenvalue Approach Journal of Physics: Conference Series Stability Analysis of Pitch-regulated, Variable Speed Wind Turbines in Closed Loop Operation Using a Linear Eigenvalue Approach To cite this article: V A Riziotis

More information

Fatigue Reliability and Effective Turbulence Models in Wind Farms

Fatigue Reliability and Effective Turbulence Models in Wind Farms Downloaded from vbn.aau.dk on: marts 28, 2019 Aalborg Universitet Fatigue Reliability and Effective Turbulence Models in Wind Farms Sørensen, John Dalsgaard; Frandsen, S.; Tarp-Johansen, N.J. Published

More information

Research Article Dynamic Carrying Capacity Analysis of Double-Row Four-Point Contact Ball Slewing Bearing

Research Article Dynamic Carrying Capacity Analysis of Double-Row Four-Point Contact Ball Slewing Bearing Mathematical Problems in Engineering Volume 215, Article ID 8598, 7 pages http://dx.doi.org/1.1155/215/8598 Research Article Dynamic Carrying Capacity Analysis of Double-Row Four-Point Contact Ball Slewing

More information

SSC-JE MAINS ONLINE TEST SERIES / CIVIL ENGINEERING SOM + TOS

SSC-JE MAINS ONLINE TEST SERIES / CIVIL ENGINEERING SOM + TOS SSC-JE MAINS ONLINE TEST SERIES / CIVIL ENGINEERING SOM + TOS Time Allowed:2 Hours Maximum Marks: 300 Attention: 1. Paper consists of Part A (Civil & Structural) Part B (Electrical) and Part C (Mechanical)

More information

Rotor reference axis

Rotor reference axis Rotor reference axis So far we have used the same reference axis: Z aligned with the rotor shaft Y perpendicular to Z and along the blade (in the rotor plane). X in the rotor plane and perpendicular do

More information

Robust Control For Variable-Speed Two-Bladed Horizontal-Axis Wind Turbines Via ChatteringControl

Robust Control For Variable-Speed Two-Bladed Horizontal-Axis Wind Turbines Via ChatteringControl Robust Control For Variable-Speed Two-Bladed Horizontal-Axis Wind Turbines Via ChatteringControl Leonardo Acho, Yolanda Vidal, Francesc Pozo CoDAlab, Escola Universitària d'enginyeria Tècnica Industrial

More information

Towards Rotordynamic Analysis with COMSOL Multiphysics

Towards Rotordynamic Analysis with COMSOL Multiphysics Towards Rotordynamic Analysis with COMSOL Multiphysics Martin Karlsson *1, and Jean-Claude Luneno 1 1 ÅF Sound & Vibration *Corresponding author: SE-169 99 Stockholm, martin.r.karlsson@afconsult.com Abstract:

More information

2. Determine the deflection at C of the beam given in fig below. Use principal of virtual work. W L/2 B A L C

2. Determine the deflection at C of the beam given in fig below. Use principal of virtual work. W L/2 B A L C CE-1259, Strength of Materials UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS Part -A 1. Define strain energy density. 2. State Maxwell s reciprocal theorem. 3. Define proof resilience. 4. State Castigliano

More information

Force Estimation via Kalman Filtering for Wind Turbine Blade Control

Force Estimation via Kalman Filtering for Wind Turbine Blade Control Proceedings of the IMAC-XXVIII February 1 4, 2010, Jacksonville, Florida USA 2010 Society for Experimental Mechanics Inc. Force Estimation via Kalman Filtering for Wind Turbine Blade Control Jonathan C.

More information

Structural Reliability Assessment of a 4MW Offshore Wind Turbine

Structural Reliability Assessment of a 4MW Offshore Wind Turbine Structural Reliability Assessment of a 4MW Offshore Wind Turbine - December 2017 www.ecn.nl Structural Reliability Assessment of a 4MW Offshore Wind Turbine Author(s) J.M. Peeringa G. Bedon Disclaimer

More information

PLEASURE VESSEL VIBRATION AND NOISE FINITE ELEMENT ANALYSIS

PLEASURE VESSEL VIBRATION AND NOISE FINITE ELEMENT ANALYSIS PLEASURE VESSEL VIBRATION AND NOISE FINITE ELEMENT ANALYSIS 1 Macchiavello, Sergio *, 2 Tonelli, Angelo 1 D Appolonia S.p.A., Italy, 2 Rina Services S.p.A., Italy KEYWORDS pleasure vessel, vibration analysis,

More information

A comparison study of the two-bladed partial pitch turbine during normal operation and an extreme gust conditions

A comparison study of the two-bladed partial pitch turbine during normal operation and an extreme gust conditions Downloaded from orbit.dtu.dk on: Jul 12, 2018 A comparison study of the two-bladed partial pitch turbine during normal operation and an extreme gust conditions Kim, Taeseong; Pedersen, Mads Mølgaard; Larsen,

More information

Resolution of tower shadow models for downwind mounted rotors and its effects on the blade fatigue

Resolution of tower shadow models for downwind mounted rotors and its effects on the blade fatigue Journal of Physics: Conference Series OPEN ACCESS Resolution of tower shadow models for downwind mounted rotors and its effects on the blade fatigue To cite this article: M Reiso and M Muskulus 2014 J.

More information

Implementation of an advanced beam model in BHawC

Implementation of an advanced beam model in BHawC Journal of Physics: Conference Series PAPER OPEN ACCESS Implementation of an advanced beam model in BHawC To cite this article: P J Couturier and P F Skjoldan 28 J. Phys.: Conf. Ser. 37 625 Related content

More information

Control-oriented Modelling and State Estimation of Tidal Turbines with Pitch Control

Control-oriented Modelling and State Estimation of Tidal Turbines with Pitch Control Control-oriented Modelling and State Estimation of Tidal Turbines with Pitch Control B. Ritter, C. Schmitz, P.F. Pelz Abstract: This contribution presents the dynamic modelling of horizontal axis tidal

More information

RULES PUBLICATION NO. 17/P ZONE STRENGTH ANALYSIS OF HULL STRUCTURE OF ROLL ON/ROLL OFF SHIP

RULES PUBLICATION NO. 17/P ZONE STRENGTH ANALYSIS OF HULL STRUCTURE OF ROLL ON/ROLL OFF SHIP RULES PUBLICATION NO. 17/P ZONE STRENGTH ANALYSIS OF HULL STRUCTURE OF ROLL ON/ROLL OFF SHIP 1995 Publications P (Additional Rule Requirements), issued by Polski Rejestr Statków, complete or extend the

More information

Influence of simulation model detail on determinable natural frequencies and loads

Influence of simulation model detail on determinable natural frequencies and loads Dr.-Ing. Thomas Rosenlöcher Institute of Machine Elements and Machine Design Chair of Machine Elements Influence of simulation model detail on determinable natural frequencies and loads Dassault Systèmes

More information

T20WN. Data Sheet. Torque transducers. Special features. Installation example with bellows couplings. B en

T20WN. Data Sheet. Torque transducers. Special features. Installation example with bellows couplings. B en T20WN Torque transducers Data Sheet Special features - Nominal (rated) torques 0.1 N m, 0.2 N m, 0. N m, 1 N m, 2 N m, N m, 10 N m, 20 N m, 0 N m, 100 N m, 200 N m - Accuracy class: 0.2 - Contactless transmission

More information

Flatness-based Feedforward Control of Wind Turbines Using Lidar

Flatness-based Feedforward Control of Wind Turbines Using Lidar Preprints of the 19th World Congress The International Federation of Automatic Control Cape Town, South Africa. August 24-29, 214 Flatness-based Feedforward Control of Wind Turbines Using Lidar David Schlipf,

More information

Q. 1 Q. 5 carry one mark each.

Q. 1 Q. 5 carry one mark each. General ptitude G Set-8 Q. 1 Q. 5 carry one mark each. Q.1 The chairman requested the aggrieved shareholders to him. () bare with () bore with (C) bear with (D) bare Q.2 Identify the correct spelling out

More information

EFFECT OF HYDRODYNAMIC THRUST BEARINGS ON ROTORDYNAMICS

EFFECT OF HYDRODYNAMIC THRUST BEARINGS ON ROTORDYNAMICS The 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery Honolulu, Hawaii, February 17-22, 2008 ISROMAC12-2008-20076 EFFECT OF HYDRODYNAMIC THRUST BEARINGS ON ROTORDYNAMICS

More information

IEC JUSTIFICATION E30/70 PRO

IEC JUSTIFICATION E30/70 PRO IEC 61400 JUSTIFICATION E30/70 PRO INDEX 1.- SCOPE... 3 2.- REFERENCES... 3 3.- WIND TURBINE DESCRIPTION... 3 3.1.-DATA SHEET... 4 3.2.-PMG DATA SHEET... 4 4.- SIMPLE LOAD MODEL... 7 4.1.- CALCULATION

More information

Super-twisting controllers for wind turbines

Super-twisting controllers for wind turbines International Conference on Renewable Energies and Power Quality (ICREPQ 16) Madrid (Spain), 4 th to 6 th May, 16 Renewable Energy and Power Quality Journal (RE&PQJ) ISSN 17-38 X, No.14 May 16 Super-twisting

More information

1 Introduction. EU projects in German Dutch Wind Tunnel, DNW. 1.1 DATA project. 1.2 MEXICO project. J.G. Schepers

1 Introduction. EU projects in German Dutch Wind Tunnel, DNW. 1.1 DATA project. 1.2 MEXICO project. J.G. Schepers EU projects in German Dutch Wind Tunnel, DNW J.G. Schepers Netherlands Energy Research Foundation P.O. Box 1, 1755 ZG Petten Tel: +31 224 564894 e-mail: schepers@ecn.nl 1 Introduction In this paper two

More information

Feasibility of dynamic test methods in classification of damaged bridges

Feasibility of dynamic test methods in classification of damaged bridges Feasibility of dynamic test methods in classification of damaged bridges Flavio Galanti, PhD, MSc., Felieke van Duin, MSc. TNO Built Environment and Geosciences, P.O. Box 49, 26 AA, Delft, The Netherlands.

More information

COMPARATIVE STUDY OF OMA APPLIED TO EXPERIMENTAL AND SIMULATED DATA FROM AN OPERATING VESTAS V27 WIND TURBINE

COMPARATIVE STUDY OF OMA APPLIED TO EXPERIMENTAL AND SIMULATED DATA FROM AN OPERATING VESTAS V27 WIND TURBINE COMPARATIVE STUDY OF OMA APPLIED TO EXPERIMENTAL AND SIMULATED DATA FROM AN OPERATING VESTAS V27 WIND TURBINE Oscar Ramírez 1, Dmitri Tcherniak 2, and Gunner Chr. Larsen 3 1 Research Assistant, DTU Wind

More information

HARP_Opt: An Optimization Code for System Design of Axial Flow Turbines

HARP_Opt: An Optimization Code for System Design of Axial Flow Turbines HARP_Opt: An Optimization Code for System Design of Axial Flow Turbines Marine and Hydrokinetic Instrumentation, Measurement, & Computer Modeling Workshop Broomfield, CO July 9-10, 2012 Danny Sale Northwest

More information

Dynamic Modeling of Fluid Power Transmissions for Wind Turbines

Dynamic Modeling of Fluid Power Transmissions for Wind Turbines Dynamic Modeling of Fluid Power Transmissions for Wind Turbines EWEA OFFSHORE 211 N.F.B. Diepeveen, A. Jarquin Laguna n.f.b.diepeveen@tudelft.nl, a.jarquinlaguna@tudelft.nl Offshore Wind Group, TU Delft,

More information

DYNAMIC ANALYSIS OF TALL BUILDING UNDER PULSATION WIND EXCITATION

DYNAMIC ANALYSIS OF TALL BUILDING UNDER PULSATION WIND EXCITATION ASIAN JOURNAL OF CIVIL ENGINEERING (BUILDING AND HOUSING) VOL. 7, NO. 1 (2006) PAGES 95-104 DYNAMIC ANALYSIS OF TALL BUILDING UNDER PULSATION WIND EXCITATION S.M. Auta and A.M. Maslennikov St. Petersburg

More information

Nonlinear effects on the rotor driven by a motor with limited power

Nonlinear effects on the rotor driven by a motor with limited power Applied and Computational Mechanics 1 (007) 603-61 Nonlinear effects on the rotor driven by a motor with limited power L. Pst Institute of Thermomechanics, Academy of Sciences of CR, Dolejškova 5,18 00

More information

Uncertainty in wind climate parameters and the consequence for fatigue load assessment

Uncertainty in wind climate parameters and the consequence for fatigue load assessment Uncertainty in wind climate parameters and the consequence for fatigue load assessment Henrik Stensgaard Toft (1,2) Lasse Svenningsen (2), Morten Lybech Thøgersen (2), John Dalsgaard Sørensen (1) (1) Aalborg

More information

Wind Turbine Model and Observer in Takagi- Sugeno Model Structure

Wind Turbine Model and Observer in Takagi- Sugeno Model Structure Journal of Physics: Conference Series OPEN ACCESS Wind Turbine Model and Observer in Takagi- Sugeno Model Structure To cite this article: Sören Georg et al 214 J. Phys.: Conf. Ser. 555 1242 View the article

More information

THE INFLUENCE OF FOUNDATION MODELING ASSUMPTIONS ON LONG-TERM LOAD PREDICTION FOR OFFSHORE WIND TURBINES

THE INFLUENCE OF FOUNDATION MODELING ASSUMPTIONS ON LONG-TERM LOAD PREDICTION FOR OFFSHORE WIND TURBINES Proceedings of the ASME 27 th International Conference on Offshore and Arctic Engineering OMAE2008 July 15-20, 2008, Estoril, Portugal OMAE2008-57893 THE INFLUENCE OF FOUNDATION MODELING ASSUMPTIONS ON

More information

SOLUTION (17.3) Known: A simply supported steel shaft is connected to an electric motor with a flexible coupling.

SOLUTION (17.3) Known: A simply supported steel shaft is connected to an electric motor with a flexible coupling. SOLUTION (17.3) Known: A simply supported steel shaft is connected to an electric motor with a flexible coupling. Find: Determine the value of the critical speed of rotation for the shaft. Schematic and

More information

Finite element analysis of rotating structures

Finite element analysis of rotating structures Finite element analysis of rotating structures Dr. Louis Komzsik Chief Numerical Analyst Siemens PLM Software Why do rotor dynamics with FEM? Very complex structures with millions of degrees of freedom

More information

WHF009. Moment of Inertia and Blade Energy Calculations

WHF009. Moment of Inertia and Blade Energy Calculations WHF009 Moment of Inertia and Blade Energy Calculations www.worldhovercraftfederation.org World Hovercraft Federation 02 January 2013 Whilst every effort is made to ensure the accuracy of the information

More information

Detailed Load Analysis of the baseline 5MW DeepWind Concept

Detailed Load Analysis of the baseline 5MW DeepWind Concept Downloaded from orbit.dtu.dk on: Sep 15, 2018 Detailed Load Analysis of the baseline 5MW DeepWind Concept Verelst, David Robert; Aagaard Madsen, Helge; Kragh, Knud Abildgaard; Belloni, Federico Publication

More information

EVALUATE THE EFFECT OF TURBINE PERIOD OF VIBRATION REQUIREMENTS ON STRUCTURAL DESIGN PARAMETERS: TECHNICAL REPORT OF FINDINGS

EVALUATE THE EFFECT OF TURBINE PERIOD OF VIBRATION REQUIREMENTS ON STRUCTURAL DESIGN PARAMETERS: TECHNICAL REPORT OF FINDINGS Applied Physical Sciences Corp. 475 Bridge Street, Suite 100, Groton, CT 06340 (860) 448-353 www.aphysci.com EVALUATE THE EFFECT OF TURBINE PERIOD OF VIBRATION REQUIREMENTS ON STRUCTURAL DESIGN PARAMETERS:

More information

A beam reduction method for wing aeroelastic design optimisation with detailed stress constraints

A beam reduction method for wing aeroelastic design optimisation with detailed stress constraints A beam reduction method for wing aeroelastic design optimisation with detailed stress constraints O. Stodieck, J. E. Cooper, S. A. Neild, M. H. Lowenberg University of Bristol N.L. Iorga Airbus Operations

More information

A Procedure for Classification of Cup-Anemometers

A Procedure for Classification of Cup-Anemometers Downloaded from orbit.dtu.dk on: Dec, 17 A Procedure for Classification of Cup-Anemometers Friis Pedersen, Troels; Paulsen, Uwe Schmidt Published in: Proceedings of EWEC 97 Publication date: 1997 Link

More information

Lightweight. Geislinger Gesilco

Lightweight. Geislinger Gesilco Lightweight Geislinger Gesilco The Geislinger Gesilco product range is based on more than 20 years of experience in developing fibre composite couplings and shafts. The maintenance-free composite membranes

More information

Structural Dynamics Lecture 2. Outline of Lecture 2. Single-Degree-of-Freedom Systems (cont.)

Structural Dynamics Lecture 2. Outline of Lecture 2. Single-Degree-of-Freedom Systems (cont.) Outline of Single-Degree-of-Freedom Systems (cont.) Linear Viscous Damped Eigenvibrations. Logarithmic decrement. Response to Harmonic and Periodic Loads. 1 Single-Degreee-of-Freedom Systems (cont.). Linear

More information

FATIGUE LIFE PREDICTION OF TURBOMACHINE BLADING

FATIGUE LIFE PREDICTION OF TURBOMACHINE BLADING FATIGUE LIFE PREDICTION OF TURBOMACHINE BLADING Sanford Fleeter, Chenn Zhou School of Mechanical Engineering Elias Houstis, John Rice Department of Computer Sciences Purdue University West Lafayette, Indiana

More information

Modal and Harmonic analysis of L.P. Turbine of a small Turbo- Fan engine using Finite Element Method

Modal and Harmonic analysis of L.P. Turbine of a small Turbo- Fan engine using Finite Element Method Failure of Engineering Materials & Structures Code 04 UET TAXILA MECHNICAL ENGINEERING DEPARTMENT Modal and Harmonic analysis of L.P. Turbine of a small Turbo- Fan engine using Finite Element Method H.

More information

Benefits of Preview Wind Information for Region 2 Wind Turbine Control

Benefits of Preview Wind Information for Region 2 Wind Turbine Control Benefits of Preview Wind Information for Region 2 Wind Turbine Control Ahmet Arda Ozdemir, Peter Seiler and Gary J Balas Department of Aerospace Engineering & Mechanics, University of Minnesota, Minneapolis,

More information

Dimensions of propulsion shafts and their permissible torsional vibration stresses

Dimensions of propulsion shafts and their permissible torsional vibration stresses (Feb 2005) (orr.1 Mar 2012) (orr.2 Nov 2012) Dimensions of propulsion shafts and their permissible torsional vibration stresses.1 Scope This UR applies to propulsion shafts such as intermediate and propeller

More information

my!wind Ltd 5 kw wind turbine Static Stability Specification

my!wind Ltd 5 kw wind turbine Static Stability Specification my!wind Ltd 5 kw wind turbine Static Stability Specification 1 P a g e 0 3 / 0 4 / 2 0 1 4 Contents Contents... 2 List of Changes... 2 Appendixes... 2 General remarks... 3 1. Introduction... 4 2. Geometry...

More information

ENG1001 Engineering Design 1

ENG1001 Engineering Design 1 ENG1001 Engineering Design 1 Structure & Loads Determine forces that act on structures causing it to deform, bend, and stretch Forces push/pull on objects Structures are loaded by: > Dead loads permanent

More information

Deliverable D.6.1. Application of CFD tools to the development of a novel propulsion concept

Deliverable D.6.1. Application of CFD tools to the development of a novel propulsion concept TRIple Energy Saving by Use of CRP, CLT and PODded Propulsion Grant Agreement Number: 265809 Call identifier: FP7-SST-2010-RTD-1 Theme SST.2010.1.1-2.: Energy efficiency of ships WP 1 Deliverable D.6.1

More information