(note: each ½ reaction has balanced the number of atoms and the charge.)

Size: px
Start display at page:

Download "(note: each ½ reaction has balanced the number of atoms and the charge.)"

Transcription

1 Oxidation- Reduction Reactions in Aqueous Solutions Introduction: When a piece of copper wire is immersed in a clear, colorless solution of silver nitrate, silver whiskers grow on the surface of the wire and the solution turns blue, indicating the presence of copper (II) ions. In simple terms the silver comes out of solution as the copper goes into it. On the atomic level, there were electrons transferred from the copper metal to the silver ions; the copper metal was oxidized while the silver ions were reduced: Oxidation: Cu(s) Cu 2+ (aq) + 2 e Reduction: Ag + (aq) + e Ag(s) (note: each ½ reaction has balanced the number of atoms and the charge.) Stoichiometrically, the two processes are related by the number of electrons: Oxidation: Cu(s) Cu 2+ (aq) + 2 e Net transfer of 2 moles of e for each mole of Reduction: 2Ag + (aq) + 2 e 2 Ag(s) reaction Net Ionic Reaction: Cu(s) + 2 Ag + (aq) + 2 e Cu 2+ (aq) + 2 e + 2 Ag(s) Model 1: Reactions in acidic aqueous solution: The ½ reactions of oxidizing or reducing agents in aqueous solution may be complicated by the inclusion of an acid/base reaction with the electron transfer process. If the reaction is under acidic aqueous conditions, both hydrogen ions and water are present as major species in the solution and may be included in the reaction, if needed. For example, the five electron reduction of the manganese in the permanganate ion (MnO 4 ) under acidic conditions proceeds as: Mn(+7) + 5 e Mn(+2) reduction 4 O H + (aq) + 4 H 2 O(l) acid/base MnO 4 (aq) + 8 H + (aq) + 5 e Mn 2+ (aq) + 4 H 2 O(l) Net reaction The ½ reaction may be balanced systematically by following a simple process 1 MnO 4 (aq) 1 Mn 2+ (aq) 1 MnO 4 (aq) 1 Mn 2+ (aq) + 4 H 2 O(l) 1 MnO 4 (aq) + 8 H + (aq) 1 Mn 2+ (aq) + 4 H 2 O(l) D) Balance the charges of the species with electrons 1 MnO 4 (aq) + 8 H + (aq) + 5 e 1 Mn 2+ (aq) + 4 H 2 O(l) Oxidation-Reduction Reaction in Aqueous Solutions page 1 of 5

2 Apply the process to the following net reaction in acidic media Cr 2 O 7 2 (aq) + H 2 S (aq) Cr 3+ (aq) + SO 4 2 (aq) 1. Identify the oxidizing and reducing agents. 2. Identify the major species in the unbalanced oxidation and reduction ½ reactions. oxidation: reduction: 3. For the reduction ½ reaction: A. Balance the atoms other than hydrogen and oxygen; B. Balance the oxygen atoms with water; C. Balance the hydrogen atoms with hydrogen ions D. Balance the charges of the species with electrons 4. For the oxidation ½ reaction: A. Balance the atoms other than hydrogen and oxygen; B. Balance the oxygen atoms with water; C. Balance the hydrogen atoms with hydrogen ions D. Balance the charges of the species with elections 5. Write the balanced reaction of dichromate ion with hydrosulfuric acid in acidic media: Oxidation-Reduction Reaction in Aqueous Solutions page 2 of 5

3 Model 2: Basic Aqueous Media If the reaction is under basic aqueous conditions, both hydroxide ions and water are present as major species in the solution and may be included in the reaction, if needed. In contrast to the previous model, the strongest acid present as a major species is water, which forms hydroxide after the donation of the proton. For example, the three electron reduction of the manganese in the permanganate ion (MnO 4 ) under basic conditions proceeds as: Mn(+7) + 3 e Mn(+4) reduction 2 O H 2 O(l) + 4 OH (aq) acid/base MnO 4 (aq) + 2 H 2 O(l) + 3 e MnO 2 (s) + 4 OH (aq) Net reaction The ½ reaction may be balanced systematically by following a simple process 1 MnO 4 (aq) 1 MnO 2 (s) 1 MnO 4 (aq) 1 MnO 2 (s) + 2 H 2 O(l) 1 MnO 4 (aq) + 4 H + (aq) 1 MnO 2 (s) + 2 H 2 O(l) D) Correct to account for water as the source of H + 1 MnO 4 (aq) + 4 H 2 O(l) 1 MnO 2 (s) + 2 H 2 O(l) + 4 OH E) Balance the charges of the species with electrons and simplify 1 MnO 4 (aq) + 2 H 2 O(l) + 3 e 1 MnO 2 (s) + 4 OH Apply the process to the following net reaction in basic media NO 2 (aq) + Al(s) NH 3 (aq) + AlO 2 (aq) 6. Identify the oxidizing and reducing agents 7. Identify the major species in the unbalanced oxidation and reduction ½ reactions. oxidation: reduction: Oxidation-Reduction Reaction in Aqueous Solutions page 3 of 5

4 8. For the reduction ½ reaction: D) Correct to account for water as source of protons, not H+ E) Balance the charges of the species with elections 9. For the oxidation ½ reaction: D) Correct to account for water as source of protons, not H+ E) Balance the charges of the species with electrons 10. Write the balanced reaction of aluminum solid with the nitrite ion in basic media: Oxidation-Reduction Reaction in Aqueous Solutions page 4 of 5

5 Exercises 1. C 2 H 5 OH(aq) + Ce 4+ (aq) CO 2 (g) + Ce 3+ (aq) (Acidic) 2. (Hg 2 ) 3 (PO 4 ) 2 (s) + Au(s) Hg(l) + AuCl 4 (aq) + H 3 PO 4 (aq) (aqueous HCl) 3. Pb 3 O 4 (s) Pb 2+ (aq) + PbO 2 (s) (Acidic) 4. Cr(NCS) 6 4 (aq) + MnO 4 (aq) Cr 3+ + NO 3 (aq) + CO 2 (g) + HSO 4 (aq) + Mn 2+ (aq) (Acidic) 5. H 2 CO(aq) + Ag(NH 3 ) 2 + (aq) HCO 3 (aq) + Ag(s) + NH 3 (aq) (Basic) 6. H 2 BO 3 (aq) + Al(s) BH 4 (aq) + H 2 AlO 3 (aq) (Basic) Oxidation-Reduction Reaction in Aqueous Solutions page 5 of 5

Activity Balancing Oxidation-Reduction Reactions

Activity Balancing Oxidation-Reduction Reactions Activity 201 3 Balancing Oxidation-Reduction Reactions Directions: This GLA worksheet goes over the half-reaction method of balancing oxidation-reduction (redox) reactions. Part A introduces the oxidation

More information

UNIT 10 Reduction/Oxidation Reactions & Electrochemistry NOTES

UNIT 10 Reduction/Oxidation Reactions & Electrochemistry NOTES Name Period CRHS Academic Chemistry UNIT 10 Reduction/Oxidation Reactions & Electrochemistry NOTES Quiz Date Lab Dates Exam Date Notes, Homework, Exam Reviews and Their KEYS located on CRHS Academic Chemistry

More information

5072 CHEMISTRY (NEW PAPERS WITH SPA) BASIC TECHNIQUES 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) BASIC TECHNIQUES

5072 CHEMISTRY (NEW PAPERS WITH SPA) BASIC TECHNIQUES 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) BASIC TECHNIQUES 5072 CHEMISTRY (NEW PAPERS WITH SPA) BASIC TECHNIQUES 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) BASIC TECHNIQUES LEARNING OUTCOMES a) Be able to write formulae of simple compounds b) Be able to write

More information

Revision of Important Concepts. 1. Types of Bonding

Revision of Important Concepts. 1. Types of Bonding Revision of Important Concepts 1. Types of Bonding Electronegativity (EN) often molecular often ionic compounds Bonding in chemical substances Bond energy: Is the energy that is released when a bond is

More information

Practice Exam Topic 9: Oxidation & Reduction

Practice Exam Topic 9: Oxidation & Reduction Name Practice Exam Topic 9: Oxidation & Reduction 1. What are the oxidation numbers of the elements in sulfuric acid, H 2 SO 4? Hydrogen Sulfur Oxygen A. +1 +6 2 B. +1 +4 2 C. +2 +1 +4 D. +2 +6 8 2. Consider

More information

Unit #8, Chapter 10 Outline Electrochemistry and Redox Reactions

Unit #8, Chapter 10 Outline Electrochemistry and Redox Reactions Unit #8, Chapter 10 Outline Electrochemistry and Redox Reactions Lesson Topics Covered Homework Questions and Assignments 1 Introduction to Electrochemistry definitions 1. Read pages 462 467 2. On page

More information

Redox Reactions. key terms: oxidizing agent reducing agent oxidation number

Redox Reactions. key terms: oxidizing agent reducing agent oxidation number Redox Reactions key terms: oxidizing agent reducing agent oxidation number Oxidation Numbers In order to keep track of what loses electrons and what gains them, we assign oxidation numbers. Electrochemistry

More information

8.6 Oxidation-Reduction Reactions

8.6 Oxidation-Reduction Reactions Chapter Outline 8.1 Solutions and Their Concentrations 8.2 Dilutions 8.3 Electrolytes and Nonelectrolytes 8.4 Acids, Bases, and Neutralization Reactions 8.5 Precipitation Reactions 8.6 Oxidation-Reduction

More information

S 8 + F 2 SF 6 4/9/2014. iclicker Participation Question: Balance the following equation by inspection: H + + Cr 2 O 7 + C 2 H 5 OH

S 8 + F 2 SF 6 4/9/2014. iclicker Participation Question: Balance the following equation by inspection: H + + Cr 2 O 7 + C 2 H 5 OH Today: Redox Reactions Oxidations Reductions Oxidation Numbers Half Reactions Balancing in Acidic Solution Balancing in Basic Solution QUIZ 3 & EXAM 3 moved up by one day: Quiz 3 Wednesday/Thursday next

More information

ALE 23. Balancing Redox Reactions. How does one balance a reaction for both matter and charge?

ALE 23. Balancing Redox Reactions. How does one balance a reaction for both matter and charge? Name Chem 163 Section: Team Number: ALE 23. Balancing Redox Reactions (Reference: Section 4.5 (pp. 158 166) and 21.1 Silberberg 5 th edition) How does one balance a reaction for both matter and charge?

More information

General Chemistry. Contents. Chapter 5: Introduction to Reactions in Aqueous Solutions. Electrolytes. 5.1 The Nature of Aqueous Solutions

General Chemistry. Contents. Chapter 5: Introduction to Reactions in Aqueous Solutions. Electrolytes. 5.1 The Nature of Aqueous Solutions General Chemistry Principles and Modern Applications Petrucci Harwood Herring 8 th Edition Chapter 5: Introduction to Reactions in Aqueous Solutions Philip Dutton University of Windsor, Canada N9B 3P4

More information

Homework #3 Chapter 11 Electrochemistry

Homework #3 Chapter 11 Electrochemistry Homework #3 Chapter 11 Electrochemistry Chapter 4 83. a) Oxidation ½ Reaction Fe + HCl HFeCl 4 Fe + 4HCl HFeCl 4 Fe + 4HCl HFeCl 4 + 3H + Fe + 4HCl HFeCl 4 + 3H + + 3e Reduction ½ Reaction H 2 2H + H 2

More information

1.In which of the following is the oxidation number of the underlined element given incorrectly? oxidation number

1.In which of the following is the oxidation number of the underlined element given incorrectly? oxidation number General Chemistry II Exam 4 Practice Problems 1 1.In which of the following is the oxidation number of the underlined element given incorrectly? oxidation number a. K 2 Cr 2 O 7 +6 b. NaAl(OH) 4 +3 c.

More information

General Chemistry. Chapter 5: Introduction to Reactions in Aqueous Solutions. Principles and Modern Applications Petrucci Harwood Herring 8 th Edition

General Chemistry. Chapter 5: Introduction to Reactions in Aqueous Solutions. Principles and Modern Applications Petrucci Harwood Herring 8 th Edition General Chemistry Principles and Modern Applications Petrucci Harwood Herring 8 th Edition Chapter 5: Introduction to Reactions in Aqueous Solutions Philip Dutton University of Windsor, Canada N9B 3P4

More information

Electrochemistry 1 1

Electrochemistry 1 1 Electrochemistry 1 1 Half-Reactions 1. Balancing Oxidation Reduction Reactions in Acidic and Basic Solutions Voltaic Cells 2. Construction of Voltaic Cells 3. Notation for Voltaic Cells 4. Cell Potential

More information

11/3/09. Aqueous Solubility of Compounds. Aqueous Solubility of Ionic Compounds. Aqueous Solubility of Ionic Compounds

11/3/09. Aqueous Solubility of Compounds. Aqueous Solubility of Ionic Compounds. Aqueous Solubility of Ionic Compounds Aqueous Solubility of Compounds Not all compounds dissolve in water. Solubility varies from compound to compound. Chapter 5: Chemical Reactions Soluble ionic compounds dissociate. Ions are solvated Most

More information

Chapter 17. Oxidation-Reduction. Cu (s) + 2AgNO 3(aq) 2Ag (s) + Cu(NO 3 ) 2(aq) pale blue solution. colorless solution. silver crystals.

Chapter 17. Oxidation-Reduction. Cu (s) + 2AgNO 3(aq) 2Ag (s) + Cu(NO 3 ) 2(aq) pale blue solution. colorless solution. silver crystals. Chapter 17 Oxidation-Reduction Cu (s) + 2AgNO 3(aq) 2Ag (s) + Cu(NO 3 ) 2(aq) copper wire colorless solution silver crystals pale blue solution Introduction to General, Organic, and Biochemistry 10e John

More information

Ionic Compound Solubility. Ionic Compound Solubility. Nitrates (NO 3 - ) Chlorates (ClO 3 - ) Ionic Compound Solubility. Ionic Compound Solubility

Ionic Compound Solubility. Ionic Compound Solubility. Nitrates (NO 3 - ) Chlorates (ClO 3 - ) Ionic Compound Solubility. Ionic Compound Solubility Nitrates (NO 3 - ) Chlorates (ClO 3 - ) Perchlorates (ClO 4 - ) Acetates (C 2 H 3 O 2 - ) Alkali Metal Compounds (Li +,Na +,K +,Rb +,Cs + ) Ammonium Compounds (NH 4 + ) Chlorides (Cl - ) Bromides (Br -

More information

Acids and Bases. Properties of Acids. Properties of Bases

Acids and Bases. Properties of Acids. Properties of Bases Chemistry 2A/2B Term 3 Notes B 1 Coghlan Chemistry 2A/2B Term 3 Notes B Properties of Acids Acids and Bases 1. Neutralise. 2. Turns litmus red. 3. Conducts when in with water form an (acids ). 4. React

More information

Electrochemical Reactions

Electrochemical Reactions 1 of 20 4/11/2016 1:00 PM Electrochemical Reactions Electrochemical Reactions Electrical Work From Spontaneous Oxidation- Reduction Reactions Predicting Spontaneous Redox Reactions from the Sign of E Line

More information

DO NOT USE A CALCULATOR.

DO NOT USE A CALCULATOR. Practice Test 20.1 (va pg 1 of 5) This is practice - Do NOT cheat yourself of finding out what you are capable of doing. Be sure you follow the testing conditions outlined below. DO NOT USE A CALCULATOR.

More information

Chapter 3 Chemical Reactions

Chapter 3 Chemical Reactions Chapter 3 Chemical Reactions Jeffrey Mack California State University, Sacramento Chemical Reactions Reactants: Zn + I 2 Product: ZnI 2 Chemical Reactions Evidence of a chemical reaction: Gas Evolution

More information

Chapter 4 Three Major Classes of Chemical Reactions

Chapter 4 Three Major Classes of Chemical Reactions Chapter 4 Three Major Classes of Chemical Reactions Solution Stoichiometry Many reactions (biochemical, marine, etc.) take place in solution. We need to be able to express the number of moles of particles

More information

CHAPTER 12. Practice exercises

CHAPTER 12. Practice exercises CHAPTER 12 Practice exercises 12.1 2Al(s) + 3Cl 2 (g) 2AlCl 3 (aq) Aluminium is oxidised and is therefore the reducing agent. Chlorine is reduced and is therefore the oxidising agent. 12.3 First the oxidation

More information

2. The reaction of carbon monoxide and diiodine pentoxide as represented by the equation

2. The reaction of carbon monoxide and diiodine pentoxide as represented by the equation 1. The complete combustion of phenylhydrazine, C 6 H 5 NHNH 2, with the oxidizer dinitrogen tetraoxide is shown in the equation C 6 H 5 NHNH 2 + N 2 O 4 CO 2 + H 2 O + N 2 When balanced, the sum of all

More information

U N I T T E S T P R A C T I C E

U N I T T E S T P R A C T I C E South Pasadena Honors Chemistry Name 6 Compounds Period Date U N I T T E S T P R A C T I C E Section 1: Multiple Choice. Select the best answer choice for each question. (1 point each) 1. Bonds between

More information

Reactions in aqueous solutions Redox reactions

Reactions in aqueous solutions Redox reactions Reactions in aqueous solutions Redox reactions Redox reactions In precipitation reactions, cations and anions come together to form an insoluble ionic compound. In neutralization reactions, H + ions and

More information

Ionic Compounds. And Acids

Ionic Compounds. And Acids CHAPTER 7 LANGUAGE OF CHEMISTRY CLASSIFICATION OF COMPOUNDS Inorganic compounds does not contain the element carbon, but there are exception to this rule, CO 2 (carbon dioxide), CO 3 2 (carbonate), and

More information

Another substance, called a reducing agent, causes or promotes the reduction of a metal compound to an elemental compound.

Another substance, called a reducing agent, causes or promotes the reduction of a metal compound to an elemental compound. Electrochemistry Oxidation and Reducation The technology of metalurrgy has allowed humanity to progress from the Stone Age, through the Bronze Age and the Iron Age to modern times. Very few metals exist

More information

Reducing Agent = a substance which "gives" electrons to another substance causing that substance to be reduced; a reducing agent is itself oxidized.

Reducing Agent = a substance which gives electrons to another substance causing that substance to be reduced; a reducing agent is itself oxidized. Oxidation = a loss of electrons; an element which loses electrons is said to be oxidized. Reduction = a gain of electrons; an element which gains electrons is said to be reduced. Oxidizing Agent = a substance

More information

Chapter 4. Types of Chemical Reactions and Solution Stoichiometry

Chapter 4. Types of Chemical Reactions and Solution Stoichiometry Chapter 4 Types of Chemical Reactions and Solution Stoichiometry Chapter 4 Table of Contents 4.1 Water, the Common Solvent 4.2 The Nature of Aqueous Solutions: Strong and Weak Electrolytes 4.3 The Composition

More information

Directions: Use the rules for Assigning Oxidation numbers to determine the oxidation number assigned to each element in each of the given formulas.

Directions: Use the rules for Assigning Oxidation numbers to determine the oxidation number assigned to each element in each of the given formulas. Oxidation Numbers #00 Directions: Use the rules for Assigning Oxidation numbers to determine the oxidation number assigned to each element in each of the given formulas. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

More information

Atoms and Bonding. Chapter 18 Physical Science

Atoms and Bonding. Chapter 18 Physical Science Atoms and Bonding Chapter 18 Physical Science 2017-2018 Atoms and Bonding: Chemical Bonding The combining of atoms of elements to form new substances. Bonding of atoms determine a compound s properties.

More information

(aq) 5VO2 + (aq) + Mn 2+ (aq) + 10H + + 4H 2 O. (aq) 5VO2 + (aq) + Mn 2+ (aq) + 2H + (aq) basic solution. MnO2 + 2H 2 O) 3H 2 O + I IO 3

(aq) 5VO2 + (aq) + Mn 2+ (aq) + 10H + + 4H 2 O. (aq) 5VO2 + (aq) + Mn 2+ (aq) + 2H + (aq) basic solution. MnO2 + 2H 2 O) 3H 2 O + I IO 3 Chem 1515 Section 2 Problem Set #15 Spring 1998 Name ALL work must be shown to receive full credit. Due Due in lecture at 1:30 p.m. Friday, May 1st. PS15.1. Balance the following oxidation-reduction reactions

More information

10.3. The Half-Reaction Method for Balancing Equations. 482 MHR Unit 5 Electrochemistry

10.3. The Half-Reaction Method for Balancing Equations. 482 MHR Unit 5 Electrochemistry 10.3 Section Preview/ Specific Expectations In this section, you will investigate oxidationreduction reactions by reacting metals with acids and by combusting hydrocarbons write balanced equations for

More information

Calculations In Chemistry

Calculations In Chemistry Calculations In Chemistry Module 15 Redox Reactions Module 16 Half-Reaction Balancing Module 15 Redox Reactions... 380 Lesson 15A: Oxidation Numbers... 380 Lesson 15B: Balancing Charge... 385 Lesson 15C:

More information

Electrochemistry Crash Course

Electrochemistry Crash Course Electrochemistry Crash Course Electrochemistry is essentially the study of reactions involving the transfer of electrons from one element to another or the study of systems that allow for the flow of voltage

More information

CHEM N-12 November In the electrolytic production of Al, what mass of Al can be deposited in 2.00 hours by a current of 1.8 A?

CHEM N-12 November In the electrolytic production of Al, what mass of Al can be deposited in 2.00 hours by a current of 1.8 A? CHEM161 014-N-1 November 014 In the electrolytic production of Al, what mass of Al can be deposited in.00 hours by a current of 1.8 A? What products would you expect at the anode and the cathode on electrolysis

More information

Chem II. Zn(s) + CuSO4(aq)

Chem II. Zn(s) + CuSO4(aq) Redox Review Chem II 1. What is the sum of the oxidation numbers of the atoms in the compound CO2? A) 0 B) 2 C) 4 D) +4 2. In which substance does phosphorus have a +3 oxidation state? A) P4O10 B) PCl5

More information

http://redoxanswers.weebly.com REDOX LESSON LEARNING GOALS http://redoxanswers.weebly.com Lesson 1: Introduction to Redox Relate to examples of oxidation-reduction reactions in the real-world. Understand

More information

Oxidation Numbers, ox #

Oxidation Numbers, ox # Oxidation Numbers, ox # are or numbers assigned to each or assuming that the are transferred from the electronegative element to the electronegative element. now mimic systems. ox # are written followed

More information

Ch. 5 Oxidation-Reduction Reactions. Brady & Senese, 5 th Ed.

Ch. 5 Oxidation-Reduction Reactions. Brady & Senese, 5 th Ed. Ch. 5 Oxidation-Reduction Reactions Brady & Senese, 5 th Ed. 1 Index 5.1. Oxidation-reduction reactions involve electron transfer 5.2. The ion-electron method creates balanced net ionic equations for redox

More information

REDOX REACTIONS. Chapters 4, 19.1 & 19.2 M. Shozi CHEM110 / 2014

REDOX REACTIONS. Chapters 4, 19.1 & 19.2 M. Shozi CHEM110 / 2014 REDOX REACTIONS Chapters 4, 19.1 & 19.2 M. Shozi CHEM110 / 2014 REDOX REACTIONS Reactions involve the transfer of electrons between reactants When a substance loses electrons, it undergoes oxidation: Ca(s)

More information

Unit 8 Redox 8-1. At the end of this unit, you ll be able to

Unit 8 Redox 8-1. At the end of this unit, you ll be able to 8-1 Unit 8 Redox At the end of this unit, you ll be able to Define and identify oxidation reactions Define and identify reduction reactions Assign oxidation numbers to elements in a compound Write and

More information

Name AP Chemistry September 30, 2013

Name AP Chemistry September 30, 2013 Name AP Chemistry September 30, 2013 AP Chemistry Exam Part I: 40 Questions, 40 minutes, Multiple Choice, No Calculator Allowed Bubble the correct answer on the blue side of your scantron for each of the

More information

TYPES OF CHEMICAL REACTIONS

TYPES OF CHEMICAL REACTIONS TYPES OF CHEMICAL REACTIONS Precipitation Reactions Compounds Soluble Ionic Compounds 1. Group 1A cations and NH 4 + 2. Nitrates (NO 3 ) Acetates (CH 3 COO ) Chlorates (ClO 3 ) Perchlorates (ClO 4 ) Solubility

More information

Regents review Electrochemistry(redox)

Regents review Electrochemistry(redox) 2011-2012 1. Chlorine has an oxidation state of +3 in the compound A) HClO B) HClO2 C) HClO3 D) HClO4 2. What is the oxidation number of iodine in KIO4? A) +1 B) 1 C) +7 D) 7 3. What is the oxidation number

More information

Solutions for Chapter 10 End-of-Chapter Problems

Solutions for Chapter 10 End-of-Chapter Problems Solutions for Chapter 10 End-of-Chapter Problems Problem 10.1. (a) We have seen (Investigate This 10.2) that electrolysis of a dilute aqueous solution of an ionic compound (magnesium sulfate) produces

More information

Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate.

Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate. 1 Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate. You should be able to: Vocabulary of water solubility Differentiate between

More information

Reactions in Aqueous Solutions

Reactions in Aqueous Solutions Chapter 4 Reactions in Aqueous Solutions Some typical kinds of chemical reactions: 1. Precipitation reactions: the formation of a salt of lower solubility causes the precipitation to occur. precipr 2.

More information

Chapter 19: Oxidation - Reduction Reactions

Chapter 19: Oxidation - Reduction Reactions Chapter 19: Oxidation - Reduction Reactions 19-1 Oxidation and Reduction I. Oxidation States A. The oxidation rules (as summarized by Mr. Allan) 1. In compounds, hydrogen has an oxidation # of +1. In compounds,

More information

Name Period Date. Ch. 19: Oxidation-Reduction Reactions Homework

Name Period Date. Ch. 19: Oxidation-Reduction Reactions Homework Name Period Date Ch. 19: OxidationReduction Reactions Homework Answer each of the following questions in as much detail as you can. Be sure to show all your work for any calculations and follow all rules

More information

CHEMISTRY 13 Electrochemistry Supplementary Problems

CHEMISTRY 13 Electrochemistry Supplementary Problems 1. When the redox equation CHEMISTRY 13 Electrochemistry Supplementary Problems MnO 4 (aq) + H + (aq) + H 3 AsO 3 (aq) Mn 2+ (aq) + H 3 AsO 4 (aq) + H 2 O(l) is properly balanced, the coefficients will

More information

BIG IDEA TWO. October 13, 2016

BIG IDEA TWO. October 13, 2016 BIG IDEA TWO October 13, 2016 Topics to Cover in Big Idea 2 1. Ionic, metallic, and covalent bonds 2. Polarity and dipole moment 3. Intermolecular forces (IMF): 4. Lewis dot structures 5. Resonance forms

More information

Chem 42 Final Review Sheet Mr. J. Fassler Spring 2018

Chem 42 Final Review Sheet Mr. J. Fassler Spring 2018 Chem 42 Final Review Sheet Mr. J. Fassler Spring 2018 These problems are given to help you review concepts you may have forgotten. Old tests, quizzes and review sheets are also important in studying. Chapter

More information

Ions and Ionic Compounds

Ions and Ionic Compounds Ions and Ionic Compounds Elements combine in a specific ratio to form compounds. Compounds can be categorized as ionic or covalent depending on the type of bond present within the compound. Ionic compounds

More information

Chapter 4 Notes Types of Chemical Reactions and Solutions Stoichiometry A Summary

Chapter 4 Notes Types of Chemical Reactions and Solutions Stoichiometry A Summary Chapter 4 Notes Types of Chemical Reactions and Solutions Stoichiometry A Summary 4.1 Water, the Common Solvent A. Structure of water 1. Oxygen s electronegativity is high (3.5) and hydrogen s is low (2.1)

More information

CHM 101 GENERAL CHEMISTRY FALL QUARTER 2008

CHM 101 GENERAL CHEMISTRY FALL QUARTER 2008 CHM 101 GENERAL CHEMISTRY FALL QUARTER 2008 Section 2 Lecture Notes 10/29/2008 (last revised: 10/29/08, 2:00 PM) 4.9 Oxidation Reduction Reactions Introduction: Your text uses the reaction between solid

More information

Redox Worksheet 1: Numbers & Balancing Reactions

Redox Worksheet 1: Numbers & Balancing Reactions Name: Date: Per: Redox Worksheet 1: Numbers & Balancing Reactions Assigning Oxidation Number rules: Elements and Compounds have an oxidation number/total of 0 Group I and II In addition to the elemental

More information

Chap. 4 AQUEOUS RXNS. O H δ+ 4.1 WATER AS A SOLVENT 4.2 AQUEOUS IONIC REACTIONS. Page 4-1. NaOH(aq) + HCl(g) NaCl(aq) +H 2 O

Chap. 4 AQUEOUS RXNS. O H δ+ 4.1 WATER AS A SOLVENT 4.2 AQUEOUS IONIC REACTIONS. Page 4-1. NaOH(aq) + HCl(g) NaCl(aq) +H 2 O Chap. AQUEOUS RXNS.1 WATER AS A SOLVENT Describe solution composition in terms of molarity Describe strong and weak electrolyte solutions, including acids and bases Use ionic equations to describe neutralization

More information

Types of Reactions: Reactions

Types of Reactions: Reactions 1 Reactions On the A.P. Test there will be one question (question #4) that will say: Give the formulas to show the reactants and the products for the following chemical reactions. Each occurs in aqueous

More information

1.11 Electrochemistry

1.11 Electrochemistry 1.11 Electrochemistry Recap from 1.7: Oxidation and Reduction: Oxidation and Reduction: Oxidation and reduction reactions can be identified by looking at the reaction in terms of electron transfer: Definitions:

More information

How to Assign Oxidation Numbers. Chapter 18. Principles of Reactivity: Electron Transfer Reactions. What is oxidation? What is reduction?

How to Assign Oxidation Numbers. Chapter 18. Principles of Reactivity: Electron Transfer Reactions. What is oxidation? What is reduction? Chapter 18 Principles of Reactivity: Electron Transfer Reactions What is oxidation? When a molecule/ion loses electrons (becomes more positive) Whatever is oxidized is the reducing agent What is reduction?

More information

Oxidation-Reduction Reactions and Introduction to Electrochemistry

Oxidation-Reduction Reactions and Introduction to Electrochemistry ADVANCED PLACEMENT CHEMISTRY Oxidation-Reduction Reactions and Introduction to Electrochemistry Students will be able to: identify oxidation and reduction of chemical species; identify oxidants and reductants

More information

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions.

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. In electrochemical reactions, electrons are transferred from one species to another. Learning goals and

More information

Chapter 4. The Major Classes of Chemical Reactions 4-1

Chapter 4. The Major Classes of Chemical Reactions 4-1 Chapter 4 The Major Classes of Chemical Reactions 4-1 The Major Classes of Chemical Reactions 4.1 The Role of Water as a Solvent 4.2 Writing Equations for Aqueous Ionic Reactions 4.3 Precipitation Reactions

More information

1. Hydrochloric acid is mixed with aqueous sodium bicarbonate Molecular Equation

1. Hydrochloric acid is mixed with aqueous sodium bicarbonate Molecular Equation NAME Hr Chapter 4 Aqueous Reactions and Solution Chemistry Practice A (Part 1 = Obj. 1-3) (Part 2 = Obj. 4-6) Objective 1: Electrolytes, Acids, and Bases a. Indicate whether each of the following is strong,

More information

Guide to Chapter 18. Electrochemistry

Guide to Chapter 18. Electrochemistry Guide to Chapter 18. Electrochemistry We will spend three lecture days on this chapter. During the first class meeting we will review oxidation and reduction. We will introduce balancing redox equations

More information

Chapter 4; Reactions in Aqueous Solutions. Chapter 4; Reactions in Aqueous Solutions. V. Molarity VI. Acid-Base Titrations VII. Dilution of Solutions

Chapter 4; Reactions in Aqueous Solutions. Chapter 4; Reactions in Aqueous Solutions. V. Molarity VI. Acid-Base Titrations VII. Dilution of Solutions Chapter 4; Reactions in Aqueous Solutions I. Electrolytes vs. NonElectrolytes II. Precipitation Reaction a) Solubility Rules III. Reactions of Acids a) Neutralization b) Acid and Carbonate c) Acid and

More information

Name (Print) Section # or TA. 1. You may use a crib sheet which you prepared in your own handwriting. This may be

Name (Print) Section # or TA. 1. You may use a crib sheet which you prepared in your own handwriting. This may be Name (Print) Section # or TA 1. You may use a crib sheet which you prepared in your own handwriting. This may be one 8-1/2 by 11 inch sheet of paper with handwriting only on one side. 2. You may use a

More information

When will hydrochloric acid not be enough to dissolve a metal?

When will hydrochloric acid not be enough to dissolve a metal? Name Chem 161, Section: Group Number: ALE 17. Redox Reactions: Oxidation-Reduction Reactions (Reference: Sections 4.5 and 4.6 in Silberberg 5 th edition) When will hydrochloric acid not be enough to dissolve

More information

Reactions in Aqueous Solution

Reactions in Aqueous Solution 1 Reactions in Aqueous Solution Chapter 4 For test 3: Sections 3.7 and 4.1 to 4.5 Copyright The McGrawHill Companies, Inc. Permission required for reproduction or display. 2 A solution is a homogenous

More information

Worksheet 25 - Oxidation/Reduction Reactions

Worksheet 25 - Oxidation/Reduction Reactions Worksheet 25 Oxidation/Reduction Reactions Oxidation number rules: Elements have an oxidation number of 0 Group I and II In addition to the elemental oxidation state of 0, Group I has an oxidation state

More information

Net Ionic Equations *denotes fourths- no longer in fifths Group Mean. Net Ionic Rules and Probabilities. Net Ionic Rules. Net Ionic Rules 9/2/10

Net Ionic Equations *denotes fourths- no longer in fifths Group Mean. Net Ionic Rules and Probabilities. Net Ionic Rules. Net Ionic Rules 9/2/10 Year Global Mean Net Ionic Equations *denotes fourths no longer in fifths Group Mean Highest Fourth Third Second Lowest Net Ionic Rules and Probabilities 1998 6.2 4.5 1 5 5 8 8 1999 6.3 3.9 0 1 10 26 11

More information

Information Required for Memorization

Information Required for Memorization Information Required for Memorization Your students are required to memorize the following information for Chem 10. This information must not be supplied on Cheat Sheets for your Semester Exams or Final

More information

In the Brønsted-Lowry system, a Brønsted-Lowry acid is a species that donates H + and a Brønsted-Lowry base is a species that accepts H +.

In the Brønsted-Lowry system, a Brønsted-Lowry acid is a species that donates H + and a Brønsted-Lowry base is a species that accepts H +. 16.1 Acids and Bases: A Brief Review Arrhenius concept of acids and bases: an acid increases [H + ] and a base increases [OH ]. 16.2 BrønstedLowry Acids and Bases In the BrønstedLowry system, a BrønstedLowry

More information

SCH4U Chemistry Review: Fundamentals

SCH4U Chemistry Review: Fundamentals SCH4U Chemistry Review: Fundamentals Particle Theory of Matter Matter is anything that has mass and takes up space. Anything around us and in the entire universe can be classified as either matter or energy.

More information

Chemistry 12 JANUARY Course Code = CH. Student Instructions

Chemistry 12 JANUARY Course Code = CH. Student Instructions MINISTRY USE ONLY MINISTRY USE ONLY Place Personal Education Number (PEN) here. Place Personal Education Number (PEN) here. MINISTRY USE ONLY Chemistry 12 2002 Ministry of Education JANUARY 2002 Course

More information

CHEMISTRY. Section II (Total time 95 minutes) Part A Time 55 minutes YOU MAY USE YOUR CALCULATOR FOR PART A.

CHEMISTRY. Section II (Total time 95 minutes) Part A Time 55 minutes YOU MAY USE YOUR CALCULATOR FOR PART A. CHEMISTRY Section II (Total time 95 minutes) Part A Time 55 minutes YOU MAY USE YOUR CALCULATOR FOR PART A. CLEARLY SHOW THE METHOD USED AND THE STEPS INVOLVED IN ARRIVING AT YOUR ANSWERS. It is to your

More information

Step by Step: Oxidation Numbers and Balancing Redox reactions. (acidic)

Step by Step: Oxidation Numbers and Balancing Redox reactions. (acidic) Step by Step: Oxidation Numbers and Balancing Redox reactions. Ex. 1) MnO 4-1 + H 2 SO 3 Mn 2+ + HSO 4-1 (acidic) Rules for Oxidation Numbers (for individual atoms): 1) Any free element (without a charge)

More information

2H 2 (g) + O 2 (g) 2H 2 O (g)

2H 2 (g) + O 2 (g) 2H 2 O (g) Mass A AP Chemistry Stoichiometry Review Pages Mass to Mass Stoichiometry Problem (Review) Moles A Moles B Mass B Mass of given Amount of given Amount of unknown Mass of unknown in grams in Moles in moles

More information

Chapter 5: Nomenclature

Chapter 5: Nomenclature Chem 1025 Prof George W.J. Kenney, Jr Introductory Chemistry, Zumdahl Decoste, 6th ed Last Update: 21July09 Chapter 5: Nomenclature These Notes are to SUPPLIMENT the Text, They do NOT Replace reading the

More information

AP Chemistry Note Outline Chapter 4: Reactions and Reaction Stoichiometry:

AP Chemistry Note Outline Chapter 4: Reactions and Reaction Stoichiometry: AP Chemistry Note Outline Chapter 4: Reactions and Reaction Stoichiometry: Water as a solvent Strong and Weak Electrolytes Solution Concentrations How to Make up a solution Types of Reactions Introduction

More information

Chapter 4 Reactions in Aqueous Solution

Chapter 4 Reactions in Aqueous Solution Chapter 4 Reactions in Aqueous Solution Homework Chapter 4 11, 15, 21, 23, 27, 29, 35, 41, 45, 47, 51, 55, 57, 61, 63, 73, 75, 81, 85 1 2 Chapter Objectives Solution To understand the nature of ionic substances

More information

Help! I m Melting, wait...i m dissolving! Notes (Ch. 4)

Help! I m Melting, wait...i m dissolving! Notes (Ch. 4) Aqueous Solutions I. Most reactions happen. II. Aqueous means. III. A solution is a. IV. Dissolving occurs when water and/or. V. Electrolytes:. A. In solution, ionic compounds dissolve into. B. molecular

More information

Reduction: 2 H + (aq) + 2 e H2(g)

Reduction: 2 H + (aq) + 2 e H2(g) Balancing Redox Reactions Homework Answers page 617 # 1-3, 5, 7-9 Mrs. Giovannone 1. (a) Solution: Step 1: Write the unbalanced equation for the reaction. Mg(s) + HCl(aq) H2(g) + MgCl2(aq) Step 2: Write

More information

Solving Stoichiometry Problems for Reactions in Solution

Solving Stoichiometry Problems for Reactions in Solution Section 4.7 Stoichiometry of Precipitation Reactions Solving Stoichiometry Problems for Reactions in Solution 1. Determine what reaction if any occurs. If a reaction occurs write a balanced molecular equation.

More information

Chapter 6. Naming Compounds Writing Formulas

Chapter 6. Naming Compounds Writing Formulas Chapter 6 Naming Compounds Writing Formulas Systematic Naming There are too many compounds to remember the names of them all. Compound is made of two or more elements. Put together atoms. Name should tell

More information

Solubility Rules for Ionic Compounds Arrhenius Acid Base Theory

Solubility Rules for Ionic Compounds Arrhenius Acid Base Theory Chapter 4 Reactions in Aqueous Solutions Ionic compounds dissociate in water yielding electrolyte solutions. H 2 O NaCl(s) Na + (aq) + Cl - (aq) The ions are hydrated by water. Strong & Weak Electrolytes

More information

Chapter 4 Reactions in Aqueous Solutions

Chapter 4 Reactions in Aqueous Solutions Chapter 4 Reactions in Aqueous Solutions Ionic compounds dissociate in water yielding electrolyte solutions. H 2 O NaCl(s) Na + (aq) + Cl - (aq) The ions are hydrated by water. The Electrical Conductivity

More information

Honors Unit 4 Homework Packet

Honors Unit 4 Homework Packet 1 Honors Homework Packet Reactions in Aqueous Solutions Part I: Aqueous Solns. Part II: Acid/Base Chemistry Part III: Redox Reactions Name: 2 Molarity of Solutions (pg. 2 & 3) Directions: Solve each of

More information

CHEM 1364 Test #1 (Form A) Spring 2010 (Buckley)

CHEM 1364 Test #1 (Form A) Spring 2010 (Buckley) Name CHEM 1364 Test #1 (Form A) Spring 2010 (Buckley) If you get stuck on one item, just go to the next and come back later. Point possibilities are indicated in parentheses to the right of each problem

More information

Chapter 3 Molecules, Compounds, and Chemical Equations

Chapter 3 Molecules, Compounds, and Chemical Equations Chapter 3 Molecules, Compounds, and Chemical Equations Molecular View of Elements and Compounds 2 How do atom join together to form a compound? compounds are made of atoms held together by chemical bonds

More information

**The partially (-) oxygen pulls apart and surrounds the (+) cation. The partially (+) hydrogen pulls apart and surrounds the (-) anion.

**The partially (-) oxygen pulls apart and surrounds the (+) cation. The partially (+) hydrogen pulls apart and surrounds the (-) anion. #19 Notes Unit 3: Reactions in Solutions Ch. Reactions in Solutions I. Solvation -the act of dissolving (solute (salt) dissolves in the solvent (water)) Hydration: dissolving in water, the universal solvent.

More information

Acids Bases and Salts Acid

Acids Bases and Salts Acid Acids Bases and Salts Acid ph less than 7.0 Sour taste Electrolyte Names of Acids Binary acids Contain only 2 elements Begin with hydro; end with ic Ternary acids Ex: H 2 S = hydrosulfuric Contain a polyatomic

More information

Oxidation refers to any process in which the oxidation number of an atom becomes more positive

Oxidation refers to any process in which the oxidation number of an atom becomes more positive Lecture Notes 3 rd Series: Electrochemistry Oxidation number or states When atoms gain or lose electrons they are said to change their oxidation number or oxidation state. If an element has gained electrons

More information

Redox Reactions, Chemical Cells and Electrolysis

Redox Reactions, Chemical Cells and Electrolysis Topic 5 Redox Reactions, Chemical Cells and Electrolysis Part A Unit-based exercise Unit 19 Chemical cells in daily life Fill in the blanks 1 chemical; electrical 2 electrolyte 3 voltmeter; multimeter

More information

Analysing Acids and Bases

Analysing Acids and Bases Week 4 Analysing Acids and Bases Acid A substance that donates a hydrogen ion (proton) A proton is donated in the acidbase reaction: HCl (aq) + H H O (aq) + Cl (aq) Strong acids completely ionise in water

More information

Inorganic Chemistry Nomenclature A. Anions

Inorganic Chemistry Nomenclature A. Anions Writing Net Ionic Equations and Determination of Spectator Ions Predicting Products and Balancing Total Equation: 1. Given reactants, swap appropriate ions to form product compounds 2. Determine phase

More information

Oxidation & Reduction (Redox) Notes

Oxidation & Reduction (Redox) Notes Oxidation & Reduction (Redox) Notes Chemical Activity (or Chemical Reactivity) is the measure of the reactivity of elements. If an element has high activity, then it means that the element is willing to

More information