Unit #8, Chapter 10 Outline Electrochemistry and Redox Reactions

Size: px
Start display at page:

Download "Unit #8, Chapter 10 Outline Electrochemistry and Redox Reactions"

Transcription

1 Unit #8, Chapter 10 Outline Electrochemistry and Redox Reactions Lesson Topics Covered Homework Questions and Assignments 1 Introduction to Electrochemistry definitions 1. Read pages On page 467, do questions 1 4 full ionic and net ionic equations 3. On page 468, do questions 5 7 half reactions 4. On page 472, do questions 1 3, 6 Oxidation and Reduction definitions oxidizing and reducing agents redox reactions Activity Series for Metals using the activity series to predict single displacement reactions 2 Oxidation Numbers the Rules using oxidation numbers to identify oxidizing and reducing agents in chemical reactions 3 Balancing Redox Reactions in Acidic Conditions the half-reaction method 4 Balancing Redox Reactions in Basic Conditions the half-reaction method 1. Read pages On page 478, do questions Read pages On page 480, do questions Complete Handout: Oxidation Numbers 1. Read pages , (don t worry about balancing under basic conditions for now) For the questions below, there are various instructions. Please just balance the redox reactions as you have been taught using the half reaction method: 2. On page 491, do questions 27a,b,c, 28c,d 3. On page 494, do questions 2, 3, 6 4. On page 497, do questions On page 498, do questions 1 3 Balance the net ionic equations below using the half reaction method under acidic and basic conditions: 1. MnO 2 + Cl Mn 2+ + Cl 2 2. NO + Sn NH 2 OH + Sn Cd 2+ + V 2+ Cd + VO 3 4. S 2 O Mn 2+ + BiO 3 + NiO 2 Ni(OH) 2 + SO 3 2- MnO 4 6. I 2 O 5 + CO I 2 + CO 2 7. NO 2 NO 2 + NO 3 8. P 4 H 2 PO 2 + PH 3 + Bi 3+

2 Unit #8, Chapter 10 Outline Electrochemistry and Redox Reactions 5 Introduction to Electrochemical Cells Galvanic cells Electrolytic cells Electrodes Electrolytes Direction of electron motion Galvanic cell notation 6 Quiz on Balancing Redox Reactions Calculating Standard Cell Potentials standard reduction potentials, Eº calculating standard cell potentials interpretting values of Eº 1. Read pages On page 509, do questions 1a, 2, 3 3. On page 515, do question 8 4. For the redox reactions in Q 5 8 on page 521 of your text: write the two half reactions taking place, calculate the Eº for the reaction, identify the anode and cathode, and identify the oxidizing agent and the reducing agent. 5. Make a labeled sketch of a simple electrochemical cell using gold and aluminum electrodes. a) Write the equations for the oxidation and the reduction half-reactions for this cell. b) On your sketch, label the anode and the cathode and indicate the direction of electron flow. c) Write the equation for the overall cell reaction and calculate the Eº for this cell. 1. On page 521, do questions 5 7 (just calculate Eº the way we did in class) 2. On page 523, do questions 1 and 2a Electrolytic Cells

3 Unit 8, Lesson 01: Activity Series for Metals Based on experimental evidence, metals can be arranged in an activity series, from most reactive (lose electrons most easily) to least reactive (gain electrons most easily). A neutral metal atom will be oxidized (lose electrons) by any metal ion below it on the activity series. If a neutral metal atom is below the metal ion on the activity series, no reaction will occur. Use the Activity Series to predict if a reaction will occur between the following metal atoms and ions. If a reaction will occur, complete the equations. If no reaction will occur, write NR (no reaction): 1. Calcium metal with nickel (II) nitrate solution a) Balanced chemical equation: b) Full ionic equation: c) Net ionic equation: d) Oxidation half reaction: e) Reduction half reaction: f) Oxidizing agent: g) Reducing agent: 2. Tin with zinc sulfate solution: a) Balanced chemical equation: b) Full ionic equation: c) Net ionic equation: d) Oxidation half reaction: e) Reduction half reaction: f) Oxidizing agent: g) Reducing agent: 3. Silver nitrate solution with lead: Activity Series lithium potassium barium calcium sodium magnesium aluminum zinc chromium iron cadmium cobalt nickel tin lead copper mercury silver platinum gold a) Balanced chemical equation: b) Full ionic equation: c) Net ionic equation: d) Oxidation half reaction: e) Reduction half reaction: f) Oxidizing agent: g) Reducing agent:

4 Unit 8, Lesson 02: Oxidation Numbers Oxidation numbers are. They are used as a tracking system to follow during chemical reactions. In a bond, the atom with the is assigned a oxidation number, because the electrons will spend more time to this atom, giving it a charge. The less electronegative atom is assigned a oxidation number. During redox reactions, the oxidation numbers of the atoms. If the oxidation numbers don t change, then the reaction is. If the oxidation number of an atom increases, the atom has been. If the oxidation number of an atom decreases ( ), then the atom has been. The following rules are used to assign oxidation numbers: 1. The oxidation numbers of all pure elements are eg. 2. For monoatomic (single atom) ions, the oxidation number is equal to the eg. oxidation number of Cl is oxidation number of Ca 2+ is oxidation number of Pb 4+ is oxidation number of P 3- is 3. The oxidation number of fluorine in a compound is ALWAYS 4. The oxidation number of hydrogen is except when it is in a metal hydride such as. In metal hydrides, because hydrogen has the it is assigned an oxidation number of. 5. The oxidation number of oxygen is except: a) in peroxides such as, when its oxidation number is b) in OF 2. Because fluorine s oxidation number in compounds is always, oxygen must be 6. The sum of the oxidation numbers of all of the atoms in a compound must equal the overall charge for the compound a) if the compound is neutral overall (uncharged) then the sum of the oxidation number is b) if the formula is for an ion, then the sum of the oxidation numbers is equal to the Examples: Find the oxidation numbers of the elements in the following compounds: a) NiCl 2 c) CrO 4 2- b) K 2 Cr 2 O 7 d) MnO 4

5 Identify the oxidizing and reducing agents in the following unbalanced reactions: 1. Mg (s) + N 2 (g) Mg 3 N 2 (s) 2. KClO 3 (s) KCl (s) + O 2 (g) 3. C 2 H 4 (g) + O 2 (g) CO 2 (g) + H 2 O (g) 4. Cu(NO 3 ) 2 (aq) + Na 2 CO 3 (aq) NaNO 3 (aq) + CuCO 3 (aq) 5. H 2 O 2 (l) O 2 (g) + H 2 O (l)

6 Unit 8, Lesson 02: Practice with Oxidation Numbers 1. Find the oxidation numbers of the elements in bold print. a) HClO d) PbSO 4 g) Na 2 O 2 b) KClO 3 e) NaIO 4 h) K 2 SO 4 c) MnO 2 f) ClO 4 i) NH State whether the change is an oxidation or a reduction. a) MnO 4 1 becomes MnO 4 2 d) P 4 O 6 becomes P 4 O 10 b) N 2 becomes NH 3 e) NH 3 becomes N 2 O c) O 2- becomes O 2 f) SO 4 2 becomes S 2 O Identify the oxidizing and reducing agents in the following unbalanced reactions: a) I 2 + H 2 S HI + S b) Zn + HNO 3 Zn(NO 3 ) 2 + NO 2 + H 2 O c) Ag 2 O + NH 3 Ag + H 2 O + N 2 d) H 2 O + ClO SO 2 SO HCl e) K 2 Cr 2 O 7 + HBr KBr + CrBr 3 + H 2 O + Br 2 f) SnCl 2 + PbCl 4 SnCl 4 + PbCl 2 g) Sb + Cl 2 SbCl 3 h) NaI + H 2 SO 4 H 2 S + I 2 + Na 2 SO 4 + H 2 O

7 Unit 8, Lesson 04: Balancing Redox Reactions in Acidic Conditions Redox reactions can be extremely complex and difficult to balance, for example: NaCN + KMnO 4 + H 2 O NaCNO + MnO 2 + KOH There are many systematic approaches to balancing these reactions. We will use the half-reaction method because this seems to be what is used at most universities. we will usually work from a net ionic equation- the spectator ions do not participate so we ignore them water and its ions (H + and OH - ) are often involved, so they will be added as needed. eg. Balance this redox reaction: HSO 3 + IO 3 I 2 + SO 4 2- Step 1: Assign oxidation numbers to all atoms to determine which species are being oxidized and reduced (do this on the reaction above). Step 2: Divide the net ionic reaction into oxidation and reduction half reactions. Step 3: In the half reactions, balance all atoms EXCEPT oxygen and hydrogen (see above). Step 4: In each half reaction, balance oxygen by adding H 2 O to whatever side needs more oxygen. Step 5: In each half reaction, balance hydrogen by adding H+ to whatever side needs more hydrogen (see above). Step 6: In each half reaction, balance the charges by adding electrons to whatever side needs them. Step 7: Multiply the half reactions by the lowest common multiple (LCM) to make the number of electrons lost in the oxidation half reaction equal to the number of electrons gained in the reduction half reaction (see above). Step 8: Multiply the LCM multiple(s) through both half reactions then add both half reactions together. Step 9: Simplify the reaction by canceling out species that appear on both sides of the equation. Step 10: Double check that all atoms and charges are correctly balanced.

8 Summary of Steps: 1. Assign oxidation numbers 2. Write two half reactions 3. Balance all atoms except oxygen and hydrogen using species from the original reaction (if necessary) 4. Balance oxygen by adding water where needed (if necessary) 5. Balance hydrogen by adding H+ where needed (if necessary) 6. Balance charge by adding electrons where needed 7. Multiply the half reactions by a lowest common factor so the number of electrons in each is equal 8. Add the half reactions together 9. Simplify 10. Double check that all atoms and charges are balanced eg. Balance this redox reaction: Cr 2 O C 2 H 4 O HC 2 H 3 O 2 + Cr 3+ eg. Balance the net ionic reaction from the front of the page CN + MnO 4 CNO + MnO 2 eg. NH 3 + Br 2 NH 4 Br + N 2

9 Unit 8, Lesson 05: Electrochemical (Galvanic) Cells During a redox reaction, electrons are transferred from the substance being (the agent) to the substance being (the agent). For example, when a piece of zinc is placed in a solution containing Cu 2+ ions, the following reactions take place: Overall: Zn (s) Zn 2+ (aq) + 2 e - Cu 2+ (aq) + 2 e - Cu (s) The oxidation and the reduction occur where the zinc atoms and Cu 2+ ions are in contact with one another on the surface of the piece of zinc. The electrons from the zinc atoms to the Cu 2+ ions. In an electrochemical cell, the same reactions take place but the half-reactions are. The oxidation and reduction reactions take place at different surfaces called. Electron transfer occurs through a conducting wire that connects these electrodes, and this creates an. The salt bridge contains an solution such as potassium nitrate. This permits the flow of from one half-cell to the other and is necessary to maintain the electrical of the two solutions. The construction of a simple electrochemical cell is illustrated below. voltmeter zinc strip salt bridge copper strip Zn(NO 3 ) 2 solution Cu(NO 3 ) 2 solution Using the activity series on page 470 of your text, we can predict the direction that the electrons will flow. Zinc is reactive than copper, that is, zinc its electrons more easily. Zinc will donate electrons to the copper and electrons will flow from the half-cell toward the halfcell. will be oxidized and will be reduced. The electrode at which oxidation occurs is called the while the electrode at which reduction occurs is called the. Because electrons flow from the anode, the anode is the electrode. Because electrons flow toward the cathode, the cathode is the electrode. We can represent this cell using Galvanic Cell Notation. The anode is always written on the :

10 Unit 8, Lesson 06: Using Reduction Potentials to Calculate the Voltage of an Electrochemical Cell An activity series is used to compare how easily an element electrons relative to other elements. The most reactive metals lose their electrons most easily and are at the of the metal activity series. Alternatively, we can measure and compare the level of that an element has for new electrons. This is called the element s. In this series, the elements with the attraction for electrons (the highest reduction potentials) are at the of the list. Standard reduction potentials ( ) are measured for elements in their and at standard conditions, ie. in M solution, at ºC and atm pressure. They are measured against the hydrogen electrode,, which has been assigned a reduction potential of exactly V. Standard reduction potentials (Eº) are reported on page : eg. Na + (aq) + e - Na (s) Eº= V (very attraction for electrons) Cl 2 (g) + 2e - 2 Cl- (aq) Eº= V (very attraction for electrons) Fe 3+ (aq) + 3e - Fe (s) Eº= V ( attraction for electrons) If you are given two half reactions, you can calculate the voltage that will be produced when these reactions are combined in an electrochemical cell: 1. Determine which half reaction will be the anode ( electrons). The half reaction with the (more ) Eº will be the anode. 2. Write this half reaction as an and the sign on the Eº value. 3. Write the other half reaction as a, keeping the Eº as reported. 4. Balance the number of electrons so that the number of electrons at the anode equals the number of electrons at the cathode. *** Do multiply the Eº values (the strength of attraction for electrons does not increase as the number of moles goes up). 5. Add the Eº values for the half reactions. The and more the Eº for an electrochemical cell, the the voltage it will produce. eg. Calculate the voltage produced by an electrochemical cell made of Br 2 Br and Fe Fe 2+ eg. Calculate the voltage produced by an electrochemical cell made of Ni Ni 2+ and Al Al 3+

http://redoxanswers.weebly.com REDOX LESSON LEARNING GOALS http://redoxanswers.weebly.com Lesson 1: Introduction to Redox Relate to examples of oxidation-reduction reactions in the real-world. Understand

More information

Chapter 17. Oxidation-Reduction. Cu (s) + 2AgNO 3(aq) 2Ag (s) + Cu(NO 3 ) 2(aq) pale blue solution. colorless solution. silver crystals.

Chapter 17. Oxidation-Reduction. Cu (s) + 2AgNO 3(aq) 2Ag (s) + Cu(NO 3 ) 2(aq) pale blue solution. colorless solution. silver crystals. Chapter 17 Oxidation-Reduction Cu (s) + 2AgNO 3(aq) 2Ag (s) + Cu(NO 3 ) 2(aq) copper wire colorless solution silver crystals pale blue solution Introduction to General, Organic, and Biochemistry 10e John

More information

Reactions in Aqueous Solutions

Reactions in Aqueous Solutions Chapter 4 Reactions in Aqueous Solutions Some typical kinds of chemical reactions: 1. Precipitation reactions: the formation of a salt of lower solubility causes the precipitation to occur. precipr 2.

More information

Oxidation & Reduction (Redox) Notes

Oxidation & Reduction (Redox) Notes Oxidation & Reduction (Redox) Notes Chemical Activity (or Chemical Reactivity) is the measure of the reactivity of elements. If an element has high activity, then it means that the element is willing to

More information

Practice Exam Topic 9: Oxidation & Reduction

Practice Exam Topic 9: Oxidation & Reduction Name Practice Exam Topic 9: Oxidation & Reduction 1. What are the oxidation numbers of the elements in sulfuric acid, H 2 SO 4? Hydrogen Sulfur Oxygen A. +1 +6 2 B. +1 +4 2 C. +2 +1 +4 D. +2 +6 8 2. Consider

More information

Reactions in aqueous solutions Redox reactions

Reactions in aqueous solutions Redox reactions Reactions in aqueous solutions Redox reactions Redox reactions In precipitation reactions, cations and anions come together to form an insoluble ionic compound. In neutralization reactions, H + ions and

More information

Practice Packet: Oxidation Reduction. Regents Chemistry: Mrs. Mintz. Practice Packet. Chapter 14: Oxidation Reduction & Electrochemistry

Practice Packet: Oxidation Reduction. Regents Chemistry: Mrs. Mintz. Practice Packet. Chapter 14: Oxidation Reduction & Electrochemistry Practice Packet: Oxidation Reduction Regents Chemistry: Mrs. Mintz Practice Packet Chapter 14: Oxidation Reduction & Electrochemistry 1 Assigning Oxidation Numbers Objective: How do we assign atoms the

More information

CHAPTER 5 REVIEW. C. CO 2 D. Fe 2 O 3. A. Fe B. CO

CHAPTER 5 REVIEW. C. CO 2 D. Fe 2 O 3. A. Fe B. CO CHAPTER 5 REVIEW 1. The following represents the process used to produce iron from iron III oxide: Fe 2 O 3 + 3CO 2Fe + 3CO 2 What is the reducing agent in this process? A. Fe B. CO C. CO 2 D. Fe 2 O 3

More information

ELECTROCHEMISTRY. Oxidation/Reduction

ELECTROCHEMISTRY. Oxidation/Reduction ELECTROCHEMISTRY Electrochemistry involves the relationship between electrical energy and chemical energy. OXIDATION-REDUCTION REACTIONS SPONTANEOUS REACTIONS Examples: voltaic cells, batteries. NON-SPONTANEOUS

More information

CHEMISTRY 13 Electrochemistry Supplementary Problems

CHEMISTRY 13 Electrochemistry Supplementary Problems 1. When the redox equation CHEMISTRY 13 Electrochemistry Supplementary Problems MnO 4 (aq) + H + (aq) + H 3 AsO 3 (aq) Mn 2+ (aq) + H 3 AsO 4 (aq) + H 2 O(l) is properly balanced, the coefficients will

More information

CHAPTER 12. Practice exercises

CHAPTER 12. Practice exercises CHAPTER 12 Practice exercises 12.1 2Al(s) + 3Cl 2 (g) 2AlCl 3 (aq) Aluminium is oxidised and is therefore the reducing agent. Chlorine is reduced and is therefore the oxidising agent. 12.3 First the oxidation

More information

Oxidation-Reduction (Redox)

Oxidation-Reduction (Redox) Oxidation-Reduction (Redox) Electrochemistry involves the study of the conversions between chemical and electrical energy. Voltaic (galvanic) cells use chemical reactions to produce an electric current.

More information

An oxidation-reduction (redox) reaction involves the transfer of electrons (e - ). Sodium transfers its electrons to chlorine

An oxidation-reduction (redox) reaction involves the transfer of electrons (e - ). Sodium transfers its electrons to chlorine Oxidation-Reduction An oxidation-reduction (redox) reaction involves the transfer of electrons (e - ). Sodium transfers its electrons to chlorine 2 Chemists need a way to keep track of what happens in

More information

Calculations In Chemistry

Calculations In Chemistry Calculations In Chemistry Module 15 Redox Reactions Module 16 Half-Reaction Balancing Module 15 Redox Reactions... 380 Lesson 15A: Oxidation Numbers... 380 Lesson 15B: Balancing Charge... 385 Lesson 15C:

More information

SCHOOL YEAR CH- 19 OXIDATION-REDUCTION REACTIONS SUBJECT: CHEMISTRY GRADE: 12

SCHOOL YEAR CH- 19 OXIDATION-REDUCTION REACTIONS SUBJECT: CHEMISTRY GRADE: 12 SCHOOL YEAR 2017-18 NAME: CH- 19 OXIDATION-REDUCTION REACTIONS SUBJECT: CHEMISTRY GRADE: 12 TEST A Choose the best answer from the options that follow each question. 1. During oxidation, one or more electrons

More information

Oxidation-Reduction Review. Electrochemistry. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions. Sample Problem.

Oxidation-Reduction Review. Electrochemistry. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions. Sample Problem. 1 Electrochemistry Oxidation-Reduction Review Topics Covered Oxidation-reduction reactions Balancing oxidationreduction equations Voltaic cells Cell EMF Spontaneity of redox reactions Batteries Electrolysis

More information

elemental state. There are two different possibilities: DESCRIPTION 1. One cation (+ ion) replaces another. 2. One anion (- ion) replaces another.

elemental state. There are two different possibilities: DESCRIPTION 1. One cation (+ ion) replaces another. 2. One anion (- ion) replaces another. CHEMICAL TYPES HANDOUT In these reactions, a free element reacts with a compound to form another compound and release one of the elements of the original compound in the elemental state. There are two

More information

Electrochemistry. A. Na B. Ba C. S D. N E. Al. 2. What is the oxidation state of Xe in XeO 4? A +8 B +6 C +4 D +2 E 0

Electrochemistry. A. Na B. Ba C. S D. N E. Al. 2. What is the oxidation state of Xe in XeO 4? A +8 B +6 C +4 D +2 E 0 Electrochemistry 1. Element M reacts with oxygen to from an oxide with the formula MO. When MO is dissolved in water, the resulting solution is basic. Element M is most likely: A. Na B. Ba C. S D. N E.

More information

Chemistry 102 Chapter 19 OXIDATION-REDUCTION REACTIONS

Chemistry 102 Chapter 19 OXIDATION-REDUCTION REACTIONS OXIDATION-REDUCTION REACTIONS Some of the most important reaction in chemistry are oxidation-reduction (redox) reactions. In these reactions, electrons transfer from one reactant to the other. The rusting

More information

Unit 8: Redox and Electrochemistry

Unit 8: Redox and Electrochemistry May 20, 2014 Unit 8: Redox and Electrochemistry http://www.firefly.org/firefly-pictures.html Oxidation Number numbers assigned to atoms that allow us to keep track of electrons. Rule #1: Oxidation number

More information

1.11 Electrochemistry

1.11 Electrochemistry 1.11 Electrochemistry Recap from 1.7: Oxidation and Reduction: Oxidation and Reduction: Oxidation and reduction reactions can be identified by looking at the reaction in terms of electron transfer: Definitions:

More information

Name: Regents Chemistry Date:

Name: Regents Chemistry Date: Name: Date: 1. The reaction CuO + CO CO 2 + Cu is an example of (A) reduction, only (B) oxidation, only (C) both oxidation and reduction (D) neither oxidation nor reduction 6. In which compound does chlorine

More information

Unit 8 Redox 8-1. At the end of this unit, you ll be able to

Unit 8 Redox 8-1. At the end of this unit, you ll be able to 8-1 Unit 8 Redox At the end of this unit, you ll be able to Define and identify oxidation reactions Define and identify reduction reactions Assign oxidation numbers to elements in a compound Write and

More information

Oxidation Numbers, ox #

Oxidation Numbers, ox # Oxidation Numbers, ox # are or numbers assigned to each or assuming that the are transferred from the electronegative element to the electronegative element. now mimic systems. ox # are written followed

More information

ELECTROCHEMISTRY. Electrons are transferred from Al to Cu 2+. We can re write this equation as two separate half reactions:

ELECTROCHEMISTRY. Electrons are transferred from Al to Cu 2+. We can re write this equation as two separate half reactions: ELECTROCHEMISTRY A. INTRODUCTION 1. Electrochemistry is the branch of chemistry which is concerned with the conversion of chemical energy to electrical energy, and vice versa. Electrochemical reactions

More information

Oxidation numbers are charges on each atom. Oxidation-Reduction. Oxidation Numbers. Electrochemical Reactions. Oxidation and Reduction

Oxidation numbers are charges on each atom. Oxidation-Reduction. Oxidation Numbers. Electrochemical Reactions. Oxidation and Reduction Oxidation-Reduction Oxidation numbers are charges on each atom. 1 2 Electrochemical Reactions Oxidation Numbers In electrochemical reactions, electrons are transferred from one species to another. In order

More information

Electrochemistry. 1. Determine the oxidation states of each element in the following compounds. (Reference: Ex. 4:16) a. N 2 N: b.

Electrochemistry. 1. Determine the oxidation states of each element in the following compounds. (Reference: Ex. 4:16) a. N 2 N: b. Name: Electrochemistry Two of the most common types of chemical reactions are acid-base reactions in which protons are transferred between two reactants and oxidation-reduction reactions in which electrons

More information

Name Period Date. Ch. 19: Oxidation-Reduction Reactions Homework

Name Period Date. Ch. 19: Oxidation-Reduction Reactions Homework Name Period Date Ch. 19: OxidationReduction Reactions Homework Answer each of the following questions in as much detail as you can. Be sure to show all your work for any calculations and follow all rules

More information

Oxidation-Reduction Reactions and Introduction to Electrochemistry

Oxidation-Reduction Reactions and Introduction to Electrochemistry ADVANCED PLACEMENT CHEMISTRY Oxidation-Reduction Reactions and Introduction to Electrochemistry Students will be able to: identify oxidation and reduction of chemical species; identify oxidants and reductants

More information

Unit 5 Part 2: Redox Reactions and Electrochemistry

Unit 5 Part 2: Redox Reactions and Electrochemistry Unit 5 Part 2: Redox Reactions and Electrochemistry Oxidation Numbers Oxidizing and Reducing Agents Balancing Redox Reactions Acidic solutions Basic solutions Galvanic Cells Nernst Equation This reaction

More information

Electrochemistry Crash Course

Electrochemistry Crash Course Electrochemistry Crash Course Electrochemistry is essentially the study of reactions involving the transfer of electrons from one element to another or the study of systems that allow for the flow of voltage

More information

Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species.

Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species. Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species. The species that loses the electron is oxidized. The species that gains the electron is reduced.

More information

UNIT 10 Reduction/Oxidation Reactions & Electrochemistry NOTES

UNIT 10 Reduction/Oxidation Reactions & Electrochemistry NOTES Name Period CRHS Academic Chemistry UNIT 10 Reduction/Oxidation Reactions & Electrochemistry NOTES Quiz Date Lab Dates Exam Date Notes, Homework, Exam Reviews and Their KEYS located on CRHS Academic Chemistry

More information

Ch. 20 Oxidation-Reduction Reactions. AKA Redox Reactions

Ch. 20 Oxidation-Reduction Reactions. AKA Redox Reactions Ch. 20 Oxidation-Reduction Reactions AKA Redox Reactions 20.1 THE MEANING OF OXIDATION AND REDUCTION Early Chemistry Oxidation: a substance gains oxygen Reduction: a substance loses oxygen Nothing can

More information

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chapter 20. Electrochemistry 20.1 Oxidation-Reduction Reactions Oxidation-reduction reactions = chemical reactions in which the oxidation state of one or more substance changes (redox reactions). Recall:

More information

Directions: Use the rules for Assigning Oxidation numbers to determine the oxidation number assigned to each element in each of the given formulas.

Directions: Use the rules for Assigning Oxidation numbers to determine the oxidation number assigned to each element in each of the given formulas. Oxidation Numbers #00 Directions: Use the rules for Assigning Oxidation numbers to determine the oxidation number assigned to each element in each of the given formulas. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

More information

Electrochemistry. Outline

Electrochemistry. Outline Electrochemistry Outline 1. Oxidation Numbers 2. Voltaic Cells 3. Calculating emf or Standard Cell Potential using Half-Reactions 4. Relationships to Thermo, Equilibrium, and Q 5. Stoichiometry 6. Balancing

More information

How to Assign Oxidation Numbers. Chapter 18. Principles of Reactivity: Electron Transfer Reactions. What is oxidation? What is reduction?

How to Assign Oxidation Numbers. Chapter 18. Principles of Reactivity: Electron Transfer Reactions. What is oxidation? What is reduction? Chapter 18 Principles of Reactivity: Electron Transfer Reactions What is oxidation? When a molecule/ion loses electrons (becomes more positive) Whatever is oxidized is the reducing agent What is reduction?

More information

Redox and Voltaic Cells

Redox and Voltaic Cells Name: Redox and Voltaic Cells Period: 1. Which half-reaction equation represents the reduction of an iron(ii) ion? 1) Fe 2+ Fe 3+ + e 2) Fe 2+ + 2e Fe 1) 1 to +2 2) 1 to 2 3) Fe 3+ + e Fe 2+ 4) Fe Fe 2+

More information

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions.

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. In electrochemical reactions, electrons are transferred from one species to another. Learning goals and

More information

Chapter 20 Electrochemistry

Chapter 20 Electrochemistry Chapter 20 Electrochemistry Learning goals and key skills: Identify oxidation, reduction, oxidizing agent, and reducing agent in a chemical equation Complete and balance redox equations using the method

More information

CHEMISTRY - CLUTCH CH.4 - CHEMICAL QUANTITIES & AQUEOUS REACTIONS

CHEMISTRY - CLUTCH CH.4 - CHEMICAL QUANTITIES & AQUEOUS REACTIONS !! www.clutchprep.com CONCEPT: MOLARITY Molarity (M) can serve as the connection between the interconversion of to and vice versa. For example, a 5.8 M NaCl solution really means per. ( Molarity = MolesSolute

More information

Name AP CHEM / / Collected Essays Chapter 17

Name AP CHEM / / Collected Essays Chapter 17 Name AP CHEM / / Collected Essays Chapter 17 1980 - #2 M(s) + Cu 2+ (aq) M 2+ (aq) + Cu(s) For the reaction above, E = 0.740 volt at 25 C. (a) Determine the standard electrode potential for the reaction

More information

Assignment #1: Redox Reaction Skill Drills

Assignment #1: Redox Reaction Skill Drills Assignment #1: Redox Reaction Skill Drills Skill #1 Assigning Oxidation Numbers (Text Reference: p. 639 641) All elements have an oxidation number of 0. In compounds, oxidation numbers add up to 0. o Group

More information

Regents review Electrochemistry(redox)

Regents review Electrochemistry(redox) 2011-2012 1. Chlorine has an oxidation state of +3 in the compound A) HClO B) HClO2 C) HClO3 D) HClO4 2. What is the oxidation number of iodine in KIO4? A) +1 B) 1 C) +7 D) 7 3. What is the oxidation number

More information

UNIT 7 Assignment Electrochemistry (Chap 5-pg & Chap 19-pg ) ANSWERS. 2 MnO 4 2 NO 3

UNIT 7 Assignment Electrochemistry (Chap 5-pg & Chap 19-pg ) ANSWERS. 2 MnO 4 2 NO 3 UNIT 7 Assignment Electrochemistry (Chap 5pg 193229 & Chap 19pg 845899) ANSWERS 7.1. Assign Oxidation numbers to the elements in bold print. 1) Mg 0 2) P 4 0 3) Cl I 4) HCl I 5) CaO +II 6) Na 2 O +I 7)

More information

REDOX AND ELECTROCHEMISTRY

REDOX AND ELECTROCHEMISTRY SOUTH HIGH SCHOOL REDOX AND ELECTROCHEMISTRY Regents Chemistry Dr. Lombardo NAME Content Objectives REDOX & ELECTROCHEMISTRY What will students know and be able to do by the end of this instructional unit?

More information

Chemistry 12. Resource Exam B. Exam Booklet

Chemistry 12. Resource Exam B. Exam Booklet Chemistry 12 Resource Exam B Exam Booklet Contents: 21 pages Examination: 2 hours 50 multiple-choice questions in the Exam Booklet Additional Time Permitted: 60 minutes Province of British Columbia PART

More information

CHEMISTRY - ZUMDAHL 2E CH.6 - TYPES OF CHEMICAL REACTIONS AND SOLUTION STOICHIOMETRY

CHEMISTRY - ZUMDAHL 2E CH.6 - TYPES OF CHEMICAL REACTIONS AND SOLUTION STOICHIOMETRY !! www.clutchprep.com CONCEPT: MOLARITY Molarity (M) can serve as the connection between the interconversion of to and vice versa. For example, a 5.8 M NaCl solution really means per. ( Molarity = MolesSolute

More information

CHAPTER 17 ELECTROCHEMISTRY

CHAPTER 17 ELECTROCHEMISTRY Advanced Chemistry Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 17 ELECTROCHEMISTRY Day Plans for the day Assignment(s) for the day 17.1 Galvanic Cells Assignment

More information

Practice Packet Unit 13: Electrochemistry (RedOx)

Practice Packet Unit 13: Electrochemistry (RedOx) Regents Chemistry: Mr. Palermo Practice Packet Unit 13: Electrochemistry (RedOx) Redox and Batteries? Ain t nobody got time for that!!! 1 Lesson 1: Oxidation States Oxidation numbers are very important

More information

Chapter 4. The Major Classes of Chemical Reactions 4-1

Chapter 4. The Major Classes of Chemical Reactions 4-1 Chapter 4 The Major Classes of Chemical Reactions 4-1 The Major Classes of Chemical Reactions 4.1 The Role of Water as a Solvent 4.2 Writing Equations for Aqueous Ionic Reactions 4.3 Precipitation Reactions

More information

12.05 Galvanic Cells. Zn(s) + 2 Ag + (aq) Zn 2+ (aq) + 2 Ag(s) Ni(s) + Pb 2+ (aq) «Ni 2+ (aq) + Pb(s)

12.05 Galvanic Cells. Zn(s) + 2 Ag + (aq) Zn 2+ (aq) + 2 Ag(s) Ni(s) + Pb 2+ (aq) «Ni 2+ (aq) + Pb(s) 12.05 Galvanic Cells 1. In an operating voltaic cell, reduction occurs A) at the anode B) at the cathode C) in the salt bridge D) in the wire 2. Which process occurs in an operating voltaic cell? A) Electrical

More information

Chapter 20 Electrochemistry

Chapter 20 Electrochemistry Chapter 20 Electrochemistry Electrochemical Cell Consists of electrodes which dip into an electrolyte & in which a chem. rxn. uses or generates an electric current Voltaic (Galvanic) Cell Spont. rxn. -

More information

Redox and Voltaic Cells

Redox and Voltaic Cells Name: Redox and Voltaic Cells Period: 1. Which half-reaction equation represents the reduction of an iron(ii) ion? 1) Fe 2+ Fe 3+ + e 2) Fe 2+ + 2e Fe 1) 1 to +2 2) 1 to 2 3) Fe 3+ + e Fe 2+ 4) Fe Fe 2+

More information

Chemistry 30 Review Test 3 Redox and Electrochemistry /55

Chemistry 30 Review Test 3 Redox and Electrochemistry /55 Chemistry 30 Review Test 3 Redox and Electrochemistry /55 Part I Multiple choice / Numerical Response Answer the following multiple choice questions on the scantron sheet. Answer the numerical response

More information

Ch. 5 Oxidation-Reduction Reactions. Brady & Senese, 5 th Ed.

Ch. 5 Oxidation-Reduction Reactions. Brady & Senese, 5 th Ed. Ch. 5 Oxidation-Reduction Reactions Brady & Senese, 5 th Ed. 1 Index 5.1. Oxidation-reduction reactions involve electron transfer 5.2. The ion-electron method creates balanced net ionic equations for redox

More information

Chapter 4 Electrolytes Acid-Base (Neutralization) Oxidation-Reduction (Redox) Reactions. Dr. Sapna Gupta

Chapter 4 Electrolytes Acid-Base (Neutralization) Oxidation-Reduction (Redox) Reactions. Dr. Sapna Gupta Chapter 4 Electrolytes Acid-Base (Neutralization) Oxidation-Reduction (Redox) Reactions Dr. Sapna Gupta Types of Reactions Two classifications: one how atoms are rearrangement and the other is chemical

More information

CHAPTER 4 TYPES OF CHEMICAL REACTIONS & SOLUTION STOICHIOMETRY

CHAPTER 4 TYPES OF CHEMICAL REACTIONS & SOLUTION STOICHIOMETRY Advanced Chemistry Name Hour Advanced Chemistry Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 4 TYPES OF CHEMICAL REACTIONS & SOLUTION STOICHIOMETRY Day Plans

More information

Unit 13 Electrochemistry Review

Unit 13 Electrochemistry Review 1. What is the oxidation state of nitrogen in NaNO2? A) +1 B) +2 C) +3 D) +4 2. Given the reaction that occurs in an electrochemical cell: Zn(s) + CuSO4(aq) ZnSO4(aq) + Cu(s) During this reaction, the

More information

Chapter 7. Oxidation-Reduction Reactions

Chapter 7. Oxidation-Reduction Reactions Chapter 7 Oxidation-Reduction Reactions Chapter Map Oxidation Historically oxidation meant reacting with oxygen. 2Zn(s) + O 2 (g) 2ZnO(s) Zn Zn 2+ + 2e or 2Zn 2Zn 2+ + 4e O + 2e O 2 or O 2 + 4e 2O 2 Oxidation

More information

9.1 Introduction to Oxidation and Reduction

9.1 Introduction to Oxidation and Reduction 9.1 Introduction to Oxidation and Reduction 9.1.1 - Define oxidation and reduction in terms of electron loss and gain Oxidation The loss of electrons from a substance. This may happen through the gain

More information

Unit 12 Redox and Electrochemistry

Unit 12 Redox and Electrochemistry Unit 12 Redox and Electrochemistry Review of Terminology for Redox Reactions OXIDATION loss of electron(s) by a species; increase in oxidation number. REDUCTION gain of electron(s); decrease in oxidation

More information

OXIDATION-REDUCTIONS REACTIONS. Chapter 19 (From next years new book)

OXIDATION-REDUCTIONS REACTIONS. Chapter 19 (From next years new book) OXIDATION-REDUCTIONS REACTIONS Chapter 19 (From next years new book) ELECTROCHEMICAL REACTIONS: What are electrochemical reactions? Electrons are transferred from one species to another ACTIVATING PRIOR

More information

AP Questions: Electrochemistry

AP Questions: Electrochemistry AP Questions: Electrochemistry I 2 + 2 S 2O 2-3 2 I - + S 4O 2-6 How many moles of I 2 was produced during the electrolysis? The hydrogen gas produced at the cathode during the electrolysis was collected

More information

Oxidation (oxidized): the loss of one or more electrons. Reduction (reduced): the gain of one or more electrons

Oxidation (oxidized): the loss of one or more electrons. Reduction (reduced): the gain of one or more electrons 1 of 13 interesting links: Battery Chemistry Tutorial at http://www.powerstream.com/batteryfaq.html Duracell Procell: Battery Chemistry at http://www.duracell.com/procell/chemistries /default.asp I. Oxidation

More information

Electrochemistry Pulling the Plug on the Power Grid

Electrochemistry Pulling the Plug on the Power Grid Electrochemistry 18.1 Pulling the Plug on the Power Grid 18.3 Voltaic (or Galvanic) Cells: Generating Electricity from Spontaneous Chemical Reactions 18.4 Standard Electrode Potentials 18.7 Batteries:

More information

UHS Tutoring. (4) Redox Reactions (02)

UHS Tutoring. (4) Redox Reactions (02) UHS Tutoring (4) Redox Reactions (02) 8739 1844 www.uhsinternational.com UHS Tutoring 4. Oxidationreduction reactions are increasingly important as a source of energy Students learn to: A. Explain the

More information

ELECTROCHEMISTRY OXIDATION-REDUCTION

ELECTROCHEMISTRY OXIDATION-REDUCTION ELECTROCHEMISTRY Electrochemistry involves the relationship between electrical energy and chemical energy. OXIDATION-REDUCTION REACTIONS SPONTANEOUS REACTIONS Can extract electrical energy from these.

More information

1.In which of the following is the oxidation number of the underlined element given incorrectly? oxidation number

1.In which of the following is the oxidation number of the underlined element given incorrectly? oxidation number General Chemistry II Exam 4 Practice Problems 1 1.In which of the following is the oxidation number of the underlined element given incorrectly? oxidation number a. K 2 Cr 2 O 7 +6 b. NaAl(OH) 4 +3 c.

More information

Page 1 Name: 2Al 3+ (aq) + 3Mg(s) 3Mg 2+ (aq) + 2Al(s) Fe 2 O 3 + 2Al Al 2 O 3 + 2Fe

Page 1 Name: 2Al 3+ (aq) + 3Mg(s) 3Mg 2+ (aq) + 2Al(s) Fe 2 O 3 + 2Al Al 2 O 3 + 2Fe 9666-1 - Page 1 Name: 1) What is the oxidation number of chromium in the chromate ion, CrO 2-4? A) +8 B) +3 C) +2 D) +6 2) What is the oxidation number of sulfur in Na 2 S 2 O 3? A) +6 B) +4 C) +2 D) -1

More information

Complete throughout unit. Due on test day!

Complete throughout unit. Due on test day! Name Unit 8: REDOX and Electrochemistry Skills: 1. Assigning Oxidation Numbers 2. Identifying Oxidation and Reduction 3. Writing Half Reactions 4. Balance Redox Reaction (Flipped) Unit 8: Vocabulary: Word

More information

If a piece of magnesium is placed in an aqueous solution of copper (II) sulfate, the magnesium displaces the copper in a single displacement reaction.

If a piece of magnesium is placed in an aqueous solution of copper (II) sulfate, the magnesium displaces the copper in a single displacement reaction. 5.3 REDOX Reactions Half-reactions from Full Redox Equations If a piece of magnesium is placed in an aqueous solution of copper (II) sulfate, the magnesium displaces the copper in a single displacement

More information

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chapter 20. Electrochemistry Sample Exercise 20.1 (p. 845) The nickelcadmium (nicad) battery, a rechargeable dry cell used in batteryoperated devices, uses the following redox reaction to generate electricity:

More information

Reducing Agent = a substance which "gives" electrons to another substance causing that substance to be reduced; a reducing agent is itself oxidized.

Reducing Agent = a substance which gives electrons to another substance causing that substance to be reduced; a reducing agent is itself oxidized. Oxidation = a loss of electrons; an element which loses electrons is said to be oxidized. Reduction = a gain of electrons; an element which gains electrons is said to be reduced. Oxidizing Agent = a substance

More information

Chem II. Zn(s) + CuSO4(aq)

Chem II. Zn(s) + CuSO4(aq) Redox Review Chem II 1. What is the sum of the oxidation numbers of the atoms in the compound CO2? A) 0 B) 2 C) 4 D) +4 2. In which substance does phosphorus have a +3 oxidation state? A) P4O10 B) PCl5

More information

Redox Worksheet 1: Numbers & Balancing Reactions

Redox Worksheet 1: Numbers & Balancing Reactions Name: Date: Per: Redox Worksheet 1: Numbers & Balancing Reactions Assigning Oxidation Number rules: Elements and Compounds have an oxidation number/total of 0 Group I and II In addition to the elemental

More information

Problem Solving. Redox Equations

Problem Solving. Redox Equations Skills Worksheet Problem Solving Redox Equations The feature that distinguishes redox reactions from other types of reactions is that elements change oxidation state by gaining or losing electrons. Compare

More information

Solubility Rules See also Table 4.1 in text and Appendix G in Lab Manual

Solubility Rules See also Table 4.1 in text and Appendix G in Lab Manual Ch 4 Chemical Reactions Ionic Theory of Solutions - Ionic substances produce freely moving ions when dissolved in water, and the ions carry electric current. (S. Arrhenius, 1884) - An electrolyte is a

More information

CHEM J-14 June 2014

CHEM J-14 June 2014 CHEM1101 2014-J-14 June 2014 An electrochemical cell consists of an Fe 2+ /Fe half cell with unknown [Fe 2+ ] and a Sn 2+ /Sn half-cell with [Sn 2+ ] = 1.10 M. The electromotive force (electrical potential)

More information

When Done Test. Pg. 324 #1-9 Pg. 325 #1-5 Pg. 325 #1-4

When Done Test. Pg. 324 #1-9 Pg. 325 #1-5 Pg. 325 #1-4 When Done Test Pg. 324 #1-9 Pg. 325 #1-5 Pg. 325 #1-4 The Nature of Oxidation- Reduction Reactions I will be able to explain how oxidation and reduction reactions involve the transfer of electrons. I will

More information

S 8 + F 2 SF 6 4/9/2014. iclicker Participation Question: Balance the following equation by inspection: H + + Cr 2 O 7 + C 2 H 5 OH

S 8 + F 2 SF 6 4/9/2014. iclicker Participation Question: Balance the following equation by inspection: H + + Cr 2 O 7 + C 2 H 5 OH Today: Redox Reactions Oxidations Reductions Oxidation Numbers Half Reactions Balancing in Acidic Solution Balancing in Basic Solution QUIZ 3 & EXAM 3 moved up by one day: Quiz 3 Wednesday/Thursday next

More information

Reactions in Aqueous Solutions

Reactions in Aqueous Solutions Reactions in Aqueous Solutions 1 Chapter 4 General Properties of Aqueous Solutions (4.1) Precipitation Reactions (4.2) Acid-Base Reactions (4.3) Oxidation-Reduction Reactions (4.4) Concentration of Solutions

More information

AP CHEMISTRY NOTES 2-1 ASSIGNING OXIDATION NUMBERS

AP CHEMISTRY NOTES 2-1 ASSIGNING OXIDATION NUMBERS AP CHEMISTRY NOTES 2-1 ASSIGNING OXIDATION NUMBERS RULES FOR ASSIGNING OXIDATION NUMBERS: 1. The oxidation number of any free element (including diatomic elements) is always 0. 2. The sum of the oxidation

More information

CHEM N-12 November In the electrolytic production of Al, what mass of Al can be deposited in 2.00 hours by a current of 1.8 A?

CHEM N-12 November In the electrolytic production of Al, what mass of Al can be deposited in 2.00 hours by a current of 1.8 A? CHEM161 014-N-1 November 014 In the electrolytic production of Al, what mass of Al can be deposited in.00 hours by a current of 1.8 A? What products would you expect at the anode and the cathode on electrolysis

More information

Electrochemistry. Galvanic Cell. Page 1. Applications of Redox

Electrochemistry. Galvanic Cell. Page 1. Applications of Redox Electrochemistry Applications of Redox Review Oxidation reduction reactions involve a transfer of electrons. OIL- RIG Oxidation Involves Loss Reduction Involves Gain LEO-GER Lose Electrons Oxidation Gain

More information

Chapter 4 Suggested end-of-chapter problems with solutions

Chapter 4 Suggested end-of-chapter problems with solutions Chapter 4 Suggested end-of-chapter problems with solutions a. 5.6 g NaHCO 1 mol NaHCO 84.01 g NaHCO = 6.69 10 mol NaHCO M = 6.69 10 mol 50.0 m 1000 m = 0.677 M NaHCO b. 0.1846 g K Cr O 7 1 mol K 94.0 g

More information

The Nature of Redox. Both oxidation and reduction processes occur together. Each half of the full redox reaction is a. Oxidizing and Reducing Agents

The Nature of Redox. Both oxidation and reduction processes occur together. Each half of the full redox reaction is a. Oxidizing and Reducing Agents V. ELECTROCHEMISTRY V.1 INTRODUCTION TO OXIDATION AND REDUCTION Key Question: How are electrons gained or lost? ELECTROCHEMISTRY is the study of oxidation and reduction reactions in which chemical species

More information

I pledge, on my honor, that I have neither given nor received inappropriate aid on this examination

I pledge, on my honor, that I have neither given nor received inappropriate aid on this examination Chemistry 102b General Chemistry Exam #2 Name (Printed) I pledge, on my honor, that I have neither given nor received inappropriate aid on this examination Signature Circle the section in which you are

More information

5072 CHEMISTRY (NEW PAPERS WITH SPA) BASIC TECHNIQUES 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) BASIC TECHNIQUES

5072 CHEMISTRY (NEW PAPERS WITH SPA) BASIC TECHNIQUES 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) BASIC TECHNIQUES 5072 CHEMISTRY (NEW PAPERS WITH SPA) BASIC TECHNIQUES 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) BASIC TECHNIQUES LEARNING OUTCOMES a) Be able to write formulae of simple compounds b) Be able to write

More information

Oxidation-reduction (redox) reactions

Oxidation-reduction (redox) reactions Oxidation-reduction (redox) reactions Reactions in which there are changes in oxidation state (oxidation number) between reactants and products 2 MnO 4- + 10 Br - + 16 H + 2 Mn 2+ + 5 Br 2 + 8 H 2 O One

More information

CHAPTER 10 ELECTROCHEMISTRY TEXT BOOK EXERCISE Q1. Multiple choice questions. (i) The cathode reaction in the electrolysis of dill. H2SO4 with Pt electrode is (a) Reduction (b) Oxidation (c) Both oxidation

More information

Chapter 19: Electrochemistry

Chapter 19: Electrochemistry Chapter 19: Electrochemistry Overview of the Chapter review oxidation-reduction chemistry basics galvanic cells spontaneous chemical reaction generates a voltage set-up of galvanic cell & identification

More information

Oxidation-Reduction Reactions

Oxidation-Reduction Reactions Oxidation-Reduction Reactions What is an Oxidation-Reduction, or Redox, reaction? Oxidation-reduction reactions, or redox reactions, are technically defined as any chemical reaction in which the oxidation

More information

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chapter 20. Electrochemistry 20.1 OxidationReduction Reactions Oxidationreduction reactions = chemical reactions in which the oxidation state of one or more substance changes (redox reactions). Recall:

More information

Chapter 4 Electrolytes and Aqueous Reactions. Dr. Sapna Gupta

Chapter 4 Electrolytes and Aqueous Reactions. Dr. Sapna Gupta Chapter 4 Electrolytes and Aqueous Reactions Dr. Sapna Gupta Aqueous Solutions Solution - a homogeneous mixture of solute + solvent Solute: the component that is dissolved Solvent: the component that does

More information

Redox Reactions. key terms: oxidizing agent reducing agent oxidation number

Redox Reactions. key terms: oxidizing agent reducing agent oxidation number Redox Reactions key terms: oxidizing agent reducing agent oxidation number Oxidation Numbers In order to keep track of what loses electrons and what gains them, we assign oxidation numbers. Electrochemistry

More information

1.7 REDOX. Convert these to ionic and half equations and you can see clearly how the electrons are transferred:

1.7 REDOX. Convert these to ionic and half equations and you can see clearly how the electrons are transferred: 1.7 REDOX Oxidation and Reduction: Oxidation and reduction reactions can be identified by looking at the reaction in terms of electron transfer: Our understanding of oxidation and reduction was limited

More information

(for tutoring, homework help, or help with online classes)

(for tutoring, homework help, or help with online classes) www.tutor-homework.com (for tutoring, homework help, or help with online classes) 1. chem10b 20.4-3 In a voltaic cell electrons flow from the anode to the cathode. Value 2. chem10b 20.1-35 How many grams

More information

Ionic Compound Solubility. Ionic Compound Solubility. Nitrates (NO 3 - ) Chlorates (ClO 3 - ) Ionic Compound Solubility. Ionic Compound Solubility

Ionic Compound Solubility. Ionic Compound Solubility. Nitrates (NO 3 - ) Chlorates (ClO 3 - ) Ionic Compound Solubility. Ionic Compound Solubility Nitrates (NO 3 - ) Chlorates (ClO 3 - ) Perchlorates (ClO 4 - ) Acetates (C 2 H 3 O 2 - ) Alkali Metal Compounds (Li +,Na +,K +,Rb +,Cs + ) Ammonium Compounds (NH 4 + ) Chlorides (Cl - ) Bromides (Br -

More information