Flame Tests: Identifying Metals

Size: px
Start display at page:

Download "Flame Tests: Identifying Metals"

Transcription

1 Section 8 Flame Tests: Identifying Metals What Do You See? Learning Outcomes In this section you will Produce colored flames. Identify the metal ions present in materials by the colors of light a material gives off when held in a flame. Describe how atoms create the colored light. Investigate ways of producing new colors not among those produced by the materials you test. Practice safe laboratory techniques in working with laboratory burners. What Do You Think? You may have read how royalty, suspicious of enemies, had their food tested for poison by having someone else taste it first. That s not a job anyone would enjoy for very long! How else could you test for a poisonous substance (other than by eating it)? Record your ideas about this question in your log. Be prepared to discuss your response with your small group and the class. Investigate 1. Your teacher will supply you with seven numbered wooden splints that have been soaked in various solutions. Some are harmful, and some are not. a) How could you distinguish one splint from another? 2. Light your Bunsen burner. Immediately make observations about the color of the burner flame. a) Record your observations in your Active Chemistry log. Safety goggles and a lab apron must be worn at all times in a chemistry lab. Follow all safety precautions for working with an open flame. Wear protective gloves when handling hot objects. 73 Dispose of all substances and materials as directed by your teacher

2 Movie Special Effects Wear protective gloves when handling hot objects. Tie back hair and loose clothing. Do not reach across an open flame. Dispose of all substances and materials as directed by your teacher. Wash your hands and arms thoroughly after the investigation. 3. Take one of the wooden splints and hold it in the hot part of the flame using forceps, tongs, or a fireproof glove. Note the color of the flame when the solution-soaked wooden splint is heated. As soon as the flame from the splint is no longer strongly colored, extinguish the splint by placing it in a beaker of water. a) Organize a table to record your data. b) Record your observations in your table. 4. Repeat Step 3 for the remaining six splints. a) Record all your observations. 5. Refer to your data table. The salt solutions in which the splints were soaked are metal compounds of ions of the elements lithium, barium, sodium, strontium, potassium, and calcium. Ions are atoms that have gained or lost electrons. One splint was soaked in water. a) What do you notice that was different about each splint? b) Your teacher will identify the solution each splint was soaked in. Record this information in your data table. 6. Obtain another splint soaked in an unknown solution. Hold the wooden splint soaked in the unknown solution in the burner flame. Observe what happens. a) Record your observations in your log. b) Use your observations to decide what metal ions are on the splint. Confirm your results with your teacher. c) Did you correctly identify the metal ion? Explain. d) In your log describe how you decided what the identity of your compound was, and how sure you are that you were correct. 7. Clean up your workstation and return all your equipment as directed by your teacher. 74

3 Section 8 Flame Tests: Identifying Metals Chem Talk IDENTIFYING ELEMENTS USING FLAME TESTS In this investigation you were able to create unique colors. Each color was an identifying characteristic of the solution on the splint. The colors are the result of the electron structure of each solution. When the metal ions are placed in the hot flame their electrons absorb the energy and move to higher energy levels around the nucleus. When these electrons fall back to their original level, they give off the light you see in the flame test. Since each atom has a unique arrangement of electrons, each gives a unique color. This experimental technique is called a flame test. It is the basis for identifying the composition of the salt solutions. This same effect is responsible for the burst of color in fireworks. In this experiment only the metal ions are changed. The negatively charged ion (chloride) is not affected. The flames produced in this section have interesting colors. The structure of matter is the key to the colors. The metal compounds are made of atoms that have nuclei surrounded by electrons. When electrons fall from a higher energy level to a lower energy level, they give off radiation. In this case, the electrons were able to get to a higher energy level by absorbing heat energy from the Bunsen-burner flame. Each compound has a different configuration of electrons and electron energy levels. The change in energy levels represents the color of the light given off. If you refer to the higher energy level as E h and to the lower energy level as E l, then you can state: The energy of the emitted light is equal to E h E l. The total amount of energy remains the same as it is conserved. The energy the electron gains from the heat energy of the Bunsen burner flame raises the electron to a higher energy state. When the electron drops down to the lower energy state, it gives off that energy as light energy. The process you observed in this investigation is not a chemical reaction. In a chemical reaction, the product of the reaction is different from the original materials. In the flame test, the heat did not chemically alter the metal compound on the splint. Chem Words ion: an electrically charged atom or group of atoms that has acquired a net charge, either negative or positive. electron: a subatomic particle that occurs outside of the nucleus and has a charge of 1 and mass of x g. flame test: an experimental technique or process in identifying a metal from its characteristic flame color. nucleus: the very dense core of the atom that contains the neutrons and protons. Checking Up 1. Explain what is meant by a flame test. 2. Explain how energy is conserved during the flame test. 75

4 Movie Special Effects What Do You Think Now? At the beginning of the section you were asked the following: How could you test for a poisonous substance (other than by eating it)? Suppose that you were going to try to test food samples using a flame test to see if they had been poisoned. How would you know for sure that the food had been contaminated? How do you know what color the pure food would have when it burned? What does it mean? Chemistry explains a macroscopic phenomenon (what you observe) with a description of what happens at the nanoscopic level (atoms and molecules) using symbolic structures as a way to communicate. Complete the chart below in your log. MACRO NANO SYMBOLIC Describe what you saw during the flame test. How do you know? Look back at your data table. Are there any elements that you cannot distinguish between? Why do you believe? Energy is conserved in a chemical process. This means that when you put energy in (from the flame) you will get energy out (in the form of light). Where is the energy input to produce light in your home? Why should you care? Chem Essential Questions In words, describe what is happening to the electrons as they are heated in the Bunsen burner flame. Draw a set of slides showing an electron starting at ground state, becoming excited, and falling to emit light. You will be writing a movie scene for your challenge in this chapter. Add a part to your scene that could involve a colored flame. What is the significance in the movie of using a colored flame? (For example, a red flame could mean that the characters are in danger.) 76

5 Section 8 Flame Tests: Identifying Metals Reflecting on the Section and the Challenge Most of the common fuels are primarily hydrocarbons, which do not contain metal ions. Therefore, you are most familiar with flames that are yellow-orange or occasionally a light blue. The bright colors of the excited metals are a surprise and tend to look out-of-this-world. Colors could play an interesting part in a plot line of a movie script. Perhaps an unusually colored flame could be taken as a mystical sign. A sudden change in the color of campfires could be a sign that danger is near. Consider how you might use flame tests to create unusually colored flames for your movie special effect. 1. Compare the colors you observed in your flame tests to the colors you have seen in fireworks displays. Identify what metals are used in producing the different colors in fireworks. 2. Develop a series of sketches showing how an electron of an atom can give off light. Your first sketch should have the electron in the ground state. The next sketch should show the electron excited when you apply energy to the atom and the third sketch should show how light is emitted when the electron falls to a lower energy state. 3. Preparing for the Chapter Challenge Chem to Go Name three new colors of light that could be produced by combining some of the metal salts that you tested in the lab, and identify which metal salts you would combine to produce these colors. If time and your teacher permit it, test your predictions. Inquiring Further Fireworks Fireworks have been around for centuries. They were used long before anyone knew why they produced the stunning effects they do. Investigate the manufacturing of fireworks and find the specific compounds used to produce the many colors presented during fireworks displays. Are all colors equally represented in fireworks displays, or are some colors easier to obtain than others? Research what colors are available and which, if any, do not seem possible given the range of substances readily available. 77

Title: FLAME TESTS. sodium chloride. calcium nitrate. potassium nitrate. strontium nitrate. copper(ii) nitrate. lithium nitrate. nitrate.

Title: FLAME TESTS. sodium chloride. calcium nitrate. potassium nitrate. strontium nitrate. copper(ii) nitrate. lithium nitrate. nitrate. Title: FLAME TESTS Target In this lab students will learn about atomic energy levels, emissions spectroscopy and flame tests for element identification. Students will identify the unknown elements from

More information

Chemical Names and Formulas

Chemical Names and Formulas Cool Chemistry Show Activity 3 Chemical Names and Formulas GOALS In this activity you will: Predict the charges of ions of some elements. Determine the formulas of ionic compounds. Write the conventional

More information

Chemical Names and Formulas

Chemical Names and Formulas Cool Chemistry Show Section 3 Chemical Names and Formulas What Do You See? Learning Outcomes In this section you will Predict the charges of ions of some elements. Determine the formulas of ionic compounds.

More information

Lab 1 Write-Up: Flame Tests. Determine the Identity of unknown substances using the Flame Test

Lab 1 Write-Up: Flame Tests. Determine the Identity of unknown substances using the Flame Test Roy1 Baylee Roy Chemistry Honors Mrs. Lyles 26 September 2014 Lab 1 Write-Up: Flame Tests Purpose Determine the Identity of unknown substances using the Flame Test Procedure In this lab you will take a

More information

Oxidation and Reduction of Metals

Oxidation and Reduction of Metals Cool Chemistry Show Section 8 Oxidation and Reduction of Metals What Do You See? Learning Outcomes In this section you will Cause different metals to rust by oxidation-reduction (redox) reactions. Determine

More information

Characteristics of Chemical Change

Characteristics of Chemical Change Section 2 Characteristics of Chemical Change What Do You See? Learning Outcomes In this section you will Observe several typical examples of evidence that a chemical change is occurring. Make generalizations

More information

Forensics Lab Flame Tests

Forensics Lab Flame Tests Forensics Lab Flame Tests Name Per Due Date Introduction The fundamental particles that make up the building blocks of matter are known as atoms, each of which is shown on the periodic table of the elements.

More information

Chemical Behavior of Metals

Chemical Behavior of Metals Activity 3 Chemical Behavior of Metals GOALS In this activity you will: Test different metals to determine their relative reactivity. Explore the concept of valence electrons. Use the process of electroplating

More information

What Do You Think? Investigate GOALS

What Do You Think? Investigate GOALS Activity 2 More Chemical Changes GOALS In this activity you will: Observe several typical examples of evidence that a chemical change is occurring. Make generalizations about the combinations of materials

More information

Activity 2 Elements and Their Properties

Activity 2 Elements and Their Properties Activity 2 Elements and Their Properties Activity 2 Elements and Their Properties GOALS In this activity you will: Apply ancient definitions of elements to materials you believe are elements. Test some

More information

Safety and Types of Fires

Safety and Types of Fires Cookin' Chem Activity 2 Safety and Types of Fires CHEM POETRY Oliver learned all those Don t s and Do s, The ones that get passed down through moles of O 2 s; Each new generation did soon learn to trust

More information

Lab: Excited Electrons

Lab: Excited Electrons Part A: EMISSION SPECTROSCOPY Lab: Excited Electrons According to the Bohr atomic model, electrons orbit the nucleus within specific energy levels. These levels are defined by unique amounts of energy.

More information

Color Reactions that Involve the Transfer of Electrons

Color Reactions that Involve the Transfer of Electrons Cool Chemistry Show Activity 8 Color Reactions that Involve the Transfer of Electrons GOALS In this activity you will: Cause different metals to rust by oxidation-reduction (redox) reactions. Determine

More information

What Can Destroy a Metal?

What Can Destroy a Metal? Activity 4 What Can Destroy a Metal? GOALS In this activity you will: Use proper materials to light an LED and explain the procedure. Use the Metal Activity Series to determine which metal of a given pair

More information

What Do You Think? Investigate GOALS

What Do You Think? Investigate GOALS Activity 1 Elements and Compounds GOALS In this activity you will: Decompose water by electrolysis into the two elements from which it is composed. Test the two elements to determine their identities.

More information

What Do You Think? Investigate GOALS. Part A: Freezing Water

What Do You Think? Investigate GOALS. Part A: Freezing Water Activity 5 Freezing Water GOALS In this activity you will: Determine the freezing point of water. Show graphically what happens to the temperature as water is cooled to freezing and while it is freezing.

More information

Science Safety Booklet

Science Safety Booklet Name: Period: Science Safety Booklet Grade 8 1 2 BC SCIENCE CONNECTIONS 8 GETTING TO KNOW YOUR TEXTBOOK Objective: To become familiar with your textbook 1. List the authors of your textbook (last names

More information

What Do You Think? Investigate GOALS. Part A: Mass and Volume of Liquids

What Do You Think? Investigate GOALS. Part A: Mass and Volume of Liquids Movie Special Effects Activity 5 Mass and Volume GOALS In this activity you will: Determine the densities of various liquid and solid materials. Make measurements in the laboratory to the precision of

More information

Emission of Light: Discharge Lamps & Flame Tests 1

Emission of Light: Discharge Lamps & Flame Tests 1 Emission of Light: Discharge Lamps & Flame Tests 1 Objectives At the end of this activity you should be able to: o Describe how discharge lamps emit photons following electrical excitation of gaseous atoms.

More information

What Do You Think? Investigate GOALS

What Do You Think? Investigate GOALS Activity 3 Atoms and Their Masses GOALS In this activity you will: Explore the idea of atoms by trying to isolate a single atom. Measure how many times greater the mass of a copper atom is than a magnesium

More information

The Law of Definite Proportions

The Law of Definite Proportions Chemical Reactions Laboratory Investigation TEACHER NOTES The Law of Definite Proportions Key Concept The law of definite proportions states that the elements in a compound always occur in the same ratio

More information

Completion Match each each piece of equipment with its description. Please only put one number in the blank.

Completion Match each each piece of equipment with its description. Please only put one number in the blank. LAB SAFETY AND EQUIPMENT TEST Completion Match each each piece of equipment with its description. Please only put one number in the blank. 1. Used for filtering and for adding chemicals without spilling.

More information

SLHS Academic Chemistry Lab Notebook

SLHS Academic Chemistry Lab Notebook Name Teacher Six-Weeks SLHS Academic Chemistry Lab Notebook 2013-2014 The most exciting phrase to hear in science, the one that heralds the most discoveries, is not "Eureka!" (I found it!), but that's

More information

Classifying Chemical Reactions

Classifying Chemical Reactions 1 Classifying Chemical Reactions Analyzing and Predicting Products Introduction The power of chemical reactions to transform our lives is visible all around us-in our cars, even in our bodies. Chemists

More information

Atoms with More than One Electron

Atoms with More than One Electron Fun with the Periodic Table Activity 6 Atoms with More than One Electron GOALS In this activity you will: View the spectra of various materials. Graphically analyze patterns in the amounts of energy required

More information

Periodicity of Properties of Oxides

Periodicity of Properties of Oxides Microscale Periodicity of Properties of Oxides Some oxides produce acidic solutions when they dissolve in water. These oxides are classified as acidic oxides (acid anhydrides), and they are the primary

More information

Topic Students devise an experiment to determine the types of bonds in three compounds.

Topic Students devise an experiment to determine the types of bonds in three compounds. Types of Bonds Topic Students devise an experiment to determine the types of bonds in three compounds. Introduction Molecules are made of atoms that are held together by either ionic or covalent bonds.

More information

Distinguishing Glass Fragments

Distinguishing Glass Fragments Activity 2 Distinguishing Glass Fragments GOALS In this activity you will: Experimentally determine the density of a solid without a definite shape. Understand the difference between intensive and extensive

More information

More Chemical Changes

More Chemical Changes Activity 2 More Chemical Changes Activity 2 More Chemical Changes GOALS In this activity you will: Observe several typical examples of evidence that a chemical change is occurring. Make generalizations

More information

What Do You Think? Investigate GOALS

What Do You Think? Investigate GOALS Activity 1 Chemical and Physical Changes GOALS In this activity you will: Learn to differentiate between chemical and physical changes. Make observations and cite evidence to identify changes as chemical

More information

Thermal Energy and Temperature Lab. Experiment Question: How can the difference between thermal energy and temperature be experimentally observed?

Thermal Energy and Temperature Lab. Experiment Question: How can the difference between thermal energy and temperature be experimentally observed? Thermal Energy and Temperature Lab Name 7 th Grade PSI Grade / 20 Experiment Question: How can the difference between thermal energy and temperature be experimentally observed? Hypothesis Starters: 1.

More information

Atomic Theory C &03

Atomic Theory C &03 Atomic Theory Part One: Flame Tests Part Two: Atomic Spectra Part Three: Applications of Spectra (optional) C12-2-02 &03 This activity will focus on the visible portion of the electromagnetic spectrum.

More information

Classifying Chemical Reactions Analyzing and Predicting Products

Classifying Chemical Reactions Analyzing and Predicting Products Classifying Chemical Reactions Analyzing and Predicting Products Background A chemical reaction is defined as any process in which one or more substances are converted into new substances with different

More information

In this activity, you will observe and predict products for some simple

In this activity, you will observe and predict products for some simple Chemistry Not Chemistry My Type Not My Type Classifying Chemical Reactions In this activity, you will observe and predict products for some simple chemical reactions. You will classify the reactions as

More information

From Hydrate to Anhydrate: Percent Composition

From Hydrate to Anhydrate: Percent Composition Artist as Chemist Section 5 From Hydrate to Anhydrate: Percent Composition What Do You See? Learning Outcomes In this section you will Identify an unknown hydrate. Distinguish between a hydrated and an

More information

Solutions: Chemical or Physical Change?

Solutions: Chemical or Physical Change? Section 1 Solutions: Chemical or Physical Change? What Do You See? Learning Outcomes In this section you will Learn to differentiate between chemical and physical changes. Make observations and cite evidence

More information

Subject: Regents Chemistry Grade: 9-12 Unit #: 1 Title: Movie Special Effects

Subject: Regents Chemistry Grade: 9-12 Unit #: 1 Title: Movie Special Effects UNIT OVERVIEW S Chemistry Standards: 3.2l, 3.3a, 3.1cc, 3.1kk, 4.2a, 4.2b, 4.2c, 3.1s, 3.1w, 3.1v, 3.2c, 3.1k, 3.1ff, 3.1gg STAGE ONE: Identify Desired Results Long-Term Transfer Goal At the end of this

More information

Recognizing Chemical and Physical Changes

Recognizing Chemical and Physical Changes Chapter 2 Properties of Matter Investigation 2A Recognizing Chemical and Physical Changes Background Information Some chemical and physical changes are easy to recognize. Other changes may be easy to observe,

More information

UNIT 01 LAB SAFETY & EQUIPMENT

UNIT 01 LAB SAFETY & EQUIPMENT UNIT 01 LAB SAFETY & EQUIPMENT Hook: What s wrong with this picture? Mrs. Medina Slide 2 Lab Safety 1. Conduct yourself in a responsible manner No horseplay or pranks No wandering or distracting students

More information

What is Science? Science is both a collection of knowledge and the process for building that knowledge.

What is Science? Science is both a collection of knowledge and the process for building that knowledge. Introduction to Science Junior Science What is Science? Science is both a collection of knowledge and the process for building that knowledge. Science asks questions about the natural world and looks for

More information

What Do You Think? Investigate GOALS. Part A: Solutions That Conduct Electricity

What Do You Think? Investigate GOALS. Part A: Solutions That Conduct Electricity Chemical Dominoes Activity 6 Electrochemical Cells GALS In this activity you will: Determine if a substance will conduct electricity when dissolved in water. Construct a galvanic cell and explain the function

More information

EM SPECTRUM, WAVELENGTH, FREQUENCY, AND ENERGY WORKSHEET

EM SPECTRUM, WAVELENGTH, FREQUENCY, AND ENERGY WORKSHEET EM SPECTRUM, WAVELENGTH, FREQUENCY, AND ENERGY WORKSHEET 1.) Look at the EM spectrum below to answer this question. As you move across the visible light spectrum from red to violet (A) Does the wavelength

More information

Reaction Types and Chemical Equations

Reaction Types and Chemical Equations Cool Chemistry Show Section 4 Reaction Types and Chemical Equations What Do You See? Learning Outcomes In this section you will Represent chemical changes using word equations and chemical equations. Distinguish

More information

Newton s Second Law of Motion

Newton s Second Law of Motion Newton s Second Law of Motion Topic Newton s second law of motion describes how acceleration is related to force and mass. Introduction Newton s second law of motion states that the acceleration of an

More information

States of Matter: Solid, Liquid, and Gas

States of Matter: Solid, Liquid, and Gas Movie Special Effects Activity 2 States of Matter: Solid, Liquid, and Gas GOALS In this activity you will: Create an animation to illustrate the behavior of particles in different phases of matter, and

More information

Introduction to light Light is a form of energy called electromagnetic radiation. A chart of the electromagnetic spectrum is shown below.

Introduction to light Light is a form of energy called electromagnetic radiation. A chart of the electromagnetic spectrum is shown below. Experiment: Spectroscopy Introduction to light Light is a form of energy called electromagnetic radiation. A chart of the electromagnetic spectrum is shown below. Radiowave Microwave Infrared Visible Ultraviolet

More information

2.8-1 SCIENCE EXPERIMENTS ON FILE Revised Edition. Dew Formation

2.8-1 SCIENCE EXPERIMENTS ON FILE Revised Edition. Dew Formation 2.8-1 SCIENCE EXPERIMENTS ON FILE Revised Edition Dew Formation Topic Dew Time 30 minutes! Safety Please click on the safety icon to view safety precautions. Be careful using the thermometer. Be careful

More information

Pre-Lab Read the entire laboratory assignment. Answer all pre-lab questions before beginning the lab.

Pre-Lab Read the entire laboratory assignment. Answer all pre-lab questions before beginning the lab. Name: Date: Pd: Lab Partner: Lab # 13: Types of Reactions, Predicting Products of Chemical Reactions Lab Accelerated Chemistry 1 Introduction: If you examine your bicycle after it has been left out in

More information

What Do You Think? Investigate GOALS. Part A: Precipitation of Calcium

What Do You Think? Investigate GOALS. Part A: Precipitation of Calcium H 2 Woes Activity 6 Water Softening GOALS In this activity you will: Investigate the equilibria behind water softening. Determine which reduces water hardness more, precipitation reactions or ion-exchange

More information

What Do You Think? Investigate GOALS. Part A: Heating a Hydrate

What Do You Think? Investigate GOALS. Part A: Heating a Hydrate Artist as Chemist Activity 5 Clay GOALS In this activity you will: Identify an unknown hydrate. Distinguish between a hydrated and an anhydrous compound. Examine and describe the effects of heat on clay.

More information

Solutions, Suspensions, and Colloids

Solutions, Suspensions, and Colloids Movie Special Effects Activity 3 Solutions, Suspensions, and Colloids GOALS In this activity you will: Explore different ways that materials can be mixed together to make new materials. Test some materials

More information

Modeling Organic Chemistry

Modeling Organic Chemistry Modeling Organic Chemistry Topic The shapes of hydrocarbon chains can be analyzed with models. Introduction With a few exceptions, including carbon dioxide and carbon monoxide, organic compounds are those

More information

Scientific Inquiry. Standards B 1.2 & B 1.9

Scientific Inquiry. Standards B 1.2 & B 1.9 Scientific Inquiry Standards B 1.2 & B 1.9 Scientific Inquiry The student will demonstrate an understanding of how scientific inquiry and technological design, including mathematical analysis, can be used

More information

HHPS WHMIS. Rules MSDS Hazard Codes Systems. Biology based. Chemistry based. Safety Symbols. Safety in the Lab. Lab Equipment

HHPS WHMIS. Rules MSDS Hazard Codes Systems. Biology based. Chemistry based. Safety Symbols. Safety in the Lab. Lab Equipment Safety Symbols HHPS WHMIS Safety in the Lab Rules MSDS Hazard Codes Systems Lab Equipment Chemistry based Biology based Safety Symbols We will be discussing two types of Information Systems Hazardous Household

More information

Chemical Bonds. MATERIALS 24-well microplate calcium chloride candle citric acid conductivity tester ethanol gloves iron ring lab apron

Chemical Bonds. MATERIALS 24-well microplate calcium chloride candle citric acid conductivity tester ethanol gloves iron ring lab apron Microscale Chemical Bonds Chemical compounds are combinations of atoms held together by chemical bonds. These chemical bonds are of two basic types ionic and covalent. Ionic bonds result when one or more

More information

Classifying Chemical Reactions: Lab Directions

Classifying Chemical Reactions: Lab Directions Classifying Chemical Reactions: Lab Directions Please Return Background: The power of chemical reactions to transform our lives is visible all around us in our homes, in our cars, even in our bodies. Chemists

More information

2. Why do the discharge tubes get hot after running for a period of time?

2. Why do the discharge tubes get hot after running for a period of time? EXPERIIMENT #2 FLAME TESTS Note: Experiments #2 and #3 can be completed together in a single lab period (90 minutes). A combined data sheet for the two labs can be found after Experiment #3. Discussion:

More information

Unit 2 Exam: Atomic Structure

Unit 2 Exam: Atomic Structure Name: Unit 2 Exam: Atomic Structure Date: 1. What is the total number of valence electrons in an atom of germanium in the ground state? A) 8 B) 2 C) 14 D) 4 2. An electron has a charge of A) 1 and the

More information

Objective: Science Classroom Laboratory Safety

Objective: Science Classroom Laboratory Safety Science Classroom Laboratory Safety Objective: Learn safety rules for working with chemicals and participating in a safe manner when carrying out lab procedures. Complete the safety and equipment assignment

More information

.Lab25. FlameTests A A. Pre-Lab Discussion. Purpose. Equipment. Materials. Safety,I II-n

.Lab25. FlameTests A A. Pre-Lab Discussion. Purpose. Equipment. Materials. Safety,I II-n '~.,,;. Name.:," _'._..--".-_-+-_-,~_,---_---:-~_._.'Date Class"_-'--.,"'-' FlameTests.Lab25 Text reference: Chapter 13, PP: 339-343 ~ Pre-Lab Discussion. The normal electron conflgurationof atoms or ions

More information

Atomic Spectra: Energy, Light, and the Electron

Atomic Spectra: Energy, Light, and the Electron Atomic Spectra: Energy, Light, and the Electron Introduction: An atom consists of a nucleus, containing protons and neutrons, and tiny electrons, which move around the nucleus. Picture a beehive where

More information

OTHS Academic Chemistry Lab Notebook

OTHS Academic Chemistry Lab Notebook Name Period 2 nd Six Weeks OTHS Academic Chemistry Lab Notebook An expert is a person who has made all the mistakes that can be made in a very narrow field. Table -Niels of Contents Bohr- Page Table of

More information

Factors in Reaction Rates

Factors in Reaction Rates Section 6 Factors in Reaction Rates What Do You See? Learning Outcomes In this section you will Discover conditions that make a reaction proceed faster or slower. Discuss explanations for why this happens

More information

Simple Battery. Alessandro Volta ( ) A replica of the first battery, built by Volta, can be created and used to understand electricity.

Simple Battery. Alessandro Volta ( ) A replica of the first battery, built by Volta, can be created and used to understand electricity. Simple Battery Alessandro Volta (1745 1827) Topic A replica of the first battery, built by Volta, can be created and used to understand electricity. Introduction Alessandro Volta devised the first wet-cell

More information

Determine Chemical Behavior

Determine Chemical Behavior Fun with the Periodic Table Activity 7 CHEM POETRY A sodium atom walks onto the scene, His valence electron s feeling keen, Positive that he will ionically bond With a halogen of whom he is fond. How Electrons

More information

Chemistry Lab Safety

Chemistry Lab Safety Slide 1 / 23 Slide 2 / 23 Chemistry Lab Safety 2015-10-27 www.njctl.org Slide 2 (Answer) / 23 Teacher Notes Click the link on the bottom of slide 3 to see a 10 minute lab safety video. Chemistry Identify

More information

Unit 7: The Periodic Table

Unit 7: The Periodic Table Unit 7: The Periodic Table Name Class Website: http://pilarz.weebly.com PS:7 TLW categorize elements of the periodic table according to common properties and explain how elements differ in structural parts

More information

What Do You Think? Investigate GOALS

What Do You Think? Investigate GOALS Ideal Toy Activity 7 Moving Molecules GOALS In this activity you will: Determine the effect of molecular size on molecular motion. Predict quantities of gas produced in chemical reactions. What Do You

More information

Lab: Chemical Reactions

Lab: Chemical Reactions Lab: Chemical Reactions PRE-LAB: Write the chemical equations (skeleton equations) for the following. Make sure to clearly label what type of product was produced (solid, liquid, gas, or no reaction).

More information

A. Cu 2+ B. Fe 2+ C. Ca 2+ D. Hg Which atom in the ground state has three halffilled orbitals?

A. Cu 2+ B. Fe 2+ C. Ca 2+ D. Hg Which atom in the ground state has three halffilled orbitals? Unit 3 - Electrons, Light, and Ions 15-16 Name: ate: 1. Which is the electron configuration of a neutral atom in the ground state with a total of six valence electrons?. 1s 2 2s 2 2p 2. 1s 2 2s 2 2p 4.

More information

Aqueous Balance: Equilibrium

Aqueous Balance: Equilibrium Activity 4 Aqueous Balance: Equilibrium GOALS In this activity you will: Determine ph and understand its meaning. Learn the basic principles behind equilibrium and the law of mass action. Calculate a solubility

More information

Sample Lab Manual Green Introductory Chemistry

Sample Lab Manual Green Introductory Chemistry Sample Lab Manual Green Introductory Chemistry Table of Contents Lab 1: Lab Reports Lab 2: Measurements Lab 3: Properties of Matter Density Lab 4: Mixtures and Solutions Lab 5: Chemical and Physical Change

More information

USING COINS TO MODEL RADIOACTIVE DECAY

USING COINS TO MODEL RADIOACTIVE DECAY USING OINS O MODL RADIOAIV DAY Introduction GNRAL SIN / HARD LVL Scientists can determine the age of very old objects based on the known rates of decay of the radioactive isotopes of certain elements.

More information

Today is Thursday, March (!) 1 st, 2018

Today is Thursday, March (!) 1 st, 2018 In This Lesson: Atomic Emissions (Lesson 2 of 4) Stuff You Need: Calculator Today is Thursday, March (!) 1 st, 2018 Pre-Class: [choose one] What is white light? How are fireworks made to be different colors?

More information

Duncan. Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 1. Figure 2. Figure 3

Duncan. Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 1. Figure 2. Figure 3 Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 1 Figure 2 Figure 3 Light Calculation Notes Here s how the type/form of EM radiation can be determined The amount

More information

Intermolecular Forces in Solids, Liquids, and Gases What Do You See?

Intermolecular Forces in Solids, Liquids, and Gases What Do You See? Section 2 Intermolecular Forces in Solids, Liquids, and Gases What Do You See? Learning Outcomes In this section you will Describe how the size and shape of molecules affect their physical state. Classify

More information

Laboratory 3. Development of an Equation. Objectives. Introduction

Laboratory 3. Development of an Equation. Objectives. Introduction Laboratory 3 Development of an Equation Objectives Apply laboratory procedures and make observations to investigate a chemical reaction. Based on these observations, identify the pattern of reactivity

More information

Lab Equipment and Safety

Lab Equipment and Safety Printed Page 3 [Notes/Highlighting] LESSON 1 Tools of the Trade Think About It A chef depends on a wide variety of gadgets and kitchenware to create delicious meals in the kitchen from whisks and mixers,

More information

Properties of Acids and Bases

Properties of Acids and Bases Page I - Identification and Classification Introduction Acids and bases are useful reagents in the chemistry laboratory and play an important role in biology and nature. What are acids and bases? What

More information

Plant Indicators for Acids and Bases

Plant Indicators for Acids and Bases SCIENCE EXPERIMENTS ON FILE Revised Edition 5.28-1 Plant Indicators for Acids and Bases Carole R. Goshorn Topic Acid/base indicators Time Preparation by teacher 50 minutes; Part B, 45 minutes! Safety Adult

More information

Objective: Determine the general properties of ionic compounds and compare those properties to the properties of a covalent compound.

Objective: Determine the general properties of ionic compounds and compare those properties to the properties of a covalent compound. LAB: PROPERTIES OF IONIC COMPOUNDS Name Introduction The goal of this lab is for you to discover some of the properties of ionic compounds. The physical properties of a substance such as flame color, crystal

More information

Alternative Reaction Pathways

Alternative Reaction Pathways Section 1 Energy and Entropy: Alternative Reaction Pathways What Do You See? Learning Outcomes In this section you will Apply the engineering-design process to scientific and everyday situations. Generate

More information

Nihal İKİZOĞLU 1. TYPE of CHEMICAL REACTIONS. Balance the following chemical equations. 1. Fe + H 2 SO 4 Fe 2 (SO 4 ) 3 + H 2

Nihal İKİZOĞLU 1. TYPE of CHEMICAL REACTIONS. Balance the following chemical equations. 1. Fe + H 2 SO 4 Fe 2 (SO 4 ) 3 + H 2 TYPE of CHEMICAL REACTIONS Balance the following chemical equations. 1. Fe + H 2 SO 4 Fe 2 (SO 4 ) 3 + H 2 2. C 2 H 6 + O 2 H 2 O + CO 2 3. KOH + H 3 PO 4 K 3 PO 4 + H 2 O 4. SnO 2 + H 2 Sn + H 2 O 5.

More information

Na Na + +e - Cl+e - Cl -

Na Na + +e - Cl+e - Cl - LAB-Ionic vs. Covalent Bonding Have you ever accidentally used salt instead of sugar? Drinking tea that has been sweetened with salt or eating vegetables that have been salted with sugar tastes awful!

More information

Name That Salt. The six salts used in this experiment are:

Name That Salt. The six salts used in this experiment are: Name That Salt Learning Objectives: In this experiment there are six unidentified salts labelled Salt 1 through Salt 6. Each team will be given one of these salts and their job is to determine the identity

More information

Producing and Harnessing Light

Producing and Harnessing Light Chemical Dominoes Activity 5 Producing and Harnessing Light GOALS In this activity you will: Describe the relationship between energy, frequency, and wavelength of electromagnetic radiation. Explain how

More information

EXPERIMENT 3 Flame Tests & Electron Configuration

EXPERIMENT 3 Flame Tests & Electron Configuration EXPERIMENT 3 Flame Tests & Electron Configuration INTRODUCTION Many elements produce colors in the flame when heated. The origin of this phenomenon lies in the arrangement, or configuration of the electrons

More information

Identification of White Powders

Identification of White Powders CSI Chemistry Activity 4 Identification of White Powders GOALS In this activity you will: Create and use a flowchart to identify an unknown entity. Identify an unknown ionic compound based on an understanding

More information

CALORIMETRY: Heat of Fusion of Ice

CALORIMETRY: Heat of Fusion of Ice Pre-Lab Discussion CALORIMETRY: Heat of Fusion of Ice When a chemical or physical change takes place, heat is either given off or absorbed That is, the change is either exothermic or endothermic It is

More information

Types of Chemical Reactions and Predicting Products

Types of Chemical Reactions and Predicting Products Types of Chemical Reactions and Predicting Products Pre-Lab Discussion There are many kinds of chemical reactions and several ways to classify them. One useful method classifies reactions into four major

More information

What Do You Think? Investigate GOALS. [Catch art: xxxxxxxxxxxxxxxxxx] Part A: Volume and Temperature of a Gas

What Do You Think? Investigate GOALS. [Catch art: xxxxxxxxxxxxxxxxxx] Part A: Volume and Temperature of a Gas Activity 4 Hot-Air Balloons [Catch art: xxxxxxxxxxxxxxxxxx] GOALS In this activity you will: Investigate the relationship between temperature and volume of a gas. Understand why the Kelvin scale is used

More information

Section IV: Moving Electrons

Section IV: Moving Electrons Section IV: Moving Electrons Lesson 17 Technicolor Atoms Lesson 18 Life on the Edge Lesson 19 Noble Gas Envy Lesson 20 Getting Connected Lesson 21 Salty Eights Lesson 22 Isn t It Ionic? Lesson 23 Alchemy

More information

Identification of an Unknown Compound through Mass Correlations

Identification of an Unknown Compound through Mass Correlations EXPERIMENT Identification of an Unknown Compound through Mass Correlations PURPOSE To carry out a series of decomposition reactions for five different unknown, and use stoichiometry in order to identify

More information

Western Carolina University

Western Carolina University CHEM 132 Lab 03 Chemistry 132 Lab 03 Flame Test and Electron Configuration Prelaboratory Exercise Go to Chem21Labs.com and complete the on-line prelab by answering the questions below. The prelab will

More information

Lab Safety Rules GENERAL GUIDELINES. 1. Conduct yourself in a responsible manner at all times in the laboratory.

Lab Safety Rules GENERAL GUIDELINES. 1. Conduct yourself in a responsible manner at all times in the laboratory. Lab Safety Rules GENERAL GUIDELINES 1. Conduct yourself in a responsible manner at all times in the laboratory. 2. Follow all written and verbal instructions carefully. If you do not understand a direction

More information

Scientific Notation and Scaled Models

Scientific Notation and Scaled Models Scientific Notation and Scaled Models Topic Scientific notation is a practical way to compare the sizes of bodies in the solar system. Introduction Scientific notation was developed to aid scientists in

More information

Experiment 5. Heat and Temperature

Experiment 5. Heat and Temperature Experiment 5 Heat and Temperature This coffee isn t hot enough! E5-1 E5-2 The Task In this experiment you will study the heat flow associated with a range of processes and examine the relationship between

More information

Relative Solubility of Transition Elements

Relative Solubility of Transition Elements Microscale Relative Solubility of Transition Elements The transition elements are found in periods 4, 5, and 6 between groups 2 and 13 of the periodic table. As the atomic number increases across a row

More information

LAB TEST Physical and Chemical Changes

LAB TEST Physical and Chemical Changes NAME: DATE: STATION: LAB TEST Physical and Chemical Changes PURPOSE: To observe physical and chemical changes in matter MATERIALS: 3 medium test tubes 1 small test tube test tube rack test tube holder

More information

Mahopac Central School District Curriculum Introduction to Science 8

Mahopac Central School District Curriculum Introduction to Science 8 Introduction to Science 8 A. The goal of science is to understand the natural world 1. As you make new observations and test new explanations your view of the natural world may change again and again 2.

More information