Organic Mechanisms 1

Size: px
Start display at page:

Download "Organic Mechanisms 1"

Transcription

1 Organic Mechanisms 1 Concepts The key ideas required to understand this section are: Concept Book page Chemical properties of alkanes 314 Chemical properties of alkenes 318 Bonding in alkenes 320 Bonding in benzene 323 Chemical properties of benzene 324 Mechanisms of organic reactions A reaction mechanism is a step-by-step description of the order in which bonds break and atoms rearrange during a reaction. A mechanism proposed by a chemist must take into account all the known facts about a reaction if a mechanism does not fit in with any new facts discovered it is discarded or refined. Many mecha nisms, however, have been sufficiently tested to become part of the theory of organic chemistry. Why do we study mechanisms in organic chemistry? There are very many reactions in organic chemistry and studying mechanisms helps us to: (a) make sense of (i.e. see patterns in) the reactions; (b) change the experimental conditions under in order to increase the yield of products; and (c) predict what might happen in a reaction. Types of organic reactions There are four types of reaction: (i) Substitution reactions (where one atom, ion or group is substituted for another) e.g.: X + AB AX + B 1

2 (ii) Addition reactions (where one reagent is added to another without the loss of any other atoms). Alkenes undergo addition reactions, where a reagent adds across the double bond: (iii) Elimination reactions (the reverse of addition; atoms or groups are removed from a molecule creating a multiple bond): (iv) Rearrangements (where an atom or group goes from one position in a molecule to another): Key factors in reaction mechanisms (i) Bond-breaking A covalent bond between two atoms can be broken in three ways: Free radicals are atoms, or groups of atoms, having an odd unpaired electron. (ii) Attack! (or love at first sight?) A reagent that is attracted towards a region of high electron density (an electron pair) is called an electrophile ( electron lover ). Electrophiles are often positively charged; e.g.: H3O+, NO2+ (the nitronium ion). Sulfur trioxide, SO3 is also an elec trophile. A reagent that possesses a pair of electrons that it is anxious to share with a nucleus that is short of electrons is called a nucleophile ( nucleus lover ), e.g.: OH, H2O, Br, NH3. Because these two reagents find what they are looking for in each other, they have a natural attraction: X+ + Y XY electrophile + nucleophile + product Curly arrows are used in equations to show the movement of electrons; e.g., in heterolytic fission: The tail of an arrow shows where an electron pair moves from, the head of the arrow shows where it moves to. If a covalent bond breaks, the tail of the arrow starts at the middle of the bond. A half arrow or fishook is used to show the movement of one electron: 2

3 Mechanism of the chlorination of methane Methane and chlorine do not react together when they are in darkness, but in sunlight the reaction between them is very vigorous. The chlorination of methane in sunlight is an example of a substitution reaction, and the overall equation is: CH4 + Cl2 CH3Cl + HCl The reaction proceeds by the following steps: In the presence of sunlight (ultraviolet light), the chlorine molecule undergoes homolytic fission and two free radicals are formed: Cl2 2Cl (the initiation step). This step could also be written The chlorine radical then takes a hydrogen atom from methane, hydrogen chloride and a methyl radical are formed: CH4 + Cl HCl + CH3 The methyl radical then takes a chlorine atom from a chlorine molecule and chloromethane and another chlorine radical is produced: CH3 + Cl2 CH3Cl + Cl The chlorine radical formed can now take another hydrogen atom from either another molecule of methane or a molecule of chloromethane. These last three reactions keep the process going because although each step uses up a free radical, it produces one as well (they are propogation reactions). The process is called a chain reaction. The reaction chain ends when two free radicals collide and combine (a termina tion step). This can happen in a number of ways: Cl + Cl Cl2 CH3 + Cl CH3Cl or even: CH3 + CH3 C2H6 Because a mixture of products (C2 H6, CH3Cl, CH2Cl2, CHCl3 and CCl4) can result from these reactions, you can see that this reaction is not really a suitable method to prepare chloromethanes in the laboratory. Addition reactions of alkenes (i) With bromine Ethene and bromine react to form 1,2-dibromoethane: 3

4 A bromine molecule is non-polar, but as it approaches the ethene molecule it becomes polarized; the electrons in the - bond of ethene repel the electrons in the bromine molecule: The positive end of the bromine molecule attacks the double bond and a bridged bromonium ion is formed. This addition reaction therefore starts by the electrophilic attack of the positive end of the bromine molecule on ethene. The positive bromonium ion is rapidly attacked by the negatively charged bromide ion and 1,2-dibromoethene is formed. (ii) With hydrogen bromide 4

5 When hydrogen bromide reacts with ethene, bromoethane is formed: Hydrogen bromide is a polar molecule, H δ+ Br δ. The first step in the reaction is electrophilic attack of a proton on the π-bond of ethene and the H Br bond breaks. A positively charged carbocation is formed, which reacts with the bromide ion to form bromoethane. The stability of carbocations Carbocations are organic cations with the positive charge carried on the carbon. If propene reacted with HBr, there would be two possible carbocations: products: giving two possible In fact, much more 2-bromopropane is formed, because carbocation CH3 C + H CH3 is the more stable of the two possibilities; it contains two alkyl groups ( CH3) which tend to push electron density on to a carbon atom joined to them. The more electron density that is pushed on to the carbon with the positive charge, the more stable is the cation. CH3 C + H CH3 CH3 CH2 C + H2 two alkyl groups stabilising one alkyl group stabilising the carbocation the carbocation 5

6 The addition of a hydrogen halide to a double bond is described by Markownikov s rule: Markovnikov s rule predicts the major product when HX (X = Cl or Br) reacts with an alkene: the major product is the one in which the hydrogen atom attaches itself to the carbon atom carrying the larger number of hydrogen atoms. The nitration of benzene A mixture of concentrated sulphuric acid and nitric acids added to benzene results in the formation of nitrobenzene. This is a substitution reaction the nitro group is substituted for a hydrogen atom in the benzene ring: The reaction between concentrated sulphuric and nitric acids is shown by the following equation: HNO3 + 2H2SO4 NO2 + + H3O + + 2HSO4 The powerful electrophile NO2 + is produced, which attacks the clouds of electron density above and below the benzene ring then bonds to one of the carbon atoms in the ring. The doughnuts of delocalized electrons are disrupted and the intermediate cation formed immediately breaks down into nitrobenzene so that the more stable delocalized system can be re-formed; in the process it gives up a proton to HSO4, producing H2SO4 again. The reaction is classified as an electrophilic substitution reaction. Other electrophilic substitution reactions include halogenation, alkylation and acylation. Halogenation Here a halogen (e.g. chlorine) is substituted for a hydrogen atom on a benzene ring. The reaction takes place in the presence of a catalyst, such as iron (III) chloride, which draws electron density from the halogen molecule towards it. The halogen molecule becomes polarized, its positive end acts as an electrophile and attacks the benzene ring: 6

7 Alkylation (a Friedel Crafts reaction) A halogenoalkane reacts with benzene in the presence of a catalyst, and one of the hydrogen atoms on the benzene ring is replaced by an alkyl group. For example, chloromethane reacts with benzene in the presence of catalyst aluminium chloride and toluene is formed: The mechanism is similar to that of electrophilic substitution reactions already discussed and involves attack by the positive end of the complex CH3 + Cl -.AlCl3. Aluminium chloride draws electron density from chloromethane and further polarizes the molecule Acylation (another Friedel Crafts reaction) An acid chloride reacts with benzene, in the presence of aluminium chloride, and a ketone is formed (a hydrogen atom on benzene is replaced with a COR group). For example: The attacking electrophile is the polarised complex: δ + δ- H3CCOCl.AlCl3 12 Aromatics and Hűckel s Rule. Aromaticity is a chemical property in which a planar ring of alternating single and double bonds (according to its Kekulé structure), has more stability than would be expected. Benzene is the parent compound of this class, but there are others and lone pairs from atoms other than carbon can be included. The stability comes from all atoms in the ring having an equal share of electrons which are delocalised in an electron cloud. 13 Hűckel s Rule This states that a planar molecule, in which all atoms contribute electrons, that has 4n + 2 delocalized electrons (where n is an whole number) will have aromatic properties. For example benzene has a planar framework (see p323) where each carbon uses three of its valence electrons to bond to two other carbons in the ring and a hydrogen atom: 7

8 There is one p electron left over on each carbon atom and these delocalise into an electron cloud above and below the ring: This is in accordance with Hűckel s Rule, where there are 6 delocalised electrons: i.e. 4n+2 where n = Is naphthalene aromatic? The Kekulé structure of naphthalene is shown above. Here, we have another system of alternating single and double bonds with 10 electrons (one on each carbon) available for delocalisation. If n= 2, then 4n+2 = 10 so naphthalene is aromatic. 15 When a lone pair is involved eg furan. Carbon can form rings in which an atom of another element is involved. These are called heterocyclic molecules. Furan is an example: It is aromatic and obeys Hűckel s Rule; here oxygen has two lone pairs and one of those pairs delocalises with the single electrons available on each of the four carbons: Ie = 6 or 4n+2 when n= 1. 8

9 Revision Questions 1. A compound found in the gasoline fraction of crude oil is decane, C 10 H 22. (i) Write a balanced equation for the complete combustion of decane in oxygen. (ii) What products would you expect to find as a result of the incomplete combustion of decane? 2. But-1-ene was reacted with a solution of bromine, the bromine was in excess. (i) Assuming the dibromoalkane is the sole product of this reaction, write a balanced equation for the reaction. Give the systematic name of the product. (ii) If 15 g of but-1-ene produced 35 g of halogenated product, calculate the percentage yield of the reaction. 3. (i) Write the structural formula of propene. (ii) Write the structural formula and name the product formed by polymerization of this alkene. 4. Explain why ethene reacts with bromine very rapidly, but the reaction of benzene with bromine is slow unless AlBr3 is present. 5. Which of the following molecules are aromatic? 6. W hich of the following heterocyclic molecules are aromatic? 9

10 Answers Exercise 17A (i) The bridging bromine atom is in the way of the carbon atoms on one side there is steric hindrance by the bridging atom. (ii) trans-1,2-dibromoethene Exercise 17B The possible carbocations are: 2. (i) CH 2 =CHCH 2 CH 3 + Br 2 CH 2 BrCHBrCH 2 CH 3 1,2-dibromobutane. (ii) 1 mol of CH 2 =CHCH 2 CH 3 produces 1 mol of CH 2 BrCHBrCH 2 CH 3 ; 56g of CH 2 =CHCH 2 CH 3 produces 216g CH 2 BrCHBrCH 2 CH 3 ; and g 15 g of CH 2 =CHCH 2 CH 3 produces 56 CH 2 BrCHBrCH 2 CH 3 = 58 g theoretical yield of CH 2 BrCHBrCH 2 CH 3 is the more stable because three alkyl (methyl) groups are pushing electron density on to the positive carbon atom. The major product would therefore be: CH CBr CH3 CH3 Exercise 17C The overall reaction is Therefore the percentage yield obtained = actual yield 100 = = 60%. theoretical yield (i) CH 2 =CHCH 3. (ii) -CH 2 -CHCH 3 -CH 2 -CHCH 3 -CH 2 -CHCH 3 - CH 2 -CHCH 3 -CH 2 -CHCH 3 -, polypropene. 4. Ethene reacts rapidly in an addition reaction: CH 2 =CH 2 + Br 2 CH 2 Br-CH 2 Br The electron density in benzene is delocalized, therefore it does not undergo addition reactions so readily. In the presence of AlBr3 benzene undergoes substitution: The mechanism is as follows: (ii) C, CO in addition to CO2 and H2O. 5. (i) No, there are 8 electrons (one on each carbon) available for delocalisation. This does not conform to Hűckel s Rule (4n+2). The shape of cyclooctatatraene is puckered and non- planar. (ii) Yes, each carbon atom donates 1 electron and there is an extra negative charge making 6 electrons in all. 10

11 6. ( (iii) Yes each carbon provides 1 electron making 14 this is 4n+2 if n= 3. (iv) Yes, the positive charge indicates an electron has been lost the are therefore 2 electrons, one on each of the carbons that are not charged. This conforms to Hűckel s Rule if n= 0. (i) Yes, pyridine is aromatic. Nitrogen has a lone pair of electrons, but they do not get involved in the delocalised ring of electrons each carbon contributes 1 electron and nitrogen, which has 5 valence electrons also donates I electron making six. The lone pair on nitrogen is available for bonding and this makes pyridine basic.(ii) Yes, sulfur donates 2 electrons (as oxygen does in furan) and there is 1 electron per carbon atom making six in all. (iii) Yes, nitrogen has a lone pair of electrons available, which together with 1 from each carbon atom, makes 6. (iv) No the carbons are bonded to 2 hydrogens and 2 carbons each so cannot contribute any electrons. Rob Lewis and Wynne Evans, 2001, 2006, 2011, Chemistry, Palgrave Macmillan. 11

Chapter 17. Reactions of Aromatic Compounds

Chapter 17. Reactions of Aromatic Compounds Chapter 17 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Although benzene s pi electrons are in a stable aromatic system, they are available to attack a strong electrophile to give

More information

Class XI Chapter 13 Hydrocarbons Chemistry

Class XI Chapter 13 Hydrocarbons Chemistry Question 13.1: How do you account for the formation of ethane during chlorination of methane? Chlorination of methane proceeds via a free radical chain mechanism. The whole reaction takes place in the

More information

Overview of Types of Organic Reactions and Basic Concepts of Organic Reaction Mechanisms

Overview of Types of Organic Reactions and Basic Concepts of Organic Reaction Mechanisms Overview of Types of Organic Reactions and Basic Concepts of Organic Reaction Mechanisms Dr. Solomon Derese 1 A chemical reaction is the transformation of one chemical or collection of chemicals into another

More information

Electrophilic Aromatic Substitution. Dr. Mishu Singh Department of chemistry Maharana Pratap Govt.P.G.College Hardoi

Electrophilic Aromatic Substitution. Dr. Mishu Singh Department of chemistry Maharana Pratap Govt.P.G.College Hardoi Electrophilic Aromatic Substitution Dr. Mishu Singh Department of chemistry Maharana Pratap Govt.P.G.College Hardoi 1 Recall the electophilic addition of HBr (or Br2) to alkenes H + nu cleophile H Br H

More information

Benzenes & Aromatic Compounds

Benzenes & Aromatic Compounds Benzenes & Aromatic Compounds 1 Structure of Benzene H H C C C H C 6 H 6 H C C C H H A cyclic conjugate molecule Benzene is a colourless odourless liquid, boiling at 80 o C and melting at 5 o C. It is

More information

7 Benzene and aromatic compounds Answers

7 Benzene and aromatic compounds Answers Practice: pages 161 163 1 Answer is D. Methyl takes precedence over nitro and, therefore, automatically takes position 1, which doesn t have to be included in the name. [1] 2 Answer is C. If Kekulé was

More information

Aromatic Compounds II

Aromatic Compounds II 2302272 Org Chem II Part I Lecture 2 Aromatic Compounds II Instructor: Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th Recommended Textbook: Chapter 17 in Organic Chemistry, 8 th Edition, L.

More information

Q.1 Draw out suitable structures which fit the molecular formula C 6 H 6

Q.1 Draw out suitable structures which fit the molecular formula C 6 H 6 Aromatic compounds 2814 1 BENZENE Structure Primary analysis revealed benzene had an... empirical formula of and a molecular formula of 6 6 Q.1 Draw out suitable structures which fit the molecular formula

More information

Organic Chemistry SL IB CHEMISTRY SL

Organic Chemistry SL IB CHEMISTRY SL Organic Chemistry SL IB CHEMISTRY SL 10.1 Fundamentals of organic chemistry Understandings: A homologous series is a series of compounds of the same family, with the same general formula, which differ

More information

4. AROMATIC COMPOUNDS

4. AROMATIC COMPOUNDS BOOKS 1) Organic Chemistry Structure and Function, K. Peter C. Vollhardt, Neil Schore, 6th Edition 2) Organic Chemistry, T. W. Graham Solomons, Craig B. Fryhle 3) Organic Chemistry: A Short Course, H.

More information

Mechanisms. . CCl2 F + Cl.

Mechanisms. . CCl2 F + Cl. Mechanisms 1) Free radical substitution Alkane à halogenoalkane Initiation: Propagation: Termination: Overall: 2) Ozone depletion UV light breaks the C Cl bond releasing chlorine radical CFCl 3 F à. CCl2

More information

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI - 87

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI - 87 HYDROCARBONS 1. Why do alkenes prefer to undergo electrophilic addition reaction while arenes prefer electrophilic substitution reactions? Explain. 2. Alkynes on reduction with sodium in liquid ammonia

More information

Chapter 10 Radical Reactions"

Chapter 10 Radical Reactions Chapter 10 Radical Reactions Radicals are intermediates with an unpaired electron H. Cl. Hydrogen radical t Often called free radicals What are radicals? Chlorine radical t Formed by homolytic bond cleavage

More information

Organic Chemistry, 7 L. G. Wade, Jr. Chapter , Prentice Hall

Organic Chemistry, 7 L. G. Wade, Jr. Chapter , Prentice Hall Organic Chemistry, 7 th Edition L. G. Wade, Jr. Chapter 17 Reactions of Aromatic Compounds 2010, Prentice Hall Electrophilic Aromatic Substitution Although h benzene s pi electrons are in a stable aromatic

More information

11/26/ Polycyclic Aromatic Compounds. Polycyclic Aromatic Compounds. Polycyclic Aromatic Compounds

11/26/ Polycyclic Aromatic Compounds. Polycyclic Aromatic Compounds. Polycyclic Aromatic Compounds 9.5 Polycyclic Aromatic Compounds The general concept of aromaticity can be extended to include polycyclic aromatic compounds Benzo[a]pyrene is one of the cancer-causing substances found in tobacco smoke

More information

The now-banned diet drug fen-phen is a mixture of two synthetic substituted benzene: fenfluramine and phentermine.

The now-banned diet drug fen-phen is a mixture of two synthetic substituted benzene: fenfluramine and phentermine. The now-banned diet drug fen-phen is a mixture of two synthetic substituted benzene: fenfluramine and phentermine. Chemists have synthesized compounds with structures similar to adrenaline, producing amphetamine.

More information

18.1 Arenes benzene compounds Answers to Exam practice questions

18.1 Arenes benzene compounds Answers to Exam practice questions Pages 230 232 1 a) Benzene has a planar molecule ; with six carbon atoms in a regular hexagon. Each carbon atom forms a normal covalent ( ) bond with its two adjacent carbons atoms and a hydrogen atom.

More information

Fundamentals of Organic Chemistry

Fundamentals of Organic Chemistry Fundamentals of Organic Chemistry CHEM 109 For Students of Health Colleges Credit hrs.: (2+1) King Saud University College of Science, Chemistry Department CHEM 109 CHAPTER 3. AROMATIC HYDROCARBONS Aromatic

More information

Organic Chemistry. Radical Reactions

Organic Chemistry. Radical Reactions For updated version, please click on http://ocw.ump.edu.my Organic Chemistry Radical Reactions by Dr. Seema Zareen & Dr. Izan Izwan Misnon Faculty Industrial Science & Technology seema@ump.edu.my & iezwan@ump.edu.my

More information

Organic Chemistry. Second Edition. Chapter 19 Aromatic Substitution Reactions. David Klein. Klein, Organic Chemistry 2e

Organic Chemistry. Second Edition. Chapter 19 Aromatic Substitution Reactions. David Klein. Klein, Organic Chemistry 2e Organic Chemistry Second Edition David Klein Chapter 19 Aromatic Substitution Reactions Copyright 2015 John Wiley & Sons, Inc. All rights reserved. Klein, Organic Chemistry 2e 19.1 Introduction to Electrophilic

More information

12/27/2010. Chapter 15 Reactions of Aromatic Compounds

12/27/2010. Chapter 15 Reactions of Aromatic Compounds Chapter 15 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Arene (Ar-H) is the generic term for an aromatic hydrocarbon The aryl group (Ar) is derived by removal of a hydrogen atom

More information

There are two main electronic effects that substituents can exert:

There are two main electronic effects that substituents can exert: Substituent Effects There are two main electronic effects that substituents can exert: RESONANCE effects are those that occur through the π system and can be represented by resonance structures. These

More information

Benzene and Aromatic Compounds

Benzene and Aromatic Compounds 1 Background Benzene and Aromatic Compounds Benzene (C 6 H 6 ) is the simplest aromatic hydrocarbon (or arene). Benzene has four degrees of unsaturation, making it a highly unsaturated hydrocarbon. Whereas

More information

Chapter 17 Reactions of Aromatic Compounds

Chapter 17 Reactions of Aromatic Compounds rganic Chemistry, 6 th Edition L. G. Wade, Jr. Chapter 17 Reactions of Aromatic Compounds Jo Blackburn Richland College, Dallas, TX Dallas County Community College District 2006, Prentice all Electrophilic

More information

Chapter 15. Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution on Arenes. The first step is the slow, rate-determining step

Chapter 15. Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution on Arenes. The first step is the slow, rate-determining step Electrophilic Aromatic Substitution on Arenes Chapter 15 Reactions of Aromatic Compounds The characteristic reaction of aromatic rings is substitution initiated by an electrophile halogenation nitration

More information

QUESTIONSHEET 1. ELECTROPHILIC SUBSTITUTION I (Nitration)

QUESTIONSHEET 1. ELECTROPHILIC SUBSTITUTION I (Nitration) TOPI4 ASWERS & MARK SEMES QUESTIOSEET 1 ELETROPILI SUBSTITUTIO I (itration) a) πelectrons in arenes are delocalised electrophiles are less strongly attracted b) (i) O2 O 3 2 O (ii) oncentrated sulfuric

More information

Chapter 15 Reactions of Aromatic Compounds

Chapter 15 Reactions of Aromatic Compounds Chapter 15 1 Chapter 15 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Arene (Ar-H) is the generic term for an aromatic hydrocarbon The aryl group (Ar) is derived by removal of a hydrogen

More information

5, Organic Chemistry-II (Reaction Mechanism-1)

5, Organic Chemistry-II (Reaction Mechanism-1) Subject Chemistry Paper No and Title Module No and Title Module Tag 5, Organic Chemistry-II (Reaction Mechanism-1) 28, Arenium ion mechanism in electrophilic aromatic substitution, orientation and reactivity,

More information

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology Organic Chemistry M. R. Naimi-Jamal Faculty of Chemistry Iran University of Science & Technology Chapter 5-2. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry,

More information

FACTFILE: GCE CHEMISTRY

FACTFILE: GCE CHEMISTRY FATFILE: GE EMISTRY 2.4 ALKENES Alkenes Students should be able to: 2.4.1 define the term unsaturated hydrocarbon and explain why alkenes are described as unsaturated hydrocarbons; 2.4.2 recall the qualitative

More information

Aromatic Hydrocarbons / Arenes

Aromatic Hydrocarbons / Arenes Aromatic ydrocarbons / Arenes There are two major classes of organic chemicals aliphatic : straight or branched chain organic substances aromatic or arene: includes one or more ring of six carbon atoms

More information

Synthesis Using Aromatic Materials

Synthesis Using Aromatic Materials Chapter 10 Synthesis Using Aromatic Materials ELECTROPHILIC AROMATIC SUBSTITUTION AND DIRECTED ORTHO METALATION Copyright 2018 by Nelson Education Limited 1 10.2 p Bonds Acting as Nucleophiles Copyright

More information

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition 16. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry, 7 th edition Substitution Reactions of Benzene and Its Derivatives Benzene is aromatic: a cyclic conjugated

More information

Chem!stry. The Chemistry of Benzene C 6H 6 Macroconcept Models

Chem!stry. The Chemistry of Benzene C 6H 6 Macroconcept Models Chem!stry Name: ( ) Class: Date: / / The Chemistry of Benzene C 6H 6 Macroconcept Models This booklet covers essential information concerning the chemistry of benzene, including its structure, bonding

More information

ZAHID IQBAL WARRAICH

ZAHID IQBAL WARRAICH Q1 (a) State the reagents and conditions needed to convert benzene into (i) chlorobenzene, (ii) bromobenzene, (iii) nitrobenzene....[4] (b) The nitration of benzene is a two-step reaction that can be represented

More information

Topic 10 Organic Chemistry. Ms. Kiely IB Chemistry (SL) Coral Gables Senior High School

Topic 10 Organic Chemistry. Ms. Kiely IB Chemistry (SL) Coral Gables Senior High School Topic 10 Organic Chemistry Ms. Kiely IB Chemistry (SL) Coral Gables Senior High School -Alkanes: have low reactivity and undergo free radical substitution. -Alkenes: are more reactive than alkanes, since

More information

Benzene and Aromatic Compounds. Chapter 15 Organic Chemistry, 8 th Edition John McMurry

Benzene and Aromatic Compounds. Chapter 15 Organic Chemistry, 8 th Edition John McMurry Benzene and Aromatic Compounds Chapter 15 Organic Chemistry, 8 th Edition John McMurry 1 Background Benzene (C 6 H 6 ) is the simplest aromatic hydrocarbon (or arene). Four degrees of unsaturation. It

More information

Study of Chemical Reactions

Study of Chemical Reactions Study of Chemical Reactions Introduction to Mechanisms There are four different types of organic reactions: Additions Eliminations Substitutions Rearrangements 149 Addition Reactions Occur when 2 reactants

More information

What is the major product of the following reaction?

What is the major product of the following reaction? What is the major product of the following reaction? Predict the major product of the following reaction: 2-methylbutane + Br 2 /light energy? A) 1-bromo-2-methylbutane B) 2-bromo-2-methylbutane C) 2-bromo-3-methylbutane

More information

Organic Chemistry HL IB CHEMISTRY HL

Organic Chemistry HL IB CHEMISTRY HL Organic Chemistry HL IB CHEMISTRY HL Understandings: Nucleophilic Substitution Reactions: SN1 represents a nucleophilic unimolecular substitution reaction and SN2 represents a nucleophilic bimolecular

More information

I. Multiple Choice Questions (Type-I)

I. Multiple Choice Questions (Type-I) Unit 13 HYDROCARBONS I. Multiple Choice Questions (Type-I) 1. Arrange the following in decreasing order of their boiling points. (A) n butane (B) 2 methylbutane (C) n-pentane (D) 2,2 dimethylpropane A

More information

Ch 16 Electrophilic Aromatic Substitution

Ch 16 Electrophilic Aromatic Substitution Ch 16 Electrophilic Aromatic Substitution Mechanism - Aromatic rings typically undergo substitution, where an H is replaced with an electrophile (E+). - The rings do not typically undergo addition across

More information

OCR (A) Chemistry A-level. Module 6: Organic Chemistry and Analysis

OCR (A) Chemistry A-level. Module 6: Organic Chemistry and Analysis OCR (A) Chemistry A-level Module 6: Organic Chemistry and Analysis Organic Synthesis Notes by Adam Robertson DEFINITIONS Heterolytic fission: The breaking of a covalent bond when one of the bonded atoms

More information

Plymstock School. Arenes. P.J.McCormack

Plymstock School. Arenes. P.J.McCormack Plymstock School 1 A2 Chemistry F324: Rings, Polymers & Analysis 4.1.1 - Arenes Arenes P.J.McCormack 2 4.1.1 Arenes Objective Checklist Draw the structure of benzene Explain the terms arene and aromatic

More information

CHEM Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution (homework) W

CHEM Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution (homework) W CHEM 2425. Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution (homework) W Short Answer Exhibit 16-1 MATCH a structure or term from the following list with each description below. Place

More information

Physical Properties: Structure:

Physical Properties: Structure: Nomenclature: Functional group suffix = -ol Functional group prefix = hydroxy- Primary, secondary or tertiary? Alcohols are described as primary (1 o ), secondary (2 o ) or tertiary (3 o ) depending on

More information

Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or

Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or nonaromatic? 1 2 Classify cyclononatetrene and it s various ions

More information

Organic Chemistry. Chapter 10

Organic Chemistry. Chapter 10 Organic Chemistry Chapter 10 10.1 Homologous Series Overview We Are Here Organic Chemistry Organic chemistry is the chemistry of carbon containing compounds. From the very simple: methane To the very complex:

More information

Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution

Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution Paul D. Adams University of Arkansas Substitution Reactions of Benzene and Its Derivatives

More information

Lesmahagow High School CfE Advanced Higher Chemistry

Lesmahagow High School CfE Advanced Higher Chemistry Lesmahagow High School AHChemistry Organic Chemistry& Instrumental Analysis Lesmahagow High School CfE Advanced Higher Chemistry Unit 2 Organic Chemistry and Instrumental Analysis Alkanes, Alkenes and

More information

Chemistry of Benzene: Electrophilic Aromatic Substitution

Chemistry of Benzene: Electrophilic Aromatic Substitution Chemistry of Benzene: Electrophilic Aromatic Substitution Why this Chapter? Continuation of coverage of aromatic compounds in preceding chapter focus shift to understanding reactions Examine relationship

More information

Chapter 1 Reactions of Organic Compounds. Reactions Involving Hydrocarbons

Chapter 1 Reactions of Organic Compounds. Reactions Involving Hydrocarbons Chapter 1 Reactions of Organic Compounds Reactions Involving Hydrocarbons Reactions of Alkanes Single bonds (C-C) are strong and very hard to break, therefore these compounds are relatively unreactive

More information

Chapter 12. Reactions of Arenes: Electrophilic Aromatic Substitution. Class Notes. A. The method by which substituted benzenes are synthesized

Chapter 12. Reactions of Arenes: Electrophilic Aromatic Substitution. Class Notes. A. The method by which substituted benzenes are synthesized Chapter 12 Reactions of Arenes: Electrophilic Aromatic Substitution Chapter 12 suggested problems: 22, 23, 26, 27, 32, 33 Class Notes I. Electrophilic aromatic substitution reactions A. The method by which

More information

More Nomenclature: Common Names for Selected Aromatic Groups. Aryl = Ar = aromatic group. It is a broad term, and includes any aromatic rings.

More Nomenclature: Common Names for Selected Aromatic Groups. Aryl = Ar = aromatic group. It is a broad term, and includes any aromatic rings. More Nomenclature: Common Names for Selected Aromatic Groups Phenyl group = or Ph = C 6 H 5 = Aryl = Ar = aromatic group. It is a broad term, and includes any aromatic rings. Benzyl = Bn = It has a -CH

More information

Chapter 17: Reactions of Aromatic Compounds

Chapter 17: Reactions of Aromatic Compounds 1 Chapter 17: Reactions of Aromatic Compounds I. Introduction to Electrophilic Aromatic Substitution (EAS) A. General Mechanism II. Reactions of Electrophilic Aromatic Substitution A. Halogenation (E =

More information

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2 16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2 Dr M. Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran m-mehrdad@guilan.ac.ir Based

More information

Page (Extra space) (4) Benzene can be converted into amine U by the two-step synthesis shown below.

Page (Extra space) (4) Benzene can be converted into amine U by the two-step synthesis shown below. Q1. The hydrocarbons benzene and cyclohexene are both unsaturated compounds. Benzene normally undergoes substitution reactions, but cyclohexene normally undergoes addition reactions. (a) The molecule cyclohexatriene

More information

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2 16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2 Dr M. Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran m-mehrdad@guilan.ac.ir Based

More information

Aromatic Hydrocarbons / Arenes

Aromatic Hydrocarbons / Arenes Aromatic ydrocarbons / Arenes There are two major classes of organic chemicals aliphatic : straight or branched chain organic substances aromatic or arene: includes one or more ring of six carbon atoms

More information

Organic Chemistry. Why are these compounds called Organic. What is a Hydrocarbon? Questions: P167 Read

Organic Chemistry. Why are these compounds called Organic. What is a Hydrocarbon? Questions: P167 Read Organic Chemistry The fact that carbon can form a wide variety of relatively stable long chain molecules results in this very important branch of Chemistry: Organics. Carbon forms strong covalent bonds

More information

Organic Chemistry Review: Topic 10 & Topic 20

Organic Chemistry Review: Topic 10 & Topic 20 Organic Structure Alkanes C C σ bond Mechanism Substitution (Incoming atom or group will displace an existing atom or group in a molecule) Examples Occurs with exposure to ultraviolet light or sunlight,

More information

Chemistry 2000 Lecture 18: Reactions of organic compounds

Chemistry 2000 Lecture 18: Reactions of organic compounds hemistry 2000 Lecture 18: Reactions of organic compounds Marc R. Roussel March 6, 2018 Marc R. Roussel Reactions of organic compounds March 6, 2018 1 / 27 Reactions of organic compounds Organic chemists

More information

3.2.8 Haloalkanes. Nucleophilic Substitution. 267 minutes. 264 marks. Page 1 of 36

3.2.8 Haloalkanes. Nucleophilic Substitution. 267 minutes. 264 marks. Page 1 of 36 3.2.8 Haloalkanes Nucleophilic Substitution 267 minutes 264 marks Page 1 of 36 Q1. (a) The equation below shows the reaction of 2-bromopropane with an excess of ammonia. CH 3 CHBrCH 3 + 2NH 3 CH 3 CH(NH

More information

Chapter 17 Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution

Chapter 17 Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution Chapter 17 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Electrophile substitutes for a hydrogen on the benzene ring. Chapter 17: Aromatics 2-Reactions Slide 17-2 1 Mechanism Step

More information

Arenes occur naturally in many substances, and are present in coal and crude oil. Aspirin, for example, is an aromatic compound, an arene: HO

Arenes occur naturally in many substances, and are present in coal and crude oil. Aspirin, for example, is an aromatic compound, an arene: HO Naming Aromatic compounds contain one or more benzene rings (while aliphatic compounds do not contain benzene rings). Another term for a compound containing a benzene ring is arene. The basic benzene ring,

More information

CHEMISTRY CHAPTER- HYDROCARBONS (I PUC) One mark questions

CHEMISTRY CHAPTER- HYDROCARBONS (I PUC) One mark questions CEMISTRY CAPTER- YDROCARBONS (I PUC) One mark questions 1. What type of structural isomerism is shown by alkanes? 2. Which metal is used in Wurtz reaction? 3. What happens when isopropyl bromide is subjected

More information

CHAPTER 15: Hydrocarbons

CHAPTER 15: Hydrocarbons CHAPTER 15: Hydrocarbons 15.1 Introduction to Alkanes 15.2 Reactions of Alkanes 15.3 Introduction to Alkenes 15.4 Reactions of Alkenes 15.5 Uses of Hydrocarbons Learning outcomes: (a) show awareness of

More information

THE CHEMISTRY OF ALKANES

THE CHEMISTRY OF ALKANES AN INTRODUCTION TO THE CHEMISTRY OF ALKANES Information taken from a presentation by: KNOCKHARDY PUBLISHING General ALKANES members of a homologous series general formula is C n H 2n+2 for non-cyclic alkanes

More information

Allyl radicals are especially stable due to resonance ( and double bond switch places):

Allyl radicals are especially stable due to resonance ( and double bond switch places): Ch 10 Alkyl Halides Nomenclature Rules The parent is the longest alkyl chain or ring. The #1 C for a chain is at the end that is nearest to the first substituent. The #1 C for a ring possesses the first

More information

08. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 6 th edition, Chapter 16

08. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 6 th edition, Chapter 16 08. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry, 6 th edition, Chapter 16 Benzene is a nucleophile p electrons make benzene nucleophile, like alkenes.

More information

Chemistry 14D Winter 2010 Exam 2 Page 1

Chemistry 14D Winter 2010 Exam 2 Page 1 Chemistry 14D Winter 2010 Exam 2 Page 1 1. (2) Circle the best statement of Markovnikov s rule. (a) When X adds to an alkene, the hydrogen of X becomes bonded to the alkene carbon that bears the least

More information

Alkanes and Alkenes. The Alkanes

Alkanes and Alkenes. The Alkanes Alkanes and Alkenes The Alkanes Alkanes are hydrocarbons (i.e. compounds of carbon and hydrogen only). They are called saturated hydrocarbons because they contain no double bonds, and so cannot undergo

More information

Learning Guide for Chapter 11 - Alkenes I

Learning Guide for Chapter 11 - Alkenes I Learning Guide for Chapter 11 - Alkenes I I. Introduction to alkenes - p 1 bond structure, classifying alkenes, reactivity, physical properties, occurrences and uses, spectroscopy, stabilty II. Unsaturation

More information

Class Revision on Intro to Organic, Alkanes and Alkenes

Class Revision on Intro to Organic, Alkanes and Alkenes Class Revision on Intro to Organic, Alkanes and Alkenes 2015 Term 1 Week 1 169 min 110 marks ~ Section A: Multiple Choice Questions Circle the best answer 1. What is the correct name of this compound?

More information

Chapter 25: The Chemistry of Life: Organic and Biological Chemistry

Chapter 25: The Chemistry of Life: Organic and Biological Chemistry Chemistry: The Central Science Chapter 25: The Chemistry of Life: Organic and Biological Chemistry The study of carbon compounds constitutes a separate branch of chemistry known as organic chemistry The

More information

Worksheet Chapter 10: Organic chemistry glossary

Worksheet Chapter 10: Organic chemistry glossary Worksheet 10.1 Chapter 10: Organic chemistry glossary Addition elimination reaction A reaction in which two molecules combine with the release of a small molecule, often water. This type of reaction is

More information

Time Allowed: 60 minutes MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Time Allowed: 60 minutes MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. INTRODUCTION TO ORGANIC AND BIOCHEMISTRY QUIZ 5 Time Allowed: 60 minutes MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) What is the IUPAC name

More information

Alkane and Alkene Reactions

Alkane and Alkene Reactions Name: Date: Pd: Alkane and Alkene Reactions 1. Give the structure (structural fmula and condensed structural fmula) of the maj ganic product of the following reactions. a. hexane and chline Reaction Type:

More information

dihalogenoalkane H 2, Nickel Catalyst KOH alcoholic HBr, HCl Br Cl Elimination KOH aqueous heat under reflux Nucleophilic substitution

dihalogenoalkane H 2, Nickel Catalyst KOH alcoholic HBr, HCl Br Cl Elimination KOH aqueous heat under reflux Nucleophilic substitution 7 AS mechanisms dihalogenoalkane poly(alkene) Br 2, 2 KO aqueous room temp Electrophilic addition heat under reflux Nucleophilic substitution high pressure atalyst polymerization alkene KMnO 4 oxidation

More information

Suggested solutions for Chapter 29

Suggested solutions for Chapter 29 s for Chapter 29 29 PRBLEM 1 or each of the following reactions (a) state what kind of substitution is suggested and (b) suggest what product might be formed if monosubstitution occured. Br 2 3 2 S 4 S

More information

Q1. Which one of the following is least likely to occur in the reaction between methane and chlorine?

Q1. Which one of the following is least likely to occur in the reaction between methane and chlorine? Q1. Which one of the following is least likely to occur in the reaction between methane and chlorine? A B C D C 4 + Cl C 3 + Cl C 3 + Cl C 3 Cl + C 3 + Cl 2 C 3 Cl + Cl C 3 Cl + Cl C 2 Cl + Cl (Total 1

More information

CHE1502. Tutorial letter 201/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry CHE1502/201/1/2016

CHE1502. Tutorial letter 201/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry CHE1502/201/1/2016 CE1502/201/1/2016 Tutorial letter 201/1/2016 General Chemistry 1B CE1502 Semester 1 Department of Chemistry This tutorial letter contains the answers to the questions in assignment 1. FIRST SEMESTER: KEY

More information

H 22. (a) Give the general formula of alkanes. (1) (b) Carbon monoxide, CO, is formed during the incomplete combustion of decane.

H 22. (a) Give the general formula of alkanes. (1) (b) Carbon monoxide, CO, is formed during the incomplete combustion of decane. 1 Crude oil is a complex mixture of hydrocarbons. Initial separation is achieved by fractional distillation of the crude oil. The separate fractions are further refined to produce hydrocarbons such as

More information

OCR AS Chemistry A H032 for first assessment in Complete Tutor Notes. Section: Alkenes Boomer Publications

OCR AS Chemistry A H032 for first assessment in Complete Tutor Notes. Section: Alkenes Boomer Publications OR AS hemistry A 032 for first assessment in 206 omplete Tutor Notes www.boomerchemistry.com Section: 4..3 Alkenes E/Z Isomerism Alkenes Addition polymers 205 Boomer Publications page 43 page 45 page 5

More information

CHAPTER 16 - CHEMISTRY OF BENZENE: ELECTROPHILIC AROMATIC SUBSTITUTION

CHAPTER 16 - CHEMISTRY OF BENZENE: ELECTROPHILIC AROMATIC SUBSTITUTION CAPTR 16 - CMISTRY F BNZN: LCTRPILIC ARMATIC SUBSTITUTIN As stated in the previous chapter, benzene and other aromatic rings do not undergo electrophilic addition reactions of the simple alkenes but rather

More information

EXTRA QUESTIONS FOR 2.8 HALOALKANES. 1. Methylbenzene is converted into (chloromethyl)benzene in a free radical substitution reaction....

EXTRA QUESTIONS FOR 2.8 HALOALKANES. 1. Methylbenzene is converted into (chloromethyl)benzene in a free radical substitution reaction.... EXTRA QUESTIONS FOR 2.8 HALOALKANES 1. Methylbenzene is converted into (chloromethyl)benzene in a free radical substitution reaction. C 6 H 5 3 + Cl 2 C 6 H 5 2 Cl + HCl Write an equation for the initiation

More information

2. Hydrohalogenation: Propylene reacts with HBr to form 2-bromopropane.

2. Hydrohalogenation: Propylene reacts with HBr to form 2-bromopropane. Objective 12. Apply reactivity principles to Electrophilic Addition reactions 1: alkenes identify structural features (pi bond) and electrophiles, use curved arrows to predict product. Structural features:

More information

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS)

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS) Reactions of Aromatic Compounds Reading: Wade chapter 17, sections 17-1- 17-15 Study Problems: 17-44, 17-46, 17-47, 17-48, 17-51, 17-52, 17-53, 17-59, 17-61 Key Concepts and Skills: Predict and propose

More information

BENZENE & AROMATIC COMPOUNDS

BENZENE & AROMATIC COMPOUNDS BENZENE & AROMATIC COMPOUNDS Dr. Zainab M Almarhoon 2 Learning Objectives By the end of chapter four the students will: Understand the resonance description of structure of benzene Understand the hybridization

More information

3.2.9 Alkenes. Addition Reactions. 271 minutes. 268 marks. Page 1 of 35

3.2.9 Alkenes. Addition Reactions. 271 minutes. 268 marks. Page 1 of 35 ..9 Alkenes Addition Reactions 71 minutes 68 marks Page 1 of 5 Q1. Propene reacts with bromine by a mechanism known as electrophilic addition. (a) Explain what is meant by the term electrophile and by

More information

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will 71. B SN2 stands for substitution nucleophilic bimolecular. This means that there is a bimolecular rate-determining step. Therefore, the reaction will follow second-order kinetics based on the collision

More information

QUESTIONSHEETS ORGANIC REACTION MECHANISMS I FREE RADICAL SUBSTITUTION I FREE RADICAL SUBSTITUTION II ELECTROPHILIC ADDITION TO SYMMETRICAL ALKENES

QUESTIONSHEETS ORGANIC REACTION MECHANISMS I FREE RADICAL SUBSTITUTION I FREE RADICAL SUBSTITUTION II ELECTROPHILIC ADDITION TO SYMMETRICAL ALKENES CHEMISTRY QUESTIONSHEETS AS Level AS TOPIC 14 ORGANIC REACTION MECHANISMS I Questionsheet 1 Questionsheet 2 Questionsheet 3 Questionsheet 4 Questionsheet 5 Questionsheet 6 Questionsheet 7 Questionsheet

More information

What are radicals? H. Cl. Chapter 10 Radical Reactions. Production of radicals. Reactions of radicals. Electronic structure of methyl radical

What are radicals? H. Cl. Chapter 10 Radical Reactions. Production of radicals. Reactions of radicals. Electronic structure of methyl radical What are radicals? Radicals are intermediates with an unpaired electron Chapter 10 Radical Reactions H. Cl. Hydrogen radical Chlorine radical Methyl radical Often called free radicals Formed by homolytic

More information

OChem 1 Mechanism Flashcards. Dr. Peter Norris, 2018

OChem 1 Mechanism Flashcards. Dr. Peter Norris, 2018 OChem 1 Mechanism Flashcards Dr. Peter Norris, 2018 Mechanism Basics Chemical change involves bonds forming and breaking; a mechanism describes those changes using curved arrows to describe the electrons

More information

The Study of Chemical Reactions. Mechanism: The complete, step by step description of exactly which bonds are broken, formed, and in which order.

The Study of Chemical Reactions. Mechanism: The complete, step by step description of exactly which bonds are broken, formed, and in which order. The Study of Chemical Reactions Mechanism: The complete, step by step description of exactly which bonds are broken, formed, and in which order. Thermodynamics: The study of the energy changes that accompany

More information

Theoretically because there are 3 double bonds one might expect the amount of energy to be 3 times as much.

Theoretically because there are 3 double bonds one might expect the amount of energy to be 3 times as much. 18. Arenes There are two major classes of organic chemicals aliphatic : straight or branched chain organic substances aromatic or arene: includes one or more ring of six carbon ams with delocalised bonding.

More information

1. How do you account for the formation of ethane during chlorination of methane?

1. How do you account for the formation of ethane during chlorination of methane? 1. How do you account for the formation of ethane during chlorination of methane? The formation of ethane is due to the side reaction in termination step by the combination of two CH 3 free radicals. 2.

More information

TOK: The relationship between a reaction mechanism and the experimental evidence to support it could be discussed. See

TOK: The relationship between a reaction mechanism and the experimental evidence to support it could be discussed. See Option G: Further organic chemistry (15/22 hours) SL students study the core of these options and HL students study the whole option (the core and the extension material). TOK: The relationship between

More information

Química Orgânica I. Organic Reactions

Química Orgânica I. Organic Reactions Química Orgânica I 2008/09 w3.ualg.pt\~abrigas QOI 0809 A6 1 Organic Reactions Addition two molecules combine Elimination one molecule splits Substitution parts from two molecules exchange Rearrangement

More information

AQA A2 CHEMISTRY TOPIC 4.6 AROMATIC CHEMISTRY TOPIC 4.7 AMINES BOOKLET OF PAST EXAMINATION QUESTIONS

AQA A2 CHEMISTRY TOPIC 4.6 AROMATIC CHEMISTRY TOPIC 4.7 AMINES BOOKLET OF PAST EXAMINATION QUESTIONS AQA A2 CHEMISTRY TOPIC 4.6 AROMATIC CHEMISTRY TOPIC 4.7 AMINES BOOKLET OF PAST EXAMINATION QUESTIONS 1 1. (a) Benzene reacts with nitric acid in the presence of a catalyst to form nitrobenzene. This is

More information