What are radicals? H. Cl. Chapter 10 Radical Reactions. Production of radicals. Reactions of radicals. Electronic structure of methyl radical

Size: px
Start display at page:

Download "What are radicals? H. Cl. Chapter 10 Radical Reactions. Production of radicals. Reactions of radicals. Electronic structure of methyl radical"

Transcription

1 What are radicals? Radicals are intermediates with an unpaired electron Chapter 10 Radical Reactions H. Cl. Hydrogen radical Chlorine radical Methyl radical Often called free radicals Formed by homolytic bond cleavage Radicals are highly reactive, short-lived species Single-barbed arrows are used to show movement of single electrons Production of radicals Reactions of radicals Usually begins with homolysis of a relatively weak bond such as O-O or X-X Initiated by addition of energy in the form of heat or light Radicals seek to react in ways that lead to pairing of their unpaired electron Reaction of a radical with any species that does not have an unpaired electron will produce another radical Hydrogen abstraction is one way a halogen radical can react to pair its unshared electron Electronic structure of methyl radical Bond Dissociation Energies Atoms have higher energy (are less stable) than the molecules they can form 1. The formation of covalent bonds is exothermic 2. Breaking covalent bonds requires energy (i.e. is endothermic) The homolyticbond dissociation energy is abbreviated DH o 1

2 Bond Dissociation Energies and Heats of Reaction Example of using Bond Dissociation Energies Homolytic Bond Dissociation energies can be used to calculate the enthalpy change (DH o ) for a reaction Consider the possible reaction of H 2 with Cl 2 DH o is positive for bond breaking and negative for bond forming?h o = sum of DH o for products (-) and reactants (+) A negative heat of reaction means reaction is exothermic?h o is not dependant on the mechanism; only the initial and final states of the molecules are considered Reaction is exothermic, more energy is released in forming the 2 H-Cl bonds of product than is required to break the H-H and Cl-Cl bonds of reactants Table of bond dissociation energies in text, p. 430 A:B A. + B. Note X-X bonds are weak Relative stability of organic radicals Relative Stability of organic radicals Compare the DH o for the primary and secondary hydrogens in propane Using the same table, the tert-butyl radical is more stable than the isobutyl radical Diff = 22 kj/mol Diff = 10 kj/mol Since less energy is needed to form the isopropyl radical (from same starting material), the isopropyl radical must be more stable 2

3 Relative Stability of Free Radicals Energy diagrams for formation of radicals The relative stabilities of carbon radicals follows the same trend as for carbocations The most substituted radical is most stable Radicals are electron deficient, as are carbocations, and are therefore also stabilized by hyperconjugation The Reactions of Alkanes with Halogens Alkanesundergo substitution reactions with halogens (fluorine, bromine and chlorine) initiated by heat or light Chlorination Chlorination of higher alkanes leads to mixtures of monochlorinated product (and more substituted products) Radical halogenation can yield a mixture of halogenated compounds because all hydrogen atoms in an alkane are capable of substitution For example, all degrees of methane halogenation will be seen Monosubstitution can be achieved by using a large excess of the alkane Chlorine is relatively unselective and does not greatly distinguish between type of hydrogen If there were zero selectivity, the tertiary product would be 1/9 of the primary product, whereas it is actually 2/3 so there is a preference of about 5-fold Mechanism of Chlorination: a Chain Reaction The reaction mechanism has three distinct aspects: 1. Chain initiation 2. Chain propagation 3. Chain termination Chain initiation Step 1 Chlorine radicals form when the reaction mixture is subjected to heat or light Chlorination of Methane: Mechanism of Reaction Chain propagation (2 steps repeated many times) A chlorine radical reacts with a molecule of methane to generate a methyl radical A methyl radical reacts with a molecule of chlorine to yield chloromethane and regenerate chlorine radical The new chlorine radical reacts with another methane molecule, continuing the chain reaction Recall that the Cl-Cl bonds is relatively weak A single initiation step can lead to thousands of propagation steps, hence the term chain reaction 3

4 Electron flow in the mechanism Chain termination Occasionally the reactive radical intermediates are quenched by reaction pathways that do not generate new radicals The reaction of chlorine with methane requires constant irradiation to replace radicals quenched in chain-terminating steps Energy Changes in the Chlorination of Methane Bond Energies a good approximation of free energy changes Overall Free-Energy Change: DG o = DH o - T (DS o ) In radical reactions such as the chlorination of methane the overall entropy change (DS o ) in the reaction is small Thus DH o values closely approximate the DG o values The chain propagation steps have overall DH o = -101 kj mol -1 and are highly exothermic DG o = -102 kj mol -1 and DH o = -101 kj mol -1 for this reaction Activation Energies for Chlorination of Methane When using enthalpy values (DH o ) the term for the difference in energy between starting material and the transition state is the energy of activation (E act ) Recall when free energy of activation (DG o ) values are used this difference is DG For the chlorination of methane the E act values have been measured Energy of activation values can be predicted 1. A reaction in which bonds are broken will have E act > 0 even if a stronger bond is formed and the reaction is highly exothermic Bond forming always lags behind bond breaking 4

5 Energy of activation values can be predicted 2. An endothermic reaction which involves bond breaking and bond forming will always have E act > DH o 3. A gas phase reaction in which only bond homolysis occurs has DH o = E act 4. A gas phase reaction in which small radicals combine to form a new bond usually has E act = 0 Reaction of Methane with Other Halogens The order of reactivity of methane substitution with halogens is: fluorine > chlorine > bromine > iodine The order of reactivity is based on the values of E act for the first step of chain propagation and DH o for the entire chain propagation Fluorination Fluorination has a very low value for E act in the first step and DH o is extremely exothermic Fluorination reactions are explosive The energy values of the initiation step are unimportant since they occur so rarely On the basis of DH o values for X 2, the initiation step iodination should be most rapid Chlorination Chlorination is also highly exothermic overall, but more controllable with a higher value of E act and lower overall DH o values Bromination The bromine atom has a significant E act in the first step of propagation so the reaction is much more controllable and selective. Still exothermic overall 5

6 Iodination? Direct iodination is not a useful reaction Halogenation of Higher Alkanes Monochlorination of alkanes proceeds with limited selectivity Tertiary hydrogens roughly 5 times more reactive than primary Secondary hydrogens roughly 3.5 times more reactive than primary E act for abstraction of a tertiary hydrogen is slightly lower because of increased stability of the intermediate tertiary radical Chlorination occurs so rapidly it cannot distinguish well between classes of hydrogen and so is not very selective * 1. High E act in first propagation step means very few successful collisions 2. Overall reaction is endothermic Useful Chlorinations Chlorination is synthetically useful when molecular symmetry limits the number of possible substitution products Based on relative reactivitiesof 1:3.5:5 per H for 1 o, 2 o, 3 o H s, predicted product ratios would be 29: 24: 33: 14 Cl 2 heat o r UV Cl Selectivity of Bromine Bromine is much less reactive but more selective than chlorine in radical halogenation Would fluorination be selective? Fluorine shows almost no discrimination in replacement of hydrogens because it is so reactive So reactive that only per fluoro compounds (all H replaced by F) are made via direct fluorination (and then very carefully) Bromination can be a practical method to make alkyl bromides, whenever one potential radical is more stable than the others 6

7 Summary of halogenation of alkanes Stereochemistry and halogenation If a radical is formed at a single chiral center, the product is racemic H Br2 UV Br (R) Racemic (1:1 R + S) C Demonstrates that radical must be planar with equal faces (or so rapidly inverting that all memory of chirality is lost) Reactions that Generate Tetrahedral Stereogenic Carbons A reaction of achiral starting materials which produces a product with a stereogenic carbon will produce a racemic mixture Generation of a Second StereogenicCarbon When a molecule with one or more stereogenic carbons reacts to create another stereogenic carbon, the two diastereomeric products are not produced in equal amounts. The intermediate radical is chiral and and reactions on the two faces of the radical are not equally likely Anti-Markovnikov Addition of HBr to Alkenes Addition of hydrogen bromide in the presence of peroxides gives anti-markovnikovaddition Mechanism for the Anti -Markovnikov Addition of HBr A free radical chain mechanism Steps 1 and 2 of the mechanism are chain initiation steps which produce a bromine radical Works only for HBr: the other hydrogen halides do not give this type of anti-markovnikov addition 7

8 In step 3, the first step of propagation, a bromine radical adds to the double bond to give the most stable of the two possible carbon radicals (in this case, a 2 o radical) Attack at the 1 o carbon is also less sterically hindered Step 4 regenerates a bromine radical Why the anti-markovnikov Addition? In the first propagation step, the addition of Br to the double bond, there are two possible paths: 1. Path [A] forms the less stable 1 0 radical 2. Path [B] forms the more stable 2 0 radical The more stable 2 0 radical forms faster, so Path [B] is preferred. The new bromine radical reacts with another equivalent of alkene, and steps 3 and 4 repeat in a chain reaction Controlling Addition of HBr to Alkenes Early studies of HBr addition gave contradictory results sometimes Markovnikov addition and sometime anti-markovnikov Radical Polymerization of Alkenes Polymers are macromolecules made up of repeating subunits The subunits used to synthesize polymers are called monomers Polyethylene is made of repeating subunits derived from ethylene Polyethylene is called a chain-growth polymer or addition polymer n= large number To favor normal addition, remove possible traces of peroxides from the alkene and use a polar, protic solvent To favor anti-mark, add peroxide and use non-polar solvent Polystyrene is made in an analogous reaction using styrene as the monomer Very useful for your synthetic tool box Initiator used to start a chain reaction mechanism A very small amount of diacyl peroxide is added in initiating the reaction so that few, but very long polymer chains are obtained Chain termination Chain growth can terminate by combination of two radicals or by disproportionation (abstracting a H from the ß-carbon of the growing radical of another chain) Produces an alkyl radical to initiate chain The propagation step simply adds more ethylene molecules to a growing chain 8

9 Chain branching Some other addition polymers from common alkenes Chain branching can occur by abstraction of a hydrogen atom on the same chain and continuation of growth from the main chain backbiting This cross-linking of polymer chain will modify properties of the polymer by stiffening its flexibility Note the regular alternation of the Z groups, called head to tail, since the addition step always produces the more stable radical Some common Polymers Superglue Some monomers can also be polymerized by nucleophiles Molecular oxygen is a diradical Each oxygen has 6 electrons in outer shell = 12 Bonding orbitals accommodate the first ten, but last two go one each into degenerate anti-bonding orbitals Oxygen readily oxides many organic molecules Fast oxidation = combustion Slow oxidation = auto-oxidation at activated sites of polyunsaturated compounds, ethers and some biomolecules Other reactive forms of oxygen: Singlet oxygen Superoxide (O 2.- = an anion radical) Ozone (O 3 ) 9

10 Antioxidants Naturally occurring antioxidants such as vitamin E prevent radical reactions that can cause cell damage. Synthetic antioxidants such as BHT are added to packaged and prepared foods to prevent oxidation and spoilage. Vitamin E and BHT are radical inhibitors, so they terminate radical chain mechanisms by reacting with the radical. 10

Chapter 10 Radical Reactions"

Chapter 10 Radical Reactions Chapter 10 Radical Reactions Radicals are intermediates with an unpaired electron H. Cl. Hydrogen radical t Often called free radicals What are radicals? Chlorine radical t Formed by homolytic bond cleavage

More information

Chapter 10 Radical Reactions

Chapter 10 Radical Reactions Chapter 10 Radical Reactions Introduction Homolytic bond cleavage leads to the formation of radicals (also called free radicals) Radicals are highly reactive, short-lived species Single-barbed arrows are

More information

Organic Chemistry. Radical Reactions

Organic Chemistry. Radical Reactions For updated version, please click on http://ocw.ump.edu.my Organic Chemistry Radical Reactions by Dr. Seema Zareen & Dr. Izan Izwan Misnon Faculty Industrial Science & Technology seema@ump.edu.my & iezwan@ump.edu.my

More information

Química Orgânica I. Organic Reactions

Química Orgânica I. Organic Reactions Química Orgânica I 2008/09 w3.ualg.pt\~abrigas QOI 0809 A6 1 Organic Reactions Addition two molecules combine Elimination one molecule splits Substitution parts from two molecules exchange Rearrangement

More information

4.15 Halogenation of Alkanes RH + X 2 RX + HX

4.15 Halogenation of Alkanes RH + X 2 RX + HX 4.15 alogenation of Alkanes R + X 2 RX + X Energetics R + X 2 RX + X explosive for F 2 exothermic for Cl 2 and Br 2 endothermic for I 2 4.16 Chlorination of Methane Chlorination of Methane carried out

More information

Organic Chemistry(I) Chapter 3

Organic Chemistry(I) Chapter 3 Organic Chemistry(I) Chapter 3 1. Carbon-carbon bonds are not easily broken. Which bond in the following compound would be the least difficult to break homolytically? 2. Which of the following molecules

More information

Chapter 10 Free Radicals

Chapter 10 Free Radicals hapter 10 Free Radicals This is an example of a free radical reaction. A radical is a species that has a free unpaired electron. There are several examples of stable radicals, the most common of which

More information

An unknown molecule A has 4 signals in the 1 H NMR spectrum. Which of the following corresponds to molecule A

An unknown molecule A has 4 signals in the 1 H NMR spectrum. Which of the following corresponds to molecule A An unknown molecule A has 4 signals in the 1 H NMR spectrum. Which of the following corresponds to molecule A How many nonequivalent protons does the following structure have? 4 Reading from left to right,

More information

CH 3 Cl + Cl 2 CH 2 Cl 2 + HCl

CH 3 Cl + Cl 2 CH 2 Cl 2 + HCl Energetics 414 alogenation of Alkanes X 2 X X X 2 X X explosive for F 2 exothermic for l 2 and Br 2 endothermic for I 2 hlorination of Methane carried out at high temperature (400 ) 415 hlorination of

More information

ORGANIC - BROWN 8E CH.8 - HALOALKANES, HALOGENATION AND RADICALS

ORGANIC - BROWN 8E CH.8 - HALOALKANES, HALOGENATION AND RADICALS !! www.clutchprep.com CONCEPT: ALKYL HALIDES Alkyl halides are named by naming them as a substituent before the root chain and indicating their location. Prefixes: -F, -Cl -Br -I Alkyl halides have NO

More information

Chapter 15. Free Radical Reactions

Chapter 15. Free Radical Reactions Grossman, CE 230 Chapter 15. Free Radical Reactions A free radical is a species containing one or more unpaired electrons. Free radicals are electrondeficient species, but they are usually uncharged, so

More information

Chapter 5. Nucleophilic aliphatic substitution mechanism. by G.DEEPA

Chapter 5. Nucleophilic aliphatic substitution mechanism. by G.DEEPA Chapter 5 Nucleophilic aliphatic substitution mechanism by G.DEEPA 1 Introduction The polarity of a carbon halogen bond leads to the carbon having a partial positive charge In alkyl halides this polarity

More information

The Study of Chemical Reactions. Mechanism: The complete, step by step description of exactly which bonds are broken, formed, and in which order.

The Study of Chemical Reactions. Mechanism: The complete, step by step description of exactly which bonds are broken, formed, and in which order. The Study of Chemical Reactions Mechanism: The complete, step by step description of exactly which bonds are broken, formed, and in which order. Thermodynamics: The study of the energy changes that accompany

More information

CHAPTER 7. Further Reactions of Haloalkanes: Unimolecular Substitution and Pathways of Elimination

CHAPTER 7. Further Reactions of Haloalkanes: Unimolecular Substitution and Pathways of Elimination CHAPTER 7 Further Reactions of Haloalkanes: Unimolecular Substitution and Pathways of Elimination 7-1 Solvolysis of Tertiary and Secondary Haloalkanes The rate of S N 2 reactions decrease dramatically

More information

CHEM 241 ALCOHOLS AND ALKYL HALIDES CHAP 5 ASSIGN

CHEM 241 ALCOHOLS AND ALKYL HALIDES CHAP 5 ASSIGN CEM 241 ALCOOLS AND ALKYL ALIDES CAP 5 ASSIGN 1. What is the IUPAC name of the compound below? A. 3-isobutyl-2-hexanol B. 2-methyl-5-propyl-6-heptanol C. 2-methyl-5-(1-hydroxyethyl)octane D. 6-methyl-3-propyl-2-heptanol

More information

Preparation of Alkyl Halides, R-X. Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): R + X X 2.

Preparation of Alkyl Halides, R-X. Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): R + X X 2. Preparation of Alkyl alides, R-X Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): UV R + X 2 R X or heat + X This mechanism involves a free radical chain reaction. A chain

More information

THE CHEMISTRY OF ALKANES

THE CHEMISTRY OF ALKANES AN INTRODUCTION TO THE CHEMISTRY OF ALKANES Information taken from a presentation by: KNOCKHARDY PUBLISHING General ALKANES members of a homologous series general formula is C n H 2n+2 for non-cyclic alkanes

More information

What is the major product of the following reaction?

What is the major product of the following reaction? What is the major product of the following reaction? Predict the major product of the following reaction: 2-methylbutane + Br 2 /light energy? A) 1-bromo-2-methylbutane B) 2-bromo-2-methylbutane C) 2-bromo-3-methylbutane

More information

This reactivity makes alkenes an important class of organic compounds because they can be used to synthesize a wide variety of other compounds.

This reactivity makes alkenes an important class of organic compounds because they can be used to synthesize a wide variety of other compounds. This reactivity makes alkenes an important class of organic compounds because they can be used to synthesize a wide variety of other compounds. Mechanism for the addition of a hydrogen halide What happens

More information

Physical Properties: Structure:

Physical Properties: Structure: Nomenclature: Functional group suffix = -ol Functional group prefix = hydroxy- Primary, secondary or tertiary? Alcohols are described as primary (1 o ), secondary (2 o ) or tertiary (3 o ) depending on

More information

Chapter 6 Ionic Reactions-Nucleophilic Substitution and Elimination Reactions of Alkyl Halides"

Chapter 6 Ionic Reactions-Nucleophilic Substitution and Elimination Reactions of Alkyl Halides Chapter 6 Ionic Reactions-Nucleophilic Substitution and Elimination Reactions of Alkyl Halides" t Introduction" The polarity of a carbon-halogen bond leads to the carbon having a partial positive charge"

More information

OChem 1 Mechanism Flashcards. Dr. Peter Norris, 2018

OChem 1 Mechanism Flashcards. Dr. Peter Norris, 2018 OChem 1 Mechanism Flashcards Dr. Peter Norris, 2018 Mechanism Basics Chemical change involves bonds forming and breaking; a mechanism describes those changes using curved arrows to describe the electrons

More information

Organic Chemistry Review: Topic 10 & Topic 20

Organic Chemistry Review: Topic 10 & Topic 20 Organic Structure Alkanes C C σ bond Mechanism Substitution (Incoming atom or group will displace an existing atom or group in a molecule) Examples Occurs with exposure to ultraviolet light or sunlight,

More information

Overview of Types of Organic Reactions and Basic Concepts of Organic Reaction Mechanisms

Overview of Types of Organic Reactions and Basic Concepts of Organic Reaction Mechanisms Overview of Types of Organic Reactions and Basic Concepts of Organic Reaction Mechanisms Dr. Solomon Derese 1 A chemical reaction is the transformation of one chemical or collection of chemicals into another

More information

Chapter 13 Conjugated Unsaturated Systems

Chapter 13 Conjugated Unsaturated Systems Chapter 13 Conjugated Unsaturated Systems Introduction Conjugated unsaturated systems have a p orbital on a carbon adjacent to a double bond The p orbital can come from another double or triple bond The

More information

Preparation of alkenes

Preparation of alkenes Lecture 11 אלקנים הכנה ותגובות של אלקנים: הידרוגנציה, סיפוח הידרוהלוגנים )כלל מארקובניקוב(, סיפוח הלוגנים והסטראוכימיה של תוצרי הסיפוח, הידרובורציה, אפוקסידציה, אוזונוליזה. 1 Preparation of alkenes 1.

More information

dihalogenoalkane H 2, Nickel Catalyst KOH alcoholic HBr, HCl Br Cl Elimination KOH aqueous heat under reflux Nucleophilic substitution

dihalogenoalkane H 2, Nickel Catalyst KOH alcoholic HBr, HCl Br Cl Elimination KOH aqueous heat under reflux Nucleophilic substitution 7 AS mechanisms dihalogenoalkane poly(alkene) Br 2, 2 KO aqueous room temp Electrophilic addition heat under reflux Nucleophilic substitution high pressure atalyst polymerization alkene KMnO 4 oxidation

More information

REACTIONS OF HALOALKANES - SUBSTITUTION AND ELIMINATION

REACTIONS OF HALOALKANES - SUBSTITUTION AND ELIMINATION REACTIONS OF HALOALKANES - SUBSTITUTION AND ELIMINATION Haloalkanes (also known as halogenoalkanes and alkyl halides) are organic compounds where one of the hydrogens of an alkane or cycloalkane has been

More information

Alkenes (Olefins) Chapters 7 & 8 Organic Chemistry, 8 th Edition John McMurry

Alkenes (Olefins) Chapters 7 & 8 Organic Chemistry, 8 th Edition John McMurry Alkenes (Olefins) Chapters 7 & 8 Organic Chemistry, 8 th Edition John McMurry 1 Structure and Bonding 2 Structure and Bonding Rotation around the C=C bond is restricted 90 rotation The p orbitals are orthogonal

More information

LECTURE #14 Thurs., Oct.20, Midterm exam: Tues.Oct.25 during class Ch.1, , 7.10, 2, Sections

LECTURE #14 Thurs., Oct.20, Midterm exam: Tues.Oct.25 during class Ch.1, , 7.10, 2, Sections CHEM 221 section 01 LECTURE #14 Thurs., Oct.20, 2005 Midterm exam: Tues.Oct.25 during class Ch.1, 7.2-7.5, 7.10, 2, 3.1-3.5 ASSIGNED READINGS: TODAY S CLASS: NEXT LECTURE: Sections 4.7-4.10 finish Ch.4,

More information

CHEM Lecture 6

CHEM Lecture 6 EM 494 Special Topics in hemistry Illinois at hicago EM 494 - Lecture 6 Prof. Duncan Wardrop October 15, 2012 Midterm Papers Factors that ontrol ydrocarbon Acidity Factors that ontrol ydrocarbon onformation

More information

OChem 1 Mechanism Flashcards. Dr. Peter Norris, 2015

OChem 1 Mechanism Flashcards. Dr. Peter Norris, 2015 OChem 1 Mechanism Flashcards Dr. Peter Norris, 2015 Mechanism Basics Chemical change involves bonds forming and breaking; a mechanism describes those changes using curved arrows to describe the electrons

More information

Name: Unit 3 Packet: Activation Energy, Free Radical Chain Reactions, Alkane Preparations, S N 2, E 2

Name: Unit 3 Packet: Activation Energy, Free Radical Chain Reactions, Alkane Preparations, S N 2, E 2 Name: Unit 3 Packet: Activation Energy, Free Radical Chain Reactions, Alkane Preparations, S N 2, E 2 Key Terms For Unit 3 Free Radical Chain Reaction Homolytic Cleavage Free Radical Initiation Propagation

More information

Acid-Base -Bronsted-Lowry model: -Lewis model: -The more equilibrium lies to the right = More [H 3 O + ] = Higher K a = Lower pk a = Stronger acid

Acid-Base -Bronsted-Lowry model: -Lewis model: -The more equilibrium lies to the right = More [H 3 O + ] = Higher K a = Lower pk a = Stronger acid Revision Hybridisation -The valence electrons of a Carbon atom sit in 1s 2 2s 2 2p 2 orbitals that are different in energy. It has 2 x 2s electrons + 2 x 2p electrons are available to form 4 covalent bonds.

More information

Chapter 5. 3-Chloro-2-methylpentane. Cl 2. 2-Chloro-2-methylpentane. 1-Chloro-2-methylpentane. Cl 2-Chloro-4-methylpentane. 1-Chloro-4-methylpentane

Chapter 5. 3-Chloro-2-methylpentane. Cl 2. 2-Chloro-2-methylpentane. 1-Chloro-2-methylpentane. Cl 2-Chloro-4-methylpentane. 1-Chloro-4-methylpentane hapter 5 5.1 lassify each of the following reactions as an addition, elimination, substitution, or rearrangement: (a) 3Br K 3 KBr (b) 3 2 2 2 2 (c) 2 2 2 3 3 a. substitution b. elimination c. addition

More information

Detailed Course Content

Detailed Course Content Detailed Course Content Chapter 1: Carbon Compounds and Chemical Bonds The Structural Theory of Organic Chemistry 4 Chemical Bonds: The Octet Rule 6 Lewis Structures 8 Formal Charge 11 Resonance 14 Quantum

More information

Organic Mechanisms 1

Organic Mechanisms 1 Organic Mechanisms 1 Concepts The key ideas required to understand this section are: Concept Book page Chemical properties of alkanes 314 Chemical properties of alkenes 318 Bonding in alkenes 320 Bonding

More information

1. Radical Substitution on Alkanes. 2. Radical Substitution with Alkenes. 3. Electrophilic Addition

1. Radical Substitution on Alkanes. 2. Radical Substitution with Alkenes. 3. Electrophilic Addition 1. Radical Substitution on Alkanes Only Cl and Br are useful at the laboratory level. Alkane reactivity: tertiary > secondary > primary > methyl Numbers below products give their relative yield. Relative

More information

Chapter 8 Alkenes and Alkynes II: Addition Reactions. Alkenes are electron rich. Additions to Alkenes

Chapter 8 Alkenes and Alkynes II: Addition Reactions. Alkenes are electron rich. Additions to Alkenes Additions to Alkenes Chapter 8 Alkenes and Alkynes II: Addition Reactions Generally the reaction is exothermic because one p and one s bond are converted to two s bonds Alkenes are electron rich The carbocation

More information

Chapter 6: Organic Halogen Compounds; Substitution and Elimination Reactions

Chapter 6: Organic Halogen Compounds; Substitution and Elimination Reactions Chapter 6: Organic Halogen Compounds; Substitution and Elimination Reactions Halogen compounds are important for several reasons. Simple alkyl and aryl halides, especially chlorides and bromides, are versatile

More information

dihalogenoalkane H 2, KOH alcoholic heat under reflux Elimination PCl 5, PBr 3, PI 3 Heat under reflux substitution KOH aqueous heat under reflux

dihalogenoalkane H 2, KOH alcoholic heat under reflux Elimination PCl 5, PBr 3, PI 3 Heat under reflux substitution KOH aqueous heat under reflux 7. AS mechanisms dihalogenoalkane poly(alkene) 2, l 2 room temp Electrophilic addition KO aqueous heat under reflux Nucleophilic substitution high pressure atalyst polymerization alkene KMnO 4 oxidation

More information

CHEM Lecture 7

CHEM Lecture 7 CEM 494 Special Topics in Chemistry Illinois at Chicago CEM 494 - Lecture 7 Prof. Duncan Wardrop ctober 22, 2012 CEM 494 Special Topics in Chemistry Illinois at Chicago Preparation of Alkenes Elimination

More information

Elimination Reactions Heating an alkyl halide with a strong base causes elimination of a. molecule of HX

Elimination Reactions Heating an alkyl halide with a strong base causes elimination of a. molecule of HX Elimination eactions eating an alkyl halide with a strong base causes elimination of a molecule of X 1. Potassium hydroxide dissolved in ethanol and the sodium salts of alcohols (such as sodium ethoxide)

More information

Chem 341 Jasperse Ch Handouts 1

Chem 341 Jasperse Ch Handouts 1 Chem 341 Jasperse Ch. 5 + 10 Handouts 1 Ch. 5 The Study of Chemical Reactions 5.1 Four general types of chemical reactions 1. Addition reactions 2. Elimination Reactions 3. Substitution Reactions 4. Rearrangement

More information

Lecture 11 Organic Chemistry 1

Lecture 11 Organic Chemistry 1 EM 232 rganic hemistry I at hicago Lecture 11 rganic hemistry 1 Professor Duncan Wardrop February 16, 2010 1 Self Test Question What is the product(s) of the following reaction? 3 K( 3 ) 3 A 3 ( 3 ) 3

More information

ORGANIC CHEMISTRY 307

ORGANIC CHEMISTRY 307 ORGANIC CHEMISTRY 307 CHAPTER 3 LECTURE NOTES R. Boikess II. Principles of Organic Reactions 1. Chemical reactions are the result of bond breaking and bond making. a. Most (but not all) bond making and

More information

Reaction of alkanes with bromine / chlorine in UV light. This is the overall reaction, but a more complex mixture of products is actually formed

Reaction of alkanes with bromine / chlorine in UV light. This is the overall reaction, but a more complex mixture of products is actually formed 8. The aloalkanes opyright N Goalby Bancroft's School Synthesis of chloroalkanes Reaction of alkanes with bromine / chlorine in UV light In the presence of UV light alkanes react with chlorine to form

More information

Rearrangement: a single reactant rearranges its

Rearrangement: a single reactant rearranges its Chapter 5: An overview of organic reactions 5.1 Kinds of organic reactions Even though there are hundreds of reactions to study, organic chemistry is governed by only a few key ideas that determine chemical

More information

Model 1 Homolysis Reactions are Highly Endothermic

Model 1 Homolysis Reactions are Highly Endothermic Chem 201 Activity 24: Radical chain mechanisms (What do radicals do? What does a radical chain mechanism look like) Model 1 Homolysis Reactions are Highly Endothermic Heterolysis Homolysis Y Z Y + Z Y

More information

Alkyl Halides. Alkyl halides are a class of compounds where a halogen atom or atoms are bound to an sp 3 orbital of an alkyl group.

Alkyl Halides. Alkyl halides are a class of compounds where a halogen atom or atoms are bound to an sp 3 orbital of an alkyl group. Alkyl Halides Alkyl halides are a class of compounds where a halogen atom or atoms are bound to an sp 3 orbital of an alkyl group. CHCl 3 (Chloroform: organic solvent) CF 2 Cl 2 (Freon-12: refrigerant

More information

Chapter 8 Alkenes and Alkynes II: Addition Reactions

Chapter 8 Alkenes and Alkynes II: Addition Reactions Chapter 8 Alkenes and Alkynes II: Addition Reactions Introduction: Additions to Alkenes Generally the reaction is exothermic because one π and one σ bond are converted to two σ bonds The π electrons of

More information

Worksheet Chapter 10: Organic chemistry glossary

Worksheet Chapter 10: Organic chemistry glossary Worksheet 10.1 Chapter 10: Organic chemistry glossary Addition elimination reaction A reaction in which two molecules combine with the release of a small molecule, often water. This type of reaction is

More information

Conjugated Systems, Orbital Symmetry and UV Spectroscopy

Conjugated Systems, Orbital Symmetry and UV Spectroscopy Conjugated Systems, Orbital Symmetry and UV Spectroscopy Introduction There are several possible arrangements for a molecule which contains two double bonds (diene): Isolated: (two or more single bonds

More information

Study of Chemical Reactions

Study of Chemical Reactions Study of Chemical Reactions Introduction to Mechanisms There are four different types of organic reactions: Additions Eliminations Substitutions Rearrangements 149 Addition Reactions Occur when 2 reactants

More information

Organic Chemistry Lecture 2 - Hydrocarbons, Alcohols, Substitutions

Organic Chemistry Lecture 2 - Hydrocarbons, Alcohols, Substitutions ALKANES Water-insoluble, low density C-C single bonds Higher MW -> higher BP, higher MP Branching -> lower BP, higher MP Forms cycloalkanes which can have ring strain Cyclohexane: chair vs. boat configuration

More information

1. When methane is photochlorinated a small amount of ethane is found in the product. Give a full mechanism to account for presence of the ethane.

1. When methane is photochlorinated a small amount of ethane is found in the product. Give a full mechanism to account for presence of the ethane. Chemistry 51 DS Quiz 2 1. When methane is photochlorinated a small amount of ethane is found in the product. Give a full mechanism to account for presence of the ethane. 2. When 2,3-dimethylbutane is monochlorinated

More information

Organic Chemistry II / CHEM 252 Chapter 13 Conjugated Unsaturated Systems

Organic Chemistry II / CHEM 252 Chapter 13 Conjugated Unsaturated Systems Organic Chemistry II / CHEM 252 Chapter 13 Conjugated Unsaturated Systems Bela Torok Department of Chemistry University of Massachusetts Boston Boston, MA 1 Introduction - Conjugated unsaturated systems

More information

An Overview of Organic Reactions

An Overview of Organic Reactions An Overview of Organic Reactions Radical Reactions Reactions involving symmetrical bond breaking and bond forming omolytic bond breaking omogenic bond formation Radical Reaction with alkanes and uv light

More information

An Overview of Organic Reactions. Reaction types: Classification by outcome Most reactions produce changes in the functional group of the reactants:

An Overview of Organic Reactions. Reaction types: Classification by outcome Most reactions produce changes in the functional group of the reactants: An Overview of Organic Reactions Reaction types: Classification by outcome Most reactions produce changes in the functional group of the reactants: 1. Addition (forward) Gain of atoms across a bond Example:

More information

Classification of Reactions by:

Classification of Reactions by: lassification of Reactions by: 1) Functional group 2) Kind a) Addition: A + B > b) Elimination: A > B + c) Substitution: A-B + -D > A- + B-D d) Rearrangement: A > B, where B is a constitutional isomer

More information

Nucleophilic Substitution and Elimination

Nucleophilic Substitution and Elimination Nucleophilic Substitution and Elimination Alkyl halides react with a nucleophile in one of two ways. Either they eliminate an X to form an alkene, or they undergo a substitution with the nucleophile, Nu,

More information

10. Alkyl Halides. What Is an Alkyl Halide. An organic compound containing at least one carbonhalogen

10. Alkyl Halides. What Is an Alkyl Halide. An organic compound containing at least one carbonhalogen 10. Alkyl Halides What Is an Alkyl Halide An organic compound containing at least one carbonhalogen bond (C-X) X (F, Cl, Br, I) replaces H Can contain many C-X bonds Properties and some uses Fire-resistant

More information

Homework problems Chapters 6 and Give the curved-arrow formalism for the following reaction: CH 3 OH + H 2 C CH +

Homework problems Chapters 6 and Give the curved-arrow formalism for the following reaction: CH 3 OH + H 2 C CH + omework problems hapters 6 and 7 1. Give the curved-arrow formalism for the following reaction: : 3 - : 2 : 3 2-3 3 2. In each of the following sets, arrange the compounds in order of decreasing pka and

More information

Organic Chemistry SL IB CHEMISTRY SL

Organic Chemistry SL IB CHEMISTRY SL Organic Chemistry SL IB CHEMISTRY SL 10.1 Fundamentals of organic chemistry Understandings: A homologous series is a series of compounds of the same family, with the same general formula, which differ

More information

Organic Chemistry. Unit 10

Organic Chemistry. Unit 10 Organic Chemistry Unit 10 Halides Primary Carbons Secondary Carbons Tertiary Carbons IMPORTANCE?? REACTIONS!! Benzene C6H6 Aromatic functional group - C6H5 (IUPAC name - phenyl) Substitution Reactions

More information

Class XI Chapter 13 Hydrocarbons Chemistry

Class XI Chapter 13 Hydrocarbons Chemistry Question 13.1: How do you account for the formation of ethane during chlorination of methane? Chlorination of methane proceeds via a free radical chain mechanism. The whole reaction takes place in the

More information

Basic Organic Chemistry Course code : CHEM (Pre-requisites : CHEM 11122)

Basic Organic Chemistry Course code : CHEM (Pre-requisites : CHEM 11122) Basic Organic Chemistry Course code : CHEM 12162 (Pre-requisites : CHEM 11122) Chapter 01 Mechanistic Aspects of S N2,S N1, E 2 & E 1 Reactions Dr. Dinesh R. Pandithavidana Office: B1 222/3 Phone: (+94)777-745-720

More information

CH320/328 M Spring 2014

CH320/328 M Spring 2014 CH320/328 M Spring 2014 HW Set #3 Multiple Choice Identify the choice that best completes the statement or answers the question. There is only one correct response for each question. Carefully record your

More information

Glendale Community College Chemistry 105 Exam. 3 Lecture Notes Chapters 6 & 7

Glendale Community College Chemistry 105 Exam. 3 Lecture Notes Chapters 6 & 7 Sevada Chamras, Ph.D. Glendale Community College Chemistry 105 Exam. 3 Lecture Notes Chapters 6 & 7 Description: Examples: 3 Major Types of Organic Halides: 1. Alkyl Halides: Chapter 6 (Part 1/2) : Alkyl

More information

Chapter 11: Nucleophilic Substitution and Elimination Walden Inversion

Chapter 11: Nucleophilic Substitution and Elimination Walden Inversion hapter 11: Nucleophilic Substitution and Elimination Walden Inversion (S)-(-) Malic acid [a] D = -2.3 Ag 2, 2 Pl 5 l Ag 2, 2 ()-2-hlorosuccinic acid l (-)-2-hlorosuccinic acid Pl 5 ()-() Malic acid [a]

More information

REACTION AND SYNTHESIS REVIEW

REACTION AND SYNTHESIS REVIEW REACTION AND SYNTHESIS REVIEW A STUDENT SHOULD BE ABLE TO PREDICT PRODUCTS, IDENTIFY REACTANTS, GIVE REACTION CONDITIONS, PROPOSE SYNTHESES, AND PROPOSE MECHANISMS (AS LISTED BELOW). REVIEW THE MECHANISM

More information

Chapter 8. Substitution reactions of Alkyl Halides

Chapter 8. Substitution reactions of Alkyl Halides Chapter 8. Substitution reactions of Alkyl Halides There are two types of possible reaction in organic compounds in which sp 3 carbon is bonded to an electronegative atom or group (ex, halides) 1. Substitution

More information

The carbon-carbon double bond is the distinguishing feature of alkenes.

The carbon-carbon double bond is the distinguishing feature of alkenes. Alkenes: Structure & Properties Alkane (acyclic): n 2n+2 > saturated. Alkene (acyclic): n 2n > unsaturated. eg ethylene (IUPA: ethene), 2 4 : 2 = 2 The carbon-carbon double bond is the distinguishing feature

More information

Chapter 15. Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution on Arenes. The first step is the slow, rate-determining step

Chapter 15. Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution on Arenes. The first step is the slow, rate-determining step Electrophilic Aromatic Substitution on Arenes Chapter 15 Reactions of Aromatic Compounds The characteristic reaction of aromatic rings is substitution initiated by an electrophile halogenation nitration

More information

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI - 87

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI - 87 HYDROCARBONS 1. Why do alkenes prefer to undergo electrophilic addition reaction while arenes prefer electrophilic substitution reactions? Explain. 2. Alkynes on reduction with sodium in liquid ammonia

More information

CHEM 263 Oct 25, stronger base stronger acid weaker acid weaker base

CHEM 263 Oct 25, stronger base stronger acid weaker acid weaker base CEM 263 ct 25, 2016 Reactions and Synthesis (Preparation) of R- Breaking the - Bond of R- with Metals R + Li 0 or Na 0 or K 0 metal R Li + 1/2 2 alkoxide Breaking the - Bond of R- by Acid-Base Reaction

More information

CHAPTER 8 HW SOLUTIONS: ELIMINATIONS REACTIONS

CHAPTER 8 HW SOLUTIONS: ELIMINATIONS REACTIONS APTER 8 W SLUTNS: ELMNATNS REATNS S-TRANS SMERSM 1. Use a discussion and drawing of orbitals to help explain why it is generally easy to rotate around single bonds at room temperature, while it is difficult

More information

Radical Reactions. Radical = a substance with at least one unpaired electron. Radicals are very reactive substances.

Radical Reactions. Radical = a substance with at least one unpaired electron. Radicals are very reactive substances. Objective 14 Apply Reactivity Principles to Radical Reactions: Identify radical reaction conditions Describe mechanism Use curved arrows for common radical steps to predict product Radical Reactions Radical

More information

Chemistry 2000 Lecture 18: Reactions of organic compounds

Chemistry 2000 Lecture 18: Reactions of organic compounds hemistry 2000 Lecture 18: Reactions of organic compounds Marc R. Roussel March 6, 2018 Marc R. Roussel Reactions of organic compounds March 6, 2018 1 / 27 Reactions of organic compounds Organic chemists

More information

Organic Chemistry CHM 314 Dr. Laurie S. Starkey, Cal Poly Pomona Alkyl Halides: Substitution Reactions - Chapter 6 (Wade)

Organic Chemistry CHM 314 Dr. Laurie S. Starkey, Cal Poly Pomona Alkyl Halides: Substitution Reactions - Chapter 6 (Wade) rganic Chemistry CM 314 Dr. Laurie S. Starkey, Cal Poly Pomona Alkyl alides: Substitution Reactions - Chapter 6 (Wade) Chapter utline I. Intro to RX (6-1 - 6-7) II. Substitution Reactions A) S N 2 (6-8,

More information

Chapter 10 Lecture Outline

Chapter 10 Lecture Outline Organic Chemistry, Fifth Edition Janice Gorzynski Smith University of Hawai i Chapter 10 Lecture Outline Modified by Dr. Juliet Hahn Copyright 2017 McGraw-Hill Education. All rights reserved. No reproduction

More information

Chapter 9. Nucleophilic Substitution and ß-Elimination

Chapter 9. Nucleophilic Substitution and ß-Elimination Chapter 9 Nucleophilic Substitution and ß-Elimination Nucleophilic Substitution Nucleophile: From the Greek meaning nucleus loving. A molecule or ion that donates a pair of electrons to another atom or

More information

Nuggets of Knowledge for Chapter 12 Alkenes (II) Chem reaction what is added to the C=C what kind of molecule results addition of HX HX only

Nuggets of Knowledge for Chapter 12 Alkenes (II) Chem reaction what is added to the C=C what kind of molecule results addition of HX HX only I. Addition Reactions of Alkenes Introduction Nuggets of Knowledge for Chapter 12 Alkenes (II) Chem 2310 An addition reaction always involves changing a double bond to a single bond and adding a new bond

More information

BSc. II 3 rd Semester. Submitted By Dr. Sangita Nohria Associate Professor PGGCG-11 Chandigarh 1

BSc. II 3 rd Semester. Submitted By Dr. Sangita Nohria Associate Professor PGGCG-11 Chandigarh 1 BSc. II 3 rd Semester Submitted By Dr. Sangita Nohria Associate Professor PGGCG-11 Chandigarh 1 Introduction to Alkyl Halides Alkyl halides are organic molecules containing a halogen atom bonded to an

More information

Topic 10 Organic Chemistry. Ms. Kiely IB Chemistry (SL) Coral Gables Senior High School

Topic 10 Organic Chemistry. Ms. Kiely IB Chemistry (SL) Coral Gables Senior High School Topic 10 Organic Chemistry Ms. Kiely IB Chemistry (SL) Coral Gables Senior High School -Alkanes: have low reactivity and undergo free radical substitution. -Alkenes: are more reactive than alkanes, since

More information

Organic Chemistry, Second Edition. Janice Gorzynski Smith University of Hawai i. Chapter 10 Alkenes

Organic Chemistry, Second Edition. Janice Gorzynski Smith University of Hawai i. Chapter 10 Alkenes Organic Chemistry, Second Edition Janice Gorzynski Smith University of Hawai i Chapter 10 Alkenes Prepared by Rabi Ann Musah State University of New York at Albany Copyright The McGraw-Hill Companies,

More information

WELCOME TO MODERN ORGANIC CHEMISTRY

WELCOME TO MODERN ORGANIC CHEMISTRY WELCOME TO MODERN ORGANIC CEMISTRY Organic Chemistry, 5 th Edition L. G. Wade, Jr. Chapter 4 The Study of Chemical Reactions WAT IS A REACTION MECANISM A DESCRIPTION OF STRUCTURES AN ENERGIES OF STARTING

More information

Part C- section 1 p-bonds as nucleophiles

Part C- section 1 p-bonds as nucleophiles Part C- section 1 p-bonds as nucleophiles Chemistry of Alkenes (Ch 8, 9, 10) - the double bond prevents free rotation - isomerism cis and trans - nomenclature E and Z (3 or 4 different substituents around

More information

Ethers can be symmetrical or not:

Ethers can be symmetrical or not: Chapter 14: Ethers, Epoxides, and Sulfides 175 Physical Properties Ethers can be symmetrical or not: linear or cyclic. Ethers are inert and make excellent solvents for organic reactions. Epoxides are very

More information

C h a p t e r S e v e n : Haloalkanes: Nucleophilc Substitution and Elimination Reactions S N 2

C h a p t e r S e v e n : Haloalkanes: Nucleophilc Substitution and Elimination Reactions S N 2 C h a p t e r S e v e n : Haloalkanes: Nucleophilc Substitution and Elimination Reactions S N 2 CHM 321: Summary of Important Concepts Concepts for Chapter 7: Substitution Reactions I. Nomenclature of

More information

1. Addition of HBr to alkenes

1. Addition of HBr to alkenes eactions of Alkenes I eading: Wade chapter 8, sections 8-1- 8-8 tudy Problems: 8-47, 8-48, 8-55, 8-66, 8-67, 8-70 Key Concepts and kills: Predict the products of additions to alkenes, including regiochemistry

More information

Organic Chemistry. Why are these compounds called Organic. What is a Hydrocarbon? Questions: P167 Read

Organic Chemistry. Why are these compounds called Organic. What is a Hydrocarbon? Questions: P167 Read Organic Chemistry The fact that carbon can form a wide variety of relatively stable long chain molecules results in this very important branch of Chemistry: Organics. Carbon forms strong covalent bonds

More information

1 (a) Give the general formula for the homologous series of alkenes. (1) (b) What is meant by the term unsaturated as applied to alkenes?

1 (a) Give the general formula for the homologous series of alkenes. (1) (b) What is meant by the term unsaturated as applied to alkenes? 1 (a) Give the general formula for the homologous series of alkenes. (b) What is meant by the term unsaturated as applied to alkenes? (c) Name the alkene below using E-Z nomenclature. H 3 C H C C CH 2

More information

Alcohols, Ethers, & Epoxides

Alcohols, Ethers, & Epoxides Alcohols, Ethers, & Epoxides Alcohols Structure and Bonding Enols and Phenols Compounds having a hydroxy group on a sp 2 hybridized carbon enols and phenols undergo different reactions than alcohols. Chapter

More information

1. Which of the following reactions would have the smallest energy of activation?.

1. Which of the following reactions would have the smallest energy of activation?. Name: Date: 1. Which of the following reactions would have the smallest energy of activation?. A) +. +. B) + +. C) +.. + D) +.. + E) +.. + 2. Which of the following reactions would have the smallest energy

More information

10. Organohalides. Based on McMurry s Organic Chemistry, 7 th edition

10. Organohalides. Based on McMurry s Organic Chemistry, 7 th edition 10. Organohalides Based on McMurry s Organic Chemistry, 7 th edition What Is an Alkyl Halide An organic compound containing at least one carbonhalogen bond (C-X) X (F, Cl, Br, I) replaces H Can contain

More information

Chapter 8 Alkenes and Alkynes II: Addition Reactions "

Chapter 8 Alkenes and Alkynes II: Addition Reactions Chapter 8 Alkenes and Alkynes II: Addition Reactions Additions to Alkenes Generally the reaction is exothermic because one π and one σ bond are converted to two σ bonds Alkenes are electron rich The π

More information

JEFFERSON COLLEGE COURSE SYLLABUS CHM200 ORGANIC CHEMISTRY I. 5 Credit Hours. Prepared by: Richard A. Pierce

JEFFERSON COLLEGE COURSE SYLLABUS CHM200 ORGANIC CHEMISTRY I. 5 Credit Hours. Prepared by: Richard A. Pierce JEFFERSON COLLEGE COURSE SYLLABUS CHM200 ORGANIC CHEMISTRY I 5 Credit Hours Prepared by: Richard A. Pierce Revised Date: January 2008 by Ryan H. Groeneman Arts & Science Education Dr. Mindy Selsor, Dean

More information

CHAPTER 2. Structure and Reactivity: Acids and Bases, Polar and Nonpolar Molecules

CHAPTER 2. Structure and Reactivity: Acids and Bases, Polar and Nonpolar Molecules CHAPTER 2 Structure and Reactivity: Acids and Bases, Polar and Nonpolar Molecules 2-1 Kinetics and Thermodynamics of Simple Chemical Processes Chemical thermodynamics: Is concerned with the extent that

More information

DAMIETTA UNIVERSITY. Energy Diagram of One-Step Exothermic Reaction

DAMIETTA UNIVERSITY. Energy Diagram of One-Step Exothermic Reaction DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURE 5 Dr Ali El-Agamey 1 Energy Diagram of One-Step Exothermic Reaction The vertical axis in this graph represents the potential energy. The transition

More information