First we want to talk about last thing in Polyprotic Acids : Examples : H2SO4, H2CO3, H3PO4

Size: px
Start display at page:

Download "First we want to talk about last thing in Polyprotic Acids : Examples : H2SO4, H2CO3, H3PO4"

Transcription

1 First we want to talk about last thing in Polyprotic Acids : Examples : H2SO4, H2CO3, H3PO4 If I take a solution of polyprotic Acid, what are the changes that happen to it? How they change? How dissociation happen? and so on. - I want to study it on a certain moment or on a certain ph What are the componanets inside it? what is the percentage of it Fraction? As an example : We will take an acid and it s H2CO3 we start first with ( 1 Mole/ 1L ) or 1M in that acid, it will be found in low ph ( because it s an acid solution ) The dissociation will happen as a first step for the first proton and a result for that the concentration and amount for H2CO3 will decrease and another thing will change and increase (H2CO3 will convert to conjugated base HCO3- ) the concentration for HCO3- increase. ( On curve ph change and Fraction ) Fraction : percentage of something to another on certain ph ( like: acid and conjugate base) 1

2 On curve : We started with low ph, because it s an acid and second thing any acid even strong or weak it will start dissociation at ph equals to its pka or ph was higher that pka So From curve the strongest acid in dissociation steps is H2CO3 ( it s the easiest to give proton and first dissociation because Ka high and pka low ) When I compare Pka and ph both have Log And pka low so ph start in low point and increases with us. Then, H2CO3 decrease and HCO3- increase until H2CO3 finished so all will converted to HCO3- at this moment the next step for dissociation start the HCO3- decrease and CO3-2 increase until we reach approximately complete dissociation ( approximately we said because it is a weak step and ph is high there ) 2

3 From curve : On ph = 10 The Fraction of HCO3- and CO3-2? Fraction of HCO3- : around 0.7 Fraction of CO3-2 : 0.25 ** If we don t have a curve we will use the Henderson-Hasselbalch equation ( ph is known also pka known or they will give us Ka and from it we get the pka) ** log is like a Fraction as an example 9 to 1 9 molecules conjugate base and 1 molecule from acid if I want to convert that to a fraction we will have 90% and 10% ( because together they are 10 molecules ) Fraction = No. of mole X 100 % Total amount 3

4 Now we will start with Titration : Titration is an experiment in which measured amounts of base are added to a measured amount of acid while following up changes in ph using a ph meter. In simple words : It s Neutralization ( the acid by base or base by acid ) ** Note: Not always at end point ph = 7 but can be nearly to 7 Simple curve for titration ( not real one ) : - We used CH3COOH and started to add equivalents of OH- ( anything with OH- like: NaOH or KOH which gives OH- ) So, OH- increase and the acid decrease and the Base and Acid react and give Salt and water - Salt increase ( which is conjugate base ) its concentration increases and the Acid decrease. We use ph meter to know the final ph after Titration 4

5 The real curve : - If I take CH3COOH and started to add equivalents of OH- Example : 1) I have 1 mole of CH3COOH, for titration I need 1 mole of OH- 2) If I have polyprotic especially diprotic I will add 2 mole of equivalent ( each molecule of acid we treat with it alone ) ** Notes : - When I neutralize acid the ph increase because it will not stay acid ( it lost its acidic properties ) and notice that on Y-axis while adding OH- - the bases I add are strong, while the acid is weak, why? To complete dissociation ( all amount I add from base will give same amount of OH- if strong, but if it is weak it will give us less amount of OH- so we will not have a good titration. 5

6 From Curve : - First thing ph increase very fast then a small change like a line then at end it will be back to be fast again - Second thing first region its concavity downward then reach to a point where it at center in the image then its concavity upward ( so that point called inflection point and it is in the center of the curve ) If I add one of equivalents of OH- I am here in fact add 0.5 of equivalent of OH- 0.5 equivalent means half of acid react and consumed and the other half still acid so, Concentration of acid = concentration of conjugate base salt And mole same and volume So from Henderson equation ph = Pka + Log conjugate base / Acid and if conjugate base and Acid same Log 1 = zero so ph = pka and concentration equally this point is called inflection point And we still add until we reach to 1 equivalent and the titration will end - The end point which titration end on it equivalent point ** if we compare titration for more than one acid the curve will be at different ph - From this curve : CH3COOH is the strongest because ph is the lowest and pka low. - When I get inflection point and cut it down with y-axis, and from Henderson equation I can get pka and here it s low so strongest acid. 6

7 Some words help you in calculation : if they said we have buffer, or titration happen - In titration we add volume to volume so total volume different and so the concentration change - Second thing I am consuming the acid so its amount will decrease and so I can t say initial concentration is same to final concentration - I have to take out the amount have been titrated and removed from initial concentration [HA] = [HAi]-[Base]/ V Bec, the same quantity will react with base Example: CH3COOH + OH- CH3COO-+ H2O Calculate the relative amounts of acetic acid and acetate ion present and ph values when 1 mol of acetic acid is titrated with sodium hydroxide. 0.1 mol of NaOH is added when I add 0.1 mol OH- is added, 0.1 mol of acetic acid reacts with it to form 0.1 mol of acetate ion, leaving 0.9 mol of acetic acid. The composition is 90% acetic acid and 10% acetate ion. ( لما نضيف 1.0 من القاعده نفس الكمية راح تستهلك من الحمض ف راح يظل من الحمض و بصير ) 1.0 ph = pka + log 0.1/0.9 ph = log 0.1/0.9 ph = ph = 3.81 ( pka here is known ) 7

8 Titration curve of Glycine ( example from the body ) Amino acid : polymers of proteins and glycine is one type of the 20 types of amino acids Amino acid is a carbonic group ( 4 bonds ) H Amino Group C Carboxylic Group R- Group ( in glycine it s the simplest one so here is H ) And the normal situations in our body for amino and carboxyl groups NH3+ and COO- So in this case in titration I treat with both of them as acids ( not one acid and the other is base ) and each one has its own Ka value ( ألن قوتهم كأحماض مختلفة ( ph ** Titration of different groups happened in different - COOH is stronger, it happened at lower ph 8

9 Same idea in curve first start fast then slowly then fast but here 2 curves because different abilities to donate protons. In Titration first ph increase because COOH will reacts with OH- and give us water And we are still adding base until reach to ph which is suitable for pka of the second acid and then the titration will start and same curve and finally get salt and water. ( مالحظة لو كان عندي Amino Acids فيه مجموعتين Carboxyl راح يصير في 3 مراحل و لكن تبقى مجموعات ال Carboxyl أقوى من مجموعات األمين ) 9

10 Now, we well talk about Buffer : Buffers : are solutions that resist abrupt and sudden changes in ph. Resisting sudden changes in ph is very important, to understand that let s take first an example : - If we have an enzyme which give lactic acid in cellular respiration and so we get an acid, the ph will decease in the cell environment and so the enzyme will be inactivate So the cells should have a certain system from Buffer to maintain their range of ph and not happen a lot of changes so they keep working. ** We will start this chapter from chemical Buffer then move to buffer in human body. Examples to understand what is buffer - why do we need buffer : 1- From chemical side : ( to understand why do we need it ) Reactions happen at certain ph, even if is was in test tube, if we change ph, the rate of reaction will change too and the reaction will not be as well as it have to be so I must keep the reaction in the range. 2- From our life : ( to understand what is it ) * If I have a glass of water and put some drops of lemon juice it will be similar to lemon juice even if it is has a light taste and same ideas for Acidic properties this glass of water will change to Acid * But Buffer solution when we add any Acidic solution it will keep its properties ( NO CHANGE) After and before will be same as it is or near to its state. How does the Buffer act? How they maintain the ph? How do they protect us from sudden change? - To answer that : * If we have a solution and it is a buffer and added HCl ( HCl is a strong acid and gives a lot of H+ also affects ph ) but this Buffer in this state will decrease H+ and this amount which decreased will act with the Buffer Components which contain conjugate base and changed this strong acid to weak one, the weak acid not highly association, So even if it gave protons, it will not decrease the ph as the strong one. Another way: * Maybe H+ reacts with OH- which is in the solution and convert to water. 10

11 - Opposite example : * If we take a lot of Base ( like a person by wrong way drink a bleach ) OH- which will get out from the Base will reacts with acid which is in the solution and one of its component is Buffer so we get salt and water and then ph will not change. ** In the curve ph was high and started to decrease by adding drops of acid - This can be a Buffer. ** The other line which is in water ph decrease very fast and just by few drops so - This can t be a Buffer 11

12 ** In this curve the initial and final there are a very fast change but in the middle a slow change ( this region is called Buffering zone or Buffering region because ph changes very minimal ) and in that region the solution can act as buffer when we move away from that region it can t act as a Buffer ( it has a capacity ). How can we prepare a Buffer solution? ** There are Acidic Buffer and Basic or Alkali Buffer. ( ph that they work on will determine Acid or Base and their components). - If we want to prepare a Buffer from Acetic acid, I have to take a weak acid as acetic acid, I cant take a strong acid Then I will take this weak acid and add to it a strong base like KOH Note that : If I take 1 mole from weak acid I add to it less amount of strong base ( 0.5 mole or round it ), and the half amount from acetic acid will react with the 0.5 mole and consume half and there will be another half from acid as acid and the other will be salt So that Salt with the half acid which not consumed is a Buffer solution. 12

13 - Second type: Base ph > 7 I take a weak base and react it with Strong Acid until we get Salt and base ( we do as we said before but here base ) NH4Cl NH4++ Cl- NH3+ H2O NH4++ OH If I add Acid from outside to check the Buffer : H+ will react with OH- and converted to water so no change in ph If we add base : It will react with NH4+ and convert it to weak base ( Ammonia ) so not giving a lot of OH- Good Luck 13

Hashem Al-Dujaily. Hala Al Suqi. Mamoun + Diala. Tamer Barakat + Hashem Al-Dujaily

Hashem Al-Dujaily. Hala Al Suqi. Mamoun + Diala. Tamer Barakat + Hashem Al-Dujaily 3 Hashem Al-Dujaily Tamer Barakat + Hashem Al-Dujaily Hala Al Suqi Mamoun + Diala Last time we talked about the Ionization of water and then started talking about kw (ion product for water) which is a

More information

Dr. Diala Abu-Hassan, DDS, PhD Lecture 3 MD summer 2014

Dr. Diala Abu-Hassan, DDS, PhD Lecture 3 MD summer 2014 ph, DDS, PhD Dr.abuhassand@gmail.com Lecture 3 MD summer 2014 www.chem4kids.com 1 Outline ph Henderson-Hasselbalch Equation Monoprotic and polyprotic acids Titration 2 Measuring the acidity of solutions,

More information

Lecture #11-Buffers and Titrations The Common Ion Effect

Lecture #11-Buffers and Titrations The Common Ion Effect Lecture #11-Buffers and Titrations The Common Ion Effect The Common Ion Effect Shift in position of an equilibrium caused by the addition of an ion taking part in the reaction HA(aq) + H2O(l) A - (aq)

More information

Acids and bases, ph and buffers. Dr. Mamoun Ahram Lecture 2

Acids and bases, ph and buffers. Dr. Mamoun Ahram Lecture 2 Acids and bases, ph and buffers Dr. Mamoun Ahram Lecture 2 ACIDS AND BASES Acids versus bases Acid: a substance that produces H+ when dissolved in water (e.g., HCl, H2SO4) Base: a substance that produces

More information

Chapter 16 Aqueous Ionic Equilibrium Buffer Solutions

Chapter 16 Aqueous Ionic Equilibrium Buffer Solutions Chapter 16 Aqueous Ionic Equilibrium 16.1-16.2 Buffer Solutions Why? While a weak acid will partially ionize to produce its conjugate base, it will not produce enough conjugate base to be considered a

More information

-log [H+][OH-] = - log [1 x ] Left hand side ( log H + ) + ( log OH - ) = ph + poh Right hand side = ( log 1) + ( log ) = 14 ph + poh = 14

-log [H+][OH-] = - log [1 x ] Left hand side ( log H + ) + ( log OH - ) = ph + poh Right hand side = ( log 1) + ( log ) = 14 ph + poh = 14 Autoionization of Water H 2 O H + + OH - K = [H + ][OH - ]/[H 2 O] = 1.802 x 10-16 Concentration of [H 2 O] is so HIGH autoionization is just a drop in the bucket, so [H 2 O] stays constant at 55.5 M,

More information

Acid-Base Equilibria (Chapter 10.) Problems: 2,3,6,13,16,18,21,30,31,33

Acid-Base Equilibria (Chapter 10.) Problems: 2,3,6,13,16,18,21,30,31,33 Acid-Base Equilibria (Chapter 10.) Problems: 2,3,6,13,16,18,21,30,31,33 Review acid-base theory and titrations. For all titrations, at the equivalence point, the two reactants have completely reacted with

More information

Preparation of different buffer solutions

Preparation of different buffer solutions Preparation of different buffer solutions 1 - Buffers: - All biochemical reactions occur under strict conditions of the concentration of hydrogen ion. - Biological life cannot withstand large changes in

More information

Acid Base Equilibria

Acid Base Equilibria Acid Base Equilibria Acid Ionization, also known as acid dissociation, is the process in where an acid reacts with water to produce a hydrogen ion and the conjugate base ion. HC 2 H 3 O 2(aq) H + (aq)

More information

Ch. 17 Applications of Aqueous Equilibria: Buffers and Titrations

Ch. 17 Applications of Aqueous Equilibria: Buffers and Titrations Ch. 17 Applications of Aqueous Equilibria: Buffers and Titrations Sec 1 The Common-Ion Effect: The dissociation of a weak electrolyte decreases when a strong electrolyte that has an ion in common with

More information

battery acid the most widely used industrial chemical Hydrochloric acid, HCl muriatic acid stomach acid Nitric acid, HNO 3

battery acid the most widely used industrial chemical Hydrochloric acid, HCl muriatic acid stomach acid Nitric acid, HNO 3 BRCC CHM 101 Chapter 9 Notes (Chapter 8 in older text versions) Page 1 of 9 Chapter 9: Acids and Bases Arrhenius Definitions more than 100 years old Acid a substance that produces H + in water (H + is

More information

Problem 1 C 6 H 5 [ COOH C 6 H[H 5 COO + ] - + H [ I C - x + x + x E x x x

Problem 1 C 6 H 5 [ COOH C 6 H[H 5 COO + ] - + H [ I C - x + x + x E x x x Problem 1 What is the ph of a 291mL sample of 2.993M benzoic acid (C 6 H 5 COOH) (K a =6.4x10 5 )? Write out acid dissociation reaction: C 6 H 5 COOH C 6 H 5 COO H Make an ICE chart since this is a weak

More information

Analytical Chemistry Lecture III by/ Dr. Ekhlas Q. J. BUFFER SOLUTIONS

Analytical Chemistry Lecture III by/ Dr. Ekhlas Q. J. BUFFER SOLUTIONS Analytical Chemistry Lecture III by/ Dr. Ekhlas Q. J. BUFFER SOLUTIONS Buffer solutions Definition Solutions which resist changes in ph when small quantities of acid or alkali are added. a solution that

More information

K w. Acids and bases 8/24/2009. Acids and Bases 9 / 03 / Ionization of water. Proton Jumping Large proton and hydroxide mobility

K w. Acids and bases 8/24/2009. Acids and Bases 9 / 03 / Ionization of water. Proton Jumping Large proton and hydroxide mobility Chapter 2 Water Acids and Bases 9 / 03 / 2009 1. How is the molecular structure of water related to physical and chemical behavior? 2. What is a Hydrogen Bond? 3Wh 3. What are Acids Aid and db Bases? 4.

More information

Chem 1046 Lecture Notes Chapter 17

Chem 1046 Lecture Notes Chapter 17 Chem 1046 Lecture Notes Chapter 17 Updated 01-Oct-2012 The Chemistry of Acids and Bases These Notes are to SUPPLIMENT the Text, They do NOT Replace reading the Text Book Material. Additional material that

More information

Water. Water participates in H-bonding with biomolecules.

Water. Water participates in H-bonding with biomolecules. Water Most biochemical reactions occur in an aqueous environment. Water is highly polar because of its bent geometry. Water is highly cohesive because of intermolecular hydrogen bonding. Water participates

More information

Applications of Aqueous Equilibrium Chapter 15. Common Ion Effect & Buffers Sections 1-3

Applications of Aqueous Equilibrium Chapter 15. Common Ion Effect & Buffers Sections 1-3 Applications of Aqueous Equilibrium Chapter 15 Common Ion Effect & Buffers Sections 1-3 Solutions of Acids or Bases Containing a Common Ion NaF Na + + F - HF H + + F - What effect does the NaF have on

More information

Grace King High School Chemistry Test Review

Grace King High School Chemistry Test Review CHAPTER 19 Acids, Bases & Salts 1. ACIDS Grace King High School Chemistry Test Review UNITS 7 SOLUTIONS &ACIDS & BASES Arrhenius definition of Acid: Contain Hydrogen and produce Hydrogen ion (aka proton),

More information

Strong and Weak. Acids and Bases

Strong and Weak. Acids and Bases Strong and Weak Acids and Bases Strength of Acids H2SO4 HSO4 - + H + HNO3 NO3 - + H + Strong Acids HCl Cl - + H + H3PO4 H2PO4 - + H + Phosphoric acid Moderate Acid CH3COOH CH3COO - + H + Acetic acid HF

More information

Water: The Solvent for Biochemical Reactions

Water: The Solvent for Biochemical Reactions Chapter 2 Water: The Solvent for Biochemical Reactions 11 SUMMARY Section 2.1 Section 2.2 Section 2.3 Section 2.4 Water is a polar molecule, with a partial negative charge on the oxygen and partial positive

More information

Titration of a weak acid with strong base

Titration of a weak acid with strong base Titration of a weak acid with strong base - Objectives: - To study titration curves. - Determine the pka value of a weak acid. - Reinforce the understanding of buffers. - Titration Curves: - Titration

More information

Homework: 14, 16, 21, 23, 27, 29, 39, 43, 48, 49, 51, 53, 55, 57, 59, 67, 69, 71, 77, 81, 85, 91, 93, 97, 99, 104b, 105, 107

Homework: 14, 16, 21, 23, 27, 29, 39, 43, 48, 49, 51, 53, 55, 57, 59, 67, 69, 71, 77, 81, 85, 91, 93, 97, 99, 104b, 105, 107 Homework: 14, 16, 21, 23, 27, 29, 39, 43, 48, 49, 51, 53, 55, 57, 59, 67, 69, 71, 77, 81, 85, 91, 93, 97, 99, 104b, 105, 107 Chapter 15 Applications of Aqueous Equilibria (mainly acid/base & solubility)

More information

The Common Ion Effect

The Common Ion Effect Chapter 17 ACID BASE EQUILIBRIA (Part I) Dr. Al Saadi 1 17.1 The Common Ion Effect A phenomenon known as the common ion effect states that: When a compound containing an ion in common with an already dissolved

More information

Chem 1102 Semester 1, 2011 ACIDS AND BASES

Chem 1102 Semester 1, 2011 ACIDS AND BASES Chem 1102 Semester 1, 2011 ACIDS AND BASES Acids and Bases Lecture 23: Weak Acids and Bases Calculations involving pk a and pk b Strong Acids and Bases Lecture 24: Polyprotic Acids Salts of Acids and Bases

More information

Diprotic Acids Diprotic acids have two ionizable protons that undergo successive ionization.

Diprotic Acids Diprotic acids have two ionizable protons that undergo successive ionization. Diprotic Acids Diprotic acids have two ionizable protons that undergo successive ionization. + H2A + H2O º H3O + + HA [H3O [HA Ka [H2A + 2 HA + H2O º H3O + + A 2 [H3O [A Ka 2 [HA In general, Ka >> Ka 2.

More information

Full file at Chapter 2 Water: The Solvent for Biochemical Reactions

Full file at   Chapter 2 Water: The Solvent for Biochemical Reactions Chapter 2 Water: The Solvent for Biochemical Reactions SUMMARY Section 2.1 Summary Water is a polar molecule, with a partial negative charge on the oxygen and partial positive charges on the hydrogens.

More information

CHEMISTRY - BROWN 13E CH.16 - ACID-BASE EQUILIBRIA - PART 2.

CHEMISTRY - BROWN 13E CH.16 - ACID-BASE EQUILIBRIA - PART 2. !! www.clutchprep.com CONCEPT: ph and poh To deal with incredibly small concentration values of [H + ] and [OH - ] we can use the ph scale. Under normal conditions, the ph scale operates within the range

More information

Preparation Of Different Buffer Solutions. BCH 312 [Practical]

Preparation Of Different Buffer Solutions. BCH 312 [Practical] Preparation Of Different Buffer Solutions BCH 312 [Practical] Introduction: All biochemical reactions occur under strict conditions of the concentration of hydrogen ion. Biological life cannot withstand

More information

ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor

ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor HCl(aq) + H 2 O(l) H 3 O + (aq) + Cl - (aq) Acid Base Conjugate acid Conjugate

More information

Buffer Solutions. Buffer Solutions

Buffer Solutions. Buffer Solutions Buffer Solutions A buffer solution is comprised of a mixture of an acid (base) with its conjugate base (acid) that resists changes in ph when additional acid or base is added The Henderson-Hasselbalch

More information

Chapter 10. Acids, Bases, and Salts

Chapter 10. Acids, Bases, and Salts Chapter 10 Acids, Bases, and Salts Topics we ll be looking at in this chapter Arrhenius theory of acids and bases Bronsted-Lowry acid-base theory Mono-, di- and tri-protic acids Strengths of acids and

More information

Understanding the shapes of acid-base titration curves AP Chemistry

Understanding the shapes of acid-base titration curves AP Chemistry Understanding the shapes of acidbase titration curves AP Chemistry Neutralization Reactions go to Completion Every acidbase reaction produces another acid and another base. A neutralization reaction is

More information

Kotz 7 th ed. Section 18.3, pp

Kotz 7 th ed. Section 18.3, pp Lecture 15 Acid/base reactions. Equilibria in aqueous solutions. Titrations Kotz 7 th ed. Section 18.3, pp.821-832. In a titration a solution of accurately known concentration is added gradually added

More information

Chemistry I Notes Unit 10: Acids and Bases

Chemistry I Notes Unit 10: Acids and Bases Chemistry I Notes Unit 10: Acids and Bases Acids 1. Sour taste. 2. Acids change the color of acid- base indicators (turn blue litmus red). 3. Some acids react with active metals and release hydrogen gas,

More information

8.1 Theories of acids and bases

8.1 Theories of acids and bases 8. Acids and bases 8.1 Theories of acids and bases Sour-tasting substances (acids) have been known for thousands of years. Lavoisiers early theory: Acid= a compound of oxygen and a nonmetal. Arrhenius

More information

AP CHEMISTRY NOTES 10-1 AQUEOUS EQUILIBRIA: BUFFER SYSTEMS

AP CHEMISTRY NOTES 10-1 AQUEOUS EQUILIBRIA: BUFFER SYSTEMS AP CHEMISTRY NOTES 10-1 AQUEOUS EQUILIBRIA: BUFFER SYSTEMS THE COMMON ION EFFECT The common ion effect occurs when the addition of an ion already present in the system causes the equilibrium to shift away

More information

14-Jul-12 Chemsheets A

14-Jul-12 Chemsheets A www.chemsheets.co.uk 14-Jul-12 Chemsheets A2 009 1 BRONSTED-LOWRY ACIDS & BASES Bronsted-Lowry acid = proton donor (H + = proton) Bronsted-Lowry base = proton acceptor (H + = proton) Bronsted-Lowry acid-base

More information

A buffer is a an aqueous solution formed from a weak conjugate acid-base pair that resists ph change upon the addition of another acid or base.

A buffer is a an aqueous solution formed from a weak conjugate acid-base pair that resists ph change upon the addition of another acid or base. 1 A buffer is a an aqueous solution formed from a weak conjugate acid-base pair that resists ph change upon the addition of another acid or base. after addition of H 3 O + equal concentrations of weak

More information

Aya Alomoush. Amani Nofal. Mamoon AhraM

Aya Alomoush. Amani Nofal. Mamoon AhraM 4 Aya Alomoush Amani Nofal Mamoon AhraM Hi doctors, in this sheet we will continue talking about ph,buffer, titration curve, soooo lets begin our party. 1)Handerson-Hasselbalch equation (Important ) *PH

More information

5.111 Lecture Summary #22 Wednesday, October 31, 2014

5.111 Lecture Summary #22 Wednesday, October 31, 2014 5.111 Lecture Summary #22 Wednesday, October 31, 2014 Reading for Today: Sections 11.13, 11.18-11.19, 12.1-12.3 in 5 th ed. (10.13, 10.18-10.19, 11.1-11.3 in 4 th ed.) Reading for Lecture #23: Sections

More information

Acid-Base Equilibria. 1.NH 4 Cl 2.NaCl 3.KC 2 H 3 O 2 4.NaNO 2. Acid-Ionization Equilibria. Acid-Ionization Equilibria

Acid-Base Equilibria. 1.NH 4 Cl 2.NaCl 3.KC 2 H 3 O 2 4.NaNO 2. Acid-Ionization Equilibria. Acid-Ionization Equilibria Acid-Ionization Equilibria Acid-Base Equilibria Acid ionization (or acid dissociation) is the reaction of an acid with water to produce hydronium ion (hydrogen ion) and the conjugate base anion. (See Animation:

More information

E. Incorrect. Look carefully there is a statement that is true about weak acid dissociation.

E. Incorrect. Look carefully there is a statement that is true about weak acid dissociation. AP Chemistry - Problem Drill 21: Acids and Bases No. 1 of 10 1. Which of the following is true for the dissociation of a weak acid? A. K a is large. B. The equilibrium lies far to the right. C. The equilibrium

More information

Chapter 2 Water: The Solvent for Biochemical Reactions

Chapter 2 Water: The Solvent for Biochemical Reactions Chapter 2 Water: The Solvent for Biochemical Reactions SUMMARY Section 2.1 Water is a polar molecule, with a partial negative charge on the oxygen and partial positive charges on the hydrogens. There are

More information

Lecture 12. Acid/base reactions. Equilibria in aqueous solutions.

Lecture 12. Acid/base reactions. Equilibria in aqueous solutions. Lecture 12 Acid/base reactions. Equilibria in aqueous solutions. Titrations Kotz 7 th ed. Section 18.3, pp.821-832. In a titration a solution of accurately known concentration is added gradually added

More information

Buffer Effectiveness, Titrations & ph curves. Section

Buffer Effectiveness, Titrations & ph curves. Section Buffer Effectiveness, Titrations & ph curves Section 16.3-16.4 Buffer effectiveness Buffer effectiveness refers to the ability of a buffer to resist ph change Effective buffers only neutralize small to

More information

10.1 Acids and Bases in Aqueous Solution

10.1 Acids and Bases in Aqueous Solution 10.1 Acids and Bases in Aqueous Solution Arrhenius Definition of Acids and Bases An acid is a substance that gives hydrogen ions, H +, when dissolved in water. In fact, H + reacts with water and produces

More information

Chapter 17. Additional Aspects of Aqueous Equilibria. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 17. Additional Aspects of Aqueous Equilibria. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 17 Additional Aspects of John D. Bookstaver St. Charles Community College Cottleville, MO The Common-Ion Effect Consider a solution of acetic acid: CH 3 COOH(aq) + H 2 O(l)

More information

SCH4U Chapter 8 review

SCH4U Chapter 8 review Name: Class: Date: SCH4U Chapter 8 review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which statement does not describe a characteristic of acidic

More information

Chapter 15. Acid-Base Equilibria

Chapter 15. Acid-Base Equilibria Chapter 15 Acid-Base Equilibria The Common Ion Effect The common-ion effect is the shift in an ionic equilibrium caused by the addition of a solute that provides an ion already involved in the equilibrium

More information

ph = -log[h+], [H+] = 10-pH ph + poh = 14

ph = -log[h+], [H+] = 10-pH ph + poh = 14 You may remove this page. ph = -log[h+], [H+] = 10-pH McVc = MdVd ph + poh = 14 NA = 6.02 x 1023 mol-1 JBA 2017 Chemistry Exam 3 Name: Score: /100 = /80 Multiple choice questions are worth two points each.

More information

CHEMISTRY - MCQUARRIE 4E CH.21 - BUFFERS & THE TITRATION OF ACIDS & BASES

CHEMISTRY - MCQUARRIE 4E CH.21 - BUFFERS & THE TITRATION OF ACIDS & BASES !! www.clutchprep.com CONCEPT: CLASSIFICATION AND IDENTIFICATION OF BUFFERS Solutions which contain a acid and its base are called buffer solutions because they resist drastic changes in ph. They resist

More information

Acids, Bases and Buffers

Acids, Bases and Buffers 1 Acids, Bases and Buffers Strong vs weak acids and bases Equilibrium as it relates to acids and bases ph scale: [H+(aq)] to ph, poh, etc ph of weak acids ph of strong acids Conceptual about oxides (for

More information

Titration Of A Weak Acid With Strong Base. BCH 312 [Practical]

Titration Of A Weak Acid With Strong Base. BCH 312 [Practical] Titration Of A Weak Acid With Strong Base BCH 312 [Practical] Weak Acid : Weak acids or bases do not dissociate completely, therefore an equilibrium expression with Ka must be used. The Ka is a quantitative

More information

Chemistry 6/15/2015. Outline. Why study chemistry? Chemistry is the basis for studying much of biology.

Chemistry 6/15/2015. Outline. Why study chemistry? Chemistry is the basis for studying much of biology. Chemistry Biology 105 Lecture 2 Reading: Chapter 2 (pages 20-29) Outline Why study chemistry??? Elements Atoms Periodic Table Electrons Bonding Bonds Covalent bonds Polarity Ionic bonds Hydrogen bonding

More information

HW #10: 10.38, 10.40, 10.46, 10.52, 10.58, 10.66, 10.68, 10.74, 10.78, 10.84, 10.88, 10.90, ,

HW #10: 10.38, 10.40, 10.46, 10.52, 10.58, 10.66, 10.68, 10.74, 10.78, 10.84, 10.88, 10.90, , Chemistry 121 Lectures 20 & 21: Brønstead-Lowry Acid/Base Theory Revisited; Acid & Base Strength - Acids & Bases in Aqueous Solution; Acid Dissociation Constants and the Autoionization of Water; ph or

More information

Acid-Base Equilibria. 1.NH 4 Cl 2.NaCl 3.KC 2 H 3 O 2 4.NaNO 2. Solutions of a Weak Acid or Base

Acid-Base Equilibria. 1.NH 4 Cl 2.NaCl 3.KC 2 H 3 O 2 4.NaNO 2. Solutions of a Weak Acid or Base Acid-Base Equilibria 1 Will the following salts be acidic, basic or neutral in aqueous solution? 1.NH 4 Cl.NaCl.KC H O 4.NaNO A = acidic B = basic C = neutral Solutions of a Weak Acid or Base The simplest

More information

2017:2 (a) Ammonia, NH3, is a weak base. pka (NH4 + ) = 9.24 Ka (NH4 + ) = (i) Calculate the ph of a mol L 1 NH3 solution.

2017:2 (a) Ammonia, NH3, is a weak base. pka (NH4 + ) = 9.24 Ka (NH4 + ) = (i) Calculate the ph of a mol L 1 NH3 solution. AS 91392 Demonstrate understanding of equilibrium principles in aqueous systems Collated Buffer Questions 2017:2 (a) Ammonia, NH3, is a weak base. pka (NH4 + ) = 9.24 Ka (NH4 + ) = 5.75 10 10 (i) Calculate

More information

ACID-BASE REACTIONS. Titrations Acid-Base Titrations

ACID-BASE REACTIONS. Titrations Acid-Base Titrations Page III-b-1 / Chapter Fourteen Part II Lecture Notes ACID-BASE REACTIONS Chapter (Part II A Weak Acid + Strong Base Titration Titrations In this technique a known concentration of base (or acid is slowly

More information

Formation of a salt (ionic compound): Neutralization reaction. molecular. Full ionic. Eliminate spect ions to yield net ionic

Formation of a salt (ionic compound): Neutralization reaction. molecular. Full ionic. Eliminate spect ions to yield net ionic Formation of a salt (ionic compound): Neutralization reaction molecular Full ionic Eliminate spect ions to yield net ionic Hydrolysis/ reaction with water Anions of Weak Acids Consider the weak acid HF

More information

I. Acids & Bases. A. General ideas:

I. Acids & Bases. A. General ideas: Acid-Base Equilibria 1. Application of equilibrium concepts. 2. Not much else new in the way of theory is presented. 3. Specific focus on aqueous (H O is 2 solvent) systems. 4. Assume we are at equilibrium

More information

AS Demonstrate understanding of equilibrium principles in aqueous systems. Collated Buffer Questions

AS Demonstrate understanding of equilibrium principles in aqueous systems. Collated Buffer Questions 2016: AS 91392 Demonstrate understanding of equilibrium principles in aqueous systems No separate buffer question asked. 2015: 3 Collated Buffer Questions 20.0 ml of 0.258 mol L 1 hydrofluoric acid, HF,

More information

CHAPTER 8: ACID/BASE EQUILIBRIUM

CHAPTER 8: ACID/BASE EQUILIBRIUM CHAPTER 8: ACID/BASE EQUILIBRIUM Already mentioned acid-base reactions in Chapter 6 when discussing reaction types. One way to define acids and bases is using the Brønsted-Lowry definitions. A Brønsted-Lowry

More information

Chap 17 Additional Aspects of Aqueous Equilibria. Hsu Fu Yin

Chap 17 Additional Aspects of Aqueous Equilibria. Hsu Fu Yin Chap 17 Additional Aspects of Aqueous Equilibria Hsu Fu Yin 1 17.1 The Common-Ion Effect Acetic acid is a weak acid: CH 3 COOH(aq) H + (aq) + CH 3 COO (aq) Sodium acetate is a strong electrolyte: NaCH

More information

10/16/17 ACIDS AND BASES, DEFINED WATER IS AMPHOTERIC OUTLINE. 9.1 Properties of Acids and Bases. 9.2 ph. 9.3 Buffers

10/16/17 ACIDS AND BASES, DEFINED WATER IS AMPHOTERIC OUTLINE. 9.1 Properties of Acids and Bases. 9.2 ph. 9.3 Buffers ACIDS AND BASES, DEFINED A hydrogen atom contains a proton and an electron, thus a hydrogen ion (H + ) is a proton: Acids: Proton (H + ) transfer between molecules is the basis of acid/base chemistry Ø

More information

Acids and Bases. Dr. Diala Abu-Hassan, DDS, PhD Lecture 2 Nursing First Semester 014. Dr. Diala Abu-Hassan 1

Acids and Bases. Dr. Diala Abu-Hassan, DDS, PhD Lecture 2 Nursing First Semester 014. Dr. Diala Abu-Hassan 1 science.lotsoflessons.com Acids and Bases, DDS, PhD Dr.abuhassand@gmail.com Lecture 2 Nursing First Semester 014 1 Outline Definitions of acids and bases Acid and base strength The dissociation constant

More information

12. Acid Base Equilibria

12. Acid Base Equilibria 2. Acid Base Equilibria BronstedLowry Definition of acid Base behaviour A BronstedLowry acid is defined as a substance that can donate a proton. A BronstedLowry base is defined as a substance that can

More information

Today. Solubility The easiest of all the equilibria. Polyprotic Acids determining something about an unknown by reacting it with a known solution

Today. Solubility The easiest of all the equilibria. Polyprotic Acids determining something about an unknown by reacting it with a known solution Today Solubility The easiest of all the equilibria Polyprotic Acids determining something about an unknown by reacting it with a known solution Solubility Equilibria Mg(OH)2 (s) Mg 2+ (aq) + 2OH - (aq)

More information

CHAPTER 7 Acid Base Equilibria

CHAPTER 7 Acid Base Equilibria 1 CHAPTER 7 Acid Base Equilibria Learning Objectives Acid base theories Acid base equilibria in water Weak acids and bases Salts of weak acids and bases Buffers Logarithmic concentration diagrams 2 ACID

More information

Unit 9: Acid and Base Multiple Choice Practice

Unit 9: Acid and Base Multiple Choice Practice Unit 9: Acid and Base Multiple Choice Practice Name June 14, 2017 1. Consider the following acidbase equilibrium: HCO3 H2O H2CO3 OH In the reaction above, the BrönstedLowry acids are: A. H2O and OH B.

More information

Titration Curves equivalence point

Titration Curves equivalence point 1 Here is an example of a titration curve, produced when a strong base is added to a strong acid. This curve shows how ph varies as 0.100 M NaOH is added to 50.0 ml of 0.100 M HCl. The equivalence point

More information

School of Chemistry, University of KwaZulu-Natal, Howard College Campus, Durban. CHEM191 Tutorial 1: Buffers

School of Chemistry, University of KwaZulu-Natal, Howard College Campus, Durban. CHEM191 Tutorial 1: Buffers School of Chemistry, University of KwaZulu-Natal, Howard College Campus, Durban CHEM191 Tutorial 1: Buffers Preparing a Buffer 1. How many moles of NH 4 Cl must be added to 1.0 L of 0.05 M NH 3 to form

More information

Where does Physical Chemistry fit into your course in Dentistry?

Where does Physical Chemistry fit into your course in Dentistry? Where does Physical Chemistry fit into your course in Dentistry? Acidogenic bacteria in dental plaque can rapidly metabolise certain carbohydrates to acid endproducts. In the mouth, the resultant change

More information

Unit 2 Acids and Bases

Unit 2 Acids and Bases Unit 2 Acids and Bases 1 Topics Properties / Operational Definitions Acid-Base Theories ph & poh calculations Equilibria (Kw, K a, K b ) Indicators Titrations STSE: Acids Around Us 2 Operational Definitions

More information

UNIT 14 - Acids & Bases

UNIT 14 - Acids & Bases COMMON ACIDS NOTES lactic acetic phosphoric citric malic PROPERTIES OF ACIDS 1. 1. PROPERTIES OF BASES 2. 2. 3. 3. 4. 4. 5. 5. NAMING ACIDS NOTES Binary acids (H + one element) Practice: 1. hydro- - HF

More information

Chapter 16: Applications of Aqueous Equilibrium Part 2. Acid-Base Titrations

Chapter 16: Applications of Aqueous Equilibrium Part 2. Acid-Base Titrations Chapter 16: Applications of Aqueous Equilibrium Part 2 Acid-Base Titrations When you add an acid and a base together, a neutralization rxn occurs. In the lab, we do neutralization rxns all the time as

More information

AREA 1: WATER. Chapter 6 ACIDS AND BASES. 6.1 Properties of acids and bases

AREA 1: WATER. Chapter 6 ACIDS AND BASES. 6.1 Properties of acids and bases AREA 1: WATER Chapter 6 ACIDS AND BASES 6.1 Properties of acids and bases Acids are: Sour May be corrosive Dissolve in water to produce an electrolyte, Turn blue litmus red Neutralised by bases. Bases

More information

Chapter 17 Additional Aspects of

Chapter 17 Additional Aspects of Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 17 Additional Aspects of AP Chemistry 2014-15 North Nova Education Centre Mr. Gauthier

More information

16.3 Weak Acids Weak Bases Titration

16.3 Weak Acids Weak Bases Titration 16.3 Weak Acids Weak Bases Titration Titration of Weak Acid with Strong Base Titration of Base Acid with Strong Acid Dr. Fred Omega Garces Chemistry 201 Miramar College 1 Weak Acids Weak Bases Titration

More information

Chapter 17 Additional Aspects of

Chapter 17 Additional Aspects of Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 17 Additional Aspects of John D. Bookstaver St. Charles Community College Cottleville,

More information

Indicator Color in acid (ph < 7) Color at ph = 7 Color in base (ph > 7) Phenolphthalein Bromothymol Blue Red Litmus Blue Litmus

Indicator Color in acid (ph < 7) Color at ph = 7 Color in base (ph > 7) Phenolphthalein Bromothymol Blue Red Litmus Blue Litmus Unit 9: Acids and Bases Notes Introduction and Review 1. Define Acid: 2. Name the following acids: HCl H2SO4 H2SO3 H2S 3. Bases usually contain 4. Name the following bases: NaOH Ca(OH)2 Cu(OH)2 NH4OH Properties

More information

Chapter 17 Additional Aspects of Aqueous Equilibria (Part A)

Chapter 17 Additional Aspects of Aqueous Equilibria (Part A) Chapter 17 Additional Aspects of Aqueous Equilibria (Part A) Often, there are many equilibria going on in an aqueous solution. So, we must determine the dominant equilibrium (i.e. the equilibrium reaction

More information

Lecture Presentation. Chapter 16. Aqueous Ionic Equilibrium. Sherril Soman Grand Valley State University Pearson Education, Inc.

Lecture Presentation. Chapter 16. Aqueous Ionic Equilibrium. Sherril Soman Grand Valley State University Pearson Education, Inc. Lecture Presentation Chapter 16 Aqueous Ionic Equilibrium Sherril Soman Grand Valley State University The Danger of Antifreeze Each year, thousands of pets and wildlife species die from consuming antifreeze.

More information

1.12 Acid Base Equilibria

1.12 Acid Base Equilibria .2 Acid Base Equilibria BronstedLowry Definition of acid Base behaviour A BronstedLowry acid is defined as a substance that can donate a proton. A BronstedLowry base is defined as a substance that can

More information

5.1.3 Acids, Bases and Buffers

5.1.3 Acids, Bases and Buffers 5..3 Acids, Bases and Buffers BronstedLowry Definition of Acid Base behaviour A BronstedLowry acid is defined as a substance that can donate a proton. A BronstedLowry base is defined as a substance that

More information

acid : a substance which base : a substance which H +

acid : a substance which base : a substance which H + 4.4. BronstedLowry Theory of A&B acid : a substance which base : a substance which H Typical BronstedLowry AB rxn eqn: eg1) NH 3 H 2 O NH 4 base acid OH eg2) CH 3 COOH H 2 O CH 3 COO H 3 O H 2 O an acid

More information

BIOC 460 General Chemistry Review: Chemical Equilibrium, Ionization of H 2 O, ph, pk a

BIOC 460 General Chemistry Review: Chemical Equilibrium, Ionization of H 2 O, ph, pk a BIOC 460 General Chemistry Review: Chemical Equilibrium, Ionization of H 2 O, ph, pk a General Equilibrium: What are the UNITS of K eq? Example reactions: A --> B units of K eq? A --> B + C units of K

More information

Acids And Bases. H + (aq) + Cl (aq) ARRHENIUS THEORY

Acids And Bases. H + (aq) + Cl (aq) ARRHENIUS THEORY Acids And Bases A. Characteristics of Acids and Bases 1. Acids and bases are both ionic compounds that are dissolved in water. Since acids and bases both form ionic solutions, their solutions conduct electricity

More information

Acids, Bases and Salts. Chapters 19

Acids, Bases and Salts. Chapters 19 Acids, Bases and Salts Chapters 19 Acid - Base Theories Section 19.1 What are common examples of acids and bases? What properties do you know about acids and bases? Arrhenius acids In 1887 A swedish Chemist,

More information

Chapter 17 Additional Aspects of Aqueous Equilibria (Part A)

Chapter 17 Additional Aspects of Aqueous Equilibria (Part A) Chapter 17 Additional Aspects of Aqueous Equilibria (Part A) What is a dominant equilibrium? How do we define major species? Reactions between acids and bases 1. Strong Acids + Strong Base The reaction

More information

UNIT 14 - Acids & Bases

UNIT 14 - Acids & Bases COMMON ACIDS NOTES lactic sour milk, sore muscles acetic vinegar phosphoric soft drinks citric citrus fruits malic apples PROPERTIES OF ACIDS PROPERTIES OF BASES 1. Taste sour 1. Taste bitter 2. react

More information

Chapter 17. Additional Aspects of Aqueous Equilibria. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT

Chapter 17. Additional Aspects of Aqueous Equilibria. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT Lecture Presentation Chapter 17 Additional Aspects of James F. Kirby Quinnipiac University Hamden, CT Effect of Acetate on the Acetic Acid Equilibrium Acetic acid is a weak acid: CH 3 COOH(aq) H + (aq)

More information

Multiple Choice Neatly write your choice in the blank provided. (3 pts each)

Multiple Choice Neatly write your choice in the blank provided. (3 pts each) Name CH302H EXAM 2 Spring 2013 Multiple Choice Neatly write your choice in the blank provided. (3 pts each) 1. What is the effect of a volume decrease on the reaction: C(s) H2O(g) CO(g) H2(g)? (a) K increases

More information

BIOMEDICAL SCIENCE MIN WAN

BIOMEDICAL SCIENCE MIN WAN ACID-BASE LECTURE BIOMEDICAL SCIENCE MIN WAN (min.wan@ki.se) SEPT. 12-13, 2016 9/6/2016 1 Acid Base lecture 14-15 September 2015 Min Wan 1. Introduction to ph 2. Acid base concept -calculations 3. Buffer

More information

19.3 Strengths of Acids and Bases > Chapter 19 Acids, Bases, and Salts Strengths of Acids and Bases

19.3 Strengths of Acids and Bases > Chapter 19 Acids, Bases, and Salts Strengths of Acids and Bases Chapter 19 Acids, Bases, and Salts 19.1 Acid-Base Theories 19.2 Hydrogen Ions and Acidity 19.3 Strengths of Acids and Bases 19.4 Neutralization Reactions 19.5 Salts in Solution 1 Copyright Pearson Education,

More information

Buffer solutions Strong acids and bases dissociate completely and change the ph of a solution drastically. Buffers are solutions that resist changes i

Buffer solutions Strong acids and bases dissociate completely and change the ph of a solution drastically. Buffers are solutions that resist changes i 18.3 ph Curves Buffer solutions Strong acids and bases dissociate completely and change the ph of a solution drastically. Buffers are solutions that resist changes in ph even when acids and bases are added

More information

REACTIONS OF ACIDS. J:\Science\Chemistry\Stage 1 Notes\Acids & Bases\Reactionsofacids.doc

REACTIONS OF ACIDS. J:\Science\Chemistry\Stage 1 Notes\Acids & Bases\Reactionsofacids.doc REACTIONS OF ACIDS 1. Acids taste sour We do not attempt to taste strong acids as they are too dangerous. They do taste sour, but then they proceed to destroy cells on your tongue and mouth. If you vomit,

More information

Unit 10: Acids and Bases

Unit 10: Acids and Bases Unit 10: Acids and Bases PROPERTIES OF ACIDS & BASES Properties of an Acid: a Tastes sour substance which dissociates (ionizes, breaks apart in solution) in water to form hydrogen ions Turns blue litmus

More information

Unit 4a Acids, Bases, and Salts Theory

Unit 4a Acids, Bases, and Salts Theory Unit 4a Acids, Bases, and Salts Theory Chemistry 12 Arrhenius Theory of Acids and Bases The first theory that was proposed to explain the actions of acids and bases was by Svante Arrhenius. It is still

More information

Chemical and Physical Properties of Organic Molecules

Chemical and Physical Properties of Organic Molecules Chemical and Physical Properties of Organic Molecules I.Elements A. Chemical symbols: C H O P S N C=carbon, H=hydrogen, O=oxygen, P=phosphorus, S=sulfur, N=nitrogen B. Top 3 Earth s surface = O, Si, Al

More information

Acids, Bases, and Buffers

Acids, Bases, and Buffers Print Presentation Acids, Bases, and Buffers OVERVIEW You're probably familiar with acids and bases in the products you use at home. Rust removers often contain phosphoric acid. Muriatic acid (a common

More information