Instrumental Chemical Analysis

Size: px
Start display at page:

Download "Instrumental Chemical Analysis"

Transcription

1 L6 page 1 Instrumental Chemical Analysis Ultraviolet and visible spectroscopy Dr. Ahmad Najjar Philadelphia University Faculty of Pharmacy Department of Pharmaceutical Sciences 2 nd semester, 2016/2017

2 L6 page 2 Spectrophotometry Spectroscopy is a general term referring to the interactions (absorption, emission) of various types of electromagnetic radiation with matter. Electromagnetic spectrum refers to the full range of all frequencies of electromagnetic radiation, which is refers to the waves of the electromagnetic field, propagating through space carrying electromagnetic energy. Spectrophotometry is a method to measure how much a chemical substance absorbs or emits light by measuring the intensity of light (electromagnetic radiation).

3 L6 page 3 Spectrophotometry Electromagnetic radiation (EMR) has been described in terms of a stream of photons that travel in a wave-like pattern. Each photon contains a certain amount of energy, and all electromagnetic radiation consists of these photons. All electromagnetic radiations travels in a straight line at the speed of light (3 x 10 8 m/s). The only difference between the various types of electromagnetic radiations is the amount of energy found in the photons. Crest Trough Crest λ ν ν wavelength (units: m, cm, frequency (units of wavenumber (number of waves per cm; unit : cm velocity of light in vacuum μm, nm) cycles/sec, sec c ν λ 1, Hertz m.s 1 1 ) ν 1/λ c ν λ ν /ν c Energy (E) h ν h h c ν λ h is planck's constant 6.62x10-34 J.s

4 L6 page 4 Spectrophotometry Electromagnetic radiation in the domain ranging between 180 and 780 nm, has been studied extensively. This portion of the electromagnetic spectrum, designated as the UV/Visible. Generally provide little structural information but is very useful for quantitative measurements.

5 L6 page 5 Problem 1: Calculate the wavenumber of a beam of IR radiation with a wavelength of 3μm. Problem 2: The frequency of a radiation is 3x10 12 s -1. Calculate the wavelength of the radiation. Problem 3: Calculate the energy of 530-nm photon of visible radiation Legend: γ = Gamma rays HX = Hard X-rays SX = Soft X-Rays EUV = Extreme-ultraviolet NUV = Near-ultraviolet Visible light (colored bands) NIR = Near-infrared MIR = Mid-infrared FIR = Far-infrared EHF = Extremely high frequency (microwaves) SHF = Super-high frequency (microwaves) UHF = Ultrahigh frequency (radio waves) VHF = Very high frequency (radio) HF = High frequency (radio) MF = Medium frequency (radio) LF = Low frequency (radio) VLF = Very low frequency (radio) VF = Voice frequency ULF = Ultra-low frequency (radio) SLF = Super-low frequency (radio) ELF = Extremely low frequency(radio) Answer: wavenumber = 1/ λ = 3,333 cm -1 Answer: λ = c/ = 10-4 m Answer: E = h = h c/λ = 3.75 x J

6 L6 page 6 Spectrophotometric methods A group of techniques that relies on the interaction of EMR and matter. There are many types of methods based on either molecular or atomic interactions: Absorption (excitation) Emission (luminescence, relaxation or deactivation): Non-radiative Relaxation (vibrational or internal conversion) Radiative photoluminescence (luminescence after absorption) : Fluorescence: Resonance fluorescence Non-resonance fluorescence Phosphorescence

7 L6 page 7 Spectrophotometric methods Molecular orbital energies: Electrons in atoms exist in atomic orbitals (consist of electronic levels only) while electrons in molecules exist in molecular orbitals (consist of electronic, vibrational and rotational levels). Each molecular orbital has energy level represent electronic state S. Between each electronic states there lies several vibrational levels V, themselves also sub-divided into a collection of rotational levels R.

8 L6 page 8 Molecular orbital energies:

9 L6 page 9 Molecular orbital energies:

10 L7 page 1 Spectrophotometric methods

11 L7 page 2 Spectrophotometric methods A molecule absorbs a photon by undergoing an energy transition exactly equal to the energy of the photon. The energy captured during the photon absorption can be expressed as E tot = E rot + E vib + E elec Promotion of an electron from one occupied orbital (HO) to an unoccupied a- radiative process b- internal conversion c- inter system crossing orbital (LU) with the apparition of a singlet state giving rise rapidly to a more stable triplet state. This process corresponds to a return of an excited species to the ground state.

12 L7 page 3 Spectrophotometric methods

13 L7 page 4 The UV/Vis spectrum UV/Vis spectrometers collect the data (transmittance or absorbance) over the required range of wavelengths and generate the spectrum of the compound under analysis as a graph. The spectrum exhibit peaks over the investigated wavelengths range. The wavelength at which the top of the peak occurs is called l max (lambda max). Some compounds show more than one l max. Spectrum profile is affected by several conditions like : sample state, ph, solvent nature, presented metal ions, temperature and concentration.

14 L7 page 5 The UV/Vis spectrum The recorded spectra of compounds in the condensed phase, whether pure or in solution, generally present absorption bands that are both few and broad, while those spectra obtained from samples in the gas state yield spectra of detailed fine structure. Examples:

15 L7 page 6 Electronic transitions of organic compounds Organic compounds represent the majority of the studies made in the UV/Vis. The observed transitions involve electrons engaged in or or non-bonding n electron orbitals of light atoms such as H, C, N, O. The character of each absorption band will be indicated in relation to the molecular orbitals (MO) concerned and the molar absorption coefficient.

16 L7 page 7 Electronic transitions of organic compounds * Appears in saturated hydrocarbons. Hexane (gas state): l max =135nm. All solvents have this transition. It is strong transition and needs high energy. n * mainly if n electron from an atom of O, N, S, Cl present in saturated hydrocarbons system. Examples: methanol: l max = 183nm, ether: l max = 190nm, ethylamine: l max =210nm. Weak transition. n * this transition is usually observed in molecules containing a hetero atom carrying lone electron pairs as part of an unsaturated system. Example: ethanal: l max =293nm. Weak transition. * for unsaturated systems. Example: ethylene: l max =165nm. Strong transition. d d inorganic salts containing electrons engaged in d orbitals are responsible for transitions of weak absorption located in the visible region. These transitions are generally responsible for their colours. That is why the solutions of copper salt [Cu(H 2 O) 6 ] 2+ is blue, while potassium permanganate yields violet solutions.

17 L7 page 8 Electronic transitions of organic compounds

18 L7 page 9 Chromophore groups Chromophore: unsaturated groups or any functional group that absorbs at near UV or Vis region when it is attached to non absorbing saturated residue with no unshared pair of e.

19 L7 page 10 Chromophore groups More chromophores in the same molecule cause bathochromic effect (Red shift: shift to longer wavelength) and hyperchromic effect (increase in intensity). In contrast the shift to shorter wavelengths (Blue shift) is called Hypsochromic effect and the decrease in intensity is called Hypochromic effect. In the conjugated chromophores electrons are delocalized over larger number of atoms causing a decrease in the energy of to * transitions and an increase in due to an increase in probability for transition. They are groups that do not confer color but increase the coloring power of a chromophore, they called Auxochromes. They are functional groups that have nonbonded valence electrons and show no absorption at l> 220 nm; they absorb in the far UV. (e.g. -OH and -NH 2 groups cause a red shift)

20 L7 page 11 Chromophore groups

21 L7 page 12 Chromophore groups

22 L7 page 13 Chromophore groups

23 L8 page 1 Fieser Woodward rules Empirical rules to set up a correlation between structures and positions of the absorption maxima. Many system were studied and rules were established for these systems such as: Heteroannular Diene (Transoid and Cisoid), Polyene, and unsaturated carbonyl (enone). In such systems, the chemical structure was fragmented to basic structure and substituents. λ max = Base value + Σ Substituent Contributions + Σ Other Contributions For enones and dienones we could start with the following basic structures:

24 L8 page 2 Fieser Woodward rules For enones and dienones we could start with the following basic structures:

25 L8 page 3 Fieser Woodward rules Component Base- cyclohexenone Substituents at α-position: 0 Substituents at β-position: 1 alkyl group Substituents at γ-position: 0 Substituents at δ-position: 0 Substituents at ε-position: 0 Substituents at ζ-position: 1 alkyl group Contribution nm + 12 nm + 18 nm Other Effects: 2 Double bonds extending conjugation 2 x 30 = + 60 nm Homoannular Diene system in ring B + 35 nm 1 Exocyclic double bond + 5 nm Calculated λ max 345 nm

26 L8 page 4 Solvent effects: solvatochromism Solvents decrease the sharpness and fine details in the spectrum peaks due to the large interaction between molecules, the strong intermolecular forces cause the electronic peaks to blend, giving only a single smooth absorption band. Polar solvents stabilize both non-bonding electrons in the ground state and * electrons in the excited state. This will lowering the energy state for both n and * electrons, but n state will be affected strongly.

27 L8 page 5 Solvent effects: solvatochromism

28 L8 page 6 Solvent effects: solvatochromism

29 L8 page 7 Solvent effects: solvatochromism The choice of solvents should take into account their cutoff point s!!

30 L8 page 8 Effect of ph ph of the solution could affect the chemical structure of the molecule. Rings may opened or closed, saturation and conjugation could be affected, also charges may appeared and this with affect the polarity and electrons delocalization. Actually this is what happens for acid/base indicator molecules, like phenolphthalein. In basic solution, the central carbon becomes part of a double bond becoming sp2 hybridized instead of sp3 hybridization and leaving a p orbital to overlap with the -bonding in the rings. This makes the three rings conjugate together to form an extended chromophore absorbing longer wavelength visible light to show a fuchsia color.

31 L8 page 9 Effect of ph An animation of the ph dependent reaction mechanism: H 3 In + H 2 In In 2 In(OH) 3 Methyl orange is a different example. What's happened here?? See:

32 L8 page 10 Effect of ph

33 L8 page 11 Effect of ph

34 L8 page 12

35 L9 page 1 Instrumentation in the UV/Visible UV/Vis spectrometers main components are : Source, Wavelength selector (Dispersive system or Discriminator or Monochromator), Sample container and Radiation transducer (Detector) Two optical schemes are well-known in UV/Vis spectrometers design. In the first design on which the majority of instruments are based, the spectrum is obtained in a sequential manner as a function of time (one wavelength after another). In the second, the detector sees all of the wavelengths simultaneously.

36 L9 page 2 Light sources: Instrumentation in the UV/Visible for the visible region of the spectrum, an incandescent lamp fitted with a tungsten filament; for the UV region (<350nm) a deuterium arc lamp under a slight pressure; alternatively, for the entire region 200 to 1100 nm, a xenon arc lamp can be used. Dispersive systems and monochromators Sequential instruments: the light emitted by the source is dispersed through either a planar or concave grating which forms part of a monochromator assembly. This device permits the extraction of a narrow interval of the emission spectrum. The wavelength or more precisely the width of the spectral band, which is a function of the slit width, can be varied gradually by rotating the grating. Simultaneous instruments: this category of instrument functions according to the spectrograph principle. The light beam is diffracted after travelling through the measuring cell.

37 L9 page 3 Instrumentation in the UV/Visible

38 L9 page 4 Instrumentation in the UV/Visible Detectors: The detector converts the intensity of the light reaching it to an electrical signal. Photoelectric effect: light incident on the surface of a metal causes electrons to be ejected. Two types of detector are used, either a photomultiplier tube or a semiconductor (charge transfer devices or silicon photodiodes). Photomultiplier tubes (PMTs) amplifies the number of photoelectrons through the use of a dynode chain. When a dynode struck by a single energetic electron, it will emit several electrons. If 6-8 dynodes are chained together, then a single photoelectron incident on the first can generate electrons at the anode.

39 L9 page 5 Instrumentation in the UV/Visible Optical Materials: Lenses, mirrors, wavelength-selecting elements and sample containers, which are usually called cells or cuvettes, must transmit radiation in the wavelength region being investigated. In UV/Visible spectrophotometers, cells were made of quarts, glass or plastic for visible radiations, while it should be only quartz when using UV radiations.

40 L9 page 6 Instrumentation in the UV/Visible Block Diagrams: A- Sequential Spectrometer Single-Beam Instruments Double-Beam Instruments

41 L9 page 7 Instrumentation in the UV/Visible Block Diagrams: A- Sequential Spectrometer

42 L9 page 8 Instrumentation in the UV/Visible Block Diagrams: B- Simultaneous Spectrometer (also called multichannel)

43 L9 page 9 Quantitative analysis: laws of molecular absorption Lambert Beer law Example Calculate the absorbance of a solution having a %T of 89 at 400 nm. A = log (100/%T) = log(100/89) = Example A solution of Co(H 2 O) 2+ has an absorbance of 0.20 at 530 nm in a 1.00 cm cell. Is known to be 10 L mol -1 cm -1. What is its concentration? A = bc C = A/( b) = 0.20/(1.00x10) = M

44 L9 page 10 Quantitative analysis: laws of molecular absorption Lambert Beer law Example The Absorbance of an unknown MnO - 4 solution is at 525 nm. When measures under identical conditions, a 1.0x10-4 M MnO - 4 is found to have an absorbance of Determine the concentration of the unknown. Aunknown. b. Cunknown Cunknown A. b. C C known known known Cunknown -4 C 4 unknown In general, when the absorbance is to be measured at a single wavelength, the absorption maximum is chosen. This is the point of maximum response so better sensitivity and lower detection limits. We will also have reduced error in our measurement (Why!!) M

45 L9 page 11 Quantitative analysis: laws of molecular absorption Lambert Beer law Conditions for applying Beer-Lambert law The light used must be monochromatic The concentrations must be low The solution must be neither fluorescent or heterogeneous The solute must not undergo to photochemical transformations The solute must not undertake variable associations with the solvent Deviations from linearity are divided into three categories: Fundamental Chemical Instrumental Ideally, according to Beer's law, a calibration curve of absorbance versus the concentration of analyte in a series of standard solutions should be a straight line with an intercept of zero and a slope of ab or εb.

46 L9 page 12 Quantitative analysis: laws of molecular absorption Lambert Beer law At high concentrations the individual particles of analyte no longer behave independently of one another. The resulting interaction between particles of analyte may change the value of a or ε. The absorptivity, a, and molar absorptivity, ε, depend on the sample's refractive index. Since the refractive index varies with the analyte's concentration, the values of a and ε will change. For sufficiently low concentrations of analyte, the refractive index remains essentially constant, and the calibration curve is linear.

47 L10 page 1 Quantitative analysis: laws of molecular absorption Additivity of absorbances Example We need to measure a metal-reagent complex (MR) which absorbs at 522 nm ( = 1.18x10 4 ). The solution also contains 1.00x10-4 M excess reagent (R) with an of 5.12x10 2 at 522 nm. If the total absorbance is at 522 nm in a 1.00 cm cell, what is the concentration of MR?. A A A bc bc Total C MR MR ( R MR 4 ) (1.00) C M MR R MR R ( ) (1.00) ( )

48 L10 page 2 Quantitative analysis: laws of molecular absorption Additivity of absorbances At two different wavelength max Example Two metal complexes (X & Y) demonstrate at least some absorption over the entire visible range. A mixture was measured at two using a 1 cm cell and the following data was obtained. A 1 = A 2 = Determine the concentration of each species. At λ At λ 1 C X (3.55x x x (5.64x10 by substituting C X 3 2 )C 3 C )C X Y X (2.96x10 (1.45x )C )C Y Y 1 2 X 3.55x x10 2 Y 2.96x x x x x10-5 C 3.60x10 M Y (2.96x10 )(3.60x10 And CX x10-4 C 1.20x10 M X 3 C Y -5 ) 1.45x10 4 C Y

49 L10 page 3 Quantitative analysis: laws of molecular absorption Isobestic point An isosbestic point is the wavelength in which the absorbance of two or more species are the same. Assume compound A, which is transformed by a reaction of first order to compound B. The separately recorded spectra of A and B are cross over at a point I when one is superimposed upon the other. For the wavelength of point I, the absorbances of the two solutions are the same and by corollary the coefficients A and B are equal. A will always be of the same value at the isobestic point. isosbestic point is observed when studying coloured indicators as a function of ph, or kinetic studies of particular reactions. The isobestic point is useful to measure the total concentration of two species in equilibrium, i.e. an isomerization reaction.

50 L10 page 4 Quantitative analysis: laws of molecular absorption Spectrophotometric Titrations useful for locating the equivalence points of titrations. This application of absorption measurements requires that one or more of the reactants or products absorb radiation or that an absorbing indicator be added to the analyte solution. A photometric titration curve is a plot of absorbance (corrected for volume change) as a function of titrant volume. Typical photometric titration curves. Molar absorptivities of the substance titrated, the product, and the titrant are A, P, and T, respectively.

51 L10 page 5 Derivative spectrometry The principle of derivative spectrometry consists of calculating, by a mathematical procedure, derivative graphs of the spectra to improve the precision of certain measurements. This procedure is applied when the analyte spectrum does not appear clearly within the spectrum representing the whole mixture in which it is present. This can result when compounds with very similar spectra are mixed together. The traces of the successive derived spectral curves are much more uneven than the one of the original spectrum (called zeroth order spectrum). These derivative plots amplify the weak slope variations of the absorbance curve. The procedure of obtaining the first derivative graph, da/d =(d /d )bc, can be extended to successive derivatives (nth derivatives).

52

53

54

55

56

57

Instrumental Chemical Analysis

Instrumental Chemical Analysis L6 page 1 Instrumental Chemical Analysis Ultraviolet and visible spectroscopy Dr. Ahmad Najjar Philadelphia University Faculty of Pharmacy Department of Pharmaceutical Sciences 2 nd semester, 2016/2017

More information

Chapter 4 Ultraviolet and visible spectroscopy Molecular Spectrophotometry

Chapter 4 Ultraviolet and visible spectroscopy Molecular Spectrophotometry Chapter 4 Ultraviolet and visible spectroscopy Molecular Spectrophotometry Properties of light Electromagnetic radiation and electromagnetic spectrum Absorption of light Beer s law Limitation of Beer s

More information

Spectroscopy. Page 1 of 8 L.Pillay (2012)

Spectroscopy. Page 1 of 8 L.Pillay (2012) Spectroscopy Electromagnetic radiation is widely used in analytical chemistry. The identification and quantification of samples using electromagnetic radiation (light) is called spectroscopy. Light has

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

UV / Visible Spectroscopy. Click icon to add picture

UV / Visible Spectroscopy. Click icon to add picture UV / Visible Spectroscopy Click icon to add picture Spectroscopy It is the branch of science that deals with the study of interaction of matter with light. OR It is the branch of science that deals with

More information

9/28/10. Visible and Ultraviolet Molecular Spectroscopy - (S-H-C Chapters 13-14) Valence Electronic Structure. n σ* transitions

9/28/10. Visible and Ultraviolet Molecular Spectroscopy - (S-H-C Chapters 13-14) Valence Electronic Structure. n σ* transitions Visible and Ultraviolet Molecular Spectroscopy - (S-H-C Chapters 13-14) Electromagnetic Spectrum - Molecular transitions Widely used in chemistry. Perhaps the most widely used in Biological Chemistry.

More information

ULTRAVIOLET SPECTROSCOPY or ELECTRONIC SPECTROSCOPY

ULTRAVIOLET SPECTROSCOPY or ELECTRONIC SPECTROSCOPY ULTRAVILET SPECTRSCPY or ELECTRNIC SPECTRSCPY S. SANKARARAMAN Department of Chemistry Indian Institute of Technology Madras Chennai 600036, INDIA Sanka@iitm.ac.in Absorption of electromagnetic radiation

More information

09/05/40 MOLECULAR ABSORPTION METHODS

09/05/40 MOLECULAR ABSORPTION METHODS MOLECULAR ABSORPTION METHODS Absorption spectroscopy refers to spectroscopic techniques that measure the absorption of radiation, as a function of wavelength ( absorption spectrum ), due to its interaction

More information

Ultraviolet-Visible and Infrared Spectrophotometry

Ultraviolet-Visible and Infrared Spectrophotometry Ultraviolet-Visible and Infrared Spectrophotometry Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451

More information

Ultraviolet-Visible and Infrared Spectrophotometry

Ultraviolet-Visible and Infrared Spectrophotometry Ultraviolet-Visible and Infrared Spectrophotometry Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451

More information

Course: M.Sc (Chemistry) Analytical Chemistry Unit: III

Course: M.Sc (Chemistry) Analytical Chemistry Unit: III Course: M.Sc (Chemistry) Analytical Chemistry Unit: III Syllabus: Principle of spectrophotometry Types of spectrophotometer Applications - Dissociation constants of an indicator simultaneous spectrophotometric

More information

Spectroscopy: Introduction. Required reading Chapter 18 (pages ) Chapter 20 (pages )

Spectroscopy: Introduction. Required reading Chapter 18 (pages ) Chapter 20 (pages ) Spectroscopy: Introduction Required reading Chapter 18 (pages 378-397) Chapter 20 (pages 424-449) Spectrophotometry is any procedure that uses light to measure chemical concentrations Properties of Light

More information

UV Spectroscopy: Empirical Approach to Molecular Structures. Dr. Mishu Singh Department of Chemistry M. P.Govt P. G.

UV Spectroscopy: Empirical Approach to Molecular Structures. Dr. Mishu Singh Department of Chemistry M. P.Govt P. G. UV Spectroscopy: Empirical Approach to Molecular Structures Dr. Mishu Singh Department of Chemistry M. P.Govt P. G.College, Hardoi WHAT IS SPECTROSCOPY? Atoms and molecules interact with electromagnetic

More information

Reference literature. (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters )

Reference literature. (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters ) September 17, 2018 Reference literature (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters 13-14 ) Reference.: https://slideplayer.com/slide/8354408/ Spectroscopy Usual Wavelength Type of Quantum

More information

Molecular Spectroscopy. H 2 O e -

Molecular Spectroscopy. H 2 O e - Molecular Spectroscopy ν (cm -1 ) λ (cm) 10 6 10 8 10 10 10 12 10 14 10 16 10 18 10 20 10 22 ν (Hz) NMR ESR microwave IR UV/Vis VUV X-Ray Gamma Ray H 2 e - UV/Vis Spectroscopy absorption technique X hν

More information

Questions on Instrumental Methods of Analysis

Questions on Instrumental Methods of Analysis Questions on Instrumental Methods of Analysis 1. Which one of the following techniques can be used for the detection in a liquid chromatograph? a. Ultraviolet absorbance or refractive index measurement.

More information

Molecular Spectroscopy

Molecular Spectroscopy Molecular Spectroscopy Types of transitions: 1) Electronic (UV-Vis-Near IR) 2) Vibrational (IR) 3) Rotational (microwave) Electronic Absorption Spectra π π* Gary L. Miessler and Donald A. Tarr, Inorganic

More information

Spectroscopy may be defined as the study of interaction between electromagnetic radiations and matter.

Spectroscopy may be defined as the study of interaction between electromagnetic radiations and matter. Spectroscopy may be defined as the study of interaction between electromagnetic radiations and matter. Spectroscopy has a wide range of applications. It is heavily used in astronomy and remote sensing.

More information

Chapter 17: Fundamentals of Spectrophotometry

Chapter 17: Fundamentals of Spectrophotometry Chapter 17: Fundamentals of Spectrophotometry Spectroscopy: the science that deals with interactions of matter with electromagnetic radiation or other forms energy acoustic waves, beams of particles such

More information

1901 Application of Spectrophotometry

1901 Application of Spectrophotometry 1901 Application of Spectrophotometry Chemical Analysis Problem: 1 Application of Spectroscopy Organic Compounds Organic compounds with single bonds absorb in the UV region because electrons from single

More information

Ultraviolet Spectroscopy. CH- 521 Course on Interpreta2ve Molecular Spectroscopy; Course Instructor: Krishna P. Kaliappan

Ultraviolet Spectroscopy. CH- 521 Course on Interpreta2ve Molecular Spectroscopy; Course Instructor: Krishna P. Kaliappan Ultraviolet Spectroscopy CH- 521 Course on Interpreta2ve Molecular Spectroscopy; Course Instructor: Krishna P. Kaliappan Ultraviolet Spectroscopy UV light can be absorbed by molecules to excite higher

More information

Ultraviolet-Visible Spectroscopy

Ultraviolet-Visible Spectroscopy Ultraviolet-Visible Spectroscopy Introduction to UV-Visible Absorption spectroscopy from 160 nm to 780 nm Measurement of transmittance Conversion to absorbance * A=-logT=εbc Measurement of transmittance

More information

UV-Vis Spectroscopy. Chem 744 Spring Gregory R. Cook, NDSU Thursday, February 14, 13

UV-Vis Spectroscopy. Chem 744 Spring Gregory R. Cook, NDSU Thursday, February 14, 13 UV-Vis Spectroscopy Chem 744 Spring 2013 UV-Vis Spectroscopy Every organic molecule absorbs UV-visible light Energy of electronic transitions saturated functionality not in region that is easily accessible

More information

Electronic Excitation by UV/Vis Spectroscopy :

Electronic Excitation by UV/Vis Spectroscopy : SPECTROSCOPY Light interacting with matter as an analytical tool III Pharm.D Department of Pharmaceutical Analysis SRM College Of Pharmacy,Katankulathur Electronic Excitation by UV/Vis Spectroscopy : X-ray:

More information

25 Instruments for Optical Spectrometry

25 Instruments for Optical Spectrometry 25 Instruments for Optical Spectrometry 25A INSTRUMENT COMPONENTS (1) source of radiant energy (2) wavelength selector (3) sample container (4) detector (5) signal processor and readout (a) (b) (c) Fig.

More information

Chapter 17: Fundamentals of Spectrophotometry

Chapter 17: Fundamentals of Spectrophotometry Chapter 17: Fundamentals of Spectrophotometry Spectroscopy: the science that deals with interactions of matter with electromagnetic radiation or other forms energy acoustic waves, beams of particles such

More information

Course Details. Analytical Techniques Based on Optical Spectroscopy. Course Details. Textbook. SCCH 211: Analytical Chemistry I

Course Details. Analytical Techniques Based on Optical Spectroscopy. Course Details. Textbook. SCCH 211: Analytical Chemistry I SCCH 211: Analytical Chemistry I Analytical Techniques Based on Optical Spectroscopy Course Details September 22 October 10 September 22 November 7 November 17 December 1 Topic Period Introduction to Spectrometric

More information

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K Sharma Department of Biotechnology Indian Institute of Technology, Roorkee

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Analytical Technologies in Biotechnology Prof. Dr. Ashwani K Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Module - 6 Spectroscopic Techniques Lecture - 2 UV-Visible Spectroscopy

More information

Compact Knowledge: Absorbance Spectrophotometry. Flexible. Reliable. Personal.

Compact Knowledge: Absorbance Spectrophotometry. Flexible. Reliable. Personal. L A B O R A T O R Y C O M P E T E N C E Compact Knowledge: Absorbance Spectrophotometry Flexible. Reliable. Personal. The interaction of light with molecules is an essential and well accepted technique

More information

Chapter 13 An Introduction to Ultraviolet/Visible Molecular Absorption Spectrometry

Chapter 13 An Introduction to Ultraviolet/Visible Molecular Absorption Spectrometry Chapter 13 An Introduction to Ultraviolet/Visible Molecular Absorption Spectrometry 13A Measurement Of Transmittance and Absorbance Absorption measurements based upon ultraviolet and visible radiation

More information

Química Orgânica I. Ciências Farmacêuticas Bioquímica Química. Análise estrutural AFB QO I 2007/08 1 AFB QO I 2007/08 2

Química Orgânica I. Ciências Farmacêuticas Bioquímica Química. Análise estrutural AFB QO I 2007/08 1 AFB QO I 2007/08 2 Química Orgânica I Ciências Farmacêuticas Bioquímica Química AFB QO I 2007/08 1 Análise estrutural AFB QO I 2007/08 2 1 Adaptado de: Organic Chemistry, 6th Edition; L. G. Wade, Jr. Organic Chemistry, William

More information

Lecture 3: Light absorbance

Lecture 3: Light absorbance Lecture 3: Light absorbance Perturbation Response 1 Light in Chemistry Light Response 0-3 Absorbance spectrum of benzene 2 Absorption Visible Light in Chemistry S 2 S 1 Fluorescence http://www.microscopyu.com

More information

Chem 321 Lecture 18 - Spectrophotometry 10/31/13

Chem 321 Lecture 18 - Spectrophotometry 10/31/13 Student Learning Objectives Chem 321 Lecture 18 - Spectrophotometry 10/31/13 In the lab you will use spectrophotometric techniques to determine the amount of iron, calcium and magnesium in unknowns. Although

More information

Spectrochemical methods

Spectrochemical methods Spectrochemical methods G. Galbács The interactions of radiations and matter are the subject of spectroscopy py or spectrochemical methods (also called spectrometry). Spectrochemical methods usually measure

More information

10/2/2008. hc λ. νλ =c. proportional to frequency. Energy is inversely proportional to wavelength And is directly proportional to wavenumber

10/2/2008. hc λ. νλ =c. proportional to frequency. Energy is inversely proportional to wavelength And is directly proportional to wavenumber CH217 Fundamentals of Analytical Chemistry Module Leader: Dr. Alison Willows Electromagnetic spectrum Properties of electromagnetic radiation Many properties of electromagnetic radiation can be described

More information

Spectroscopy Primer. for ultraviolet and visible absorbance spectroscopy. by Stephanie Myers Summer 2015

Spectroscopy Primer. for ultraviolet and visible absorbance spectroscopy. by Stephanie Myers Summer 2015 Spectroscopy Primer for ultraviolet and visible absorbance spectroscopy by Stephanie Myers Summer 2015 Abstract: An overview of uv vis absorbance spectroscopy including Beer s Law, calibration curves,

More information

Instrumental Analysis: Spectrophotometric Methods

Instrumental Analysis: Spectrophotometric Methods Instrumental Analysis: Spectrophotometric Methods 2007 By the end of this part of the course, you should be able to: Understand interaction between light and matter (absorbance, excitation, emission, luminescence,fluorescence,

More information

levels. The signal is either absorbance vibrational and rotational energy levels or percent transmittance of the analyte

levels. The signal is either absorbance vibrational and rotational energy levels or percent transmittance of the analyte 1 In this chapter, absorption by molecules, rather than atoms, is considered. Absorption in the ultraviolet and visible regions occurs due to electronic transitions from the ground state to excited state.

More information

R O Y G B V. Spin States. Outer Shell Electrons. Molecular Rotations. Inner Shell Electrons. Molecular Vibrations. Nuclear Transitions

R O Y G B V. Spin States. Outer Shell Electrons. Molecular Rotations. Inner Shell Electrons. Molecular Vibrations. Nuclear Transitions Spin States Molecular Rotations Molecular Vibrations Outer Shell Electrons Inner Shell Electrons Nuclear Transitions NMR EPR Microwave Absorption Spectroscopy Infrared Absorption Spectroscopy UV-vis Absorption,

More information

Skoog Chapter 6 Introduction to Spectrometric Methods

Skoog Chapter 6 Introduction to Spectrometric Methods Skoog Chapter 6 Introduction to Spectrometric Methods General Properties of Electromagnetic Radiation (EM) Wave Properties of EM Quantum Mechanical Properties of EM Quantitative Aspects of Spectrochemical

More information

Introduction to Spectroscopic methods

Introduction to Spectroscopic methods Introduction to Spectroscopic methods Spectroscopy: Study of interaction between light* and matter. Spectrometry: Implies a quantitative measurement of intensity. * More generally speaking electromagnetic

More information

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy Topic 1: Atomic Spectroscopy Text: Chapter 12,13 & 14 Rouessac (~2 weeks) 1.0 Review basic concepts in Spectroscopy 2.0 Atomic Absorption and Graphite Furnace Instruments 3.0 Inductively Coupled Plasmas

More information

MOLECULAR ABSORPTION METHODS

MOLECULAR ABSORPTION METHODS MOLECULAR ABSORPTION METHODS Absorption spectroscopy refers to spectroscopic techniques that measure the absorption of radiation, as a function of wavelength ( absorption spectrum ), due to its interaction

More information

Spectrophotometry. Introduction

Spectrophotometry. Introduction Spectrophotometry Spectrophotometry is a method to measure how much a chemical substance absorbs light by measuring the intensity of light as a beam of light passes through sample solution. The basic principle

More information

Increasing energy. ( 10 4 cm -1 ) ( 10 2 cm -1 )

Increasing energy. ( 10 4 cm -1 ) ( 10 2 cm -1 ) The branch of science which deals with the interaction of electromagnetic radiation with matter is called spectroscopy The energy absorbed or emitted in each transition corresponds to a definite frequency

More information

The Fundamentals of Spectroscopy: Theory BUILDING BETTER SCIENCE AGILENT AND YOU

The Fundamentals of Spectroscopy: Theory BUILDING BETTER SCIENCE AGILENT AND YOU The Fundamentals of Spectroscopy: Theory BUILDING BETTER SCIENCE AGILENT AND YOU 1 Agilent is committed to the educational community and is willing to provide access to company-owned material. This slide

More information

World Journal of Pharmaceutical Research SJIF Impact Factor 8.074

World Journal of Pharmaceutical Research SJIF Impact Factor 8.074 SJIF Impact Factor 8.074 Volume 7, Issue 11, 1170-1180. Review Article ISSN 2277 7105 DEVELOPMENT AND OPTIMIZATION OF UV-VIS SPECTROSCOPY - A REVIEW Govinda Verma* and Dr. Manish Mishra Shri Guru Ram Rai

More information

William H. Brown & Christopher S. Foote

William H. Brown & Christopher S. Foote Requests for permission to make copies of any part of the work should be mailed to:permissions Department, Harcourt Brace & Company, 6277 Sea Harbor Drive, Orlando, Florida 32887-6777 William H. Brown

More information

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept.

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept. Spectrum of Electromagnetic Radiation Electromagnetic radiation is light. Different energy light interacts with different motions in molecules. CHEM*344 Chemical Instrumentation Topic 7 Spectrometry Radiofrequency

More information

24 Introduction to Spectrochemical Methods

24 Introduction to Spectrochemical Methods 24 Introduction to Spectrochemical Methods Spectroscopic method: based on measurement of the electromagnetic radiation produced or absorbed by analytes. electromagnetic radiation: include γ-ray, X-ray,

More information

Electronic Excitation by UV/Vis Spectroscopy :

Electronic Excitation by UV/Vis Spectroscopy : Electronic Excitation by UV/Vis Spectroscopy : X-ray: core electron excitation UV: valance electronic excitation IR: molecular vibrations Radio waves: Nuclear spin states (in a magnetic field) The wavelength

More information

Spectrophotometry. Dr. Shareef SHAIK ASST. PROFESSOR Pharmacology

Spectrophotometry. Dr. Shareef SHAIK ASST. PROFESSOR Pharmacology Spectrophotometry Dr. Shareef SHAIK ASST. PROFESSOR Pharmacology Content Introduction Beer-Lambert law Instrument Applications Introduction 3 Body fluids such as blood, csf and urine contain organic and

More information

Lecture 09 MO theory. (Refer Slide Time: 00:33)

Lecture 09 MO theory. (Refer Slide Time: 00:33) (Refer Slide Time: 00:33) Atomic and Molecular Absorption Spectrometry for Pollution Monitoring Dr. J R Mudakavi Department of Chemical Engineering Indian Institute of Science, Bangalore Lecture 09 MO

More information

Classification of spectroscopic methods

Classification of spectroscopic methods Introduction Spectroscopy is the study of the interaction between the electromagnetic radiation and the matter. Spectrophotometry is the measurement of these interactions i.e. the measurement of the intensity

More information

two slits and 5 slits

two slits and 5 slits Electronic Spectroscopy 2015January19 1 1. UV-vis spectrometer 1.1. Grating spectrometer 1.2. Single slit: 1.2.1. I diffracted intensity at relative to un-diffracted beam 1.2.2. I - intensity of light

More information

Absorption spectrometry summary

Absorption spectrometry summary Absorption spectrometry summary Rehearsal: Properties of light (electromagnetic radiation), dual nature light matter interactions (reflection, transmission, absorption, scattering) Absorption phenomena,

More information

Advanced Analytical Chemistry

Advanced Analytical Chemistry 84.514 Advanced Analytical Chemistry Part III Molecular Spectroscopy (continued) Website http://faculty.uml.edu/david_ryan/84.514 http://www.cem.msu.edu/~reusch/virtualtext/ Spectrpy/UV-Vis/spectrum.htm

More information

A very brief history of the study of light

A very brief history of the study of light 1. Sir Isaac Newton 1672: A very brief history of the study of light Showed that the component colors of the visible portion of white light can be separated through a prism, which acts to bend the light

More information

Molecular Luminescence Spectroscopy

Molecular Luminescence Spectroscopy Molecular Luminescence Spectroscopy In Molecular Luminescence Spectrometry ( MLS ), molecules of the analyte in solution are excited to give a species whose emission spectrum provides information for qualitative

More information

Reflection = EM strikes a boundary between two media differing in η and bounces back

Reflection = EM strikes a boundary between two media differing in η and bounces back Reflection = EM strikes a boundary between two media differing in η and bounces back Incident ray θ 1 θ 2 Reflected ray Medium 1 (air) η = 1.00 Medium 2 (glass) η = 1.50 Specular reflection = situation

More information

UV-Vis spektrometrie. Brno 2016, Dominik Heger, Ústav chemie a RECETOX, MU

UV-Vis spektrometrie. Brno 2016, Dominik Heger,  Ústav chemie a RECETOX, MU UV-Vis spektrometrie Brno 2016, Dominik Heger, http://hegerd.sci.muni.cz/ Ústav chemie a RECETOX, MU Sluneční světlo What is UV-VIS spectroscopy measuring? Electronic transitions. l / nm 185-200 Vacuum-UV

More information

Chapter 18. Fundamentals of Spectrophotometry. Properties of Light

Chapter 18. Fundamentals of Spectrophotometry. Properties of Light Chapter 18 Fundamentals of Spectrophotometry Properties of Light Electromagnetic Radiation energy radiated in the form of a WAVE caused by an electric field interacting with a magnetic field result of

More information

2001 Spectrometers. Instrument Machinery. Movies from this presentation can be access at

2001 Spectrometers. Instrument Machinery. Movies from this presentation can be access at 2001 Spectrometers Instrument Machinery Movies from this presentation can be access at http://www.shsu.edu/~chm_tgc/sounds/sound.html Chp20: 1 Optical Instruments Instrument Components Components of various

More information

Chapter 5 Materials Characterization Lecture III

Chapter 5 Materials Characterization Lecture III Chapter 5 Materials Characterization Lecture III Dr. Alagiriswamy A A (PhD., PDF) Dept. of Physics and Nanotechnology SRM University Main Campus, Ktr., SRM Nagar, Chennai, Tamilnadu 5.0 Characterization

More information

Design and Development of a Smartphone Based Visible Spectrophotometer for Analytical Applications

Design and Development of a Smartphone Based Visible Spectrophotometer for Analytical Applications Design and Development of a Smartphone Based Visible Spectrophotometer for Analytical Applications Bedanta Kr. Deka, D. Thakuria, H. Bora and S. Banerjee # Department of Physicis, B. Borooah College, Ulubari,

More information

Lecture 0. NC State University

Lecture 0. NC State University Chemistry 736 Lecture 0 Overview NC State University Overview of Spectroscopy Electronic states and energies Transitions between states Absorption and emission Electronic spectroscopy Instrumentation Concepts

More information

高等食品分析 (Advanced Food Analysis) I. SPECTROSCOPIC METHODS *Instrumental methods: 1. Spectroscopic methods (spectroscopy): a) Electromagnetic radiation

高等食品分析 (Advanced Food Analysis) I. SPECTROSCOPIC METHODS *Instrumental methods: 1. Spectroscopic methods (spectroscopy): a) Electromagnetic radiation *Instrumental methods: 1. Spectroscopic methods (spectroscopy): a) Electromagnetic radiation (EMR): γ-ray emission X-Ray absorption, emission, fluorescence and diffraction Vacuum ultraviolet (UV) absorption

More information

Infrared Spectroscopy: Identification of Unknown Substances

Infrared Spectroscopy: Identification of Unknown Substances Infrared Spectroscopy: Identification of Unknown Substances Suppose a white powder is one of the four following molecules. How can they be differentiated? H N N H H H H Na H H H H H A technique that is

More information

Terms used in UV / Visible Spectroscopy

Terms used in UV / Visible Spectroscopy Terms used in UV / Visible Spectroscopy Chromophore The part of a molecule responsible for imparting color, are called as chromospheres. OR The functional groups containing multiple bonds capable of absorbing

More information

Complete the following. Clearly mark your answers. YOU MUST SHOW YOUR WORK TO RECEIVE CREDIT.

Complete the following. Clearly mark your answers. YOU MUST SHOW YOUR WORK TO RECEIVE CREDIT. CHEM 322 Name Exam 3 Spring 2013 Complete the following. Clearly mark your answers. YOU MUST SHOW YOUR WORK TO RECEIVE CREDIT. Warm-up (3 points each). 1. In Raman Spectroscopy, molecules are promoted

More information

CHEM Atomic and Molecular Spectroscopy

CHEM Atomic and Molecular Spectroscopy CHEM 21112 Atomic and Molecular Spectroscopy References: 1. Fundamentals of Molecular Spectroscopy by C.N. Banwell 2. Physical Chemistry by P.W. Atkins Dr. Sujeewa De Silva Sub topics Light and matter

More information

Chem 310 rd. 3 Homework Set Answers

Chem 310 rd. 3 Homework Set Answers -1- Chem 310 rd 3 Homework Set Answers 1. A double line labeled S 0 represents the _ground electronic_ state and the _ground vibrational_ state of a molecule in an excitation state diagram. Light absorption

More information

Reference. What is spectroscopy? What is Light? / EMR 11/15/2015. Principles of Spectroscopy. Processes in Spectroscopy

Reference. What is spectroscopy? What is Light? / EMR 11/15/2015. Principles of Spectroscopy. Processes in Spectroscopy Chapter 2 Principles of Spectroscopy EST 3203 Instrumental Analysis Rezaul Karim Environmental Science and Technology Jessore Science and Technology University Principles of Spectroscopy Electromagnetic

More information

II. Spectrophotometry (Chapters 17, 19, 20)

II. Spectrophotometry (Chapters 17, 19, 20) II. Spectrophotometry (Chapters 17, 19, 20) FUNDAMENTALS (Chapter 17) Spectrophotometry: any technique that uses light to measure concentrations (here: U and visible - ~190 800 nm) c = 2.99792 x 10 8 m/s

More information

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Section I Q1. Answer (i) (b) (ii) (d) (iii) (c) (iv) (c) (v) (a) (vi) (b) (vii) (b) (viii) (a) (ix)

More information

General Considerations 1

General Considerations 1 General Considerations 1 Absorption or emission of electromagnetic radiation results in a permanent energy transfer from the emitting object or to the absorbing medium. This permanent energy transfer can

More information

Lecture- 08 Emission and absorption spectra

Lecture- 08 Emission and absorption spectra Atomic and Molecular Absorption Spectrometry for Pollution Monitoring Dr. J R Mudakavi Department of Chemical Engineering Indian Institute of Science, Bangalore Lecture- 08 Emission and absorption spectra

More information

NPTEL/IITM. Molecular Spectroscopy Lectures 1 & 2. Prof.K. Mangala Sunder Page 1 of 15. Topics. Part I : Introductory concepts Topics

NPTEL/IITM. Molecular Spectroscopy Lectures 1 & 2. Prof.K. Mangala Sunder Page 1 of 15. Topics. Part I : Introductory concepts Topics Molecular Spectroscopy Lectures 1 & 2 Part I : Introductory concepts Topics Why spectroscopy? Introduction to electromagnetic radiation Interaction of radiation with matter What are spectra? Beer-Lambert

More information

MOLECULAR AND ATOMIC SPECTROSCOPY

MOLECULAR AND ATOMIC SPECTROSCOPY MOLECULAR AND ATOMIC SPECTROSCOPY 1. General Background on Molecular Spectroscopy 3 1.1. Introduction 3 1.2. Beer s Law 5 1.3. Instrumental Setup of a Spectrophotometer 12 1.3.1. Radiation Sources 13 1.3.2.

More information

Ultraviolet Spectroscopy

Ultraviolet Spectroscopy This work by IJARBEST is licensed under a Creative Commons Attribution 4.0 International License. Available at https://www.ijarbest.com Ultraviolet Spectroscopy 1 D. Farvez Basha, 2 C. Santhiya, 2 K. Tharani

More information

1 WHAT IS SPECTROSCOPY?

1 WHAT IS SPECTROSCOPY? 1 WHAT IS SPECTROSCOPY? 1.1 The Nature Of Electromagnetic Radiation Anyone who has been sunburnt will know that light packs a punch: in scientific terms, it contains considerable amounts of energy. All

More information

Electronic Excitation by UV/Vis Spectroscopy :

Electronic Excitation by UV/Vis Spectroscopy : Electronic Excitation by UV/Vis Spectroscopy : X-ray: core electron excitation UV: valance electronic excitation IR: molecular vibrations Radio waves: Nuclear spin states (in a magnetic field) The wavelength

More information

Overview of Spectroscopy

Overview of Spectroscopy Overview of Spectroscopy A. Definition: Interaction of EM Radiation with Matter We see objects because they remit some part of the light falling on them from a source. We function as reflection/ transmission

More information

Chapter 6. Quantum Theory and the Electronic Structure of Atoms Part 1

Chapter 6. Quantum Theory and the Electronic Structure of Atoms Part 1 Chapter 6 Quantum Theory and the Electronic Structure of Atoms Part 1 The nature of light Quantum theory Topics Bohr s theory of the hydrogen atom Wave properties of matter Quantum mechanics Quantum numbers

More information

Chapter 15 Molecular Luminescence Spectrometry

Chapter 15 Molecular Luminescence Spectrometry Chapter 15 Molecular Luminescence Spectrometry Two types of Luminescence methods are: 1) Photoluminescence, Light is directed onto a sample, where it is absorbed and imparts excess energy into the material

More information

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter CHEM6416 Theory of Molecular Spectroscopy 2013Jan22 1 1. Spectroscopy frequency dependence of the interaction of light with matter 1.1. Absorption (excitation), emission, diffraction, scattering, refraction

More information

C101-E111. Talk Letter. Vol.2 February 2009

C101-E111. Talk Letter. Vol.2 February 2009 C101-E111 UV Talk Letter Vol.2 February 2009 UV Talk Letter UV Talk Letter The Structure of a Spectrophotometer Vol.2 February 2009 1.The Measurement Principle Used by a Spectrophotometer The basic measurement

More information

Investigating Transition Metal Complexes

Investigating Transition Metal Complexes Exercise 4 Investigating Transition Metal Complexes 4 Introduction Colour is a well known property of the transition metals. The colour produced as parts of the visible spectrum are due to electron transitions

More information

MOLEBIO LAB #4: Using a Spectrophotometer

MOLEBIO LAB #4: Using a Spectrophotometer Introduction: Spectrophotometry MOLEBIO LAB #4: Using a Spectrophotometer Many kinds of molecules interact with or absorb specific types of radiant energy in a predictable fashion. For example, when while

More information

PART SPECTROPHOTOMETRIC STUDIES

PART SPECTROPHOTOMETRIC STUDIES PART SPECTROPHOTOMETRIC STUDIES CHAPTER General Principles of Spectrophotometry 123 In absorption spectroscopy, absorption measurements based upon ultraviolet light and visible radiation find application

More information

Chemistry 304B, Spring 1999 Lecture 5 1. UV Spectroscopy:

Chemistry 304B, Spring 1999 Lecture 5 1. UV Spectroscopy: Chemistry 304B, Spring 1999 Lecture 5 1 Ultraviolet spectroscopy; UV Spectroscopy: Infrared spectroscopy; Nuclear magnetic resonance spectroscopy General basis of spectroscopy: Shine light at a collection

More information

Optical Spectroscopy. Ultraviolet-Visible. λν=c. hc photon energy = hν

Optical Spectroscopy. Ultraviolet-Visible. λν=c. hc photon energy = hν Optical Spectroscopy Interaction of matter (molecules) with electromagnetic radiation ~ optical spectroscopy. Ultraviolet-Visible Basic facts of electromagnetic radiation (wave) A wave a periodic change

More information

Reflection = EM strikes a boundary between two media differing in η and bounces back

Reflection = EM strikes a boundary between two media differing in η and bounces back Reflection = EM strikes a boundary between two media differing in η and bounces back Incident ray θ 1 θ 2 Reflected ray Medium 1 (air) η = 1.00 Medium 2 (glass) η = 1.50 Specular reflection = situation

More information

Photochemical principles

Photochemical principles Chapter 1 Photochemical principles Dr. Suzan A. Khayyat 1 Photochemistry Photochemistry is concerned with the absorption, excitation and emission of photons by atoms, atomic ions, molecules, molecular

More information

Chapter 10. Spectroscopic Methods. An early example of a colorimetric analysis is Nessler s method for ammonia, which was.

Chapter 10. Spectroscopic Methods. An early example of a colorimetric analysis is Nessler s method for ammonia, which was. Chapter 10 Spectroscopic Methods Chapter Overview Section 10A Overview of Spectroscopy Section 10B Spectroscopy Based on Absorption Section 10C UV/Vis and IR Spectroscopy Section 10D Atomic Absorption

More information

Wavelength λ Velocity v. Electric Field Strength Amplitude A. Time t or Distance x time for 1 λ to pass fixed point. # of λ passing per s ν= 1 p

Wavelength λ Velocity v. Electric Field Strength Amplitude A. Time t or Distance x time for 1 λ to pass fixed point. # of λ passing per s ν= 1 p Introduction to Spectroscopy (Chapter 6) Electromagnetic radiation (wave) description: Wavelength λ Velocity v Electric Field Strength 0 Amplitude A Time t or Distance x Period p Frequency ν time for 1

More information

Write the electron configuration for Chromium (Cr):

Write the electron configuration for Chromium (Cr): Write the electron configuration for Chromium (Cr): Energy level Aufbau Principle Atomic orbital Quantum Hund s Rule Atomic number Electron Configuration Whole number Pauli Exlcusion Principle Quantum

More information

What is spectroscopy?

What is spectroscopy? Absorption Spectrum What is spectroscopy? Studying the properties of matter through its interaction with different frequency components of the electromagnetic spectrum. With light, you aren t looking directly

More information

February 8, 2018 Chemistry 328N

February 8, 2018 Chemistry 328N Lecture 7 UV-Vis spectroscopy February 8, 2018 First Midterm Exam When: Wednesday, 2/14 When: 7-9 PM (please do not be late) Where: WEL 2.122 This room!!! What: Covers material through today s lecture

More information

Chapter 12 Mass Spectrometry and Infrared Spectroscopy

Chapter 12 Mass Spectrometry and Infrared Spectroscopy Organic Chemistry, 6 th Edition L. G. Wade, Jr. Chapter 12 Mass Spectrometry and Infrared Spectroscopy Jo Blackburn Richland College, Dallas, TX Dallas County Community College District 2006, Prentice

More information