AMS Introduction Doug Worsnop. AMS Users Meeting

Size: px
Start display at page:

Download "AMS Introduction Doug Worsnop. AMS Users Meeting"

Transcription

1 AMS Introduction Doug Worsnop AMS Users Meeting Aerodyne Caltech Georgia Tech FZ - Juelich University of Minnesota Desert Research Institute October 21/22 October 24, 23 October 8, August, September, September, 27 AMS Introduction AMS Users Meeting Aerodyne Caltech Georgia Tech FZ - Juelich University of Minnesota Desert Research Institute October 13, 22 October 24, 23 October 8, August, September, September, 27 Nitrate Sulfate Ammonia Organics (44,57) OOA, HOA OOA1, OOA2 1

2 Aerosols in the Atmosphere C.E. Kolb, Nature, 22 Ambient Aerosol Size Distribution Number Density EPA, 1999 Surface Area Mass Remote Continental Pandis and Seinfeld, 1998 Ultrafine Fine Coarse Goal: Size-Resolved Chemical Composition of Ambient Aerosol 2

3 Org SO 4 2- NO 3 - NH 4 Manchester center Small particles <2nm Hydrocarbon organics Vancouver center Rural (outside Vancouver) Larger particles (>2 nm) m/z 44 CO 2 dominates 3

4 e - Organic Mass Spectra C n H 2n,2 ----> C m H 2m±1 27, 29, 41, 43, 55, 57, 69, 71,... C 3 H 5 C 4 H 7 C 5 H 9 e - C n H m O y ----> H 2 O, CO, CO 2, C 2 H 3 O , 55,. Following flash vaporization at ~6 o C Organic Aerosols: Urban vs. Rural/Remote 4

5 AMS (PMF) Factors 6C, e- m/z HOA: C n H m C n-x H m-y 27,29,41,43,55,57,69,71, LESS OXIDZED OOA2 C n H m O C 2 H 3 O, C 3 H 3 O, R 43,55, MORE OXIDZED OOA1 C n H m O 2 CO 2, HCO 2, R 44,45, BBOA R R, C 2 H 4 O 2, C 3 H 3 O 2 6,73,. levoglucosan O:C ratio: HOA << OOA2 ~ BBOA < OOA1 Factors are not unique or identical among campaigns, platforms CONSISTENT TRENDS CO O x Residual Layer Fresh Urban Airmass from T Photochemistry 5

6 SOA: measurements vs. models Johnson et al. DeGouw et al. Heald et al. Volkamer et al. SOA correlates with photochemistry: O x Volkamer, Jimenez, et al GRL, 26 Aerosol Mass Spectrometer (AMS) Particle Beam Generation Aerodynamic Sizing Particle Composition Quadrupole Mass Spectrometer Chopper Aerodynamic Lens (2 Torr) TOF Region Thermal Vaporization & Electron Impact Ionization Particle Inlet (1 atm) Turbo Pump Turbo Pump Turbo Pump Efficient transmission (4-1 nm), aerodynamic sizing, linear mass signal Non-refractory PM1. mass loadings and chemically-speciated mass distributions 6

7 Q C-ToF W-ToF-AMS MCP Signal to ADC Particle Beam Generation Aerodynamic Sizing Quadrupole Mass Spectrometer Particle Composition Chopper Aerodynamic Lens (2 Torr) TOF Region Thermal Vaporization & 7 ev EI Ionization Particle Inlet (1 atm) Turbo Pump DeCarlo et al., Anal. Chem., in preparation, 25. Turbo Pump Turbo Pump AMS Particle Detection Process Focused Particle Beam Electron Emitting Filament e - Vaporizer Flash Vaporization of Non-Refractory Components (NR) R 6 C Positive Ion Mass Spectrometry Electron Impact Ionization Universal and quantitative chemical analysis:.1μg/m 3 sensitivity. Vaporization and analysis of most aerosol chemical constituents - with primary exception of crustal oxides and elemental carbon. 7

8 Real Time Chemical and Physical Composition of Aerosols Aerosol Sampling AMS dm/dlogd a (µg m -3 ) Aerosol Mass Concentration (µg m -3 ) Nitrate Sulphate Ammonium Organics Alkanes Aromatics Etc Aerodynamic Diameter (nm) m/z (Daltons) Sp Mass distribution Chemical composition Nitrate Equivalent Mass Concentration (µg m -3 ) Urban organic aerosol is a mixture of hydrocarbon and oxygenated components Ammonium 4.8 ug/m3 Nitrate 5.8 Sulphate 9.4 Organics 13.4 Chloride.15 Mexico City 2/ m/z (Daltons)

9 Same AMS, same issues, new issues CE collection efficiency particle bounce CE ~.5, except RIE relative ionization efficiency - particularly RIE_org ~ 1.4 ToF threshold & baseline - single ion determination linearity of large and small signals (dynamic range) Real Time Chemical and Physical Composition of Aerosols Aerosol Sampling AMS dm/dlogd a (µg m -3 ) Aerosol Mass Concentration (µg m -3 ) Nitrate Sulphate Ammonium Organics Alkanes Aromatics Etc Aerodynamic Diameter (nm) m/z (Daltons) Sp Mass distribution Chemical composition 9

10 MS Signatures for Aerosol Species Identification color coded to match spectra Group Molecule/Species Ion Fragments Mass Fragments e - Water H 2 O H 2 O, HO, O 18, 17, 16 Ammonium NH 3 e - NH 3, NH 2, NH 17, 16, 15 Nitrate HNO 3 e - HNO 3, NO, 2 NO 63, 46, 3 e - Sulfate H 2 SO 4 H 2 SO 4, HSO 3, SO 3 98, 81, 8 SO 2, SO 64, 48 Organic C n H m O y e - H 2 O, CO, CO 2 18, 28, 44 (Oxygenated) H 3 C 2 O, HCO 2, C n H m 43, 45,... e - Organic C n H m C n H m 27,29,41,43,55,57,69,71... (hydrocarbon) Standard electron impact 7 ev Easy to quantify: ca. NIST MS library Easy to separate inorganic and organic components Speciation of organic composition is challenging ELECTRON IMPACT (EI) IONIZATION σ R e- R e- e- R i R j EI Cross Section (σ) electrons/molecule mass/molecule Ion Rate = 2 ndary electrons/sec Ion Rate = Σ R i total mass/sec Measure all ions: Ion Rate = Σ R i σ molecules/sec independent of parent or fragment (neutral or ion) molecular mass 1

11 EI Ionization: A e > A ----> a i Mass Loading A (MW A /IE A ) Ion Signal Calibration Factor * (MW NO3 /IE NO3 ) EI Ionization Cross Sections Nitrate Equivalent Cross Section Oxygenated Organics = 1.5 X NITRATE Inorganics NITRATE = 1. Chloride 5 Nitrate 1 Sulfate 15 Molecular Mass 2 Diesel Fuel AMS Particle Detection Focused Particle Beam Electron Emitting Filament e - Vaporizer Flash Vaporization of Non-Refractory Components (NR) R 6 C Positive Ion Mass Spectrometry Electron Impact Ionization Universal / quantitative chemical analysis:.1μg/m 3 sensitivity. EVERTYHING AT THE SAME TIME No Separation - bulk analysis [ no dust (oxides) or elemental (black) carbon ] 11

12 NO 3 = SO 4 = NH 4 nss-cl - OM vs OC Takegawa et al., 25 Assumed CE =.5 OM OC C n H m O p = C n AMS (NR-PM 1 ) quantification AMS Org Slope = 1.94 R 2 =.71 2:1 line 35 AMS total Slope = 1.16 R 2 =.87 1:1 line Slope = 1. R 2 =.92 4 OCEC 6 1:1 line Slope =.87 R 2 = DMPS mass :1 line AMS SO AMS NH PILS SO PILS NH4 Composition/phase-dependent collection efficiency (CE) applied Correction for smaller cut diameter in AMS lens compared to PM 1 impactors

13 LS-C-ToF-AMS LS-SP Mode PMT Laser Coincident Particles: Evidence of External Mixing Light Scattering Signal particle #1 particle #2 6x LS Signal Chemical Ion Signal 5x Total Ion Signal particle #1 particle # x1-3 Time-of-Flight (s) PARTICLE PROPERTY Velocity (m/s) Vacuum Aerodynamic Diameter (nm) Optical Diameter (nm) Predicted Physical Diameter (nm) Chemical Density (g/cc) Optical Density (g/cc) [dva/dopt] Measured Total Mass (fg) Predicted Total Mass (fg) [Chemical Density] Predicted Total Mass (fg) [Optical Density] Particle # Particle #

14 Collection Efficiency: Particle Counting Count CE Count-Based Collection Efficiency Optically detected: Chemically detected: 5542 Fast Vaporization/Ionization: Counts Vacuum Aerodynamic Diameter (dva) (nm) Apparent CE depends on NH4/SO4 ratio CE AMS Water Mass Fraction NH4/SO4 Ratio Onasch et al, Ron Brown, 24 14

15 NH4/SO4 NO3/SO4 >>1 CE =.4 1 H2O/Total 1 Tim Onasch, Ann Middlebrook: particle phase Junying Sun, Yangmei Zhang Beijing July ratio of AMS with fixed CE =.5 to dry SMPS_vol_adj 1..8 AMS Mass SMPS Mass ORG / TOTAL AMS H2O AMS Total Note: cluster of highest org fraction have low H2O and CE 15

16 Lens Transmission issues Reasonable understanding of current lenses Peter Liu, Leah Williams, John Jayne Ann Middlebrook, Brendan Matthew, Ken Docherty standard vs high throughput some variability New high pressure lens modification of Schreiner lens Summary of Lab Transmission Experiments Standard Lens Williams et al Signal (arb. units) TransEff, NH4NO3 nh4no3_sep14_ce, Peter Liu, N transeff_counts El_model_new_585torr, Deng calc Trans_76torr, Deng, calc. AN_ObsCalcRat (AN_ARI) DEHS_ObsCalcRat (DEHS_ARI) SN_ObsCalcRat (NaNO3_ARI) DEHS_dec134_CE dehs_small_dec144_ce NaNO3_CE_dec134 ARI2_Na_TOF_CPC ARI2_NH4_TOF_CPC SN_2_obspredrat Dva (nm) 16

17 Comparison of Standard and High Pressure Lenses August, Standard Lens (Liu et al, AS&T, 27) Experiment CFD High Pressure Lens NH4NO3 Lens # 2 PSLs Lens # CFD Model.8 TE Dva [ nm ] How to build a SP2-AMS Install SP2 module 17

18 7x Oil Lamp Soot Particles C 1 m/z=12 N 2 m/z=28 C 2 m/z=24 H 2 O m/z=18 C 3 m/z=36 Air Beam Organics Elemental Carbon Signal C 4 m/z=48 C 5 m/z=6 C 6 m/z=72 C 7 m/z=84 C 8 m/z= m/z Obtain chemical information on BC and Organics Ion signal for carbon (C n ; n=1..4) 1.4x Comparison SP2-AMS and MAAP carbon nano powder a=89. r 2 =.997 Norit SX a=52.1 r 2 = MAAP signal MAAP: Multi Angle Aerosol Photometer (Thermo Fisher) 2 Strong correlation between SP2-AMS carbon signals and the MAAP absorption measurement 18

19 6C, e- m/z HOA: C n H m C n-x H m-y 27,29,41,43,55,57,69,71, OOA2 C n H m O C 2 H 3 O, C 3 H 3 O, R 43,55, OOA1 C n H m O 2 CO 2, HCO 2, R 44,45, BBOA R R, C 2 H 4 O 2, C 3 H 3 O 2 6,73,. levoglucosan SP2 e- Graphitic C C n BETTER ORGANIC FACTORS CHEMICAL (MOLECULAR) ANALYSIS 19

Collection Efficiency: A summary of what we know so far.

Collection Efficiency: A summary of what we know so far. Collection Efficiency: A summary of what we know so far. AMS Users Highlighted work Eben Cross, Tim Onasch Ann Middlebrook, Roya Bahreini Brendan Matthews Collection Efficiency Definition Why is it important?

More information

Development, Characterization, and Application of a Light Scattering Module within the Aerodyne AMS

Development, Characterization, and Application of a Light Scattering Module within the Aerodyne AMS Development, Characterization, and Application of a Light Scattering Module within the Aerodyne AMS Eben Cross th AMS User s Meeting 5 /7/5 Simple Rules to giving a Successful and Entertaining User s Meeting

More information

Comparison of AERONET inverted size distributions to measured distributions from the Aerodyne Aerosol Mass Spectrometer

Comparison of AERONET inverted size distributions to measured distributions from the Aerodyne Aerosol Mass Spectrometer Comparison of inverted size distributions to measured distributions from the Aerodyne Aerosol Mass Spectrometer Peter DeCarlo Remote Sensing Project April 28, 23 Introduction The comparison of direct in-situ

More information

The AMS as a Single Particle Mass Spectrometer

The AMS as a Single Particle Mass Spectrometer The AMS as a Single Particle Mass Spectrometer 9 th AMS User s Meeting (Eben s 5 th ) September 5-7, 28 University of Manchester Eben Cross TIME SPENT OVER THE PAST 5 YEARS WORKING ON STUFF RELATED TO

More information

Aerodyne Chinese AMS/ACSM Clinic, Nanjing, April Why are we here? Data Analysis Clinics Boulder, PSI. Barcelona, Boulder

Aerodyne Chinese AMS/ACSM Clinic, Nanjing, April Why are we here? Data Analysis Clinics Boulder, PSI. Barcelona, Boulder Aerodyne Chinese AMS/ACSM Clinic, Nanjing, 20-22 April 2018 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 1st/2nd AMS Users Meeting Portland / Aerodyne 3rd Aerodyne

More information

Supplement of Quantification of black carbon mixing state from traffic: implications for aerosol optical properties

Supplement of Quantification of black carbon mixing state from traffic: implications for aerosol optical properties Supplement of Atmos. Chem. Phys., 16, 4693 4706, 2016 http://www.atmos-chem-phys.net/16/4693/2016/ doi:10.5194/acp-16-4693-2016-supplement Author(s) 2016. CC Attribution 3.0 License. Supplement of Quantification

More information

Single particle characterization using SP-AMS with light scattering module in urban environments

Single particle characterization using SP-AMS with light scattering module in urban environments Single particle characterization using SP-AMS with light scattering module in urban environments Alex K. Y. Lee 1, Megan D. Willis 1, Robert M. Healy 2,3, Tim Onasch 4 Jonathan Wang 3, Greg Evans 3, and

More information

Insights Into Atmospheric Organic Aerosols Using An Aerosol Mass Spectrometer

Insights Into Atmospheric Organic Aerosols Using An Aerosol Mass Spectrometer Insights Into Atmospheric Organic Aerosols Using An Aerosol Mass Spectrometer A thesis submitted to the University of Manchester Institute of Science and Technology for the degree of Doctor of Philosophy

More information

Overview of collection efficiency (CE):

Overview of collection efficiency (CE): Overview of collection efficiency (CE): Standard vaporizer vs Capture vaporizer Weiwei Hu 2018-04-20 AMS user s meeting @ Nanjing Collection efficiency definition Mass loading based: Number counting based:

More information

Chapter Eight: Conclusions and Future Work

Chapter Eight: Conclusions and Future Work 2004 PhD Thesis 202 Chapter Eight: Conclusions and Future Work 8.1 Conclusions The Aerodyne aerosol mass spectrometer is capable of providing quantitative information on the chemical composition of the

More information

4 th AMS Users Meeting Brainstorming on (1) Experiments to Nail our Absolute Quantification (2) Best Operating Procedures

4 th AMS Users Meeting Brainstorming on (1) Experiments to Nail our Absolute Quantification (2) Best Operating Procedures th AMS Users Meeting Brainstorming on (1) Experiments to Nail our Absolute Quantification () Best Operating Procedures Jose-Luis Jimenez Caltech Pasadena, CA Oct. -7, Reminder of the Quantification Issues.

More information

Overview of AMS Mass Spectrometry Analysis: Low vs. High Mass Resolution

Overview of AMS Mass Spectrometry Analysis: Low vs. High Mass Resolution Overview of AMS Mass Spectrometry Analysis: Low vs. High Mass Resolution Qi Zhang Department of Environmental Toxicology University of California at Davis Aerodyne/Nanjing University Chinese AMS/ACSM Clinic

More information

Intercomparison of standard and capture vaporizer in aerosol mass spectrometer (AMS)

Intercomparison of standard and capture vaporizer in aerosol mass spectrometer (AMS) Intercomparison of standard and capture vaporizer in aerosol mass spectrometer (AMS) Weiwei Hu 1, Pedro Campuzano-Jost 1, Douglas A. Day 1, Philip Croteau 2, Manjula R. Canagaratna 2, John T. Jayne 2,

More information

Effect of Fuel to Oxygen Ratio on Physical and Chemical Properties of Soot Particles

Effect of Fuel to Oxygen Ratio on Physical and Chemical Properties of Soot Particles Effect of Fuel to Oxygen Ratio on Physical and Chemical Properties of Soot Particles J. G. Slowik, J. Kolucki, K. Stainken, and P. Davidovits Chemistry Department Boston College, Chestnut Hill, MA P. F.

More information

Supplement of Evaluation of the performance of a particle concentrator for online instrumentation

Supplement of Evaluation of the performance of a particle concentrator for online instrumentation Supplement of Atmos. Meas. Tech., 7, 11 135, 1 http://www.atmos-meas-tech.net/7/11/1/ doi:1.519/amt-7-11-1-supplement Author(s) 1. CC Attribution 3. License. Supplement of Evaluation of the performance

More information

Benjamin A. Nault, Pedro Campuzano-Jost, Doug A. Day, Hongyu Guo, Jason C. Schroder, Jose L. Jimenez, and the Science Teams from KORUS-AQ and ATom

Benjamin A. Nault, Pedro Campuzano-Jost, Doug A. Day, Hongyu Guo, Jason C. Schroder, Jose L. Jimenez, and the Science Teams from KORUS-AQ and ATom AMS Quantification Calibrations and Comparisons from Recent Campaigns Benjamin A. Nault, Pedro Campuzano-Jost, Doug A. Day, Hongyu Guo, Jason C. Schroder, Jose L. Jimenez, and the Science Teams from KORUS-AQ

More information

Evaluation of the new capture vaporizer for Aerosol Mass Spectrometers (AMS)

Evaluation of the new capture vaporizer for Aerosol Mass Spectrometers (AMS) Evaluation of the new capture vaporizer for Aerosol Mass Spectrometers (AMS) Weiwei Hu 1, Pedro Campuzano-Jost 1, Douglas A. Day 1, Benjamin A. Nault 1, Taehyun Park 2, Taehyoung Lee 2, Philip Croteau

More information

Describing oxidation of organics

Describing oxidation of organics Describing oxidation of organics using the AMS Jesse Kroll, Doug Worsnop, Chuck Kolb, Sean Kessler, Jose Jimenez, Allison Aiken, Pete DeCarlo, Neil Donahue, Kevin Wilson, Jared Smith, Tim Onasch, Manjula

More information

Single particle characterization using a light scattering module coupled to a time-of-flight aerosol mass spectrometer

Single particle characterization using a light scattering module coupled to a time-of-flight aerosol mass spectrometer Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License. Atmospheric Chemistry and Physics Single particle characterization using a light scattering module coupled to

More information

SootParticle-AMS. LaserVaporizer-AMS. Aerodyne Research, Inc. et al.

SootParticle-AMS. LaserVaporizer-AMS. Aerodyne Research, Inc. et al. SootParticle-AMS or LaserVaporizer-AMS Aerodyne Research, Inc. et al. Outline SP-AMS technique and hardware Reference material SP-AMS applications Quick highlight a few applications SP-AMS quantification

More information

Chapter Four: Laboratory Characterisation of the Aerodyne Aerosol Mass Spectrometer

Chapter Four: Laboratory Characterisation of the Aerodyne Aerosol Mass Spectrometer 24 PhD Thesis 79 Chapter Four: Laboratory Characterisation of the Aerodyne Aerosol Mass Spectrometer Laboratory characterisation of the Aerodyne aerosol mass spectrometer has been an important part of

More information

AMS CE for Chamber SOA

AMS CE for Chamber SOA AMS CE for Chamber SOA Ken Docherty et al. Alion Science & Technology and NERL, EPA 1 Alion Science and Technology, P.O. Box 12313, Research Triangle Park, NC 27713 2 Cooperative Institute for Research

More information

Characterization of dimers of soot and non-soot

Characterization of dimers of soot and non-soot Characterization of dimers of soot and non-soot particles formed by charged coagulation Boston College and Aerodyne Leonid Nichman, Paola Massoli, Yue Zhang, Tim Onasch, Doug Worsnop, Paul Davidovits MTU

More information

Atmospheric Environment

Atmospheric Environment Atmospheric Environment (1) 131 1 Contents lists available at ScienceDirect Atmospheric Environment journal homepage: www.elsevier.com/locate/atmosenv Highly time- and size-resolved characterization of

More information

Chapter Three: The Aerodyne Aerosol Mass Spectrometer (AMS)

Chapter Three: The Aerodyne Aerosol Mass Spectrometer (AMS) 2004 PhD Thesis 51 Chapter Three: The Aerodyne Aerosol Mass Spectrometer (AMS) 3.1 AMS description The Aerodyne aerosol mass spectrometer (AMS) design is based on earlier efforts to perform on-line, quantitative

More information

Jianfei Peng et al. Correspondence to: Jianfei Peng Min Hu and Renyi Zhang

Jianfei Peng et al. Correspondence to: Jianfei Peng Min Hu and Renyi Zhang Supplement of Atmos. Chem. Phys., 17, 10333 10348, 2017 https://doi.org/10.5194/acp-17-10333-2017-supplement Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License.

More information

Soot Particle Aerosol Mass Spectrometer: Development, Validation, and Initial Application

Soot Particle Aerosol Mass Spectrometer: Development, Validation, and Initial Application Aerosol Science and Technology, 46:804 817, 2012 Copyright C American Association for Aerosol Research ISSN: 0278-6826 print / 1521-7388 online DOI: 10.1080/02786826.2012.663948 Soot Particle Aerosol Mass

More information

SootParticle-AMS or LaserVaporizer-AMS. Aerodyne Research, Inc. et al.

SootParticle-AMS or LaserVaporizer-AMS. Aerodyne Research, Inc. et al. SootParticle-AMS or LaserVaporizer-AMS Aerodyne Research, Inc. et al. Outline SP-AMS instrument design Nomenclature Collection Efficiency Refractory carbon ion distributions SP-AMS Instruments in the Field

More information

Organic particle types by single-particle measurements using a time-of-flight aerosol mass spectrometer coupled with aclimate scattering module

Organic particle types by single-particle measurements using a time-of-flight aerosol mass spectrometer coupled with aclimate scattering module and Physics ess doi:10.5194/amt-6-187-2013 Author(s) 2013. CC Attribution 3.0 License. Atmospheric Measurement Techniques Biogeosciences Organic particle types by single-particle measurements using a time-of-flight

More information

Supporting Information. Observation of Fullerene Soot in Eastern China

Supporting Information. Observation of Fullerene Soot in Eastern China Supporting Information Observation of Fullerene Soot in Eastern China Junfeng Wang, Timothy B. Onasch, Xinlei Ge,, * Sonya Collier, Qi Zhang,, Yele Sun, Huan Yu, Mindong Chen,, * André S.H. Prévôt,,,#

More information

Characterization of an Aerodyne Aerosol Mass Spectrometer (AMS): Intercomparison with Other Aerosol Instruments

Characterization of an Aerodyne Aerosol Mass Spectrometer (AMS): Intercomparison with Other Aerosol Instruments Aerosol Science and Technology, 39:760 770, 2005 Copyright c American Association for Aerosol Research ISSN: 0278-6826 print / 1521-7388 online DOI: 10.1080/02786820500243404 Characterization of an Aerodyne

More information

Interactive comment on Aerosol mass spectrometry: particle vaporizer interactions and their consequences for the measurements by F. Drewnick et al.

Interactive comment on Aerosol mass spectrometry: particle vaporizer interactions and their consequences for the measurements by F. Drewnick et al. Atmos. Meas. Tech. Discuss., 8, C1409 C1426, 2015 www.atmos-meas-tech-discuss.net/8/c1409/2015/ Author(s) 2015. This work is distributed under the Creative Commons Attribute 3.0 License. Atmospheric Measurement

More information

Ambient aerosol sampling using the Aerodyne Aerosol Mass Spectrometer

Ambient aerosol sampling using the Aerodyne Aerosol Mass Spectrometer JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D7, 8425, doi:10.1029/2001jd001213, 2003 Ambient aerosol sampling using the Aerodyne Aerosol Mass Spectrometer Jose L. Jimenez, 1,2,3 John T. Jayne, 1 Quan

More information

Supplemental Material for Elemental Composition and Oxidation of Chamber Organic Aerosol

Supplemental Material for Elemental Composition and Oxidation of Chamber Organic Aerosol Supplemental Material for Elemental Composition and Oxidation of Chamber Organic Aerosol P. S. Chhabra 1,N.L.Ng 2, M. R. Canagaratna 2, A. L. Corrigan 3, L. M. Russell 3, D. R. Worsnop 2, R. C. Flagan

More information

AMS/ACSM Ionization Efficiency Introduction. Tuesday May 9, :00

AMS/ACSM Ionization Efficiency Introduction. Tuesday May 9, :00 AMS/ACSM Ionization Efficiency Introduction Tuesday May 9, 2017 14:00 Calibrations How to convert mass spectrometric ion signals into meaningful quantities? Particle velocity-aerodynamic size Volumetric

More information

Chemically-resolved aerosol volatility measurements from two megacity field studies

Chemically-resolved aerosol volatility measurements from two megacity field studies Atmos. Chem. Phys., 9, 7161 7182, 9 www.atmos-chem-phys.net/9/7161/9/ Author(s) 9. This work is distributed under the Creative Commons Attribution 3. License. Atmospheric Chemistry and Physics Chemically-resolved

More information

Atmospheric Chemistry and Physics

Atmospheric Chemistry and Physics Atmos. Chem. Phys., 1, 8933 8945, 1 www.atmos-chem-phys.net/1/8933/1/ doi:1.5194/acp-1-8933-1 Author(s) 1. CC Attribution 3. License. Atmospheric Chemistry and Physics Highly time-resolved chemical characterization

More information

Supplementary information for manuscript. Burning of Olive Tree Branches: A Major Organic Aerosol Emission Source in the Mediterranean

Supplementary information for manuscript. Burning of Olive Tree Branches: A Major Organic Aerosol Emission Source in the Mediterranean Supplementary information for manuscript Burning of Olive Tree Branches: A Major Organic Aerosol Emission Source in the Mediterranean Evangelia Kostenidou 1, Christos Kaltsonoudis 1,2, Maria Tsiflikiotou

More information

Fine Particles: Why We Care

Fine Particles: Why We Care Fine Particles: Why We Care Visibility/Radiative Forcing Health Effects A function of chemical composition PM2.5 Mostly 1) Sulfate 2) Carbonaceous - Organic - Elemental (Soot) 3) Metals, minerals, Metals,

More information

Experimental Investigation of the Collection Efficiencies of the AMS Aerodynamic Focusing Lens

Experimental Investigation of the Collection Efficiencies of the AMS Aerodynamic Focusing Lens Experimental Investigation of the Collection Efficiencies of the AMS Aerodynamic Focusing Lens Peter S.K. Liu, Terry Deshler and Derek C. Montague John Jayne and Doug Worsnop Xuefeng Zhang, Kenneth A Smith

More information

STANDARD OPERATING PROCEDURE (SOP) FOR THE FIELD OPERATION OF THE AERODYNE AEROSOL MASS SPECTROMETER (AMS)

STANDARD OPERATING PROCEDURE (SOP) FOR THE FIELD OPERATION OF THE AERODYNE AEROSOL MASS SPECTROMETER (AMS) 1 of 9 STANDARD OPERATING PROCEDURE (SOP) FOR THE FIELD OPERATION OF THE AERODYNE AEROSOL MASS SPECTROMETER (AMS) Prepared by : Frank Drewnick, John Jayne Reviewed by: Volker A. Mohnen (PMTACS-NY QA Officer)

More information

Real-Time Methods for Estimating Organic Component Mass Concentrations from Aerosol Mass Spectrometer Data

Real-Time Methods for Estimating Organic Component Mass Concentrations from Aerosol Mass Spectrometer Data Environ. Sci. Technol. 2011, 45, 910 916 Real-Time Methods for Estimating Organic Component Mass Concentrations from Aerosol Mass Spectrometer Data N. L. NG, M. R. CANAGARATNA,*, J. L. JIMENEZ,, Q. ZHANG,

More information

Summary of Recent Work on the Fragmentation Table & Oven Aerodyne

Summary of Recent Work on the Fragmentation Table & Oven Aerodyne Summary of Recent Work on the Fragmentation Table & Oven Temperature @ Aerodyne Tim Onasch - Aerodyne Boulder AMS Users Mini Meeting University of Colorado March 9-, 23 Fragmentation Waves AMS Users Meeting

More information

Aerosol modeling with WRF/Chem

Aerosol modeling with WRF/Chem Aerosol modeling with WRF/Chem Jan Kazil University of Colorado / NOAA Earth System Research Laboratory WRF/Chem Tutorial, 3 August 2015 (WRF/Chem 3.7) Part I - Introduction Overview of... Aerosol Aerosol

More information

Frank Drewnick & Johannes Schneider & Silke S. Hings & Nele Hock & Kevin Noone & Admir Targino & Silke Weimer & Stephan Borrmann

Frank Drewnick & Johannes Schneider & Silke S. Hings & Nele Hock & Kevin Noone & Admir Targino & Silke Weimer & Stephan Borrmann DOI 10.1007/s10874-006-9036-8 Measurement of Ambient, Interstitial, and Residual Aerosol Particles on a Mountaintop Site in Central Sweden using an Aerosol Mass Spectrometer and a CVI Frank Drewnick &

More information

R. Fröhlich et al. Correspondence to: A. Prévôt

R. Fröhlich et al. Correspondence to: A. Prévôt Supplement of Atmos. Chem. Phys. Discuss.,, 1, http://www.atmos-chem-phys-discuss.net//// doi:19/acpd----supplement Author(s). CC Attribution. License. Supplement of Fourteen months of on-line measurements

More information

Diesel soot aging in urban plumes within hours under cold dark and humid conditions

Diesel soot aging in urban plumes within hours under cold dark and humid conditions Supporting information for Diesel soot aging in urban plumes within hours under cold dark and humid conditions A. C. Eriksson 1,2*, C. Wittbom 1, P. Roldin 1,3, M. Sporre 4, E. Öström 1,5, P. Nilsson 2,

More information

Follow this and additional works at: https://digitalcommons.usu.edu/sdl_pubs

Follow this and additional works at: https://digitalcommons.usu.edu/sdl_pubs Utah State University DigitalCommons@USU Space Dynamics Lab Publications Space Dynamics Lab 1-1-2007 Transmission Efficiency of an Aerodynamic Focusing Lens System: Comparison of Model Calculations and

More information

Supplement of Organic nitrate aerosol formation via NO 3 + biogenic volatile organic compounds in the southeastern United States

Supplement of Organic nitrate aerosol formation via NO 3 + biogenic volatile organic compounds in the southeastern United States Supplement of Atmos. Chem. Phys., 1, 177 19, 1 http://www.atmos-chem-phys.net/1/177/1/ doi:1.19/acp-1-177-1-supplement Author(s) 1. CC Attribution. License. Supplement of Organic nitrate aerosol formation

More information

A comparison of particle mass spectrometers during the 1999 Atlanta Supersite Project

A comparison of particle mass spectrometers during the 1999 Atlanta Supersite Project JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D7, 8424, doi:10.1029/2001jd000660, 2003 A comparison of particle mass spectrometers during the 1999 Atlanta Supersite Project Ann M. Middlebrook, 1 Daniel

More information

Characterisation of the Aerosol Collection Module (ACM) Dagmar Trimborn, John Jayne, Thorsten Hohaus

Characterisation of the Aerosol Collection Module (ACM) Dagmar Trimborn, John Jayne, Thorsten Hohaus Characterisation of the Aerosol Collection Module (ACM) Dagmar Trimborn, John Jayne, Thorsten Hohaus ACM working principle Valve Cooler/ Heater 10-3 Torr 10-5 Torr 10-5 Torr Particle Inlet Aerodynamic

More information

Characterization of an aerodynamic lens for transmitting particles greater than 1 micrometer in diameter into the Aerodyne aerosol mass spectrometer

Characterization of an aerodynamic lens for transmitting particles greater than 1 micrometer in diameter into the Aerodyne aerosol mass spectrometer Atmos. Meas. Tech., 6, 3271 3280, 2013 doi:10.5194/amt-6-3271-2013 Author(s) 2013. CC Attribution 3.0 License. Atmospheric Measurement Techniques Open Access Characterization of an aerodynamic lens for

More information

A simplified description of the evolution of organic aerosol composition in the atmosphere

A simplified description of the evolution of organic aerosol composition in the atmosphere A simplified description of the evolution of organic aerosol composition in the atmosphere The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story

More information

Aerodyne AMS Users Meeting, St Louis, 8-10 September Why are we here? Data Analysis Clinics Boulder, PSI. Barcelona, Boulder

Aerodyne AMS Users Meeting, St Louis, 8-10 September Why are we here? Data Analysis Clinics Boulder, PSI. Barcelona, Boulder Aerodyne AMS Users Meeting, St Louis, 8-10 September 2018 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 1st/2nd AMS Users Meeting Portland / Aerodyne 3rd Aerodyne

More information

Calibration Issues. John Jayne 5 th AMS User s Meeting 10/11/04

Calibration Issues. John Jayne 5 th AMS User s Meeting 10/11/04 Calibration Issues John Jayne 5 th AMS User s Meeting 10/11/04 Decrease in multiplier efficiency with ion mass and effect of conversion dynode 1.2 1.1 ETP AF133 SEM 218 (Balzers CD) Jan 2001 SUNY AMS SI,

More information

Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data

Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Supplementary information for manuscript Identification and quantification of organic aerosol from cooking and other sources

More information

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, D18305, doi: /2006jd007215, 2006

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, D18305, doi: /2006jd007215, 2006 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2006jd007215, 2006 Size-selective nonrefractory ambient aerosol measurements during the Particulate Matter Technology Assessment and Characterization

More information

Downloaded By: [Williams, Leah R.] At: 08:55 28 June 2007

Downloaded By: [Williams, Leah R.] At: 08:55 28 June 2007 Aerosol Science and Technology, 41:721 733, 2007 Copyright c American Association for Aerosol Research ISSN: 0278-6826 print / 1521-7388 online DOI: 10.1080/02786820701422278 Transmission Efficiency of

More information

A New Time-of-Flight Aerosol Mass Spectrometer (TOF-AMS) Instrument Description and First Field Deployment

A New Time-of-Flight Aerosol Mass Spectrometer (TOF-AMS) Instrument Description and First Field Deployment Aerosol Science and Technology, 39:637 658, 2005 Copyright c American Association for Aerosol Research ISSN: 0278-6826 print / 1521-7388 online DOI: 10.1080/02786820500182040 A New Time-of-Flight Aerosol

More information

Source apportionment of submicron organic aerosols at an urban site by linear unmixing of aerosol mass spectra

Source apportionment of submicron organic aerosols at an urban site by linear unmixing of aerosol mass spectra Source apportionment of submicron organic aerosols at an urban site by linear unmixing of aerosol mass spectra V. A. Lanz 1, M. R. Alfarra, U. Baltensperger, B. Buchmann 1, C. Hueglin 1, and A. S. H. Prévôt

More information

ACE-Asia Campaign. Aircraft-Based Aerosol Sampling During ACE-Asia and CRYSTAL-FACE Using an Aerodyne Aerosol Mass Spectrometer

ACE-Asia Campaign. Aircraft-Based Aerosol Sampling During ACE-Asia and CRYSTAL-FACE Using an Aerodyne Aerosol Mass Spectrometer Aircraft-Based Aerosol Sampling During ACE-Asia and CRYSTAL-FACE Using an Aerodyne Aerosol Mass Spectrometer Roya Bahreini *, Jose L. Jimenez *, Alice Delia, Richard C. Flagan *, John H. Seinfeld *, John.

More information

CONTINUOUS REAL-TIME MEASUREMENT OF THE CHEMICAL COMPOSITION OF ATMOSPHERIC PARTICLES IN GREECE USING AEROSOL MASS SPECTROMETRY

CONTINUOUS REAL-TIME MEASUREMENT OF THE CHEMICAL COMPOSITION OF ATMOSPHERIC PARTICLES IN GREECE USING AEROSOL MASS SPECTROMETRY CONTINUOUS REAL-TIME MEASUREMENT OF THE CHEMICAL COMPOSITION OF ATMOSPHERIC PARTICLES IN GREECE USING AEROSOL MASS SPECTROMETRY A MASTER THESIS Submitted by FLOROU KALLIOPI DEPARTMENT OF CHEMICAL ENGINEERING

More information

Characterization of an Aerodynamic Lens for Transmitting Particles Greater than 1 Micrometer in Diameter into the Aerodyne Aerosol Mass Spectrometer

Characterization of an Aerodynamic Lens for Transmitting Particles Greater than 1 Micrometer in Diameter into the Aerodyne Aerosol Mass Spectrometer Utah State University DigitalCommons@USU Space Dynamics Lab Publications Space Dynamics Lab 11-28-2013 Characterization of an Aerodynamic Lens for Transmitting Particles Greater than 1 Micrometer in Diameter

More information

The Aerosol Quality Characterization System (AQCS) A Different Approach for Identifying Particle Properties

The Aerosol Quality Characterization System (AQCS) A Different Approach for Identifying Particle Properties The Aerosol Quality Characterization System (AQCS) A Different Approach for Identifying Particle Properties Darrel Baumgardner Centro de Ciencias de la Atmosfera Universidad Nacional Autonoma de Mexico

More information

Evaluation of the performance of a particle concentrator for online instrumentation

Evaluation of the performance of a particle concentrator for online instrumentation Atmos. Meas. Tech., 7, 2121 2135, 21 www.atmos-meas-tech.net/7/2121/21/ doi:1.519/amt-7-2121-21 Author(s) 21. CC Attribution 3. License. Evaluation of the performance of a particle concentrator for online

More information

Aerosol time-of-flight mass spectrometry during the Atlanta Supersite Experiment: 2. Scaling procedures

Aerosol time-of-flight mass spectrometry during the Atlanta Supersite Experiment: 2. Scaling procedures JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D7, 8427, doi:10.1029/2001jd001563, 2003 Aerosol time-of-flight mass spectrometry during the Atlanta Supersite Experiment: 2. Scaling procedures Ryan J. Wenzel

More information

CHEMICAL AND MICROPHYSICAL CHARACTERIZATION OF AMBIENT AEROSOLS WITH THE AERODYNE AEROSOL MASS SPECTROMETER

CHEMICAL AND MICROPHYSICAL CHARACTERIZATION OF AMBIENT AEROSOLS WITH THE AERODYNE AEROSOL MASS SPECTROMETER Guest Editor: Albert Viggiano CHEMICAL AND MICROPHYSICAL CHARACTERIZATION OF AMBIENT AEROSOLS WITH THE AERODYNE AEROSOL MASS SPECTROMETER M.R. Canagaratna, 1 * J.T. Jayne, 1 J.L. Jimenez, 2 J.D. Allan,

More information

18 th Users Meeting PKU Beijing. Monday May 8-12, John Jayne

18 th Users Meeting PKU Beijing. Monday May 8-12, John Jayne 18 th Users Meeting PKU Beijing Monday May 8-12, 2017 John Jayne About Aerodyne Many of you know Aerodyne as, an instrument company Our full name is Aerodyne Research, Inc. Research is our core activity

More information

Introduction. Environ. Sci. Technol. 2008, 42,

Introduction. Environ. Sci. Technol. 2008, 42, Environ. Sci. Technol. 2008, 42, 6619 6624 Comparative Analysis of Urban Atmospheric Aerosol by Particle-Induced X-ray Emission (PIXE), Proton Elastic Scattering Analysis (PESA), and Aerosol Mass Spectrometry

More information

Supporting information

Supporting information Supporting information Aerosol Liquid Water Driven by Anthropogenic Inorganic Salts: Implying Its Key Role in Haze Formation over the North China Plain Zhijun Wu*, Yu Wang #, Tianyi Tan, Yishu Zhu, Mengren

More information

Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: insights into sources and processes of organic aerosols

Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: insights into sources and processes of organic aerosols Atmos. Chem. Phys., 5, 3289 3311, 2005 SRef-ID: 1680-732/acp/2005-5-3289 European Geosciences Union Atmospheric Chemistry and Physics Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: insights

More information

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS 1 CHAPTER 8 AEROSOLS Aerosols in the atmosphere have several important environmental effects They are a respiratory health hazard at the high concentrations found in urban environments They scatter and

More information

Free molecular flow, thermal decomposition, and residence time in the AMS ion source

Free molecular flow, thermal decomposition, and residence time in the AMS ion source Free molecular flow, thermal decomposition, and residence time in the AMS ion source Daniel Murphy NOAA ESRL Chemical Sciences Division June 215 AMS Clinic Heavier neutral molecules spend more time in

More information

Collection Efficiency of the Aerosol Mass Spectrometer for Chamber-Generated Secondary Organic Aerosols

Collection Efficiency of the Aerosol Mass Spectrometer for Chamber-Generated Secondary Organic Aerosols Aerosol Science and Technology, 47:294 309, 2013 Copyright C American Association for Aerosol Research ISSN: 0278-6826 print / 1521-7388 online DOI: 10.1080/02786826.2012.752572 Collection Efficiency of

More information

Single-Particle Laser Ablation Time-of-Flight Mass Spectrometer (SPLAT-MS) Cynthia Randles & Logan Chieffo Mentors: Dr. Dan Imre Dr.

Single-Particle Laser Ablation Time-of-Flight Mass Spectrometer (SPLAT-MS) Cynthia Randles & Logan Chieffo Mentors: Dr. Dan Imre Dr. Single-Particle Laser Ablation Time-of-Flight Mass Spectrometer (SPLAT-MS) Cynthia Randles & Logan Chieffo Mentors: Dr. Dan Imre Dr. Alla Zelenyuk Abstract Atmospheric aerosols impact the Earth s climate,

More information

Design, Modeling, Optimization, and Experimental Tests of a Particle Beam Width Probe for the Aerodyne Aerosol Mass Spectrometer

Design, Modeling, Optimization, and Experimental Tests of a Particle Beam Width Probe for the Aerodyne Aerosol Mass Spectrometer Page 1 of 55 4/10/2005 1 2 3 4 5 6 7 8 9 Design, Modeling, Optimization, and Experimental Tests of a Particle Beam Width Probe for the Aerodyne Aerosol Mass Spectrometer J. Alex Huffman 1, John T. Jayne

More information

Instrumentation, data evaluation and quantification in on-line aerosol mass spectrometry

Instrumentation, data evaluation and quantification in on-line aerosol mass spectrometry JOURNAL OF MASS SPECTROMETRY J. Mass Spectrom. 2007; 42: 843 860 Published online in Wiley InterScience (www.interscience.wiley.com).1262 SPECIAL FEATURE: TUTORIAL Instrumentation, data evaluation and

More information

Ionization Efficiency Calibration Tutorial for the ToF-AMS

Ionization Efficiency Calibration Tutorial for the ToF-AMS Ionization Efficiency Calibration Tutorial for the ToF-AMS AMS Users Meeting September 17, 2006 Edward Dunlea, University of Colorado Thanks to: Roya, Ann, Pete, Ken, Ingrid, Dara, Qi, Shane, John, Jose,

More information

Collection efficiency of α-pinene secondary organic aerosol particles explored via light-scattering single-particle aerosol mass spectrometry

Collection efficiency of α-pinene secondary organic aerosol particles explored via light-scattering single-particle aerosol mass spectrometry Atmos. Meas. Tech., 1, 1139 1154, 217 www.atmos-meas-tech.net/1/1139/217/ doi:1.5194/amt-1-1139-217 Author(s) 217. CC Attribution 3. License. Collection efficiency of α-pinene secondary organic aerosol

More information

Progress on Application of Modal Aerosol Dynamics to CAM

Progress on Application of Modal Aerosol Dynamics to CAM Progress on Application of Modal Aerosol Dynamics to CAM Xiaohong Liu, Steve Ghan, Richard Easter, Rahul Zaveri, Yun Qian (Pacific Northwest National Laboratory) Jean-Francois Lamarque, Peter Hess, Natalie

More information

Mass Spectrometry. Electron Ionization and Chemical Ionization

Mass Spectrometry. Electron Ionization and Chemical Ionization Mass Spectrometry Electron Ionization and Chemical Ionization Mass Spectrometer All Instruments Have: 1. Sample Inlet 2. Ion Source 3. Mass Analyzer 4. Detector 5. Data System http://www.asms.org Ionization

More information

The Aerosol Ion Trap Mass Spectrometer (AIMS): Instrument development and first experimental results

The Aerosol Ion Trap Mass Spectrometer (AIMS): Instrument development and first experimental results The Aerosol Ion Trap Mass Spectrometer (AIMS): Instrument development and first experimental results A. Kürten 1, J. Curtius 1 and S. Borrmann 1,2 1 Johannes Gutenberg-University Mainz, Germany 2 Max Planck

More information

Review of Li et al. Sensitivity of a Q-ACSM to chamber generated SOA with different oxidation states

Review of Li et al. Sensitivity of a Q-ACSM to chamber generated SOA with different oxidation states Review of Li et al. Sensitivity of a Q-ACSM to chamber generated SOA with different oxidation states https://doi.org/10.5194/amt-2018-45 Description: This manuscript describes measurements of the sensitivity

More information

Helsinki, Finland. 1 Aerodyne Research Inc., Billerica, MA, USA. 2 Chemistry Department, Boston College, Chestnut Hill, MA, USA

Helsinki, Finland. 1 Aerodyne Research Inc., Billerica, MA, USA. 2 Chemistry Department, Boston College, Chestnut Hill, MA, USA Supplementary material to article: Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles (paper #0GL0 to Geophysical

More information

Comparing Modal and Sectional Approaches in Modeling Particulate Matter in Northern California

Comparing Modal and Sectional Approaches in Modeling Particulate Matter in Northern California Comparing Modal and Sectional Approaches in Modeling Particulate Matter in Northern California K. Max Zhang* [1], Jinyou Liang [2], Anthony S. Wexler [1], and Ajith Kaduwela [1,2] 1. University of California,

More information

ATOC 3500/CHEM 3152 Week 9, March 8, 2016

ATOC 3500/CHEM 3152 Week 9, March 8, 2016 ATOC 3500/CHEM 3152 Week 9, March 8, 2016 Hand back Midterm Exams (average = 84) Interaction of atmospheric constituents with light Haze and Visibility Aerosol formation processes (more detail) Haze and

More information

Supplement of Secondary formation of nitrated phenols: insights from observations during the Uintah Basin Winter Ozone Study (UBWOS) 2014

Supplement of Secondary formation of nitrated phenols: insights from observations during the Uintah Basin Winter Ozone Study (UBWOS) 2014 Supplement of Atmos. Chem. Phys., 16, 2139 2153, 2016 http://www.atmos-chem-phys.net/16/2139/2016/ doi:10.5194/acp-16-2139-2016-supplement Author(s) 2016. CC Attribution 3.0 License. Supplement of Secondary

More information

1. Load Data Computing Requirements: 1 GB RAM is best. Need Igor 4.07 at least.

1. Load Data Computing Requirements: 1 GB RAM is best. Need Igor 4.07 at least. Data Analysis Tutorial AMS Users Meeting 10/9/2004-10/11/2004 Outline: 1. Load Data 2. Check Diagnostics 3. Check Mass Trends 4. TOF Image Plot 5. Check Average Mass Spec 6. Corrections Airbeam correction

More information

Urban Organic Aerosols Measured by Single Particle Mass Spectrometry in the Megacity of London

Urban Organic Aerosols Measured by Single Particle Mass Spectrometry in the Megacity of London Urban Organic Aerosols Measured by Single Particle Mass Spectrometry in the Megacity of London Manuel Dall Osto 1# and Roy M. Harrison 1* 1 National Centre for Atmospheric Science Division of Environmental

More information

Factors controlling the production of secondary organic material from isoprene epoxydiols (IEPOX) in the Amazonian wet season

Factors controlling the production of secondary organic material from isoprene epoxydiols (IEPOX) in the Amazonian wet season Factors controlling the production of secondary organic material from isoprene epoxydiols (IEPOX) in the Amazonian wet season Suzane S. de Sá, Brett B. Palm, Pedro Campuzano-Jost, Douglas A. Day, Weiwei

More information

Continuous measurement of airborne particles and gases

Continuous measurement of airborne particles and gases Continuous measurement of airborne particles and gases Jeff Collett and Taehyoung Lee Atmospheric Science Department Colorado State University Funding: USDA/AES and NPS Outline Why measure particles and

More information

Extrel Application Note

Extrel Application Note Extrel Application Note Real-Time Plasma Monitoring and Detection of Trace H 2 O and HF Species in an Argon Based Plasma Jian Wei, 575 Epsilon Drive, Pittsburgh, PA 15238. (Presented at the 191st Electrochemical

More information

Chemistry Instrumental Analysis Lecture 34. Chem 4631

Chemistry Instrumental Analysis Lecture 34. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 34 From molecular to elemental analysis there are three major techniques used for elemental analysis: Optical spectrometry Mass spectrometry X-ray spectrometry

More information

Supplementary information

Supplementary information 1 Supplementary information Instrument and operation 3 6 7 8 9 10 11 1 13 1 1 16 HTDMA: Briefly, the custom-built HTDMA consists of two long DMAs (3081L, TSI Inc.), a humidifier (PD-0T-1MSS, Perma Pure

More information

Quantitative sampling using an Aerodyne aerosol mass spectrometer 2. Measurements of fine particulate chemical composition in two U.K.

Quantitative sampling using an Aerodyne aerosol mass spectrometer 2. Measurements of fine particulate chemical composition in two U.K. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D3, 4091, doi:10.1029/2002jd002359, 2003 Quantitative sampling using an Aerodyne aerosol mass spectrometer 2. Measurements of fine particulate chemical composition

More information

Phase State and Physical Properties of Ambient and Laboratory. Generated Secondary Organic Aerosol

Phase State and Physical Properties of Ambient and Laboratory. Generated Secondary Organic Aerosol 1 2 Phase State and Physical Properties of Ambient and Laboratory Generated Secondary Organic Aerosol 3 4 5 6 7 8 9 10 11 Rachel E. O Brien, 1, 2* Alexander Neu, 1 Scott A. Epstein, 3 Amanda C. MacMillan,

More information

Measurements of Secondary Organic Aerosol from Oxidation. of Cycloalkenes, Terpenes, and m-xylene Using an Aerodyne

Measurements of Secondary Organic Aerosol from Oxidation. of Cycloalkenes, Terpenes, and m-xylene Using an Aerodyne 377 Appendix F Measurements of Secondary Organic Aerosol from Oxidation of Cycloalkenes, Terpenes, and m-xylene Using an Aerodyne Aerosol Mass Spectrometer * * This chapter is reproduced by permission

More information

[3] Department of Environmental Science and Engineering, Fudan University, Shanghai, China.

[3] Department of Environmental Science and Engineering, Fudan University, Shanghai, China. 1 3 7 9 1 11 1 13 1 1 1 17 1 19 upplement for manuscript Influence of Intense secondary aerosol formation and long range transport on aerosol chemistry and properties in the eoul Metropolitan Area during

More information

Chemistry 311: Topic 3 - Mass Spectrometry

Chemistry 311: Topic 3 - Mass Spectrometry Mass Spectroscopy: A technique used to measure the mass-to-charge ratio of molecules and atoms. Often characteristic ions produced by an induced unimolecular dissociation of a molecule are measured. These

More information

Review of the IMPROVE Equation for Estimating Ambient Light Extinction

Review of the IMPROVE Equation for Estimating Ambient Light Extinction Review of the IMPROVE Equation for Estimating Ambient Light Extinction Jenny Hand 1 Bill Malm 2 1 CIRA, Colorado State University 2 National Park Service OUTLINE Introduction Sampling Biases Chemical forms

More information