Collection Efficiency: A summary of what we know so far.

Size: px
Start display at page:

Download "Collection Efficiency: A summary of what we know so far."

Transcription

1 Collection Efficiency: A summary of what we know so far. AMS Users Highlighted work Eben Cross, Tim Onasch Ann Middlebrook, Roya Bahreini Brendan Matthews

2 Collection Efficiency Definition

3 Why is it important? AMS Mass Quantification mass species 1 IE NO3 1 RIE species 1 CE 1 Q

4 Collection Efficiency: EL Liu et al. (2007) Transmission can vary between lenses CE (NRPM 1 )= Measured NRPM1/ Actual NRPM1 NOTE: Difference between PM1 and PM2.5 is not included in CE Important when comparing AMS NRPM1 with PM2.5 instrumentation

5 Transmission Measurements FIG. A1 AMS collection efficiency measured using laboratory-generated particles. The solid, open, and shaded circles are the results for NH 4 NO 3, NaNO 3, and KNO 3, respectively. The values in parentheses in the legend indicate the vaporizer temperature. The solid line indicates the theoretical curve from a computational fluid dynamics calculation (FLUENT model: D. R. Worsnop, personal communication). Takegawa, N. et al., 'Performance of an Aerodyne Aerosol Mass Spectrometer (AMS) during Intensive Campaigns in China in the Summer of 2006', Aerosol Science and Technology, 43:3, , 2009.

6 Collection Efficiency: Es Huffman et al. E S ~1 Most particles (even aspherical soot particles) are collected with greater that 95% efficiency

7 Collection Efficiency: Eb Bounce Loss is dominant Eb<EL<Es f(composition,phase, particle size ) Typical Methods of Estimating Eb Vaporization 1) Known input size (Dva= ), Compare CPC vs AMS count OR CPC vs AMS Bounce 2) Light Scattering Module

8

9 Null Undetected mass detected mass Eb= (total- Null)/total

10 From Lab and Field Work Eb affected by 1) nitrate content 2) acidity/neutralization 3) Relative humidity in the sampling line 4) organic liquid content MUCH (ALL?) OF THIS IS DRIVEN BY PHASE DEPENDENCE: Solids Bounce, Liquids Don t Bounce Impactor 101, same is true for ELPI (Virtanen et al. Nature 2010)

11 LAB Eb: Phase Dependance (NH 4)2 SO 4 /NH 4 NO 3 mixed particles CE increases with increasing NO3 content CE=1 for pure NO3 CE=0.3 for pure SO4 Eb (Solid) Eb(Mixed Phase) Eb(Liquid) Matthews et al.

12 FIELD Eb: Phase Dependance Quinn et al. Eb increases with acidity, CE=1 for H2SO4

13 Tim Onasch s presentation in 2005 Quinn et al Martin et al

14 LAB Eb: Phase Dependence OM/Total =13% OM/Total =32% CE increases with increasing RH CE Increases with liquid Coating Matthews et al.

15 Ambient composition How does CE vary with varying ambient composition?

16 Ambient CE: LS Measurements CE=0.5 reproduces NRPM1 and speciated mass to 20-30% at most sites Mexico City LS-AMS Measurements particles (> 250 dva) Cross et al., ACP (2010) Null Fraction= 51% Eb ~.49 CE=0.35 CE=0.5 CE=0.65 Roya s supp

17 Ambient CE: CE=1 observations - Acidic plumes (H2SO4) - NH4NO3-dominated plumes (These are typically infrequent plumes) - Water condensation (Frequent/Infrequent- depends on how inlet line is setup and RH)

18 Field data in support of CE parameterizations Middlebrook, Bahreini, Jimenez, and Canagaratna AMS 2 nd Clinic 2009

19 Field Data TEXAQS: Acidic, Anthopogenic SOA ARCPAC: Acidic, Aged BBOA MESA: High NO3 Instrumentation: AMS UHSAS (PM1 mass)- ultra-high sensitivity aerosol spectrometer PILS SP2 (BC mass) Estimates of CE ~ Ratio of (PM1 mass (UHSAS)- BC mass (SP2))/ AMS mass

20 Acidic No NO3 Nitrate Effect: Ratio as f(nh4no3 Mass Fraction) High NO3 (not acidic) Consistent w/ EUCAARI FIELD LAB CE increases with nitrate content.

21 Acidity Effect: Ratio as f(nh4/so4 Acidic Events molar ratio) High NO3 CE increases for acidic particles.

22 Organic Effect: Ratio as f(organic Mass Fraction) Data were filtered for ammonium sulfate particles: NH4/SO4 molar ratio > 1.5 and ammonium nitrate mass fraction < 0.4. CE does not change significantly w/ org content Consistent with Virtanen et al., Nature 2010 in press: ambient SOA is solid (glass)

23 Ratios for All sites Combined All Field Studies: Ratio =.5 +/-.15 CE~ Ratio Assumption requires extreme caution- multiple, carefully operated instruments Uncertainty in CE of 0.5 is 30%

24 Propagating uncertainty in AMS mass/fine Mass ratio Bahreini et al. mass species 1 IE NO3 1 RIE species 1 CE 1 Q Houston Data IENO3 : (10% uncertainty) RIEspecies: Ionization efficiency of species relative to nitrate NH4 (10% uncertainty) SO4(15% uncertainty) ORG (20% uncertainty) CE: 25% Q: measured during routine calibrations (<0.5% uncertainty) Uncertainties propagated: The AMS total mass (30%), fine volume (30%), and aerosol density (7%) Histogram of observed data is within modelled uncertainty

25 Sources of CE variability 1) CE is not fixed in time - Composition/phase may vary with time 2) CE is not rigorously species independent - Partial internally mixed particles - SO4/NO3/OOA - Externally mixed particles - HOA, BBOA

26 Ambient CE: LS Measurements OOA BBOA NO3 HOA Mexico City LS-AMS Ensemble Measurements Mexico City LS-AMS Single Particle Measurements CE=0.35 CE=0.65 CE=0.5 Variability not clearly associated w/ org composition

27 Queen s Data Different HOA and OOA CEs due to differential H2O condensation Loading (µg/m 3 ) ACSM HR-ToF-AMS HOA CE=0.5 Solid Little H2O condensation 0 0 Loading (µg/m 3 ) ACSM HR-ToF-AMS 17/07/ /07/ /07/ /07/ /07/ /07/ /07/ /07/ /08/2009 dat OOA CE=1 Liquid: H2O condensation

28 CE of BBOA Aged BBOA OOA Aged BBOA CE ~0.5 BBOA properties pretty variable- more work needs to be done to characterize range - some fresh BBOA may have CE>0.5

29 Conclusions CE=0.5 reproduces OA (+/- 0.15) - Larger than pure (NH4)2SO4 CE ( 0.3) effects of other species (Org, NO3) Lab particles are poor models for ambient p., But trends are useful In AMS ambient particles are solid/ mix of solid & liquid phase/glass phase (This is the phase in ambient, or this is what becomes to them when they go through the lens)

30 Recommendations I: Drying Remove H2O Condensation Recommended: dry to between 30-40% RH Alternative: humidity to > 80% RH All the time! This doesn t work for non-hygroscopic organics Worse: don't do either, then your CE can change all over the place as f(rh) Not easy to model or post-correct

31 Recommendations II 1) CE should be estimated directly from AMS chemical composition Use CE=0.5 (Uncertainty is +/-0.15 = +/- 30%) Check for RH, NO3, Acidity effects Use parameterization based on AMS chemical composition to correct for these effects if they exist (Empirical corrections are being derived to do this from multiple datasets) - It is VERY difficult to derive this for each dataset, can be affected by issues with instruments you compare with (see later) 2) Evaluate AMS mass concentrations vs other instrumentation (multiple instruments best) - Each instrument will have different issue to account for in comparison (PM2.5 vs PM1, ) - How well was the other instrument operated? - Report the level of agreement or disagreement. DO NOT SCALE! - Note that SMPSs often disagree by % in volume (IAC Wiedensohler), UHSAS needs factor of x2 correction, etc.

32 Discussion on How to Deal with CE / Eb

33 Resources for Nafion Dryer s/pd-series-gasdryers/?ind=science&prod=497 the info is in the product manual (pdf) link and the method for efficient drying is the reflux method (#2)

AMS Introduction Doug Worsnop. AMS Users Meeting

AMS Introduction Doug Worsnop. AMS Users Meeting AMS Introduction Doug Worsnop AMS Users Meeting Aerodyne Caltech Georgia Tech FZ - Juelich University of Minnesota Desert Research Institute October 21/22 October 24, 23 October 8, 24 25 August, 25 16

More information

Overview of collection efficiency (CE):

Overview of collection efficiency (CE): Overview of collection efficiency (CE): Standard vaporizer vs Capture vaporizer Weiwei Hu 2018-04-20 AMS user s meeting @ Nanjing Collection efficiency definition Mass loading based: Number counting based:

More information

4 th AMS Users Meeting Brainstorming on (1) Experiments to Nail our Absolute Quantification (2) Best Operating Procedures

4 th AMS Users Meeting Brainstorming on (1) Experiments to Nail our Absolute Quantification (2) Best Operating Procedures th AMS Users Meeting Brainstorming on (1) Experiments to Nail our Absolute Quantification () Best Operating Procedures Jose-Luis Jimenez Caltech Pasadena, CA Oct. -7, Reminder of the Quantification Issues.

More information

Intercomparison of standard and capture vaporizer in aerosol mass spectrometer (AMS)

Intercomparison of standard and capture vaporizer in aerosol mass spectrometer (AMS) Intercomparison of standard and capture vaporizer in aerosol mass spectrometer (AMS) Weiwei Hu 1, Pedro Campuzano-Jost 1, Douglas A. Day 1, Philip Croteau 2, Manjula R. Canagaratna 2, John T. Jayne 2,

More information

Single particle characterization using SP-AMS with light scattering module in urban environments

Single particle characterization using SP-AMS with light scattering module in urban environments Single particle characterization using SP-AMS with light scattering module in urban environments Alex K. Y. Lee 1, Megan D. Willis 1, Robert M. Healy 2,3, Tim Onasch 4 Jonathan Wang 3, Greg Evans 3, and

More information

The AMS as a Single Particle Mass Spectrometer

The AMS as a Single Particle Mass Spectrometer The AMS as a Single Particle Mass Spectrometer 9 th AMS User s Meeting (Eben s 5 th ) September 5-7, 28 University of Manchester Eben Cross TIME SPENT OVER THE PAST 5 YEARS WORKING ON STUFF RELATED TO

More information

Evaluation of the new capture vaporizer for Aerosol Mass Spectrometers (AMS)

Evaluation of the new capture vaporizer for Aerosol Mass Spectrometers (AMS) Evaluation of the new capture vaporizer for Aerosol Mass Spectrometers (AMS) Weiwei Hu 1, Pedro Campuzano-Jost 1, Douglas A. Day 1, Benjamin A. Nault 1, Taehyun Park 2, Taehyoung Lee 2, Philip Croteau

More information

SootParticle-AMS. LaserVaporizer-AMS. Aerodyne Research, Inc. et al.

SootParticle-AMS. LaserVaporizer-AMS. Aerodyne Research, Inc. et al. SootParticle-AMS or LaserVaporizer-AMS Aerodyne Research, Inc. et al. Outline SP-AMS technique and hardware Reference material SP-AMS applications Quick highlight a few applications SP-AMS quantification

More information

AMS CE for Chamber SOA

AMS CE for Chamber SOA AMS CE for Chamber SOA Ken Docherty et al. Alion Science & Technology and NERL, EPA 1 Alion Science and Technology, P.O. Box 12313, Research Triangle Park, NC 27713 2 Cooperative Institute for Research

More information

Development, Characterization, and Application of a Light Scattering Module within the Aerodyne AMS

Development, Characterization, and Application of a Light Scattering Module within the Aerodyne AMS Development, Characterization, and Application of a Light Scattering Module within the Aerodyne AMS Eben Cross th AMS User s Meeting 5 /7/5 Simple Rules to giving a Successful and Entertaining User s Meeting

More information

Benjamin A. Nault, Pedro Campuzano-Jost, Doug A. Day, Hongyu Guo, Jason C. Schroder, Jose L. Jimenez, and the Science Teams from KORUS-AQ and ATom

Benjamin A. Nault, Pedro Campuzano-Jost, Doug A. Day, Hongyu Guo, Jason C. Schroder, Jose L. Jimenez, and the Science Teams from KORUS-AQ and ATom AMS Quantification Calibrations and Comparisons from Recent Campaigns Benjamin A. Nault, Pedro Campuzano-Jost, Doug A. Day, Hongyu Guo, Jason C. Schroder, Jose L. Jimenez, and the Science Teams from KORUS-AQ

More information

Overview of AMS Mass Spectrometry Analysis: Low vs. High Mass Resolution

Overview of AMS Mass Spectrometry Analysis: Low vs. High Mass Resolution Overview of AMS Mass Spectrometry Analysis: Low vs. High Mass Resolution Qi Zhang Department of Environmental Toxicology University of California at Davis Aerodyne/Nanjing University Chinese AMS/ACSM Clinic

More information

Summary of Recent Work on the Fragmentation Table & Oven Aerodyne

Summary of Recent Work on the Fragmentation Table & Oven Aerodyne Summary of Recent Work on the Fragmentation Table & Oven Temperature @ Aerodyne Tim Onasch - Aerodyne Boulder AMS Users Mini Meeting University of Colorado March 9-, 23 Fragmentation Waves AMS Users Meeting

More information

Interactive comment on Aerosol mass spectrometry: particle vaporizer interactions and their consequences for the measurements by F. Drewnick et al.

Interactive comment on Aerosol mass spectrometry: particle vaporizer interactions and their consequences for the measurements by F. Drewnick et al. Atmos. Meas. Tech. Discuss., 8, C1409 C1426, 2015 www.atmos-meas-tech-discuss.net/8/c1409/2015/ Author(s) 2015. This work is distributed under the Creative Commons Attribute 3.0 License. Atmospheric Measurement

More information

Supplement of Quantification of black carbon mixing state from traffic: implications for aerosol optical properties

Supplement of Quantification of black carbon mixing state from traffic: implications for aerosol optical properties Supplement of Atmos. Chem. Phys., 16, 4693 4706, 2016 http://www.atmos-chem-phys.net/16/4693/2016/ doi:10.5194/acp-16-4693-2016-supplement Author(s) 2016. CC Attribution 3.0 License. Supplement of Quantification

More information

ToF-AMS characterisation of SOA from NO3 oxidation of β - Pinene

ToF-AMS characterisation of SOA from NO3 oxidation of β - Pinene Mitglied der Helmholtz-Gemeinschaft ToF-AMS characterisation of SOA from NO3 oxidation of β - Pinene AMS Users Meeting 28 Astrid Kiendler-Scharr Secondary Organic Particles Current estimates of global

More information

Ionization Efficiency Calibration Tutorial for the ToF-AMS

Ionization Efficiency Calibration Tutorial for the ToF-AMS Ionization Efficiency Calibration Tutorial for the ToF-AMS AMS Users Meeting September 17, 2006 Edward Dunlea, University of Colorado Thanks to: Roya, Ann, Pete, Ken, Ingrid, Dara, Qi, Shane, John, Jose,

More information

Haze Communication using the CAMNET and IMPROVE Archives: Case Study at Acadia National Park

Haze Communication using the CAMNET and IMPROVE Archives: Case Study at Acadia National Park Haze Communication using the CAMNET and IMPROVE Archives: Case Study at Acadia National Park Light absorption by fine Light scattering by fine Clear line of sight in absence of fine Light extinction is

More information

Single particle characterization using a light scattering module coupled to a time-of-flight aerosol mass spectrometer

Single particle characterization using a light scattering module coupled to a time-of-flight aerosol mass spectrometer Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License. Atmospheric Chemistry and Physics Single particle characterization using a light scattering module coupled to

More information

Aerodyne Chinese AMS/ACSM Clinic, Nanjing, April Why are we here? Data Analysis Clinics Boulder, PSI. Barcelona, Boulder

Aerodyne Chinese AMS/ACSM Clinic, Nanjing, April Why are we here? Data Analysis Clinics Boulder, PSI. Barcelona, Boulder Aerodyne Chinese AMS/ACSM Clinic, Nanjing, 20-22 April 2018 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 1st/2nd AMS Users Meeting Portland / Aerodyne 3rd Aerodyne

More information

Comparison of AERONET inverted size distributions to measured distributions from the Aerodyne Aerosol Mass Spectrometer

Comparison of AERONET inverted size distributions to measured distributions from the Aerodyne Aerosol Mass Spectrometer Comparison of inverted size distributions to measured distributions from the Aerodyne Aerosol Mass Spectrometer Peter DeCarlo Remote Sensing Project April 28, 23 Introduction The comparison of direct in-situ

More information

Latitudinal and Seasonal Distribution of Particulate. MSA over the Atlantic using a Validated. Quantification Method with HR-ToF-AMS

Latitudinal and Seasonal Distribution of Particulate. MSA over the Atlantic using a Validated. Quantification Method with HR-ToF-AMS Supporting Information: Latitudinal and Seasonal Distribution of Particulate MSA over the Atlantic using a Validated Quantification Method with HR-ToF-AMS Shan Huang, Laurent Poulain *, Dominik van Pinxteren,

More information

Jianfei Peng et al. Correspondence to: Jianfei Peng Min Hu and Renyi Zhang

Jianfei Peng et al. Correspondence to: Jianfei Peng Min Hu and Renyi Zhang Supplement of Atmos. Chem. Phys., 17, 10333 10348, 2017 https://doi.org/10.5194/acp-17-10333-2017-supplement Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License.

More information

Review of Li et al. Sensitivity of a Q-ACSM to chamber generated SOA with different oxidation states

Review of Li et al. Sensitivity of a Q-ACSM to chamber generated SOA with different oxidation states Review of Li et al. Sensitivity of a Q-ACSM to chamber generated SOA with different oxidation states https://doi.org/10.5194/amt-2018-45 Description: This manuscript describes measurements of the sensitivity

More information

Supporting information

Supporting information Supporting information Aerosol Liquid Water Driven by Anthropogenic Inorganic Salts: Implying Its Key Role in Haze Formation over the North China Plain Zhijun Wu*, Yu Wang #, Tianyi Tan, Yishu Zhu, Mengren

More information

AMS/ACSM Ionization Efficiency Introduction. Tuesday May 9, :00

AMS/ACSM Ionization Efficiency Introduction. Tuesday May 9, :00 AMS/ACSM Ionization Efficiency Introduction Tuesday May 9, 2017 14:00 Calibrations How to convert mass spectrometric ion signals into meaningful quantities? Particle velocity-aerodynamic size Volumetric

More information

Describing oxidation of organics

Describing oxidation of organics Describing oxidation of organics using the AMS Jesse Kroll, Doug Worsnop, Chuck Kolb, Sean Kessler, Jose Jimenez, Allison Aiken, Pete DeCarlo, Neil Donahue, Kevin Wilson, Jared Smith, Tim Onasch, Manjula

More information

Diesel soot aging in urban plumes within hours under cold dark and humid conditions

Diesel soot aging in urban plumes within hours under cold dark and humid conditions Supporting information for Diesel soot aging in urban plumes within hours under cold dark and humid conditions A. C. Eriksson 1,2*, C. Wittbom 1, P. Roldin 1,3, M. Sporre 4, E. Öström 1,5, P. Nilsson 2,

More information

Chemically-resolved aerosol volatility measurements from two megacity field studies

Chemically-resolved aerosol volatility measurements from two megacity field studies Atmos. Chem. Phys., 9, 7161 7182, 9 www.atmos-chem-phys.net/9/7161/9/ Author(s) 9. This work is distributed under the Creative Commons Attribution 3. License. Atmospheric Chemistry and Physics Chemically-resolved

More information

Characterization of dimers of soot and non-soot

Characterization of dimers of soot and non-soot Characterization of dimers of soot and non-soot particles formed by charged coagulation Boston College and Aerodyne Leonid Nichman, Paola Massoli, Yue Zhang, Tim Onasch, Doug Worsnop, Paul Davidovits MTU

More information

Collection efficiency of α-pinene secondary organic aerosol particles explored via light-scattering single-particle aerosol mass spectrometry

Collection efficiency of α-pinene secondary organic aerosol particles explored via light-scattering single-particle aerosol mass spectrometry Atmos. Meas. Tech., 1, 1139 1154, 217 www.atmos-meas-tech.net/1/1139/217/ doi:1.5194/amt-1-1139-217 Author(s) 217. CC Attribution 3. License. Collection efficiency of α-pinene secondary organic aerosol

More information

Calibration Issues. John Jayne 5 th AMS User s Meeting 10/11/04

Calibration Issues. John Jayne 5 th AMS User s Meeting 10/11/04 Calibration Issues John Jayne 5 th AMS User s Meeting 10/11/04 Decrease in multiplier efficiency with ion mass and effect of conversion dynode 1.2 1.1 ETP AF133 SEM 218 (Balzers CD) Jan 2001 SUNY AMS SI,

More information

Supplement of Organic nitrate aerosol formation via NO 3 + biogenic volatile organic compounds in the southeastern United States

Supplement of Organic nitrate aerosol formation via NO 3 + biogenic volatile organic compounds in the southeastern United States Supplement of Atmos. Chem. Phys., 1, 177 19, 1 http://www.atmos-chem-phys.net/1/177/1/ doi:1.19/acp-1-177-1-supplement Author(s) 1. CC Attribution. License. Supplement of Organic nitrate aerosol formation

More information

SootParticle-AMS or LaserVaporizer-AMS. Aerodyne Research, Inc. et al.

SootParticle-AMS or LaserVaporizer-AMS. Aerodyne Research, Inc. et al. SootParticle-AMS or LaserVaporizer-AMS Aerodyne Research, Inc. et al. Outline SP-AMS instrument design Nomenclature Collection Efficiency Refractory carbon ion distributions SP-AMS Instruments in the Field

More information

Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data

Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Supplementary information for manuscript Identification and quantification of organic aerosol from cooking and other sources

More information

Characterization of an Aerodyne Aerosol Mass Spectrometer (AMS): Intercomparison with Other Aerosol Instruments

Characterization of an Aerodyne Aerosol Mass Spectrometer (AMS): Intercomparison with Other Aerosol Instruments Aerosol Science and Technology, 39:760 770, 2005 Copyright c American Association for Aerosol Research ISSN: 0278-6826 print / 1521-7388 online DOI: 10.1080/02786820500243404 Characterization of an Aerodyne

More information

R. Fröhlich et al. Correspondence to: A. Prévôt

R. Fröhlich et al. Correspondence to: A. Prévôt Supplement of Atmos. Chem. Phys. Discuss.,, 1, http://www.atmos-chem-phys-discuss.net//// doi:19/acpd----supplement Author(s). CC Attribution. License. Supplement of Fourteen months of on-line measurements

More information

Soot Particle Aerosol Mass Spectrometer: Development, Validation, and Initial Application

Soot Particle Aerosol Mass Spectrometer: Development, Validation, and Initial Application Aerosol Science and Technology, 46:804 817, 2012 Copyright C American Association for Aerosol Research ISSN: 0278-6826 print / 1521-7388 online DOI: 10.1080/02786826.2012.663948 Soot Particle Aerosol Mass

More information

Helsinki, Finland. 1 Aerodyne Research Inc., Billerica, MA, USA. 2 Chemistry Department, Boston College, Chestnut Hill, MA, USA

Helsinki, Finland. 1 Aerodyne Research Inc., Billerica, MA, USA. 2 Chemistry Department, Boston College, Chestnut Hill, MA, USA Supplementary material to article: Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles (paper #0GL0 to Geophysical

More information

Instrument Overview. Sat Sept 8 9:40 10: th AMS Users Meeting Washington University, St. Louis

Instrument Overview. Sat Sept 8 9:40 10: th AMS Users Meeting Washington University, St. Louis Instrument Overview Sat Sept 8 9:40 10:10 19 th AMS Users Meeting Washington University, St. Louis Sept 2001 AMS Users Meeting. SN 001 to 004 Its been a while AMS Users Meeting Attendance Aerodyne Mass

More information

Collection Efficiency of the Aerosol Mass Spectrometer for Chamber-Generated Secondary Organic Aerosols

Collection Efficiency of the Aerosol Mass Spectrometer for Chamber-Generated Secondary Organic Aerosols Aerosol Science and Technology, 47:294 309, 2013 Copyright C American Association for Aerosol Research ISSN: 0278-6826 print / 1521-7388 online DOI: 10.1080/02786826.2012.752572 Collection Efficiency of

More information

[3] Department of Environmental Science and Engineering, Fudan University, Shanghai, China.

[3] Department of Environmental Science and Engineering, Fudan University, Shanghai, China. 1 3 7 9 1 11 1 13 1 1 1 17 1 19 upplement for manuscript Influence of Intense secondary aerosol formation and long range transport on aerosol chemistry and properties in the eoul Metropolitan Area during

More information

Experimental Investigation of the Collection Efficiencies of the AMS Aerodynamic Focusing Lens

Experimental Investigation of the Collection Efficiencies of the AMS Aerodynamic Focusing Lens Experimental Investigation of the Collection Efficiencies of the AMS Aerodynamic Focusing Lens Peter S.K. Liu, Terry Deshler and Derek C. Montague John Jayne and Doug Worsnop Xuefeng Zhang, Kenneth A Smith

More information

Supplement of Evaluation of the performance of a particle concentrator for online instrumentation

Supplement of Evaluation of the performance of a particle concentrator for online instrumentation Supplement of Atmos. Meas. Tech., 7, 11 135, 1 http://www.atmos-meas-tech.net/7/11/1/ doi:1.519/amt-7-11-1-supplement Author(s) 1. CC Attribution 3. License. Supplement of Evaluation of the performance

More information

Design, Modeling, Optimization, and Experimental Tests of a Particle Beam Width Probe for the Aerodyne Aerosol Mass Spectrometer

Design, Modeling, Optimization, and Experimental Tests of a Particle Beam Width Probe for the Aerodyne Aerosol Mass Spectrometer Page 1 of 55 4/10/2005 1 2 3 4 5 6 7 8 9 Design, Modeling, Optimization, and Experimental Tests of a Particle Beam Width Probe for the Aerodyne Aerosol Mass Spectrometer J. Alex Huffman 1, John T. Jayne

More information

Supporting Information. Observation of Fullerene Soot in Eastern China

Supporting Information. Observation of Fullerene Soot in Eastern China Supporting Information Observation of Fullerene Soot in Eastern China Junfeng Wang, Timothy B. Onasch, Xinlei Ge,, * Sonya Collier, Qi Zhang,, Yele Sun, Huan Yu, Mindong Chen,, * André S.H. Prévôt,,,#

More information

H 2 O for Elemental Analysis

H 2 O for Elemental Analysis H 2 O for Elemental Analysis Current Default HROrg Frag Entry for organic related H 2 O is as follows: HR_frag_organic [18] =0.225*HR_frag_organic[{CO 2 }] This value of 0.225, is based on following assumptions:

More information

ACE-Asia Campaign. Aircraft-Based Aerosol Sampling During ACE-Asia and CRYSTAL-FACE Using an Aerodyne Aerosol Mass Spectrometer

ACE-Asia Campaign. Aircraft-Based Aerosol Sampling During ACE-Asia and CRYSTAL-FACE Using an Aerodyne Aerosol Mass Spectrometer Aircraft-Based Aerosol Sampling During ACE-Asia and CRYSTAL-FACE Using an Aerodyne Aerosol Mass Spectrometer Roya Bahreini *, Jose L. Jimenez *, Alice Delia, Richard C. Flagan *, John H. Seinfeld *, John.

More information

Influence of Organic-Containing Aerosols on Marine Boundary Layer Processes

Influence of Organic-Containing Aerosols on Marine Boundary Layer Processes DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Influence of Organic-Containing Aerosols on Marine Boundary Layer Processes John H. Seinfeld California Institute of Technology,

More information

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, D18305, doi: /2006jd007215, 2006

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, D18305, doi: /2006jd007215, 2006 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2006jd007215, 2006 Size-selective nonrefractory ambient aerosol measurements during the Particulate Matter Technology Assessment and Characterization

More information

Rapid formation and evolution of an extreme haze episode in

Rapid formation and evolution of an extreme haze episode in Supplementary Information Rapid formation and evolution of an extreme haze episode in Northern China during winter 1 Yele Sun 1,*, Chen Chen 1,, Yingjie Zhang 1,, Weiqi Xu 1,3, Libo Zhou 1, Xueling Cheng

More information

Review of the IMPROVE Equation for Estimating Ambient Light Extinction

Review of the IMPROVE Equation for Estimating Ambient Light Extinction Review of the IMPROVE Equation for Estimating Ambient Light Extinction Jenny Hand 1 Bill Malm 2 1 CIRA, Colorado State University 2 National Park Service OUTLINE Introduction Sampling Biases Chemical forms

More information

Factors controlling the production of secondary organic material from isoprene epoxydiols (IEPOX) in the Amazonian wet season

Factors controlling the production of secondary organic material from isoprene epoxydiols (IEPOX) in the Amazonian wet season Factors controlling the production of secondary organic material from isoprene epoxydiols (IEPOX) in the Amazonian wet season Suzane S. de Sá, Brett B. Palm, Pedro Campuzano-Jost, Douglas A. Day, Weiwei

More information

Lab 4 Major Anions In Atmospheric Aerosol Particles

Lab 4 Major Anions In Atmospheric Aerosol Particles Georgia Institute of Technology School of Earth and Atmospheric Sciences EAS 4641 Spring 2008 Lab 4 Major Anions In Atmospheric Aerosol Particles Purpose of Lab 4: This experiment will involve determining

More information

Characterisation of the Aerosol Collection Module (ACM) Dagmar Trimborn, John Jayne, Thorsten Hohaus

Characterisation of the Aerosol Collection Module (ACM) Dagmar Trimborn, John Jayne, Thorsten Hohaus Characterisation of the Aerosol Collection Module (ACM) Dagmar Trimborn, John Jayne, Thorsten Hohaus ACM working principle Valve Cooler/ Heater 10-3 Torr 10-5 Torr 10-5 Torr Particle Inlet Aerodynamic

More information

COPLEY S C I E N T I F I C. A multi-function aerosol system with aerosol generation, classification and monitoring capabilities for:

COPLEY S C I E N T I F I C. A multi-function aerosol system with aerosol generation, classification and monitoring capabilities for: A multi-function aerosol system with aerosol generation, classification and monitoring capabilities for: generating monodisperse aerosol by mobility classification with automatic concentration detection

More information

Downloaded By: [Williams, Leah R.] At: 08:55 28 June 2007

Downloaded By: [Williams, Leah R.] At: 08:55 28 June 2007 Aerosol Science and Technology, 41:721 733, 2007 Copyright c American Association for Aerosol Research ISSN: 0278-6826 print / 1521-7388 online DOI: 10.1080/02786820701422278 Transmission Efficiency of

More information

Single-Particle Laser Ablation Time-of-Flight Mass Spectrometer (SPLAT-MS) Cynthia Randles & Logan Chieffo Mentors: Dr. Dan Imre Dr.

Single-Particle Laser Ablation Time-of-Flight Mass Spectrometer (SPLAT-MS) Cynthia Randles & Logan Chieffo Mentors: Dr. Dan Imre Dr. Single-Particle Laser Ablation Time-of-Flight Mass Spectrometer (SPLAT-MS) Cynthia Randles & Logan Chieffo Mentors: Dr. Dan Imre Dr. Alla Zelenyuk Abstract Atmospheric aerosols impact the Earth s climate,

More information

On the effect of wind speed on submicron sea salt mass concentrations and source fluxes

On the effect of wind speed on submicron sea salt mass concentrations and source fluxes JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2011jd017379, 2012 On the effect of wind speed on submicron sea salt mass concentrations and source fluxes Jurgita Ovadnevaite, 1 Darius Ceburnis,

More information

Effect of aging on cloud nucleating properties of atmospheric aerosols

Effect of aging on cloud nucleating properties of atmospheric aerosols Effect of aging on cloud nucleating properties of atmospheric aerosols Yan Ma Nanjing University of Information Science & Technology The 1st Regional GEOS-Chem Asia Meeting 2015 年 5 月 8 日 Indirect effect

More information

Supplementary information for manuscript. Burning of Olive Tree Branches: A Major Organic Aerosol Emission Source in the Mediterranean

Supplementary information for manuscript. Burning of Olive Tree Branches: A Major Organic Aerosol Emission Source in the Mediterranean Supplementary information for manuscript Burning of Olive Tree Branches: A Major Organic Aerosol Emission Source in the Mediterranean Evangelia Kostenidou 1, Christos Kaltsonoudis 1,2, Maria Tsiflikiotou

More information

Different Methods of Monitoring PM

Different Methods of Monitoring PM Different Methods of Monitoring PM Melita Keywood Improving PM10 Monitoring in NZ 10 October 2005 CSIRO Marine and Atmospheric Research www.csiro.au Methods Integrated filter sampling Impactor or cyclone

More information

A comparison of particle mass spectrometers during the 1999 Atlanta Supersite Project

A comparison of particle mass spectrometers during the 1999 Atlanta Supersite Project JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D7, 8424, doi:10.1029/2001jd000660, 2003 A comparison of particle mass spectrometers during the 1999 Atlanta Supersite Project Ann M. Middlebrook, 1 Daniel

More information

Real-Time Methods for Estimating Organic Component Mass Concentrations from Aerosol Mass Spectrometer Data

Real-Time Methods for Estimating Organic Component Mass Concentrations from Aerosol Mass Spectrometer Data Environ. Sci. Technol. 2011, 45, 910 916 Real-Time Methods for Estimating Organic Component Mass Concentrations from Aerosol Mass Spectrometer Data N. L. NG, M. R. CANAGARATNA,*, J. L. JIMENEZ,, Q. ZHANG,

More information

Supplementary information

Supplementary information 1 Supplementary information Instrument and operation 3 6 7 8 9 10 11 1 13 1 1 16 HTDMA: Briefly, the custom-built HTDMA consists of two long DMAs (3081L, TSI Inc.), a humidifier (PD-0T-1MSS, Perma Pure

More information

Analysis of Data from the 2009 SOOT Experiment

Analysis of Data from the 2009 SOOT Experiment Analysis of Data from the 2009 SOOT Experiment Renyi Zhang Department of Atmospheric Sciences and Department of Chemistry Center for Atmospheric Chemistry and the Environment Texas A&M University College

More information

New Instruments from GRIMM

New Instruments from GRIMM New Instruments from GRIMM Markus Pesch Symposium at Stockholm, 01.11.2016 1 Outline Motivation for new Aerosol measurement devices Objectives for measurements of particle number and sizes GRIMM EDM 665

More information

Follow this and additional works at: https://digitalcommons.usu.edu/sdl_pubs

Follow this and additional works at: https://digitalcommons.usu.edu/sdl_pubs Utah State University DigitalCommons@USU Space Dynamics Lab Publications Space Dynamics Lab 1-1-2007 Transmission Efficiency of an Aerodynamic Focusing Lens System: Comparison of Model Calculations and

More information

ATOC 3500/CHEM 3152 Week 9, March 8, 2016

ATOC 3500/CHEM 3152 Week 9, March 8, 2016 ATOC 3500/CHEM 3152 Week 9, March 8, 2016 Hand back Midterm Exams (average = 84) Interaction of atmospheric constituents with light Haze and Visibility Aerosol formation processes (more detail) Haze and

More information

ATOC/CHEM 5151 Problem 30 Converting a Particle Size Distribution into Something Useful (read answers before Final Exam)

ATOC/CHEM 5151 Problem 30 Converting a Particle Size Distribution into Something Useful (read answers before Final Exam) ATOC/CHEM 5151 Problem 30 Converting a Particle Size Distribution into Something Useful (read answers before Final Exam) The Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) measures submicron particles

More information

Atmospheric Environment

Atmospheric Environment Atmospheric Environment (1) 131 1 Contents lists available at ScienceDirect Atmospheric Environment journal homepage: www.elsevier.com/locate/atmosenv Highly time- and size-resolved characterization of

More information

Supplement of Chemical and physical characterization of traffic particles in four different highway environments in the Helsinki metropolitan area

Supplement of Chemical and physical characterization of traffic particles in four different highway environments in the Helsinki metropolitan area Supplement of Atmos. Chem. Phys., 16, 5497 5512, 2016 http://www.atmos-chem-phys.net/16/5497/2016/ doi:10.5194/acp-16-5497-2016-supplement Author(s) 2016. CC Attribution 3.0 License. Supplement of Chemical

More information

Measurements of Secondary Organic Aerosol from Oxidation. of Cycloalkenes, Terpenes, and m-xylene Using an Aerodyne

Measurements of Secondary Organic Aerosol from Oxidation. of Cycloalkenes, Terpenes, and m-xylene Using an Aerodyne 377 Appendix F Measurements of Secondary Organic Aerosol from Oxidation of Cycloalkenes, Terpenes, and m-xylene Using an Aerodyne Aerosol Mass Spectrometer * * This chapter is reproduced by permission

More information

Continuous measurement of airborne particles and gases

Continuous measurement of airborne particles and gases Continuous measurement of airborne particles and gases Jeff Collett and Taehyoung Lee Atmospheric Science Department Colorado State University Funding: USDA/AES and NPS Outline Why measure particles and

More information

Effect of Fuel to Oxygen Ratio on Physical and Chemical Properties of Soot Particles

Effect of Fuel to Oxygen Ratio on Physical and Chemical Properties of Soot Particles Effect of Fuel to Oxygen Ratio on Physical and Chemical Properties of Soot Particles J. G. Slowik, J. Kolucki, K. Stainken, and P. Davidovits Chemistry Department Boston College, Chestnut Hill, MA P. F.

More information

Testing MOSAIC aerosol scheme implemented in CESM and evaluation with observations

Testing MOSAIC aerosol scheme implemented in CESM and evaluation with observations Testing MOSAIC aerosol scheme implemented in CESM and evaluation with observations Zheng Lu, Xiaohong Liu University of Wyoming Rahul A. Zaveri, Balwinder Singh, Richard Easter, Phil Rasch Pacific Northwest

More information

DOCUMENT HISTORY. Initials Section/s Modified Brief Description of Modifications

DOCUMENT HISTORY. Initials Section/s Modified Brief Description of Modifications Page 2 of 13 DOCUMENT HISTORY Date Modified Initials Section/s Modified Brief Description of Modifications Page 3 of 13 Table of Contents 1. Purpose and Applicability... 4 2. Definitions... 4 3. Procedures...

More information

Atmospheric Chemistry and Physics

Atmospheric Chemistry and Physics Atmos. Chem. Phys., 1, 8933 8945, 1 www.atmos-chem-phys.net/1/8933/1/ doi:1.5194/acp-1-8933-1 Author(s) 1. CC Attribution 3. License. Atmospheric Chemistry and Physics Highly time-resolved chemical characterization

More information

Influence of particle size and chemistry on the cloud nucleating properties of aerosols

Influence of particle size and chemistry on the cloud nucleating properties of aerosols Influence of particle size and chemistry on the cloud nucleating properties of aerosols P. K. Quinn, T. S. Bates, D. J. Coffman, D. S. Covert To cite this version: P. K. Quinn, T. S. Bates, D. J. Coffman,

More information

Response to Referee 2

Response to Referee 2 Response to Referee 2 S. Metzger et al. 10 August 2018 We thank the referee for the manuscript review. Please find our pointby-point reply below. Accordingly, the revised MS will include clarifications.

More information

Evaluation of the performance of a particle concentrator for online instrumentation

Evaluation of the performance of a particle concentrator for online instrumentation Atmos. Meas. Tech., 7, 2121 2135, 21 www.atmos-meas-tech.net/7/2121/21/ doi:1.519/amt-7-2121-21 Author(s) 21. CC Attribution 3. License. Evaluation of the performance of a particle concentrator for online

More information

Free molecular flow, thermal decomposition, and residence time in the AMS ion source

Free molecular flow, thermal decomposition, and residence time in the AMS ion source Free molecular flow, thermal decomposition, and residence time in the AMS ion source Daniel Murphy NOAA ESRL Chemical Sciences Division June 215 AMS Clinic Heavier neutral molecules spend more time in

More information

Lab 6 Major Anions In Atmospheric Aerosol Particles

Lab 6 Major Anions In Atmospheric Aerosol Particles Georgia Institute of Technology School of Earth and Atmospheric Sciences EAS 4641 Spring 2007 Lab 6 Major Anions In Atmospheric Aerosol Particles Purpose of Lab 6: This experiment will involve determining

More information

Introduction. Environ. Sci. Technol. 2008, 42,

Introduction. Environ. Sci. Technol. 2008, 42, Environ. Sci. Technol. 2008, 42, 6619 6624 Comparative Analysis of Urban Atmospheric Aerosol by Particle-Induced X-ray Emission (PIXE), Proton Elastic Scattering Analysis (PESA), and Aerosol Mass Spectrometry

More information

Update on SMPS/CPC comparisons. As shown at 2011 AMS Users Mtg

Update on SMPS/CPC comparisons. As shown at 2011 AMS Users Mtg Update on SMPS/CPC comparisons at BEACHON RoMBAS 212 Brett Palm, Jose Luis Jimenez University of Colorado Boulder AMS Users Meeting 13 Oct 212 1. Deployed 5 different SMPSs and 3 stand alone CPCs at RoMBAS

More information

Determination of particulate lead using aerosol mass spectrometry: MILAGRO/MCMA-2006 observations

Determination of particulate lead using aerosol mass spectrometry: MILAGRO/MCMA-2006 observations Determination of particulate lead using aerosol mass spectrometry: MILAGRO/MCMA-26 observations The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story

More information

ACTRIS Workshop on the Reference method for Multi-Wavelength Absorption

ACTRIS Workshop on the Reference method for Multi-Wavelength Absorption ACTRIS Workshop on the Reference method for Multi-Wavelength Absorption During the reporting period a laboratory study for testing a reference system for determining the absorption coefficient at a single

More information

Aerodyne AMS Users Meeting, St Louis, 8-10 September Why are we here? Data Analysis Clinics Boulder, PSI. Barcelona, Boulder

Aerodyne AMS Users Meeting, St Louis, 8-10 September Why are we here? Data Analysis Clinics Boulder, PSI. Barcelona, Boulder Aerodyne AMS Users Meeting, St Louis, 8-10 September 2018 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 1st/2nd AMS Users Meeting Portland / Aerodyne 3rd Aerodyne

More information

Characterization of an aerodynamic lens for transmitting particles greater than 1 micrometer in diameter into the Aerodyne aerosol mass spectrometer

Characterization of an aerodynamic lens for transmitting particles greater than 1 micrometer in diameter into the Aerodyne aerosol mass spectrometer Atmos. Meas. Tech., 6, 3271 3280, 2013 doi:10.5194/amt-6-3271-2013 Author(s) 2013. CC Attribution 3.0 License. Atmospheric Measurement Techniques Open Access Characterization of an aerodynamic lens for

More information

1. Load Data Computing Requirements: 1 GB RAM is best. Need Igor 4.07 at least.

1. Load Data Computing Requirements: 1 GB RAM is best. Need Igor 4.07 at least. Data Analysis Tutorial AMS Users Meeting 10/9/2004-10/11/2004 Outline: 1. Load Data 2. Check Diagnostics 3. Check Mass Trends 4. TOF Image Plot 5. Check Average Mass Spec 6. Corrections Airbeam correction

More information

18 th Users Meeting PKU Beijing. Monday May 8-12, John Jayne

18 th Users Meeting PKU Beijing. Monday May 8-12, John Jayne 18 th Users Meeting PKU Beijing Monday May 8-12, 2017 John Jayne About Aerodyne Many of you know Aerodyne as, an instrument company Our full name is Aerodyne Research, Inc. Research is our core activity

More information

Calibration checks of particle counter using primary and other techniques at the laboratory level

Calibration checks of particle counter using primary and other techniques at the laboratory level Calibration checks of particle counter using primary and other techniques at the laboratory level Shankar G. Aggarwal, Ph.D. CSIR-National Physical Laboratory, New Delhi-110 012, India @ Particulate Workshop

More information

Aircraft measurements during GoAmazon2014/5 G1 and HALO inter-comparison

Aircraft measurements during GoAmazon2014/5 G1 and HALO inter-comparison Aircraft measurements during GoAmazon2014/5 G1 and HALO inter-comparison Fan Mei 1, Micael A. Cecchini 3, Jian Wang 2, John Shilling 1, Jason Tomlinson 1, Jennifer Comstock 1, John Hubbe 1, Mikhail Pekour

More information

Chapter Four: Laboratory Characterisation of the Aerodyne Aerosol Mass Spectrometer

Chapter Four: Laboratory Characterisation of the Aerodyne Aerosol Mass Spectrometer 24 PhD Thesis 79 Chapter Four: Laboratory Characterisation of the Aerodyne Aerosol Mass Spectrometer Laboratory characterisation of the Aerodyne aerosol mass spectrometer has been an important part of

More information

Mobile Atmospheric Chemistry Laboratory

Mobile Atmospheric Chemistry Laboratory Mobile Atmospheric Chemistry Laboratory Page 1 of 21 Page 2 of 21 Page 3 of 21 MACL Instrumentation 1. Saturn 4000 gas chromatograph + ion trap mass spectrometer (Varian) 2. Two channel VOC preconcentrator

More information

Organic particle types by single-particle measurements using a time-of-flight aerosol mass spectrometer coupled with aclimate scattering module

Organic particle types by single-particle measurements using a time-of-flight aerosol mass spectrometer coupled with aclimate scattering module and Physics ess doi:10.5194/amt-6-187-2013 Author(s) 2013. CC Attribution 3.0 License. Atmospheric Measurement Techniques Biogeosciences Organic particle types by single-particle measurements using a time-of-flight

More information

Mass spectrometer Heater Aerodynamic lens Particle focusing region Vapourizer Vacuum pumps

Mass spectrometer Heater Aerodynamic lens Particle focusing region Vapourizer Vacuum pumps Mass spectrometer Heater Aerodynamic lens Particle focusing region Vapourizer Vacuum pumps acmcc@lsce.ipsl.fr The European research infrastructure for aerosol, clouds, and trace gases (ACTRIS 2, http://www.actris.eu),

More information

Air Monitoring. Semi-continuous determination of ambient air quality

Air Monitoring. Semi-continuous determination of ambient air quality Air Monitoring Semi-continuous determination of ambient air quality The Particle Into Liquid Sampler a simple solution for the determination of ions in aerosol particles 02 Combustion of fossil fuels for

More information

Supplemental Material for Elemental Composition and Oxidation of Chamber Organic Aerosol

Supplemental Material for Elemental Composition and Oxidation of Chamber Organic Aerosol Supplemental Material for Elemental Composition and Oxidation of Chamber Organic Aerosol P. S. Chhabra 1,N.L.Ng 2, M. R. Canagaratna 2, A. L. Corrigan 3, L. M. Russell 3, D. R. Worsnop 2, R. C. Flagan

More information

3) Big Bend s Aerosol and Extinction Budgets during BRAVO

3) Big Bend s Aerosol and Extinction Budgets during BRAVO 3) Big Bend s Aerosol and Extinction Budgets during BRAVO 3.1 Introduction The primary goal of the BRAVO study was to apportion the major aerosol species to their emission sources, with the secondary goals

More information