TALYS: Comprehensive Nuclear Reaction Modeling

Size: px
Start display at page:

Download "TALYS: Comprehensive Nuclear Reaction Modeling"

Transcription

1 : Comprehensive Nuclear Reaction Modeling A.J. Koning Λ, S. Hilaire and M.C. Duijvestijn Λ Λ Nuclear Research and Consultancy Group NRG, P.O. Box 25, NL-1755 ZG Petten, The Netherlands Commissariat à l Energie Atomique, DAM/DIF/DPTA, Boîte Postale 12, 9168 Bruyères-le-Châtel, France Abstract. is a nuclear-reaction program which simulates nuclear reactions that involve neutrons, gamma-rays, protons, deuterons, tritons, helions, and alpha-particles, in the 1 kev - 2 MeV energy range. A suite of nuclear-reaction models has been implemented into a single code system, enabling us to evaluate basically all nuclear reactions beyond the resonance range. An overview is given of the main nuclear models used, such as newly developed optical models, various compound nucleus, fission, gamma-ray strength, level density, and pre-equilibrium models, all driven by a comprehensive database of nuclear-structure parameters. The predictive power of the code is demonstrated by comparing calculated results with a very diverse set of experimental observables. Our aim is to show that represents a robust computational approach that covers the whole path from fundamental nuclear-reaction models to the creation of complete data libraries for nuclear applications. INTRODUCTION With the advent of fast computers, software that simulates nuclear reactions is able to play an increasingly important role in nuclear data. It is possible to provide an exact computational scheme for sophisticated nuclear models, not only new ones but also those that have been lying on the shelf for decades, and only now become amenable for numerical implementation. Largescale comparisons with measurements are within reach. is a nuclear reaction program created at NRG Petten, the Netherlands, and CEA Bruyères-le-Châtel, France. The idea to make was born in 1998, when we decided to implement our combined knowledge of nuclear reactions into one single software package. The objective is to provide a complete and accurate simulation of nuclear reactions in the 1 kev - 2 MeV energy range, through an optimal combination of reliable nuclear models, flexibility, and user-friendliness. There are two main purposes of, which are strongly connected. First, it is a nuclear physics tool that can be used for the analysis of nuclear-reaction experiments. The interplay between experiment and theory gives us insight in the fundamental interaction between particles and nuclei, and precise measurements enable us to constrain our models and their parameters. In return, when the resulting nuclear models are believed to have sufficient predictive power, the prediction can even give an indication of the reliability of measurements. The many examples of presented in this paper and in various other contributions to this conference confirm that our software project would be nowhere without the existing experimental database. After the nuclear physics stage comes the second function of, namely as a nuclear data tool: After fine-tuning the adjustable parameters of the various reaction models using available experimental data, can generate nuclear data for all open reaction channels, interpolating between and extrapolating beyond experimental data, on a user-defined energy and angle grid beyond the resonance region. The associated nucleardata libraries that can be constructed provide essential information for existing and new nuclear technologies. Important applications that rely directly on the output of nuclear-reaction simulation software like are conventional and innovative power reactors (GEN- IV), accelerator-driven systems, and transmutation of radioactive waste, fusion reactors, homeland security, medical-isotope production, and radiotherapy, oil-well logging, geophysics, and astrophysics. NUCLEAR MODELS Figure 1 shows the nuclear models implemented in. Nuclear Structure and Model Parameters All nuclear models make use of structure and model parameters. There is an automatic reference to parameters as masses, resonances, etc.; see the lower left box of Fig. 1. With a few exceptions, our database is based on the Reference Input Parameter Library [1]. 1154

2 Loops possible over: Direct reaction: Preequilibrium: Output: * Incident energies * Spherical OM * Exciton model *File output * DWBA 2 component * Natural isotopes * Rotational CC * p h LD phenom. defined by surface effects keywords * Vibrational CC Optical Model: * Kalbach systematics * Giant resonances *Dedicated * Phenomenology angular distribution * Weak coupling files with Input: local / global cluster emission spectra,... * Keywords, eg: * γ ray emission projectile n element fe mass 56 energy 14. Nucl. Structure: * Abundancies * Discrete levels * Deformations * Masses * Level density par. * Resonance par. * Fission barrier par. * Thermal XS * Microscopic LD * Prescission shapes Compound: * Width fluctuations Moldauer GOE triple integr. HRTW * Hauser Feshbach * Fission competition isotopic yields * γ ray emission * GC+ Ignatyuk Multiple emission: * Exciton (any order) * Hauser Feshbach * Fission competition isotopic yields * γ ray cascade * All flux depleted * Exclusive channels * Recoils ENDF: * transport libs * activation libs FIGURE 1. Optical Model and Direct Reaction Model Flowchart of. Compound Nucleus Model We use the coupled-channel code ECIS-97 [2] as a subroutine for all optical model and direct reaction calculations. It is the only module in that is not written from scratch but adopted from outside. ECIS- 97 delivers the basic observables such as the elastic angular distribution, the reaction, and the total cross sections. Moreover it yields the transmission coefficients for compound-nucleus calculations and all cross sections and angular distributions for discrete states. The default optical-model potentials (OMP) used in are the local and global parameterisations for neutrons and protons of [3]. For nuclides outside the scope of this OMP, i.e., strongly deformed nuclides, we allow input of potentials on an individual basis. With this, coupledchannel calculations for various types of deformation (symmetric-rotational, harmonic-vibrational, vibrationrotational, and asymmetric-rotational) can be automatically performed. For near-spherical nuclides, direct reactions are calculated with DWBA, and inelastic scattering off odd-a nuclei is described by the weak-coupling model. For deuteron, triton, Helium-3, and alpha OMPs, we use a folding approach applied on the aforementioned OMPs. The term compound nucleus reaction is commonly used for two different processes: (i) capture of the projectile in the target nucleus to form a compound nucleus, which subsequently emits a particle or gamma; (ii) multiple emission from the chain of excited residual nuclides following the binary reaction. Both are included in. At low incident energy (i) plays an important role. It differs from (ii) at two important points: (a) the presence of width-fluctuation corrections and (b) nonisotropic, though still symmetric, angular distributions. It is calculated with the Hauser-Feshbach formalism including width fluctuation corrections (WFC). The WFC factor accounts for the correlations that exist between the incident and outgoing waves. From a qualitative point of view, these correlations enhance the elastic channel and accordingly decrease the other open channels. In general, the WFC factor may be calculated using three different expressions, which have all been implemented in : The HRTW model, the Moldauer model, and the model using the Gaussian Orthogonal Ensemble (GOE). A comparison between the three models is given in [4], where the Moldauer model is confirmed as the best default choice. All WFC models are generalized to include continuum particle emission, gamma-ray competition, and fission. Gamma-ray coefficients are modeled with 1155

3 Kopecky-Uhl s generalized Lorentzian and the appropriate giant-dipole resonance parameters. Besides cross sections, compound angular distributions are calculated using Blatt-Biedenharn coupling factors, again within a full Hauser-Feshbach expression with WFC. For multiple emission, the whole reaction chain is followed by depleting each [nucleus-excitation energyspin-parity] bin with particle, gamma, or fission decay until all channels are closed. In the process, all particle and residual production cross sections are accumulated to their final values. Non-equidistant energy grids in this decay scheme ensure enoughprecisioninthecompoundevaporation peaks. Level Densities We use several models for the level density in, which range from phenomenological analytical expressions to tabulated level densities derived from microscopic calculations. So far, the most robust approach seems to be a Fermi gas model at high energies, with shell- and energy-dependent level-density parameter a, and a constant-temperature model, fitted to the known discrete states, at low energy. For non-fissile nuclides, we generally use an effective level-density model, i.e., all collective enhancements are included in the level-density parameter a. For fissile nuclides, we account for an explicit rotational and vibrational enhancement as well as their appropriate damping at high energies. More precise details on the various forms for the level density can be found in the manual and in [5]. Fission For fission, the default model used in is based on the Hill-Wheeler expression for the transmission coefficient for one, two, or three barriers. If the excitation energy of the compound nucleus is lower than the barrier heights, fission-transmission coefficients display a resonant structure that is due to the presence of nuclear excited levels in the second well of the potential-energy surface. These so-called class II states modify the fission transmission coefficients. The total fission transmission coefficient for a compound nucleus is then obtained by summing the individual Hill-Wheeler terms over all head band transition states and, for the continuum, integrating it using the aforementioned fission level densities. Multichance fission for all residual nuclides is included. A novel feature for any general nuclear model code is the ability to predict fission yields. This is done with the multi-modal random neck rupture model and the scission point model, as described in more detail in [5]. Pre-Equilibrium Model For energies above a few MeV, pre-equilibrium reactions play an important role. For nucleon reactions, we have implemented a two-component exciton model with a new form for the internal transition rates based on the OMP of [3], which yields an improved description of pre-equilibrium processes over the whole energy range [6]. Another feature necessary to cover a large energy range is the generalization of multiple pre-equilibrium processes up to any order of particle emission. This is accomplished by keeping track of all successive particlehole excitations of either proton or neutron type; see [6] for the mathematical outline. On top of the contribution of the single-particle exciton model, which yields essentially structureless emission spectra, we add a contribution from giant resonances, computed with a macroscopic, phenomenological model, accounting for the energy-weighted sum rule. Pre-equilibrium photon emission is taken into account with the model of Akkermans and Gruppelaar [7]. For pre-equilibrium reactions involving deuterons up to alpha particles, a (too-low) contribution is automatically calculated within the exciton-model reaction equations. However, for nuclear reactions involving projectiles and ejectiles with different particle numbers, mechanisms like stripping, pick-up, and knock-out play an important role and these direct-like reactions need to be added incoherently. Kalbach [8] developed a phenomenological contribution for these mechanisms, which we have included in, resulting in a much better prediction of complex-particle cross sections as compared to many older reaction codes. However, the (very) phenomenological nature of the model still provides a challenge to construct a more physical approach for these reactions in the future. Finally, pre-equilibrium angular distributions are predicted by Kalbach s systematics. From a physical point of view, the quantum-mechanical multi-step approach is preferable, although it is difficult to find justification (from applications) for angular precision that goes beyond that of the systematics. Including our existing multi-step direct software is nevertheless left as future work. THE CODE The present version of is written in Fortran77, and so far has been successfully compiled with various f77 and f9/f95 compilers. We have aimed at a setup that is as modular as Fortran77 allows it to be, using programming procedures that are consistent throughout the whole code. In total, there are about 25 subroutines adding up to a total of more than 4 lines, plus the 1156

4 2 lines of the ECIS-97 subroutine. The code is rather flexible in its use. Indeed, a complete set of cross sections can already be obtained with minimal effort, through a four-line input file of the type given in Fig. 1, which produces the best blind answers can currently give. Generally, a user wants to be more specific on the choice of nuclear models, their parameters, and degree of output. For this, more than 15 different keywords are available that can be specified to e.g., fit experimental data. The code has been thoroughly tested on a formal level, through random input files (probing every corner of the code). Full dripline-todripline calculations (including the production of ENDF- 6 data files) for all types of projectiles up to 2 MeV, have been performed to validate the code computationally and to test the continuity (smoothness) of the results. WHAT CAN WE DO WITH? The main aim of is to provide a complete set of answers for a nuclear reaction, for all open channels and associated cross sections, spectra, and/or angular distributions. It depends on the current status of nuclearreaction theory, and our ability to model that theory, whether these answers are generated by more or less sophisticated physical methods or by simpler phenomenological approaches. The following data can be calculated: Total, elastic, and reaction cross sections, Non-elastic cross sections per discrete state, Elastic and non-elastic angular distributions, Exclusive reaction channels ((n,2n), (n,np), etc.), Exclusive double-differential spectra, Exclusive isomeric-production cross sections, Discrete and continuum gamma-ray production cross sections, Extrapolation of non-threshold cross sections down to the thermal energy range [9], Total particle-productioncross sections, e.g., (n,xn), Single- and double-differential particle spectra, Residual production cross sections (+ isomers), Recoils, Fission cross sections and fission yields. Figures 2 and 3 give an impression of the variety of nuclear reactions that can be simulated. The shown curves are obtained from blind calculations (e.g., residual production, energy spectra), after minor fitting (e.g., capture, (n; α), inelastic), and after significant parameter adjustments (e.g., fission cross section). A complete ENDF-6 data file, above the resonance range, up to 2 MeV can be computed in about 4 minutes (2-MeV file) up to 4 hours (2-MeV file) on a 1- GHz PC. Various new evaluations for the JEFF-3 library have been produced [1] through fitting, using model parameters, of the experimental data. With default input files, is also suitable for mass production of nuclear data and has been used to generate data for largescale activation libraries such as EAF [11], but also for more fundamental purposes such as astrophysics [12]. CONCLUSIONS The development of has followed the first completeness, then quality principle. This merely means that, in our quest for completeness, we try to divide our effort equally among all nuclear-reaction types. We think that, with the exception of a few fission items (neutron spectrum, evaporating fragments), the code is indeed complete. Quality is obviously a different and subjective issue, and it is certain that future enhancements in various theoretical models are needed to bring our computed results even closer to measurements. REFERENCES 1. Reference Input Parameter Library, 2. J. Raynal, Notes on ECIS94, CEA Saclay Report No. CEA-N-2772, (1994). 3. A.J. Koning and J.P. Delaroche, Nucl. Phys. A713, 231 (23). 4. S. Hilaire, Ch. Lagrange and A.J. Koning, Ann. Phys. 36, 29 (23). 5. M.C. Duijvestijn and A.J. Koning, Fission yield predictions with, this conference. 6. A.J. Koning and M.C. Duijvestijn, A global preequilibrium analysis from 7 to 2 MeV based on the optical model potential, Nucl. Phys. A, in press. 7. J.M. Akkermans and H. Gruppelaar, Phys. Lett. 157B, 95 (1985). 8. C. Kalbach, Pre-equilibrium reactions with complex particle channels, this conference. 9. Collaboration with JUKO Research (J. Kopecky). 1. A.J. Koning, M.C. Duijvestijn, S.C. van der Marck, R. Klein Meulekamp, and A. Hogenbirk, New nuclear data evaluations for Ca, Sc, Fe, Ge, Pb, and Bi isotopes, this conference. 11. R.A. Forrest, European Activation File EAF-25, this conference. 12. E. Khan, S. Goriely, D. Allard, E. Parizot, T. Suomijarvi, A.J. Koning, S. Hilaire, and M.C. Duijvestijn, Impact of the giant dipole resonance on the photodisintegration of ultrahigh energy cosmic rays, submitted to AstroParticle Journal. 1157

5 Cu(n,n) 63 Cu (a) n + 93 Nb: Total cross section (b) dσ/dω (mb/sr) Cross section (mb/sr) Θ c.m. (deg) n + 93 Nb at 1 kev Hauser Feshbach Moldauer HRTW GOE Elastic angular distribution (c) Energy (MeV) Pu 239(n,f) ENDF/B VI JEFF 3. (d) Angle (deg) Ge(n,γ) (e) Exp ENDF/B VI Pb(n,n 1 ) J Π = 3, E x = 2.61 MeV (f) Towle and Gilboy (1963) Almen Ramstroem (1975) ENDF/B VI.8 ENDF/B VI.8 mod 2 1e 2 1e 1 1e+ 1e+1 E (MeV) Energy (MeV) FIGURE 2. vs. experimental data: (a) n + 63 Cu elastic angular distributions, (b) n + 93 Nb total cross section, (c) different width fluctuation correction models compared for 1 kev n + 93 Nb, (d) n Pu total fission cross section, (e) 74 Ge (n;γ) cross section, (f) 28 Pb inelastic cross section for first discrete level. 1158

6 2 27 Pb(n,2nγ) Level 1 > Level : E γ =.8 MeV Vonach et al. (1994) (a) MeV n+ 238 U Pre neutron emission mass yield curve (b) 15 1 cross section (mb) 1 Yield [%] Vives et al (2) Energy (MeV) 4 Ca(n,α) A 2 MeV n + 28 Si: recoil spectrum 4 ENDF/B VI.8 (c) 15 Exact approach Average energy approximation (d) 3 2 Cross section (mb/mev) dσ/de [mb/mev] (p,xp): 62 MeV 27 Al 54 Fe 56 Fe 6 Ni 89 Y 12 Sn 197 Au nat Pb 29 Bi (e) Recoil energy of 24 Mg (MeV) p + nat Fe 56 Co 55 Co 54 Mn (f) Mn E out [MeV] Incident energy (MeV) FIGURE 3. vs. experimental data: (a) exclusive gamma-ray production for 27 Pb(n,2n), (b) fission mass yield curve for 5.5 MeV n U, (c) 4 Ca(n;α) cross section, (d) two different recoil models for 2 MeV n + 28 Si, (e) 62 MeV (p,xp) spectra for various targets, (f) p + nat Fe residual production cross sections. 1159

Microscopic cross sections : an utopia? S. Hilaire 1, A.J. Koning 2 & S. Goriely 3.

Microscopic cross sections : an utopia? S. Hilaire 1, A.J. Koning 2 & S. Goriely 3. Microscopic cross sections : an utopia? S. Hilaire 1, A.J. Koning 2 & S. Goriely 3 www.talys.eu 1 CEA,DAM,DIF - France 2 Nuclear Research and Consultancy Group, Petten, The Netherlands 3 Institut d Astronomie

More information

Complete activation data libraries for all incident particles, all energies and including covariance data

Complete activation data libraries for all incident particles, all energies and including covariance data Complete activation data libraries for all incident particles, all energies and including covariance data Arjan Koning NRG Petten, The Netherlands Workshop on Activation Data EAF 2011 June 1-3 2011, Prague,

More information

Photonuclear Reaction Cross Sections for Gallium Isotopes. Serkan Akkoyun 1, Tuncay Bayram 2

Photonuclear Reaction Cross Sections for Gallium Isotopes. Serkan Akkoyun 1, Tuncay Bayram 2 Photonuclear Reaction Cross Sections for Gallium Isotopes Serkan Akkoyun 1, Tuncay Bayram 2 1 Cumhuriyet University, Vocational School of Healt, Sivas, Turkey 2 Sinop University, Department of Physics,

More information

Subgroup A: Nuclear Model Codes Report to the WPEC Meeting, San Diego, May 13-15, 2003

Subgroup A: Nuclear Model Codes Report to the WPEC Meeting, San Diego, May 13-15, 2003 Subgroup A: Nuclear Model Codes Report to the WPEC Meeting, San Diego, May 13-15, 2003 Mike Herman (BNL), Mark Chadwick (LANL), Arjan Koning (Petten), Pavel Oblozinsky (BNL), and Frank Dietrich (LLNL)

More information

Towards microscopic predictions of cross sections with TALYS

Towards microscopic predictions of cross sections with TALYS Towards microscopic predictions of cross sections with TALYS Hilaire S. and Bauge E. CEA, DAM, DIF, F-91297, Arpajon, France Koning A.J. Nuclear Research and Consultancy Group, P.O. Box 25, NL-1755 ZG

More information

Excitation functions and isotopic effects in (n,p) reactions for stable iron isotopes from. reaction threshold to 20 MeV.

Excitation functions and isotopic effects in (n,p) reactions for stable iron isotopes from. reaction threshold to 20 MeV. 1 Excitation functions and isotopic effects in (n,p) reactions for stable iron isotopes from reaction threshold to 20 MeV. J. Joseph Jeremiah a, Damewan Suchiang b, B.M. Jyrwa a,* a Department of Physics,

More information

Integral of--nuclear plus interference components. of the elastic scattering cross section. Sum of binary (p,n ) and (p,x) reactions

Integral of--nuclear plus interference components. of the elastic scattering cross section. Sum of binary (p,n ) and (p,x) reactions EVALUATION OF p + 3Si CROSS SECTIONS FOR THE ENERGY RANGE 1 to 15 MeV M. B. Chadwick and P. G. Young 1 July 1997 This evaluation provides a. complete representation of the nuclear data needed for transport,

More information

Revisions and improvements of neutron capture cross sections for EAF-2009 and validation of TALYS calculations

Revisions and improvements of neutron capture cross sections for EAF-2009 and validation of TALYS calculations UKAEA FUS 546 EURATOM/UKAEA Fusion Revisions and improvements of neutron capture cross sections for EAF-2009 and validation of TALYS calculations R.A. Forrest, J Kopecky and A.J. Koning March 2008 UKAEA

More information

Revisions and improvements of neutron capture cross sections for EAF-2009 and validation of TALYS calculations

Revisions and improvements of neutron capture cross sections for EAF-2009 and validation of TALYS calculations United Kingdom Atomic Energy Authority UKAEA FUS 546 R.A. Forrest, J. Kopecky, A.J. Koning Revisions and improvements of neutron capture cross sections for EAF-2009 and validation of TALYS calculations

More information

TALYS-1.0. A nuclear reaction program

TALYS-1.0. A nuclear reaction program TALYS-1.0 A nuclear reaction program A.J. Koning, S. Hilaire and M. Duijvestijn NRG - Nuclear Research and Consultancy Group, 1755 ZG Petten, The Netherlands CEA, Service de Physique et Techniques Nucleaires,

More information

Nuclear Data Evaluation of 55 Mn by the EMPIRE code with Emphasis on the Capture Cross Section

Nuclear Data Evaluation of 55 Mn by the EMPIRE code with Emphasis on the Capture Cross Section International Conference Nuccllearr Enerrgy fforr New Eurrope 2009 Bled / Slovenia / September 14-17 ABSTRACT Nuclear Data Evaluation of 55 Mn by the EMPIRE code with Emphasis on the Capture Cross Section

More information

Statistical Model Calculations for Neutron Radiative Capture Process

Statistical Model Calculations for Neutron Radiative Capture Process Statistical Nuclear Physics and its Applications in Astrophysics, Jul. 8-, 2008 Statistical Model Calculations for Neutron Radiative Capture Process T. Kawano T-6 Nuclear Physics Los Alamos National Laboratory

More information

Simulation of Cross Section for the Production of Copper-67

Simulation of Cross Section for the Production of Copper-67 e-issn:3-459 p-issn:347-36 Simulation of Cross Section for the Production of Copper-67 dusei G *, Andam AB, Banini GK, Fletcher JJ and Tandoh J Graduate School of Nuclear and Allied Sciences, University

More information

Monte Carlo Simulation for Statistical Decay of Compound Nucleus

Monte Carlo Simulation for Statistical Decay of Compound Nucleus CNR20, Prague, Czech Republic, Sep. 9 23, 20 Monte Carlo Simulation for Statistical Decay of Compound Nucleus T. Kawano, P. Talou, M.B Chadwick Los Alamos National Laboratory Compound Nuclear Reaction,

More information

Statistical Theory for the Beta-Delayed Neutron and Gamma-Ray Emission

Statistical Theory for the Beta-Delayed Neutron and Gamma-Ray Emission Statistical Theory for the Beta-Delayed Neutron and Gamma-Ray Emission T. Kawano, P Möller Theoretical Division, Los Alamos National Laboratory LA-UR-13-21895 Slide 1 Combining QRPA Calculation and Statistical

More information

Review of nuclear data of major actinides and 56 Fe in JENDL-4.0

Review of nuclear data of major actinides and 56 Fe in JENDL-4.0 Review of nuclear data of major actinides and 56 Fe in JENDL-4.0 Osamu Iwamoto, Nobuyuki Iwamoto Nuclear Data Center, Nuclear Science and Engineering Directorate Japan Atomic Energy Agency Ibaraki, Japan

More information

Measurement of 59 Ni(n, p) 59 Co Reaction Cross-section through Surrogate Technique for Fusion Technology Applications

Measurement of 59 Ni(n, p) 59 Co Reaction Cross-section through Surrogate Technique for Fusion Technology Applications Measurement of 59 Ni(n, p) 59 Co Reaction Cross-section through Surrogate Technique for Fusion Technology Applications Presented By Jyoti Pandey Department of Physics G.B. Pant University, Pantnagar Uttarakhand,

More information

Nuclear contribution into single-event upset in 3D on-board electronics at moderate energy cosmic proton impact

Nuclear contribution into single-event upset in 3D on-board electronics at moderate energy cosmic proton impact Nuclear contribution into single-event upset in 3D on-board electronics at moderate energy cosmic proton impact N. G. Chechenin, T. V. Chuvilskaya and A. A. Shirokova Skobeltsyn Institute of Nuclear Physics,

More information

Neutron Interactions Part I. Rebecca M. Howell, Ph.D. Radiation Physics Y2.5321

Neutron Interactions Part I. Rebecca M. Howell, Ph.D. Radiation Physics Y2.5321 Neutron Interactions Part I Rebecca M. Howell, Ph.D. Radiation Physics rhowell@mdanderson.org Y2.5321 Why do we as Medical Physicists care about neutrons? Neutrons in Radiation Therapy Neutron Therapy

More information

Asymmetry dependence of Gogny-based optical potential

Asymmetry dependence of Gogny-based optical potential Asymmetry dependence of Gogny-based optical potential G. Blanchon, R. Bernard, M. Dupuis, H. F. Arellano CEA,DAM,DIF F-9297 Arpajon, France March 3-6 27, INT, Seattle, USA / 32 Microscopic ingredients

More information

Statistical-Model and Direct-Semidirect-Model Calculations of Neutron Radiative Capture Process

Statistical-Model and Direct-Semidirect-Model Calculations of Neutron Radiative Capture Process New Era of Nuclear Physics in the Cosmos, the r-process Nucleo-Synthesis RIKEN, Japan, Sep. 25,26, 2008 Statistical-Model and Direct-Semidirect-Model Calculations of Neutron Radiative Capture Process T.

More information

Nuclear data evaluation of 206 Pb for proton- and neutron-induced reaction in energy region from 20 to 200 MeV

Nuclear data evaluation of 206 Pb for proton- and neutron-induced reaction in energy region from 20 to 200 MeV Nuclear data evaluation of 06 Pb for proton- and neutron-induced reaction in energy region from 0 to 00 MeV Tsuyoshi Kajimoto, Nobuhiro Shigyo, Kenji Ishibashi, Satoshi Kunieda, and Tokio Fukahori Kyushu

More information

A measurement of (n, xnγ ) cross sections for 208 Pb fromthresholdupto20mev

A measurement of (n, xnγ ) cross sections for 208 Pb fromthresholdupto20mev Nuclear Physics A 811 (2008) 1 27 www.elsevier.com/locate/nuclphysa A measurement of (n, xnγ ) cross sections for 208 Pb fromthresholdupto20mev L.C. Mihailescu a,b, C. Borcea a,b,1, P. Baumann c, Ph. Dessagne

More information

Experimental Results Evaluation and Theoretical Study for the Production of the Radio Isotope 52 Mn Using P, D and Α- Projectiles on V and Cr Targets

Experimental Results Evaluation and Theoretical Study for the Production of the Radio Isotope 52 Mn Using P, D and Α- Projectiles on V and Cr Targets Experimental Results Evaluation and Theoretical Study for the Production of the Radio Isotope Mn Using P, D and Α- Projectiles on V and Cr Targets A.A. Alharbi Physics Department, Faculty of Sciences,

More information

Measuring Neutron Capture Cross Sections on s-process Radioactive Nuclei

Measuring Neutron Capture Cross Sections on s-process Radioactive Nuclei Measuring Neutron Capture Cross Sections on s-process Radioactive Nuclei 5th Workshop on Nuclear Level Density and Gamma Strength Oslo, May 18-22, 2015 LLNL-PRES-670315 LLNL-PRES-XXXXXX This work was performed

More information

SOME ENDF/B-VI MATERLALS. C. Y. Fu Oak Ridge National Laboratory Oak Ridge, Tennessee USA

SOME ENDF/B-VI MATERLALS. C. Y. Fu Oak Ridge National Laboratory Oak Ridge, Tennessee USA TNG CALCULATONS AND EVALUATXONS OF PHOTON PRODUCTON DATA FOR SOME ENDF/B-V MATERLALS C. Y. Fu Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-636 USA Presentation at OECD NEANSC Specialists Meeting

More information

Experiments with gold, lead and uranium ion beams and their technical and theoretical interest.

Experiments with gold, lead and uranium ion beams and their technical and theoretical interest. Experiments with gold, lead and uranium ion beams and their technical and theoretical interest. (Karl-Heinz Schmidt, GSI Darmstadt) 1. The Problem of Nuclear Waste 1.1 Nuclear Reactor 1.2 Transmutation

More information

Nuclear data uncertainty propagation using a Total Monte Carlo approach

Nuclear data uncertainty propagation using a Total Monte Carlo approach Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman* *NRG Petten, The Netherlands & Univ. Uppsala Workshop on Uncertainty Propagation in the Nuclear

More information

The Inverse Reaction Cross Sections for Some Charged Particles Using the Optical Model Parameters

The Inverse Reaction Cross Sections for Some Charged Particles Using the Optical Model Parameters Available online at www.worldscientificnews.com WSN 28 (216) 113-124 EISSN 2392-2192 The Inverse Reaction Cross Sections for Some Charged Particles Using the Optical Model Parameters Dr. Rasha S. Ahmed

More information

Today, I will present the first of two lectures on neutron interactions.

Today, I will present the first of two lectures on neutron interactions. Today, I will present the first of two lectures on neutron interactions. I first need to acknowledge that these two lectures were based on lectures presented previously in Med Phys I by Dr Howell. 1 Before

More information

arxiv: v1 [nucl-th] 17 Jan 2019

arxiv: v1 [nucl-th] 17 Jan 2019 Unified Coupled-Channels and Hauser-Feshbach Model Calculation for Nuclear Data Evaluation Toshihiko Kawano Los Alamos National Laboratory, Los Alamos, NM 87545, USA Email: kawano@lanl.gov arxiv:191.5641v1

More information

Theoretical Analysis of Neutron Double-Differential Cross Section of n + 19 F at 14.2 MeV

Theoretical Analysis of Neutron Double-Differential Cross Section of n + 19 F at 14.2 MeV Commun. Theor. Phys. (Beijing, China) 47 (2007) pp. 102 106 c International Academic Publishers Vol. 47, No. 1, January 15, 2007 Theoretical Analysis of Neutron Double-Differential Cross Section of n +

More information

GEANT4 HADRONIC PHYSICS

GEANT4 HADRONIC PHYSICS GEANT4 HADRONIC PHYSICS Training course at International User Conference on Medicine and Biology applications Bordeaux, 8-11 October 2013 V. Ivanchenko Based on lectures developed by Dennis Wright Geant4

More information

Two-particle transfer and pairing correlations (for both T-0 and T=1): interplay of reaction mechanism and structure properties

Two-particle transfer and pairing correlations (for both T-0 and T=1): interplay of reaction mechanism and structure properties Two-particle transfer and pairing correlations (for both T-0 and T=1): interplay of reaction mechanism and structure properties Andrea Vitturi and Jose Antonio Lay (Padova, Catania, Sevilla) ECT*, September

More information

Improvements and developments of physics models in PHITS for radiotherapy and space applications

Improvements and developments of physics models in PHITS for radiotherapy and space applications Improvements and developments of physics models in PHITS for radiotherapy and space applications L. Sihver 1-9, T. Sato 10, S. Hashimoto 10, T. Ogawa 10, K. Niita 11 1 Atominstitut, TU Wien, Austria, 2

More information

Reactions, Channel Widths

Reactions, Channel Widths Statistical Theory of Nuclear Reactions, Channel Widths and Level Densities S. Hilaire - CEA,DAM,DIF TRIESTE 2014 S. Hilaire & The TALYS Team 23/09/2014 Content - Introduction - General features about

More information

CHEM 312: Lecture 9 Part 1 Nuclear Reactions

CHEM 312: Lecture 9 Part 1 Nuclear Reactions CHEM 312: Lecture 9 Part 1 Nuclear Reactions Readings: Modern Nuclear Chemistry, Chapter 10; Nuclear and Radiochemistry, Chapter 4 Notation Energetics of Nuclear Reactions Reaction Types and Mechanisms

More information

Report of the Subgroup A Activities

Report of the Subgroup A Activities OECD/NEA-NSC Working Party on International Evaluation Co-operation Report of the Subgroup A 2003-04 Activities Aix-en-Provence, France - May 26-28, 2004 1. Progress Report on Individual Codes Coh, Empire,

More information

TALYS-1.4. User Manual. A nuclear reaction program. Arjan Koning Stephane Hilaire Stephane Goriely. December 28, New Edition

TALYS-1.4. User Manual. A nuclear reaction program. Arjan Koning Stephane Hilaire Stephane Goriely. December 28, New Edition TALYS-1.4 New Edition December 28, 2011 1 A nuclear reaction program Arjan Koning Stephane Hilaire Stephane Goriely User Manual 2 c User Manual 2011 A.J. Koning, All rights reserved Nuclear Research and

More information

Nuclear Reaction Rates for Astrophysical Nucleosynthesis

Nuclear Reaction Rates for Astrophysical Nucleosynthesis Nuclear Reaction Rates for Astrophysical Nucleosynthesis Department of Physics, Central Michigan University, Mt. Pleasant, MI 48859, USA E-mail: palum1a@cmich.edu D. Galaviz Centro de Fisica Nuclear da

More information

SOURCES of RADIOACTIVITY

SOURCES of RADIOACTIVITY Section 9: SOURCES of RADIOACTIVITY This section briefly describes various sources of radioactive nuclei, both naturally occurring and those produced artificially (man-made) in, for example, reactors or

More information

Fission yield calculations with TALYS/GEF

Fission yield calculations with TALYS/GEF Fission yield calculations with TALYS/GEF S.Pomp 1,*, A. Al-Adili 1, A. Koning 2,1, M. Onegin 3, V. Simutkin 1 1 Uppsala University, Div. of applied nuclear physics, Sweden 2 Nuclear Research and Consultancy

More information

Cross-Section Evaluations to 150 MeV for Accelerator-Driven Systems and Implementation in MCNPX

Cross-Section Evaluations to 150 MeV for Accelerator-Driven Systems and Implementation in MCNPX NUCLEAR SCIENCE AND ENGINEERING: 131, 293 328 ~1999! Cross-Section Evaluations to 150 MeV for Accelerator-Driven Systems and Implementation in MCNPX M. B. Chadwick,* P. G. Young, S. Chiba, S. C. Frankle,

More information

Connecting fundamental models with nuclear reaction evaluations

Connecting fundamental models with nuclear reaction evaluations Connecting fundamental models with nuclear reaction evaluations G. P. A. Nobre National Nuclear Data Center Brookhaven National Laboratory Workshop at Institute for Nuclear Theory, March 13-17, 2017 Nuclear

More information

Measurement of (n, xn γ) reaction cross sections in W isotopes

Measurement of (n, xn γ) reaction cross sections in W isotopes Measurement of (n, xn γ) reaction cross sections in isotopes Greg Henning IPHC/CNRS 1 Context: Nuclear data evaluations for applications 4 th generation nuclear reactors and new fuel cycles, currently

More information

Surrogate reactions: the Weisskopf-Ewing approximation and its limitations

Surrogate reactions: the Weisskopf-Ewing approximation and its limitations International Conference on Nuclear Data for Science and Technology 2007 DOI: 10.1051/ndata:07537 Invited Surrogate reactions: the Weisskopf-Ewing approximation and its limitations J. Escher 1,a, L.A.

More information

2007 Fall Nuc Med Physics Lectures

2007 Fall Nuc Med Physics Lectures 2007 Fall Nuc Med Physics Lectures Tuesdays, 9:30am, NN203 Date Title Lecturer 9/4/07 Introduction to Nuclear Physics RS 9/11/07 Decay of radioactivity RS 9/18/07 Interactions with matter RM 9/25/07 Radiation

More information

SURROGATE REACTIONS. An overview of papers by Jason Burke from LLNL

SURROGATE REACTIONS. An overview of papers by Jason Burke from LLNL SURROGATE REACTIONS An overview of papers by Jason Burke from LLNL Compound Nuclear Reaction cross sections Cross sections for compound-nuclear reactions are required input for astrophysical models and

More information

Geant4 version 10.0.p01. Hadronic Physics I. Geant4 Tutorial: version 10.0.p01. Michael Kelsey, Wed 5 Mar 2014

Geant4 version 10.0.p01. Hadronic Physics I. Geant4 Tutorial: version 10.0.p01. Michael Kelsey, Wed 5 Mar 2014 Michael Kelsey, Wed 5 Mar 2014 Hadronic Physics I Geant4 Tutorial: version 10.0.p01 Hadronic Physics I What is Hadronic Physics? The Hadronic Framework - Processes vs. Models - Cross sections and process

More information

Nuclear Fission Fission discovered by Otto Hahn and Fritz Strassman, Lisa Meitner in 1938

Nuclear Fission Fission discovered by Otto Hahn and Fritz Strassman, Lisa Meitner in 1938 Fission Readings: Modern Nuclear Chemistry, Chapter 11; Nuclear and Radiochemistry, Chapter 3 General Overview of Fission Energetics The Probability of Fission Fission Product Distributions Total Kinetic

More information

B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec.

B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec. 2: Fission and Other Neutron Reactions B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec. 2015 September 1 Contents Concepts: Fission and other

More information

A Monte Carlo Simulation of Prompt Gamma Emission from Fission Fragments

A Monte Carlo Simulation of Prompt Gamma Emission from Fission Fragments A Monte Carlo Simulation of Prompt Gamma Emission from Fission Fragments D. Regnier, O. Litaize, O. Serot CEA Cadarache, DEN/DER/SPRC/LEPH WONDER, 27/09/2012 D. Regnier, O. Litaize, O. Serot - CEA Cadarache,

More information

FIFRELIN TRIPOLI-4 coupling for Monte Carlo simulations with a fission model. Application to shielding calculations

FIFRELIN TRIPOLI-4 coupling for Monte Carlo simulations with a fission model. Application to shielding calculations FIFRELIN TRIPOLI-4 coupling for Monte Carlo simulations with a fission model. Application to shielding calculations Odile Petit 1,*, Cédric Jouanne 1, Olivier Litaize 2, Olivier Serot 2, Abdelhazize Chebboubi

More information

Theoretical basics and modern status of radioactivity studies

Theoretical basics and modern status of radioactivity studies Leonid Grigorenko Flerov Laboratory of Nuclear Reactions Joint Institute for Nuclear Research Dubna, Russia Theoretical basics and modern status of radioactivity studies Lecture 2: Radioactivity Coefficients

More information

Analysis of Nuclear Transmutation Induced from Metal Plus Multibody-Fusion-Products Reaction

Analysis of Nuclear Transmutation Induced from Metal Plus Multibody-Fusion-Products Reaction Ohta, M. and A. Takahashi. Analysis of Nuclear Transmutation Induced from Metal Plus Multibody-Fusion- Products Reaction. in Tenth International Conference on Cold Fusion. 2003. Cambridge, MA: LENR- CANR.org.

More information

Reconstruction of Neutron Cross-sections and Sampling

Reconstruction of Neutron Cross-sections and Sampling Reconstruction of Neutron Cross-sections and Sampling Harphool Kumawat Nuclear Physics Division, BARC 1 Outline Introduction Reconstruction of resonance cross-section Linearization of cross-section Unionization

More information

CENBG, Bordeaux, France 2. CEA/DAM-DIF, Arpajon,France 3. CEA/DEN, Saint Paul Lez Durance, France 4. IPN Orsay, Orsay France 5

CENBG, Bordeaux, France 2. CEA/DAM-DIF, Arpajon,France 3. CEA/DEN, Saint Paul Lez Durance, France 4. IPN Orsay, Orsay France 5 D. Denis-Petit 1, B. Jurado 1, P. Marini 2, R. Pérez-Sanchez 1, M. Aiche 1, S. Czajkowski 1, L. Mathieu 1, I. Tsekhanovich 1,V. Méot 2,O. Roig 2,B. Morillon 2, P. Romain 2, O. Bouland 3, L. Audouin 4,

More information

THE CHART OF NUCLIDES

THE CHART OF NUCLIDES THE CHART OF NUCLIDES LAB NR 10 INTRODUCTION The term nuclide refers to an atom or nucleus as characterized by the number of protons (Z) and neutrons (N) that the nucleus contains. A chart of nuclides

More information

M.B. Chadwick.

M.B. Chadwick. LA-UR-97-1797 Title: of Nuclear Data for Fast Neutron and Proton Radiotherapy: A New ICRU Report Author(s): M.B. Chadwick Submitted to: http://lib-www.lanl.gov/la-pubs/00412577.pdf Los Alamos NATIONAL

More information

Chapter V: Interactions of neutrons with matter

Chapter V: Interactions of neutrons with matter Chapter V: Interactions of neutrons with matter 1 Content of the chapter Introduction Interaction processes Interaction cross sections Moderation and neutrons path For more details see «Physique des Réacteurs

More information

An Introduction to. Nuclear Physics. Yatramohan Jana. Alpha Science International Ltd. Oxford, U.K.

An Introduction to. Nuclear Physics. Yatramohan Jana. Alpha Science International Ltd. Oxford, U.K. An Introduction to Nuclear Physics Yatramohan Jana Alpha Science International Ltd. Oxford, U.K. Contents Preface Acknowledgement Part-1 Introduction vii ix Chapter-1 General Survey of Nuclear Properties

More information

The updated version of the Chinese Evaluated Nuclear Data Library (CENDL-3.1) and China nuclear data evaluation activities

The updated version of the Chinese Evaluated Nuclear Data Library (CENDL-3.1) and China nuclear data evaluation activities International Conference on Nuclear Data for Science and Technology 2007 DOI: 10.1051/ndata:07570 Invited The updated version of the Chinese Evaluated Nuclear Data Library (CENDL-3.1) and China nuclear

More information

Neutron-Induced Reactions Investigations in the Neutrons Energy Range up to 16 MeV

Neutron-Induced Reactions Investigations in the Neutrons Energy Range up to 16 MeV NUCLEAR THEORY, Vol. 33 (2014) eds. A.I. Georgieva, N. Minkov, Heron Press, Sofia Neutron-Induced Reactions Investigations in the Neutrons Energy Range up to 16 MeV R. Avetisyan, R. Avagyan, G. Bazoyan,

More information

Introduction to Nuclear Engineering

Introduction to Nuclear Engineering 2016/9/27 Introduction to Nuclear Engineering Kenichi Ishikawa ( ) http://ishiken.free.fr/english/lecture.html ishiken@n.t.u-tokyo.ac.jp 1 References Nuclear Physics basic properties of nuclei nuclear

More information

The Effect of the E1 Strength Function on Neutron Capture Cross Sections

The Effect of the E1 Strength Function on Neutron Capture Cross Sections The Effect of the E1 Strength Function on Neutron Capture Cross Sections Berkley J.T. Starks Brigham Young University-Idaho 009 March 18 1. Introduction The myriad of phenomena that are observed throughout

More information

Coupled-channels Neutron Reactions on Nuclei

Coupled-channels Neutron Reactions on Nuclei Coupled-channels Neutron Reactions on Nuclei Ian Thompson with: Gustavo Nobre, Frank Dietrich, Jutta Escher (LLNL) and: Toshiko Kawano (LANL), Goran Arbanas (ORNL), P. O. Box, Livermore, CA! This work

More information

Report on the benchmarking of the event generator for fusion-evaporation reactions

Report on the benchmarking of the event generator for fusion-evaporation reactions Report on the benchmarking of the event generator for fusion-evaporation reactions The main aim of this project is the creation of the module of the GEANT4 platform for the description of the fusion-evaporation

More information

Nuclear and Radiation Physics

Nuclear and Radiation Physics 501503742 Nuclear and Radiation Physics Why nuclear physics? Why radiation physics? Why in Jordan? Interdisciplinary. Applied? 1 Subjects to be covered Nuclear properties. Nuclear forces. Nuclear matter.

More information

High-spin studies and nuclear structure in three semi-magic regions of the nuclide chart High-seniority states in Sn isotopes

High-spin studies and nuclear structure in three semi-magic regions of the nuclide chart High-seniority states in Sn isotopes High-spin studies and nuclear structure in three semi-magic regions of the nuclide chart High-seniority states in Sn isotopes Outline: Alain Astier, CSNSM Orsay, France Motivations Experimental conditions

More information

CHEM 312 Lecture 7: Fission

CHEM 312 Lecture 7: Fission CHEM 312 Lecture 7: Fission Readings: Modern Nuclear Chemistry, Chapter 11; Nuclear and Radiochemistry, Chapter 3 General Overview of Fission Energetics The Probability of Fission Fission Product Distributions

More information

Upcoming features in Serpent photon transport mode

Upcoming features in Serpent photon transport mode Upcoming features in Serpent photon transport mode Toni Kaltiaisenaho VTT Technical Research Centre of Finland Serpent User Group Meeting 2018 1/20 Outline Current photoatomic physics in Serpent Photonuclear

More information

Office of Nonproliferation and Verification Research and Development University and Industry Technical Interchange (UITI2011) Review Meeting

Office of Nonproliferation and Verification Research and Development University and Industry Technical Interchange (UITI2011) Review Meeting Office of Nonproliferation and Verification Research and Development niversity and Industry Technical Interchange (ITI2011) Review Meeting Modeling of SNM Fission Signatures and December 7, 2011 Gennady

More information

Connection between the Reference Parameter Input Library RIPL, GND and nuclear reaction evaluations

Connection between the Reference Parameter Input Library RIPL, GND and nuclear reaction evaluations Connection between the Reference Parameter Input Library RIPL, GND and nuclear reaction evaluations Arjan Koning NRG Petten, the Netherlands WPEC SG38 Meeting, OECD/NEA Data Bank May 21-22 2013, Issy-les-Moulineaux

More information

Geant Hadronic Physics I. Geant4 Tutorial at Lund University. 6 September 2018 Dennis Wright

Geant Hadronic Physics I. Geant4 Tutorial at Lund University. 6 September 2018 Dennis Wright Geant4 10.4 Hadronic Physics I Geant4 Tutorial at Lund University 6 September 2018 Dennis Wright Outline Overview of hadronic physics Precompoundand de-excitation models Cascade models 2 Hadronic Processes,

More information

Heavy-ion sub-barrier fusion reactions: a sensitive tool to probe nuclear structure

Heavy-ion sub-barrier fusion reactions: a sensitive tool to probe nuclear structure Heavy-ion sub-barrier fusion reactions: a sensitive tool to probe nuclear structure Kouichi Hagino Tohoku University, Sendai, Japan 1. Introduction: heavy-ion fusion reactions 2. Fusion and Quasi-elastic

More information

Cross-section Measurements of Relativistic Deuteron Reactions on Copper by Activation Method

Cross-section Measurements of Relativistic Deuteron Reactions on Copper by Activation Method Nuclear Physics Institute, Academy of Sciences of the Czech Republic Department of Nuclear Reactors, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague Cross-section

More information

Stylianos Nikas Central Michigan University

Stylianos Nikas Central Michigan University Nuclear properties parameterization and implementation on Hauser-Feshbach statistical model based code Stylianos Nikas Central Michigan University In Collaboration with: George Perdikakis Rebecca Surman

More information

Lecture 14 Krane Enge Cohen Williams Nuclear Reactions Ch 11 Ch 13 Ch /2 7.5 Reaction dynamics /4 Reaction cross sections 11.

Lecture 14 Krane Enge Cohen Williams Nuclear Reactions Ch 11 Ch 13 Ch /2 7.5 Reaction dynamics /4 Reaction cross sections 11. Lecture 14 Krane Enge Cohen Williams Nuclear Reactions Ch 11 Ch 13 Ch 13 7.1/2 7.5 Reaction dynamics 11.2 13.2 7.3/4 Reaction cross sections 11.4 2.10 Reaction theories compound nucleus 11.10 13.7 13.1-3

More information

Chapter VIII: Nuclear fission

Chapter VIII: Nuclear fission Chapter VIII: Nuclear fission 1 Summary 1. General remarks 2. Spontaneous and induced fissions 3. Nucleus deformation 4. Mass distribution of fragments 5. Number of emitted electrons 6. Radioactive decay

More information

Photonuclear Activation File. Status and Perspectives

Photonuclear Activation File. Status and Perspectives Photonuclear Activation File ((( P A F ))) Status and Perspectives M-L. Giacri, A. Vanlauwe, J-C. David, D. Doré, D. Ridikas, I. Raskinyte, E. Dupont, V. Macary CEA Saclay, DSM/Dapnia/SPhN http://www-dapnia.cea.fr/sphn/mnm/

More information

CIELO Project. M. Herman 1) D. Brown 1), R. Capote 2), G. Nobre 1), A. Trkov 2) for the CIELO Collaboration 3)

CIELO Project. M. Herman 1) D. Brown 1), R. Capote 2), G. Nobre 1), A. Trkov 2) for the CIELO Collaboration 3) 56Fe Evaluation for the CIELO Project M. Herman 1) D. Brown 1), R. Capote 2), G. Nobre 1), A. Trkov 2) for the CIELO Collaboration 3) 1) National Nuclear Data Center, Brookhaven National Laboratory, USA

More information

MCRT L8: Neutron Transport

MCRT L8: Neutron Transport MCRT L8: Neutron Transport Recap fission, absorption, scattering, cross sections Fission products and secondary neutrons Slow and fast neutrons Energy spectrum of fission neutrons Nuclear reactor safety

More information

Strengths and limitations of the surrogate reaction method to access neutron-induced cross sections of actinides

Strengths and limitations of the surrogate reaction method to access neutron-induced cross sections of actinides Strengths and limitations of the surrogate reaction method to access neutron-induced cross sections of actinides P. Marini, Q. Ducasse, B. Jurado, M. Aiche, L. Mathieu, G. Barreau, S. Czajkowski, I. Tsekhanovic

More information

Selected Topics in Physics a lecture course for 1st year students by W.B. von Schlippe Spring Semester 2007

Selected Topics in Physics a lecture course for 1st year students by W.B. von Schlippe Spring Semester 2007 Selected Topics in Physics a lecture course for 1st year students by W.B. von Schlippe Spring Semester 2007 Lecture 11 1.) Determination of parameters of the SEMF 2.) α decay 3.) Nuclear energy levels

More information

The European Activation File: EAF-2005 decay data library

The European Activation File: EAF-2005 decay data library UKAEA FUS 516 EURATOM/UKAEA Fusion The European Activation File: EAF-2005 decay data library R.A. Forrest January 2005 UKAEA EURATOM/UKAEA Fusion Association Culham Science Centre Abingdon Oxfordshire

More information

General description of fission observables: The GEF code*

General description of fission observables: The GEF code* General description of fission observables: The GEF code* Karl-Heinz Schmidt, Beatriz Jurado, Christelle Schmitt ND2016 International Conference on Nuclear Data for Science and Technology Sept. 11-16,

More information

Nuclear Physics for Applications

Nuclear Physics for Applications Stanley C. Pruss'm Nuclear Physics for Applications A Model Approach BICENTENNIAL WILEY-VCH Verlag GmbH & Co. KGaA VII Table of Contents Preface XIII 1 Introduction 1 1.1 Low-Energy Nuclear Physics for

More information

University of Groningen. Study of compression modes in 56Ni using an active target Bagchi, Soumya

University of Groningen. Study of compression modes in 56Ni using an active target Bagchi, Soumya University of Groningen Study of compression modes in 56Ni using an active target Bagchi, Soumya IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite

More information

Present Status and Plans of JENDL FP Data Evaluation Project

Present Status and Plans of JENDL FP Data Evaluation Project Present Status and Plans of JENDL FP Data Evaluation Project KAWANO Toshihiko and FP Nuclear Data Evaluation Working Group 1 Interdisciplinary Graduate School of Engineering Sciences, Kyushu University

More information

Stability of heavy elements against alpha and cluster radioactivity

Stability of heavy elements against alpha and cluster radioactivity CHAPTER III Stability of heavy elements against alpha and cluster radioactivity The stability of heavy and super heavy elements via alpha and cluster decay for the isotopes in the heavy region is discussed

More information

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 1 (2/3/04) Overview -- Interactions, Distributions, Cross Sections, Applications

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 1 (2/3/04) Overview -- Interactions, Distributions, Cross Sections, Applications .54 Neutron Interactions and Applications (Spring 004) Chapter 1 (/3/04) Overview -- Interactions, Distributions, Cross Sections, Applications There are many references in the vast literature on nuclear

More information

2 Give the compound nucleus resulting from 6-MeV protons bombarding a target of. my notes in the part 3 reading room or on the WEB.

2 Give the compound nucleus resulting from 6-MeV protons bombarding a target of. my notes in the part 3 reading room or on the WEB. Lecture 15 Krane Enge Cohen Williams Reaction theories compound nucleus 11.10 13.7 13.1-3 direct reactions 11.11 13.11/12 ch 14 Admixed Wave functions residual interaction 5.1-4 Admixed Wave functions

More information

NJCTL.org 2015 AP Physics 2 Nuclear Physics

NJCTL.org 2015 AP Physics 2 Nuclear Physics AP Physics 2 Questions 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? 2. What is the definition of the atomic number? What is its symbol?

More information

Chapter 5: Applications Fission simulations

Chapter 5: Applications Fission simulations Chapter 5: Applications Fission simulations 1 Using fission in FISPACT-II FISPACT-II is distributed with a variety of fission yields and decay data, just as incident particle cross sections, etc. Fission

More information

Nuclear Data for Reactor Physics: Cross Sections and Level Densities in in the Actinide Region. J.N. Wilson Institut de Physique Nucléaire, Orsay

Nuclear Data for Reactor Physics: Cross Sections and Level Densities in in the Actinide Region. J.N. Wilson Institut de Physique Nucléaire, Orsay Nuclear Data for Reactor Physics: Cross Sections and Level Densities in in the Actinide Region J.N. Wilson Institut de Physique Nucléaire, Orsay Talk Plan Talk Plan The importance of innovative nuclear

More information

nuclear states nuclear stability

nuclear states nuclear stability nuclear states 1 nuclear stability 2 1 nuclear chart 3 nuclear reactions Important concepts: projectile (A) target (B) residual nuclei (C+D) q-value of a reaction Notations for the reaction B(A,C)D A+B

More information

Heavy Ions Interactions. FLUKA Beginner s Course

Heavy Ions Interactions. FLUKA Beginner s Course Heavy Ions Interactions FLUKA Beginner s Course Overview The models DPMJET RQMD BME Input options Beam definition Transport thresholds 2 Heavy ion interaction models in FLUKA - 1 E > 5 GeV/n Dual Parton

More information

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of?

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? Nuclear Physics Questions 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? 2. What is the definition of the atomic number? What is its symbol?

More information

Heavy Ion Interactions. Beginners FLUKA Course

Heavy Ion Interactions. Beginners FLUKA Course Heavy Ion Interactions Beginners FLUKA Course 1 Overview The models DPMJET RQMD BME Input options Beam definition Transport thresholds 2 Heavy ion interaction models in FLUKA - 1 E > 5 GeV/n Dual Parton

More information

PhotonuclearData. R.R. Xu 1, X. Tao 1, J. M. Wang 1, Y. Tian 1, X. B. Ke 1, B.S. Yu 1, H. C. Hai 2, J. S. Zhang 1, Z. G. Ge 1. 2 Nankai University

PhotonuclearData. R.R. Xu 1, X. Tao 1, J. M. Wang 1, Y. Tian 1, X. B. Ke 1, B.S. Yu 1, H. C. Hai 2, J. S. Zhang 1, Z. G. Ge 1. 2 Nankai University Ph D PhotonuclearData Evaluation at CNDC R.R. Xu 1, X. Tao 1, J. M. Wang 1, Y. Tian 1, X. B. Ke 1, B.S. Yu 1, H. C. Hai 2, J. S. Zhang 1, Z. G. Ge 1 1 China Nuclear Data Center China Institute of Atomic

More information