Computational study to enhance threat detection of radiation portal monitors:

Size: px
Start display at page:

Download "Computational study to enhance threat detection of radiation portal monitors:"

Transcription

1 Computational study to enhance threat detection of radiation portal monitors: shielding, moderator, and collimator optimisation Mark Gilbert, Zamir Ghani, and Lee Packer United Kingdom Atomic Energy Authority October 20, 2015 This work was performed within the CLASP scheme grant entitled Optimising the neutron environment of Radiation Portal Monitors (RPMs). The United Kingdom Atomic Energy Authority was awarded funding through the United Kingdom Science and Technology Facilities Council STFC (Grant no. STK000152/1) in Neutron Users club 2015 CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority

2 Introduction Radiation portal monitors (RPMs): used to identify smuggled fissile material in vehicles detect emissions of neutrons and gamma rays often sited at traffic choke points (ports, airports, etc) without consideration of local environment simple and judicious use of shielding and collimation may be able to improve signal-to-noise ratio thus reducing detection limits A joint CLASP project with Glasgow and Sheffield universities is aimed at demonstrating the possible simple and cost-effective improvements to the detector design John McMillan Val O Shea Challenge Led Applied Systems Programme, funded by STFC 2/18

3 RPM schematic Possible enhanced design (from original CLASP proposal): p Atmosphere π + π 0 n µ+ π µ γ n γ Collimator n, γ shielding Active detector volume n n n n Road crumb loaded with neutron absorbing material 2 Range of roadway materials 3/18

4 Talk outline Modelling approach Preliminary studies can simulations say anything useful about detector design? Detector-design parameter studies Computational optimisation 4/18

5 Modelling Approach Monte Carlo simulations performed with MCNP generic neutron RPM detector based on 3 He tubes embedded in polyethylene ( the base detector ) various different material, shielding, and collimation configurations can be added Calculate response (for each configuration) to: (1) bare 252 Cf neutron threat source moving at the expected 2 m s 1 velocity of vehicle motion (2) background source caused by cosmic-ray interactions with the atmosphere represented by a planar surface source of neutrons cos 2 θ directional distribution energy distribution calculated using EXPACS response multiplication factor to produce typical 100 n m 2 s 1 in between detectors 5/18 ver developed by T. Sato, Japan Atomic Energy Agency (2006) T. Sato et al. Radiat. Res. 170 (2008) R.T. Kouzes et al., Nucl. Instr. Meth. Phys. Res. A 584 (2008)

6 Preliminary Study Aimed at demonstrating feasibility of both design optimisation and modelling approach Response of the basic detector was compared to: configuration with 5 cm of boronated-polyethylene shielding around detector (on all sides except front face) configuration with shielding plus a simple, 5 cm thick boronated-polyethylene collimator added to the front of the detector (basic design with equally spaced cylindrical holes) Collimator holes moving threat Top view 166 cm 50 3 He tubes 2.3 cm radius collimation holes in an hexagonal arrangement 2.8 m 0 (cm) /18

7 Detector response (counts s -1 ) Preliminary study results (1) Background response as a function of ground material no shielding 5cm shielding 5cm shielding+collimator asphalt boron boron10 portland seawater steel water Ground material Asphalt is a good average most likely material in existing systems assumed in all subsequent simulations The shielding and collimator configuration reduces background by factor of 6 compared to unshielded system High neutron-absorbing materials, such as 10 B silicone rubber, can reduce response (compared to asphalt) even further but require some infrastructure changes at existing RPM locations 7/18

8 Cumulative response (counts) Preliminary study results (2) Integration of source response over 2 s measurement time cm shielding no shielding 5cm shielding+collimator alarm level - no shielding alarm level - 5cm shielding alarm level - 5cm shielding+collimator Time (s) The unshielded detector would not alarm in this case Alarm levels set using background response in equivalent time & Currie limit: B B Assumed source strength of n s 1 Even this non-optimised system demonstrated the potential benefit of simple modifications to detectors (and validates computational method) 8/18 Note that the basic shielding increases source response (due to back scattering)

9 Optimisation study Main study to optimise design of collimator and shielding using base model with boronated-polyethylene shielding and collimator Optimise for: collimator depth collimation hole profile & packing fraction extra solid shielding in front of detector Best configuration determined by maximum threat sensitivity: minimum source detectable B B 2R B is background counts per 2 s acquisition 2R is counts during 2 s for 252 Cf threat strength of 1 n s 1 Problem symmetry was utilised to reduce computation time reflecting planes so that only one detector was necessary moving source modelled as a line (i.e. only one simulation of 10 7 neutrons per configuration) 9/18 Note that unshielded+uncollimated system had a minimum detectable source response of approx n/s

10 Minimum alarmed threat vs collimator depth (δ) 7 8 cm is the optimal Investigations also show that an extra polyethylene shield of thickness κ can also help Results collimator depth Around 2 cm extra 1.5E+03 is most effective and then the original 5 cm thick collimator is 1.0E+03 optimal from threat Top view δ minimum source alarmed (n/s) 3.0E E E+03 original collimator depth δ (cm) 10/18 this 2 cm is used in all subsequent results presented here. Note that unshielded+uncollimated system had a minimum threat response of approx n/s

11 Minimum alarmed threat vs collimator depth (δ) 7 8 cm is the optimal Investigations also show that an extra polyethylene shield of thickness κ can also help κ Results collimator depth Around 2 cm extra 1.5E+03 is most effective and then the original 5 cm thick collimator is 1.0E+03 optimal from threat Top view δ minimum source alarmed (n/s) 3.0E E E+03 original extra shield depth κ 0 cm 1 cm 2 cm 5 cm 10 cm collimator depth δ (cm) 10/18 this 2 cm is used in all subsequent results presented here. Note that unshielded+uncollimated system had a minimum threat response of approx n/s

12 Influence of conical profile (cf. original cylinder) With a shallow, 2 cm collimator, the (marginally) optimal profile is strongly conical (i.e. more material) But for thicker collimators the original cylindrical profile remains optimal No real benefit of conical compared to (cheaper) cylindrical holes Results collimator profile minimum source alarmed (n/s) 3.0E E E E E+03 δ o r i r collimator depth δ 5 cm 10 cm 2.5 cm 6 cm 7.5 cm ratio of cone radii (i r /o r ) 11/18 with extra 2 cm of polyethylene shielding

13 Variation with cylindrical hole packing density Again, results determined by shielding balance For original, 5 cm-deep collimator wide holes are favoured and the original 70% packing ratio is optimal Face view Results collimator packing minimum source alarmed (n/s) 3.0E E E E E+03 71% open collimator depth δ 5 cm 10 cm 2.5 cm 6 cm 7.5 cm % open on collimator surface original 12/18 Probably no cost implication (for packing ratio) Might be a marginal cost benefit associated with having a thinner (cheaper) collimator and smaller holes with no change in detector sensitivity with extra 2 cm of polyethylene shielding

14 Variation with cylindrical hole packing density Again, results determined by shielding balance For a thinner, 2.5 cm collimator the optimisation produces extra shielding, in the form of narrower holes Face view Results collimator packing minimum source alarmed (n/s) 3.0E E E E E+03 30% open collimator depth δ 5 cm 10 cm 2.5 cm 6 cm 7.5 cm % open on collimator surface original 12/18 Probably no cost implication (for packing ratio) Might be a marginal cost benefit associated with having a thinner (cheaper) collimator and smaller holes with no change in detector sensitivity with extra 2 cm of polyethylene shielding

15 Optimisation summary Optimised configuration: an extra 2 cm polyethylene moderator in front of the bare detector 5 cm deep collimator with cylindrical holes occupying 70-80% of surface facing threat more than a factor of 2 improvement over bare, unmodified detector 13/18

16 γ 12cm β α Extensions detector unit optimisation γ to threat 4cm rear shielding β RRx RRx Cavity width γ (cm) 8cm rear shielding β Optimisation of air gap and polyethylene moderator around helium tubes in detector base units Optimised configuration: front moderator α = 8 cm; rear moderator β = 10 cm; air-gap thickness γ = 2 cm RRx RRx10 6 6cm rear shielding β Cavity width γ (cm) 10cm rear shielding β Cavity width γ (cm) Cavity width γ (cm) front moderator α 4cm 6cm 8cm 10cm 14/18

17 Extensions full optimisation revisited Re-optimisation using optimised 2 cm air-gap Additional rear shielding thickness λ optimisation suggests no upper-limit (but no significant improvement beyond 20 cm) κ λ δ New optimum for a rear polyethylene shield of λ = 40 cm: an extra κ = 5 cm polyethylene moderator in front of the detector 5 cm deep collimator with cylindrical holes (as before) occupying % of surface facing threat Producing an extra 15% improvement compared to the optimised configuration with no air gap 15/18

18 Published results Nuclear Instruments and Methods in Physics Research A 795 (2015) Contents lists available at ScienceDirect Nuclear Instruments and Methods in Physics Research A journal homepage: Optimising the neutron environment of Radiation Portal Monitors: A computational study Mark R. Gilbert a,n, Zamir Ghani a, John E. McMillan b, Lee W. Packer a a United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon OX14 3DB, UK b Department of Physics and Astronomy, University of Sheffield, Hicks building, Hounsfield Road, Sheffield S3 7RH, UK article info abstract Article history: Efficient and reliable detection of radiological or nuclear threats is a crucial part of national and Received 25 March 2015 international efforts to prevent terrorist activities. Radiation Portal Monitors (RPMs), which are deployed Received in revised form worldwide, are intended to interdict smuggled fissile material by detecting emissions of neutrons and 8 May 2015 gamma rays. However, considering the range and variety of threat sources, vehicular and shielding Accepted 24 May 2015 scenarios, and that only a small signature is present, it is important that the design of the RPMs allows Available online 3 June 2015 these signatures to be accurately differentiated from the environmental background. Using Monte-Carlo Keywords: neutron-transport simulations of a model 3 He detector system we have conducted a parameter study to Radiation Portal Monitors identify the optimum combination of detector shielding, moderation, and collimation that maximises Nuclear Security the sensitivity of neutron-sensitive RPMs. These structures, which could be simply and cost-effectively Neutron Detection 3 added to existing RPMs, can improve the detector response by more than a factor of two relative to an He detectors unmodified, bare design. Furthermore, optimisation of the air gap surrounding the helium tubes also improves detector efficiency. & 2015 The Authors. Published by Elsevier B.V. All rights reserved. 1. Introduction and locations. Measures to reduce the radiological and nuclear threat are many-faceted, but an important component includes In recent years, concerns about the threat of nuclear and the ability to detect, by direct means, attempts to illicitly transport radiological terrorism and of other malicious acts involving such radiological or nuclear material. Detection systems broadly fall materials have been raised at the international level [1]. Coordinated steps are being taken among states to minimise the threat, from the radioactive decay of the nuclear material itself; and into two categories: passive, which rely on detecting the emissions but over the next few decades there will be an inevitable global active, where an external stimulus is used to induce an enhanced expansion in nuclear technologies and energy. Whilst this will response from the threat. Here we focus on passive detection bring significant benefit to society, it will nonetheless result in systems for neutron emitting threats, such as weapons grade increased challenges from a nuclear security perspective. plutonium [5], mixed oxide (MOX) or spent fuel, or isotopic A significant number of incidents of trafficking of nuclear sources such as 241 Am Be, 210 Po Be, or 252 Cf. These systems, materials have been recorded in the IAEA Incident and Trafficking known as Radiation Portal Monitors (RPMs), measure the threat Database (ITDB) [2], including material which can be used in response from vehicles as they pass between two detector panels. radiological devices, and conceivably in nuclear weapons. For Commercially available RPM designs typically use gamma and/ example, a 2013 incident reported by the IAEA [3] included details or neutron detection technologies to scan vehicles, cargo and of a group of traffickers convicted in Moldova for attempting to sell people. They have been deployed extensively at front-line sites quantities of uranium and plutonium that had been transported in around the world, including ports, airports and traffic choke shielded lead canisters in an attempt to evade detection systems. points. Neutron detection systems are, for example, 6 Li-based Furthermore, evidence recently heard in the UK [4] refers to the scintillating glass fibers, 10 B-based pressurised gas tubes, or 3 He significant illicit transportation of 210 Po through European airports tubes. Similarly, gamma detection systems are based on, for and cities, which led to significant contamination of many people example, polyvinyltoluene (PVT) plastic scintillators, sodium iodide NaI(Tl) detectors, cadmium-zinc-telluride (CZT) or, at greater expense, high-purity germanium (HPGe) crystals. Here n Corresponding author. we evaluate neutron detecting RPMs by considering 3 He pressurised gas tubes as the detection technology, which are address: mark.gilbert@ccfe.ac.uk (M.R. Gilbert). used Complete simulation study recently published in NIMA 795 (2015) more than 3000 separate MCNP simulations /& 2015 The Authors. Published by Elsevier B.V. All rights reserved. 16/18

19 Summary A combination of shielding and collimation can improve the sensitivity of RPMs to radiological and nuclear threats hidden in vehicles Optimisation studies performed using Monte Carlo simulations of model systems indicate that additional attenuation in front of the detector and shielding behind it in the form of solid polyethylene can reduce the minimum detectable threat in conjunction with a 5 cm boron-doped collimator The detector sensitivity is less influenced by the collimator hole profile or packing density (under the optimal shielding/moderation conditions) Efficiency can be improved still further by the inclusion of an air gap immediately surrounding the helium tanks (to promote additional scattering and reflection of neutrons) 17/18

20 Future The modelling approach applied in this study is suitable for other nuclear detector systems Could be improved by developing a fully-automated code to optimise a system of variables for a given MCNP model & response function to handle a larger number of dependent variables would produce a more precise optimum parameter-set The RPM task could be extended to consider changes in conditions: alternative detector (e.g. 6 Li-based scintillators) different threat types ( 241 Am-Be, 137 Cs, 60 Co, shielded sources, etc. ) Experimental testing of mock-ups of the optimised RPM system would be desirable to check both the findings and the validity of the computational approach. 18/18

SCANNING OF CARGO CONTAINERS BY GAMMA-RAY AND FAST NEUTRON RADIOGRAPHY

SCANNING OF CARGO CONTAINERS BY GAMMA-RAY AND FAST NEUTRON RADIOGRAPHY Armenian Journal of Physics, 2012, vol. 5, issue 1, pp. 1-7 SCANNING OF CARGO CONTAINERS BY GAMMA-RAY AND FAST NEUTRON RADIOGRAPHY A. M. Yousri*, A. M. Osman, W. A. Kansouh, A. M. Reda*, I. I. Bashter*,

More information

Non-Destructive Assay Applications Using Temperature-Stabilized Large Volume CeBr Detectors 14277

Non-Destructive Assay Applications Using Temperature-Stabilized Large Volume CeBr Detectors 14277 Non-Destructive Assay Applications Using Temperature-Stabilized Large Volume CeBr Detectors 14277 D. Nakazawa and F. Bronson Canberra Industries Inc., 800 Research Parkway, Meriden, CT, 06450, USA. ABSTRACT

More information

Neutron and Gamma Ray Imaging for Nuclear Materials Identification

Neutron and Gamma Ray Imaging for Nuclear Materials Identification Neutron and Gamma Ray Imaging for Nuclear Materials Identification James A. Mullens John Mihalczo Philip Bingham Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6010 865-574-5564 Abstract This

More information

Digital simulation of neutron and gamma measurement devices

Digital simulation of neutron and gamma measurement devices 3Security of radioactive materials and transport 3 2 Digital simulation of neutron and gamma measurement devices A.-L. WEBER (IRSN) 1 - Maximum activity that a radioactive element can present without being

More information

A Proposal of Nuclear Materials Detection and Inspection Systems in Heavily Shielded Suspicious Objects by Non-destructive Manner.

A Proposal of Nuclear Materials Detection and Inspection Systems in Heavily Shielded Suspicious Objects by Non-destructive Manner. Magic Maggiore Technical Reachback Workshop 15 min. (March 28-30, 2017, JRC Ispra, Italy) A Proposal of Nuclear Materials Detection and Inspection Systems in Heavily Shielded Suspicious Objects by Non-destructive

More information

The Neutronic Check Point: fast neutron transmission measurements to detect explosives in vehicles.

The Neutronic Check Point: fast neutron transmission measurements to detect explosives in vehicles. : fast neutron transmission measurements to detect explosives in vehicles. S. Pesente, G. Nebbia, D. Fabris, M. Lunardon, S. Moretto INFN and Dipartimento di Fisica dell Università di Padova Via Marzolo

More information

Design of an Integrated Inspection System For Detection of Explosive and Illicit Materials

Design of an Integrated Inspection System For Detection of Explosive and Illicit Materials Design of an Integrated Inspection System For Detection of Explosive and Illicit Materials IAEA 2 nd CRP Meeting, Mumbai, 12 16 November 2007 R. M. Megahid Nuclear Research Centre, Atomic Energy Authority

More information

Comparison of Several Detector Technologies for Measurement of Special Nuclear Materials i

Comparison of Several Detector Technologies for Measurement of Special Nuclear Materials i Comparison of Several Detector Technologies for Measurement of Special Nuclear Materials i A. E. Proctor, K. R. Pohl Constellation Technology Corporation, 7887 Bryan Dairy Road, Largo Fl 33777,U.S.A. Abstract

More information

Field Tests of a NaI(Tl)-Based Vehicle Portal Monitor at Border Crossings

Field Tests of a NaI(Tl)-Based Vehicle Portal Monitor at Border Crossings Field Tests of a NaI(Tl)-Based Vehicle Portal Monitor at Border Crossings D. C. Stromswold, J. W. Darkoch, J. H. Ely, R. R. Hansen, R. T. Kouzes, B. D. Milbrath, R. C. Runkle, W. A. Sliger, J. E. Smart,

More information

Compton suppression spectrometry

Compton suppression spectrometry Compton suppression spectrometry In gamma ray spectrometry performed with High-purity Germanium detectors (HpGe), the detection of low intensity gamma ray lines is complicated by the presence of Compton

More information

Quartz-Crystal Spectrometer for the Analysis of Plutonium K X-Rays

Quartz-Crystal Spectrometer for the Analysis of Plutonium K X-Rays Quartz-Crystal Spectrometer for the Analysis of Plutonium K X-Rays Alison V. Goodsell, William S. Charlton alisong@tamu.edu, charlton@ne.tamu.edu Nuclear Security Science & Policy Institute Texas A&M University,

More information

Compton Camera. Compton Camera

Compton Camera. Compton Camera Diagnostic Imaging II Student Project Compton Camera Ting-Tung Chang Introduction The Compton camera operates by exploiting the Compton Effect. It uses the kinematics of Compton scattering to contract

More information

CALIBRATION OF SCINTILLATION DETECTORS USING A DT GENERATOR Jarrod D. Edwards, Sara A. Pozzi, and John T. Mihalczo

CALIBRATION OF SCINTILLATION DETECTORS USING A DT GENERATOR Jarrod D. Edwards, Sara A. Pozzi, and John T. Mihalczo CALIBRATION OF SCINTILLATION DETECTORS USING A DT GENERATOR Jarrod D. Edwards, Sara A. Pozzi, and John T. Mihalczo Oak Ridge National Laboratory Oak Ridge, TN 37831-6010 PO Box 2008 Ms6010 ABSTRACT The

More information

TECHNICAL WORKING GROUP ITWG GUIDELINE ON IN-FIELD APPLICATIONS OF HIGH- RESOLUTION GAMMA SPECTROMETRY FOR ANALYSIS OF SPECIAL NUCLEAR MATERIAL

TECHNICAL WORKING GROUP ITWG GUIDELINE ON IN-FIELD APPLICATIONS OF HIGH- RESOLUTION GAMMA SPECTROMETRY FOR ANALYSIS OF SPECIAL NUCLEAR MATERIAL NUCLE A R FORENSIC S INTERN ATION A L TECHNICAL WORKING GROUP ITWG GUIDELINE ON IN-FIELD APPLICATIONS OF HIGH- RESOLUTION GAMMA SPECTROMETRY FOR ANALYSIS OF SPECIAL NUCLEAR MATERIAL This document was designed

More information

DETERMINATION OF CORRECTION FACTORS RELATED TO THE MANGANESE SULPHATE BATH TECHNIQUE

DETERMINATION OF CORRECTION FACTORS RELATED TO THE MANGANESE SULPHATE BATH TECHNIQUE DETERMINATION OF CORRECTION FACTORS RELATED TO THE MANGANESE SULPHATE BATH TECHNIQUE Ján Haščík, Branislav Vrban, Jakub Lüley, Štefan Čerba, Filip Osuský, Vladimír Nečas Slovak University of Technology

More information

High Precision Nondestructive Assay to Complement DA. H.O. Menlove, M.T. Swinhoe, and J.B. Marlow Los Alamos National Laboratory

High Precision Nondestructive Assay to Complement DA. H.O. Menlove, M.T. Swinhoe, and J.B. Marlow Los Alamos National Laboratory High Precision Nondestructive Assay to Complement DA H.O. Menlove, M.T. Swinhoe, and J.B. Marlow Los Alamos National Laboratory LA-UR-07-6857 Abstract Large scale spent fuel reprocessing plants and fuel

More information

Hands on LUNA: Detector Simulations with Geant4

Hands on LUNA: Detector Simulations with Geant4 : Detector Simulations with Geant4 Gran Sasso Science Institute E-mail: axel.boeltzig@gssi.infn.it Andreas Best Laboratori Nazionali del Gran Sasso E-mail: andreas.best@lngs.infn.it For the evaluation

More information

Distinguishing fissions of 232 Th, 237 Np and 238 U with beta-delayed gamma rays

Distinguishing fissions of 232 Th, 237 Np and 238 U with beta-delayed gamma rays Distinguishing fissions of 232, 237 and 238 with beta-delayed gamma rays A. Iyengar 1, E.B. Norman 1, C. Howard 1, C. Angell 1, A. Kaplan 1, J. J. Ressler 2, P. Chodash 1, E. Swanberg 1, A. Czeszumska

More information

NGN PhD Studentship Proposal

NGN PhD Studentship Proposal NGN PhD Studentship Proposal Note that proposals will be assessed against both the quality of the scientific content and of the proposed training experience. Proposed supervisors (lead first) Dr Laura

More information

Neutronics Experiments for ITER at JAERI/FNS

Neutronics Experiments for ITER at JAERI/FNS Neutronics Experiments for ITER at JAERI/FNS C. Konno 1), F. Maekawa 1), Y. Kasugai 1), Y. Uno 1), J. Kaneko 1), T. Nishitani 1), M. Wada 2), Y. Ikeda 1), H. Takeuchi 1) 1) Japan Atomic Energy Research

More information

Neutron Detector Gamma Insensitivity Criteria

Neutron Detector Gamma Insensitivity Criteria PNNL-18903 Neutron Detector Gamma Insensitivity Criteria RT Kouzes JR Ely AT Lintereur DL Stephens October 28, 2009 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the

More information

FISSILE MATERIALS DETECTION VIA NEUTRON DIFFERENTIAL DIE-AWAY TECHNIQUE

FISSILE MATERIALS DETECTION VIA NEUTRON DIFFERENTIAL DIE-AWAY TECHNIQUE Applications of Nuclear Techniques (CRETE13) International Journal of Modern Physics: Conference Series Vol. 27 (2014) 1460130 (8 pages) The Authors DOI: 10.1142/S2010194514601306 FISSILE MATERIALS DETECTION

More information

The basic structure of an atom is a positively charged nucleus composed of both protons and neutrons surrounded by negatively charged electrons.

The basic structure of an atom is a positively charged nucleus composed of both protons and neutrons surrounded by negatively charged electrons. 4.4 Atomic structure Ionising radiation is hazardous but can be very useful. Although radioactivity was discovered over a century ago, it took many nuclear physicists several decades to understand the

More information

Minimum Detectable Activity Estimates for a Germanium-Detector Based Spectroscopic Portal Monitor

Minimum Detectable Activity Estimates for a Germanium-Detector Based Spectroscopic Portal Monitor Log 121 Minimum Detectable Activity Estimates for a Germanium-Detector Based Spectroscopic Portal Monitor Ronald M. Keyser, Frank Sergent, Timothy R. Twomey, Daniel L. Upp ORTEC 801 South Illinois Avenue

More information

Gamma-Spectrum Generator

Gamma-Spectrum Generator 1st Advanced Training Course ITCM with NUCLEONICA, Karlsruhe, Germany, 22-24 April, 2009 1 Gamma-Spectrum Generator A.N. Berlizov ITU - Institute for Transuranium Elements Karlsruhe - Germany http://itu.jrc.ec.europa.eu/

More information

INSTRUMENTAL TECHNIQUE FOR THE DETECTION AND IDENTIFICATION OF RADIOACTIVE, FISSILE AND EXTRA HAZARDOUS SUBSTANCES

INSTRUMENTAL TECHNIQUE FOR THE DETECTION AND IDENTIFICATION OF RADIOACTIVE, FISSILE AND EXTRA HAZARDOUS SUBSTANCES 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China INSTRUMENTAL TECHNIQUE FOR THE DETECTION AND IDENTIFICATION OF RADIOACTIVE, FISSILE AND EXTRA HAZARDOUS SUBSTANCES Nikolay

More information

IPNDV Working Group 3: Technical Challenges and Solutions Nuclear Material (3) Technology Data Sheet

IPNDV Working Group 3: Technical Challenges and Solutions Nuclear Material (3) Technology Data Sheet Nuclear Material (NM) Technology Name: Gamma-Ray Imaging Physical Principle/Methodology of Technology: Gamma-ray imaging provides the location and shape information of gamma-ray emitting radionuclides.

More information

WM2014 Conference, March 2 6, 2014, Phoenix, Arizona, USA

WM2014 Conference, March 2 6, 2014, Phoenix, Arizona, USA Experimental Comparison between High Purity Germanium and Scintillator Detectors for Determining Burnup, Cooling Time and Decay Heat of Used Nuclear Fuel - 14488 Peter Jansson *, Sophie Grape *, Stephen

More information

Fast Neutron Imaging for SNM Detection

Fast Neutron Imaging for SNM Detection Fast Neutron Imaging for SNM Detection Victor Bom Delft University of Technology, The Netherlands Delft University of Technology, Faculty of Applied Physics Special Nuclear Materials Terrorist threat Detection

More information

Tandem Collimators System

Tandem Collimators System EFDA JET R(10)01 S. Soare, T. Craciunescu, M. Curuia and V. Zoita Tandem Collimators System COPYRIGHT ECSC/EEC/EURATOM, LUXEMBOURG 2010 Enquiries about Copyright and reproduction should be addressed to

More information

4.4.1 Atoms and isotopes The structure of an atom Mass number, atomic number and isotopes. Content

4.4.1 Atoms and isotopes The structure of an atom Mass number, atomic number and isotopes. Content 4.4 Atomic structure Ionising radiation is hazardous but can be very useful. Although radioactivity was discovered over a century ago, it took many nuclear physicists several decades to understand the

More information

Detection of Neutron Sources in Cargo Containers

Detection of Neutron Sources in Cargo Containers Science and Global Security, 14:145 149, 2006 Copyright C Taylor & Francis Group, LLC ISSN: 0892-9882 print / 1547-7800 online DOI: 10.1080/08929880600993063 Detection of Neutron Sources in Cargo Containers

More information

Use of Imaging for Nuclear Material Control and Accountability

Use of Imaging for Nuclear Material Control and Accountability Use of Imaging for Nuclear Material Control and Accountability James A. Mullens, Paul A. Hausladen, Philip Bingham, Daniel E Archer, Brandon Grogan, John T Mihalczo Oak Ridge National Laboratory Abstract

More information

EFFICIENCY CALIBRATION STUDIES FOR GAMMA SPECTROMETRIC SYSTEMS: THE INFLUENCE OF DIFFERENT PARAMETERS

EFFICIENCY CALIBRATION STUDIES FOR GAMMA SPECTROMETRIC SYSTEMS: THE INFLUENCE OF DIFFERENT PARAMETERS NUCLEAR PHYSICS EFFICIENCY CALIBRATION STUDIES FOR GAMMA SPECTROMETRIC SYSTEMS: THE INFLUENCE OF DIFFERENT PARAMETERS MAGDALENA TOMA 1, OCTAVIAN SIMA 2, CARMEN CRISTACHE 1, FELICIA DRAGOLICI 1, LAURENÞIU

More information

Investigation of pulse shapes and time constants for NaI scintillation pulses produced by low energy electrons from beta decay

Investigation of pulse shapes and time constants for NaI scintillation pulses produced by low energy electrons from beta decay 11 November 1999 Ž. Physics Letters B 467 1999 132 136 Investigation of pulse shapes and time constants for NaI scintillation pulses produced by low energy electrons from beta decay N.J.T. Smith a, P.F.

More information

ARTICLE IN PRESS. Nuclear Instruments and Methods in Physics Research A

ARTICLE IN PRESS. Nuclear Instruments and Methods in Physics Research A Nuclear Instruments and Methods in Physics Research A 604 (2009) 618 623 Contents lists available at ScienceDirect Nuclear Instruments and Methods in Physics Research A journal homepage: www.elsevier.com/locate/nima

More information

arxiv:nucl-ex/ v2 21 Jul 2005

arxiv:nucl-ex/ v2 21 Jul 2005 Gamma-spectrometric uranium age-dating using intrinsic efficiency calibration arxiv:nucl-ex/0506029v2 21 Jul 2005 Cong Tam Nguyen and József Zsigrai Institute of Isotopes of the Hungarian Academy of Sciences

More information

Activities of the neutron standardization. at the Korea Research Institute of Standards and Science (KRISS)

Activities of the neutron standardization. at the Korea Research Institute of Standards and Science (KRISS) Activities of the neutron standardization at the Korea Research Institute of Standards and Science (KRISS) I. Introduction The activities of neutron standardization in KRISS have been continued for last

More information

(Tandem Collimators for the Tangential GammaRay Spectrometer - KM6T-TC)

(Tandem Collimators for the Tangential GammaRay Spectrometer - KM6T-TC) 2009 Annual Report of the EURATOM-MEdC Association 188 Tandem Collimators System (Tandem Collimators for the Tangential GammaRay Spectrometer - KM6T-TC) S. Soare 1, T. Craciunescu 2, M. Curuia 1, V. Zoita

More information

DEVELOPMENT OF A REAL-TIME DETECTION STRATEGY FOR MATERIAL ACCOUNTANCY AND PROCESS MONITORING DURING

DEVELOPMENT OF A REAL-TIME DETECTION STRATEGY FOR MATERIAL ACCOUNTANCY AND PROCESS MONITORING DURING DEVELOPMENT OF A REAL-TIME DETECTION STRATEGY FOR MATERIAL ACCOUNTANCY AND PROCESS MONITORING DURING NUCLEAR FUEL REPROCESSING USING THE UREX+3A METHOD A Thesis by BRADEN GODDARD Submitted to the Office

More information

A Monte Carlo Simulation for Estimating of the Flux in a Novel Neutron Activation System using 252 Cf Source

A Monte Carlo Simulation for Estimating of the Flux in a Novel Neutron Activation System using 252 Cf Source IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 2278-4861.Volume 7, Issue 3 Ver. II (May. - Jun. 2015), PP 80-85 www.iosrjournals.org A Monte Carlo Simulation for Estimating of the Flux in a Novel Neutron

More information

CCD readout of GEM-based neutron detectors

CCD readout of GEM-based neutron detectors Nuclear Instruments and Methods in Physics Research A 478 (2002) 357 361 CCD readout of GEM-based neutron detectors F.A.F. Fraga a, *, L.M.S. Margato a, S.T.G. Fetal a, M.M.F.R. Fraga a, R. Ferreira Marques

More information

Collimated LaBr 3 detector response function in radioactivity analysis of nuclear waste drums

Collimated LaBr 3 detector response function in radioactivity analysis of nuclear waste drums Nuclear Science and Techniques 4 (13) 63 Collimated LaBr 3 detector response function in radioactivity analysis of nuclear waste drums QIAN Nan 1 WANG Dezhong 1,* WANG Chuan ZHU Yuelong MAUERHOFER Eric

More information

Improved modelling of the neutron source for neutron activation experiments

Improved modelling of the neutron source for neutron activation experiments Improved modelling of the neutron source for neutron activation experiments Steven Lilley, R Pampin, L Packer Neutronics and Nuclear Data Group NPL Neutron Users Club November 2011 CCFE is the fusion research

More information

Researchers at the University of Missouri-Columbia have designed a triple crystal

Researchers at the University of Missouri-Columbia have designed a triple crystal Childress, N. L. and W. H. Miller, MCNP Analysis and Optimization of a Triple Crystal Phoswich Detector, Nuclear Instruments and Methods, Section A, 490(1-2), 263-270 (Sept 1, 2002). Abstract Researchers

More information

Utilization of advanced clutter suppression algorithms for improved spectroscopic portal capability against radionuclide threats

Utilization of advanced clutter suppression algorithms for improved spectroscopic portal capability against radionuclide threats Physical Sciences Inc. VG13-158 Utilization of advanced clutter suppression algorithms for improved spectroscopic portal capability against radionuclide threats Bogdan R. Cosofret, Kirill Shokhirev and

More information

A Germanium Detector with Optimized Compton Veto for High Sensitivity at Low Energy

A Germanium Detector with Optimized Compton Veto for High Sensitivity at Low Energy LLNL-TR-518852 A Germanium Detector with Optimized Compton Veto for High Sensitivity at Low Energy S. Friedrich December 6, 2011 Disclaimer This document was prepared as an account of work sponsored by

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN 308 Angular dependence of 662 kev multiple backscattered gamma photons in Aluminium Ravindraswami K a, Kiran K U b, Eshwarappa K M b and Somashekarappa H M c* a St Aloysius College (Autonomous), Mangalore

More information

Virtual Gamma-ray Spectrometry for Template-Matching Nuclear Warhead Verification

Virtual Gamma-ray Spectrometry for Template-Matching Nuclear Warhead Verification Virtual Gamma-ray Spectrometry for Template-Matching Nuclear Warhead Verification Janet Schirm and Alexander Glaser Department of Mechanical and Aerospace Engineering Princeton University, Princeton, NJ

More information

DETECTORS. I. Charged Particle Detectors

DETECTORS. I. Charged Particle Detectors DETECTORS I. Charged Particle Detectors A. Scintillators B. Gas Detectors 1. Ionization Chambers 2. Proportional Counters 3. Avalanche detectors 4. Geiger-Muller counters 5. Spark detectors C. Solid State

More information

MC simulation of a PGNAA system for on-line cement analysis

MC simulation of a PGNAA system for on-line cement analysis Nuclear Science and Techniques 21 (2010) 221 226 MC simulation of a PGNAA system for on-line cement analysis YANG Jianbo 1 TUO Xianguo 1,* LI Zhe 1 MU Keliang 2 CHENG Yi 1 MOU Yunfeng 3 1 State Key Laboratory

More information

ARTICLE IN PRESS. Nuclear Instruments and Methods in Physics Research A

ARTICLE IN PRESS. Nuclear Instruments and Methods in Physics Research A Nuclear Instruments and Methods in Physics Research A ] (]]]]) ]]] ]]] Contents lists available at ScienceDirect Nuclear Instruments and Methods in Physics Research A journal homepage: www.elsevier.com/locate/nima

More information

General Overview of Radiation Detection and Equipment

General Overview of Radiation Detection and Equipment www.inl.gov INL/MIS-11-22727 General Overview of Radiation Detection and Equipment International Nuclear Safeguards Policy and Information Analysis Course Monterey Institute of International Studies June

More information

Seaborg s Plutonium?

Seaborg s Plutonium? Seaborg s Plutonium? Eric B. Norman, Keenan J. Thomas, Kristina E. Telhami* Department of Nuclear Engineering University of California Berkeley, CA 94720 Abstract Passive x-ray and gamma ray analysis was

More information

Thin Calorimetry for Cosmic-Ray Studies Outside the Earth s Atmosphere. 1 Introduction

Thin Calorimetry for Cosmic-Ray Studies Outside the Earth s Atmosphere. 1 Introduction Thin Calorimetry for Cosmic-Ray Studies Outside the Earth s Atmosphere Richard WIGMANS Department of Physics, Texas Tech University, Lubbock TX 79409-1051, USA (wigmans@ttu.edu) Abstract Cosmic ray experiments

More information

Single Channel Beta-Gamma Coincidence Detection of Radioactive Xenon Using Digital Pulse Shape Analysis of Phoswich Detector Signals

Single Channel Beta-Gamma Coincidence Detection of Radioactive Xenon Using Digital Pulse Shape Analysis of Phoswich Detector Signals Single Channel Beta-Gamma Coincidence Detection of Radioactive Xenon Using Digital Pulse Shape Analysis of Phoswich Detector Signals Wolfgang Hennig, Hui Tan, William K Warburton, and Justin I McIntyre

More information

WM2018 Conference, March 18-22, 2018, Phoenix, Arizona, USA. PVT and LaBr3(Ce)-based Radon Express Analyzers 18164

WM2018 Conference, March 18-22, 2018, Phoenix, Arizona, USA. PVT and LaBr3(Ce)-based Radon Express Analyzers 18164 PVT and LaBr3(Ce)-based Radon Express Analyzers 864 Vladislav Kondrashov *, Stephen Steranka* and Glenn Paulson** * RadComm Systems Corp. 293 Portland Dr, Oakville, Ontario L6H 5S4, CANADA ** Paulson and

More information

28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies DESIGN OF A PHOSWICH WELL DETECTOR FOR RADIOXENON MONITORING

28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies DESIGN OF A PHOSWICH WELL DETECTOR FOR RADIOXENON MONITORING DESIGN OF A PHOSWICH WELL DETECTOR FOR RADIOXENON MONITORING W. Hennig 1, H. Tan 1, A. Fallu-Labruyere 1, W. K. Warburton 1, J. I. McIntyre 2, A. Gleyzer 3 XIA, LLC 1, Pacific Northwest National Laboratory

More information

Integrated Waste Assay System (IWAS)

Integrated Waste Assay System (IWAS) Features Combines multiple assay techniques Quantitative and isotopic gamma-ray analysis Passive neutron multiplicity coincidence counting Active neutron interrogation using Differential Die-Away Technique

More information

Chem 481 Lecture Material 3/20/09

Chem 481 Lecture Material 3/20/09 Chem 481 Lecture Material 3/20/09 Radiation Detection and Measurement Semiconductor Detectors The electrons in a sample of silicon are each bound to specific silicon atoms (occupy the valence band). If

More information

Studies of the XENON100 Electromagnetic Background

Studies of the XENON100 Electromagnetic Background Studies of the XENON100 Electromagnetic Background Daniel Mayani Physik-Institut University of Zurich PhD Seminar PSI, August 26-27, 2015 Searching for elusive particles The main challenge for experiments

More information

arxiv: v1 [physics.ins-det] 29 Jun 2011

arxiv: v1 [physics.ins-det] 29 Jun 2011 Investigation of Large LGB Detectors for Antineutrino Detection P. Nelson a,, N. S. Bowden b, a Department of Physics, Naval Postgraduate School, Monterey, CA 99, USA b Lawrence Livermore National Laboratory,

More information

VIRTUAL GAMMA-RAY SPECTROMETRY FOR TEMPLATE-MATCHING NUCLEAR WARHEAD VERIFICATION. Janet Schirm and Alexander Glaser

VIRTUAL GAMMA-RAY SPECTROMETRY FOR TEMPLATE-MATCHING NUCLEAR WARHEAD VERIFICATION. Janet Schirm and Alexander Glaser VIRTUAL GAMMA-RAY SPECTROMETRY FOR TEMPLATE-MATCHING NUCLEAR WARHEAD VERIFICATION Janet Schirm and Alexander Glaser 56th INMM Meeting, Indian Wells, California, July 2015 BACKGROUND PASSIVE GAMMA SPECTROMETRY

More information

Recent improvements in on-site detection and identification of radioactive and nuclear material

Recent improvements in on-site detection and identification of radioactive and nuclear material Recent improvements in on-site detection and identification of radioactive and nuclear material Wolfgang Rosenstock Co-authors: Theo Köble, Wolfram Berky, Hermann Friedrich, Monika Risse and Sebastian

More information

Neutron Dose near Spent Nuclear Fuel and HAW after the 2007 ICRP Recommendations

Neutron Dose near Spent Nuclear Fuel and HAW after the 2007 ICRP Recommendations Neutron Dose near Spent Nuclear Fuel and HAW after the 2007 ICRP Recommendations Gunter Pretzsch Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbh Radiation and Environmental Protection Division

More information

University of Southampton Research Repository eprints Soton

University of Southampton Research Repository eprints Soton University of Southampton Research Repository eprints Soton Copyright and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial

More information

Calibration of the GNU and HSREM neutron survey instruments

Calibration of the GNU and HSREM neutron survey instruments Calibration of the GNU and HSREM neutron survey instruments Neutron Users Club Meeting National Physical Laboratory 20 th October 2015 J. S. Eakins 1, L. G. Hager 1, J. W. Leake 2, R. S. Mason 2 and R.

More information

Fissile material experiments at the Device Assembly Facility

Fissile material experiments at the Device Assembly Facility Fissile material experiments at the Device Assembly Facility CVT Workshop October 20, 2016 Michael Hamel 1, Pete Chapman 2, Michael Streicher 1 1 University of Michigan 2 North Carolina State University

More information

Shielded Scintillator for Neutron Characterization

Shielded Scintillator for Neutron Characterization Shielded Scintillator for Neutron Characterization A Thesis Submitted in Partial Fulfillment of the Requirements for Graduation with Research Distinction in Engineering Physics By Patrick X. Belancourt

More information

Simple Experimental Design for Calculation of Neutron Removal Cross Sections K. Groves 1 1) McMaster University, 1280 Main St. W, Hamilton, Canada.

Simple Experimental Design for Calculation of Neutron Removal Cross Sections K. Groves 1 1) McMaster University, 1280 Main St. W, Hamilton, Canada. Simple Experimental Design for Calculation of Neutron Removal Cross Sections K. Groves 1 1) McMaster University, 1280 Main St. W, Hamilton, Canada. (Dated: 5 August 2017) This article proposes an experimental

More information

Detection of Highly Enriched Uranium Using a Pulsed IEC Fusion Device

Detection of Highly Enriched Uranium Using a Pulsed IEC Fusion Device Detection of Highly Enriched Uranium Using a Pulsed IEC Fusion Device R.F. Radel, R.P. Ashley, G.L. Kulcinski, and the UW-IEC Team US-Japan Workshop May 23, 2007 Outline Motivation for pulsed IEC research

More information

Measurements with the new PHE Neutron Survey Instrument

Measurements with the new PHE Neutron Survey Instrument Measurements with the new PHE Neutron Survey Instrument Neutron Users Club Meeting National Physical Laboratory 16 th October 2013 Jon Eakins, Rick Tanner and Luke Hager Centre for Radiation, Chemicals

More information

Neutron Multiplicity Counting for Future Verification Missions: Bias When the Sample Configuration Remains Unknown

Neutron Multiplicity Counting for Future Verification Missions: Bias When the Sample Configuration Remains Unknown Neutron Multiplicity Counting for Future Verification Missions: Bias When the Sample Configuration Remains Unknown Malte Göttsche 1, Gerald Kirchner 1 1 University of Hamburg Centre for Science and Peace

More information

WM2013 Conference, February 24 28, 2013, Phoenix, Arizona, USA

WM2013 Conference, February 24 28, 2013, Phoenix, Arizona, USA The Underwater Spectrometric System Based on CZT Detector for Survey of the Bottom of MR Reactor Pool 13461 Victor Potapov, Alexey Safronov, Oleg Ivanov, Sergey Smirnov, Vyacheslav Stepanov National Research

More information

Geant4 Monte Carlo code application in photon interaction parameter of composite materials and comparison with XCOM and experimental data

Geant4 Monte Carlo code application in photon interaction parameter of composite materials and comparison with XCOM and experimental data Indian Journal of Pure & Applied Physics Vol. 54, Februray 2016, pp. 137-143 Geant4 Monte Carlo code application in photon interaction parameter of composite materials and comparison with XCOM and experimental

More information

The use of Cosmic-Rays in Detecting Illicit Nuclear Materials

The use of Cosmic-Rays in Detecting Illicit Nuclear Materials The use of Cosmic-Rays in Detecting Illicit Nuclear Materials Timothy Benjamin Blackwell Department of Physics and Astronomy University of Sheffield This dissertation is submitted for the degree of Doctor

More information

1 cm. Cu electrode. Ge crystal. end cap. Dead layer. crystal cup

1 cm. Cu electrode. Ge crystal. end cap. Dead layer. crystal cup Proceedings of the Ninth EGS4 Users' Meeting in Japan, KEK Proceedings 2001-22, p.30-36 APPLICATION OF Ge SEMI-CONDUCTOR DETECTOR TO WHOLE-BODY COUNTER S. Kinase 1 2, H. Noguchi 1 and T. Nakamura 2 1 Japan

More information

Background Reduction Using Collimators on a Portable HPGe Nuclide Identifier

Background Reduction Using Collimators on a Portable HPGe Nuclide Identifier Background Reduction Using Collimators on a Portable HPGe Nuclide Identifier Ronald M. Keyser ORTEC, 801 South Illinois Avenue, Oak Ridge, TN 37831 ABSTRACT The portable germanium detector based HHRIDs

More information

ITWG - A Platform for International Cooperation in Nuclear Forensics

ITWG - A Platform for International Cooperation in Nuclear Forensics ITWG - A Platform for International Cooperation in Nuclear Forensics David K. Smith, Klaus Mayer, Tamas Biro, Bernard Chartier, Bruno Jouniaux, Paul Thompson, Carey Larsson, Michael Kristo, and Richard

More information

DEVELOPMENT OF NEUTRON INTERROGATION TECHNIQUES TO DETECT DANGEROUS SUBSTANCES

DEVELOPMENT OF NEUTRON INTERROGATION TECHNIQUES TO DETECT DANGEROUS SUBSTANCES DEVELOPMENT OF NEUTRON INTERROGATION TECHNIQUES TO DETECT DANGEROUS SUBSTANCES Natalia M. B. D Amico, Ing. Roberto E. Mayer, Dr. Balseiro Institute, Bariloche Atomic Center, CNEA, Argentina National University

More information

FRAM V5.2. Plutonium and Uranium Isotopic Analysis Software

FRAM V5.2. Plutonium and Uranium Isotopic Analysis Software V5.2 Plutonium and Uranium Isotopic Analysis Software Advanced Isotopic Ratio Analysis Software for HPGe Gamma-Ray Spectra Analyzes Pu, and a wide variety of heterogeneous samples containing Pu, Am, U,

More information

Effect of Cosmic-ray Shielding in Passive Neutron Coincidence Counting

Effect of Cosmic-ray Shielding in Passive Neutron Coincidence Counting Effect of Cosmic-ray Shielding in Passive Neutron Coincidence Counting E. Alvarez, C.G. Wilkins CANBERRA Harwell Ltd. B528.10 Unit 1, Harwell International Business Centre, Didcot, Oxfordshire, OX11 0TA

More information

Detection of Nuclear Weapons and Materials: Science, Technologies, Observations

Detection of Nuclear Weapons and Materials: Science, Technologies, Observations Detection of Nuclear Weapons and Materials: Science, Technologies, Observations Jonathan Medalia Specialist in Nuclear Weapons Policy August 4, 2009 Congressional Research Service CRS Report for Congress

More information

Illicit trafficking in nuclear and radioactive materials and nuclear terrorism

Illicit trafficking in nuclear and radioactive materials and nuclear terrorism Illicit trafficking in nuclear and radioactive materials and nuclear terrorism Elena K. Sokova James Martin Center for Nonproliferation Studies Middlebury Institute of International Studies at Monterey

More information

Coordinated Research Project on Photonuclear Data and Photon Strength Functions Approved in July 2015; Code F41032; Duration 2016 t 2020.

Coordinated Research Project on Photonuclear Data and Photon Strength Functions Approved in July 2015; Code F41032; Duration 2016 t 2020. Coordinated Research Project on Photonuclear Data and Photon Strength Functions Approved in July 2015; Code F41032; Duration 2016 t 2020. Photon nuclear data describing interactions of photons with atomic

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN 316 Effective atomic number of composite materials by Compton scattering - nondestructive evaluation method Kiran K U a, Ravindraswami K b, Eshwarappa K M a and Somashekarappa H M c* a Government Science

More information

Experimental Studies on the Self-Shielding Effect in Fissile Fuel Breeding Measurement in Thorium Oxide Pellets Irradiated with 14 MeV Neutrons

Experimental Studies on the Self-Shielding Effect in Fissile Fuel Breeding Measurement in Thorium Oxide Pellets Irradiated with 14 MeV Neutrons Plasma Science and Technology, Vol.5, No.2, Feb. 20 Experimental Studies on the Self-Shielding Effect in Fissile Fuel Breeding Measurement in Thorium Oxide Pellets Irradiated with 4 MeV Neutrons Mitul

More information

Modular Survey Spectrometer and Compton Imager

Modular Survey Spectrometer and Compton Imager 1 Modular Survey Spectrometer and Compton Imager Audrey MacLeod Ionizing Radiation Standards Measurement Science and Standards National Research Council Canada On behalf of the SCoTSS collaboration (Silicon

More information

Chapter 10. Answers to examination-style questions. Answers Marks Examiner s tips. 1 (a) (i) 238. (ii) β particle(s) 1 Electron antineutrinos 1

Chapter 10. Answers to examination-style questions. Answers Marks Examiner s tips. 1 (a) (i) 238. (ii) β particle(s) 1 Electron antineutrinos 1 (a) (i) 238 92 U + 0 n 239 92 U (ii) β particle(s) Electron antineutrinos (b) For: Natural uranium is 98% uranium-238 which would be otherwise unused. Plutonium-239 would not need to be stored long-term

More information

INTERNATIONAL ATOMIC ENERGY AGENCY PROGRAM FOR DETECTION OF ILLICIT MATERIALS

INTERNATIONAL ATOMIC ENERGY AGENCY PROGRAM FOR DETECTION OF ILLICIT MATERIALS INTERNATIONAL ATOMIC ENERGY AGENCY PROGRAM FOR DETECTION OF ILLICIT MATERIALS F. Mulhauser,, K. Baird, P. Colgan, N. Dytlewski, M. Gregoric, and M. Zendel International Atomic Energy Agency Wagramer Strasse

More information

Interactive Web Accessible Gamma-Spectrum Generator & EasyMonteCarlo Tools

Interactive Web Accessible Gamma-Spectrum Generator & EasyMonteCarlo Tools 10th Nuclear Science Training Course with NUCLEONICA, Cesme, Turkey, 8-10 October, 2008 1 Interactive Web Accessible Gamma-Spectrum Generator & EasyMonteCarlo Tools A.N. Berlizov ITU - Institute for Transuranium

More information

Stand-off Nuclear Radiation Detection

Stand-off Nuclear Radiation Detection Stand-off Nuclear Radiation Detection Peter E. Vanier Detector Development and Testing Div. Nonproliferation and National Security Dept. Brookhaven National Laboratory Brookhaven Science Associates U.S.

More information

Pulsed Neutron Interrogation Test Assembly - PUNITA

Pulsed Neutron Interrogation Test Assembly - PUNITA Pulsed Neutron Interrogation Test Assembly - PUNITA Bent Pedersen Nuclear Security Unit Institute for Transuranium Elements - ITU Joint Research Centre presented at IPNDV WG3 meeting, 12-13 May 2016 JRC,

More information

This is a repository copy of Characteristics of alpha, gamma and nuclear recoil pulses from NaI(Tl) at kev relevant to dark matter searches.

This is a repository copy of Characteristics of alpha, gamma and nuclear recoil pulses from NaI(Tl) at kev relevant to dark matter searches. This is a repository copy of Characteristics of alpha, gamma and nuclear recoil pulses from NaI(Tl) at 10-100 kev relevant to dark matter searches. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/122082/

More information

Comparison of the Photo-peak Efficiencies between the Experimental Data of 137 Cs Radioactive Source with Monte Carlo (MC) Simulation Data

Comparison of the Photo-peak Efficiencies between the Experimental Data of 137 Cs Radioactive Source with Monte Carlo (MC) Simulation Data International Journal of Advanced Research in Physical Science (IJARPS) Volume 5, Issue 10, 2018, PP 24-28 ISSN No. (Online) 2349-7882 www.arcjournals.org Comparison of the Photo-peak Efficiencies between

More information

Physics/Global Studies 280 Nuclear Weapons, Nuclear War, and Arms Control. Midterm Examination March 15

Physics/Global Studies 280 Nuclear Weapons, Nuclear War, and Arms Control. Midterm Examination March 15 Physics/Global Studies 280 Nuclear Weapons, Nuclear War, and Arms Control Midterm Examination 2012 March 15 Full Name UIUC ID. Lab. This is a closed book examination you are not to consult any materials

More information

The Advanced Gamma Ray Tracking Array AGATA

The Advanced Gamma Ray Tracking Array AGATA Nuclear Physics A 746 (2004) 248c 254c The Advanced Gamma Ray Tracking Array AGATA Dino Bazzacco a a INFN, Sezione di Padova, Via Marzolo 8, I 35131 Padova, Italy On behalf of the AGATA collaboration New

More information

Detection efficiency of a BEGe detector using the Monte Carlo method and a comparison to other calibration methods. Abstract

Detection efficiency of a BEGe detector using the Monte Carlo method and a comparison to other calibration methods. Abstract Detection efficiency of a BEGe detector using the Monte Carlo method and a comparison to other calibration methods N. Stefanakis 1 1 GMA Gamma measurements and analyses e.k. PO Box 1611, 72706 Reutlingen,

More information

nuclear material in cargo containers via active neutron interrogation

nuclear material in cargo containers via active neutron interrogation Eric B. Norman Lawrence Livermore National Laboratory Eric B. Norman Lawrence Livermore National Laboratory Detecting well-shielded nuclear material in cargo containers via active neutron interrogation

More information