FISSILE MATERIALS DETECTION VIA NEUTRON DIFFERENTIAL DIE-AWAY TECHNIQUE

Size: px
Start display at page:

Download "FISSILE MATERIALS DETECTION VIA NEUTRON DIFFERENTIAL DIE-AWAY TECHNIQUE"

Transcription

1 Applications of Nuclear Techniques (CRETE13) International Journal of Modern Physics: Conference Series Vol. 27 (2014) (8 pages) The Authors DOI: /S FISSILE MATERIALS DETECTION VIA NEUTRON DIFFERENTIAL DIE-AWAY TECHNIQUE V. F. BATYAEV, O. V. BOCHKAREV, S. V. SKLYAROV All-Russia Research Institute of Automatics (VNIIA), Moscow , Russia Published 25 February 2014 This work is devoted to the differential die-away technique that is widely used for active detection of fissile materials via pulsed neutron generators. The technique allows direct detection of milligram quantities of uranium-235 and plutonium-239 in objects with volumes up to several cubic meters. Our group has demonstrated this technique, creating a special installation based on the commercially produced ING-07T pulsed neutron generator. The installation includes eight proportional 3 Не-counters mounted inside a polyethylene moderator with a cadmium filter, as well as a polyethylene chamber into which a 70-liter container is loaded for inspection. Preliminary testing showed that the minimum detectable mass of unshielded uranium-235 is ~3 mg, using a n/s neutron yield and 8 min measurement time. When the container is filled with neutron absorbing materials, e.g., iron, the minimum detectable mass increases to ~30 mg. Use of borated screens further increases the minimum mass that can be detected. The tested installation and/or its modifications can be used for control and detection of fissile materials in various applications from luggage inspection to control containers with nuclear fuel cycle radioactive wastes. Keywords: Differential die-away technique; neutron generator; 235 U and 239 Pu content in closed waste containers. 1. Introduction Measuring the amount of special nuclear material (SNM) is an important challenge, needed for material control and accountability purposes, radiation safety and criticality issues at nuclear installations, radioactive waste management sites, and for the containment and security of SNM. The mission to control SNM in waste containers from nuclear production is quite specific. It is complicated to implement non-destructive assay in practice, due to the presence of matrix materials with unknown type and density in sealed containers. Passive gamma-spectrometric measurements can have large errors due to shielding of low-energy gamma-rays emitted naturally from 235 U and 239 Pu in SNM and matrix materials. For this problem, it is appropriate to use active control techniques with external neutron sources that produce more penetrating radiation compared to This is an Open Access article published by World Scientific Publishing Company. It is distributed under the terms of the Creative Commons Attribution 3.0 (CC-BY) License. Further distribution of this work is permitted, provided the original work is properly cited

2 V. F. Batyaev, O. V. Bochkarev & S. V. Sklyarov naturally emitted gamma-rays. This reduces the issue of self-shielding and results in more informative and sensitive systems for the control of SNM, such as 235 U and 239 Pu. 2. SNM Detection Technique and its Design Realization at VNIIA The base configuration of the nuclear waste control set-up was fabricated at VNIIA in This set-up consists of a hollow polyethylene cube with built-in 3 He counters located inside cadmium screens (Fig. 1). The set-up configuration corresponds to the fission neutron measurement technique known as differential die-away. 1-2 When a pulsed neutron source is used, the time distribution of rates in the 3 He counters is described by: 3 Ф(t) = А ехр(-αt) + B ехр(-βt) + C, (1) where t is the time after the fast neutron pulse. The first term in Eq. (1) corresponds to neutrons emitted from the neutron source and partly to the epicadmium neutrons, while the second term corresponds to the 235 U fissions induced by thermal neutrons. The third term C arises from the sum of responses from delayed neutrons, spontaneous fission neutrons of various nuclides and neutrons produced in (,n) reactions. The parameters and are time constants of thermal neutron die-away rates, which depend on properties of the moderator, inside and outside of the cadmium screen, respectively. For the parameter, such properties include polyethylene dimensions and geometry, as well as the physics of neutron interactions in the container and the materials inside. Selection of these parameters (described in our previous simulation studies 3 ) allowed us to achieve reliably distinguishable exponents in Eq. (1) and optimal sensitivity of to the type and quantity of material inside the container. D-T Horizontal cross section Container 235 U with matrix D-T Vertical cross section lid Container 235 U with matrix bottom Polyethylene 3 He-counters inside polyethylene assemblies covered by Cd (8 units) 160 liter cavity 45x45x80cm 70 liter container 35x35x60cm Fig. 1. Chart of nuclear waste control set-up. The fabricated set-up uses the VNIIA-produced ING-07Т pulsed neutron generator that provides 14 MeV neutrons with maximum neutron yield of ~10 9 n/s, pulse frequency adjustable within the range of 0.4 to 10 khz and pulse duration from 20 to 100 µs. The

3 Fissile Materials Detection via Neutron Differential Die-away design of the system also allows installation of an alternative neutron pulse generator with higher neutron yield. A 70 liter steel container with matrix simulants and uranium samples is loaded into the chamber from the top through a removable polyethylene lid. Signals from the 3 Не counters are processed with a 128-channel time analyzer connected to a remote laptop. Fig. 2. System for active neutron measurement of SNM amount in waste of nuclear production. 3. Experiments and Data Analysis To model the matrix elements of a container, graphite bars, steel L-bars and polyethylene plates of various sizes were fabricated and placed inside the container. Moreover, the central part of the AT-400R container with a boron nitride hollow sphere inside was used to simulate a highly-absorbing neutron material. To model SNM, depleted and enriched uranium samples were used with a 235 U mass of 0.35 to 26 g. In total, we performed several dozen measurements of the time distribution of the 3 He counter rates for cases of different mass SNM samples placed inside the container filled with different matrix simulants. Each measurement lasted 8 to 15 minutes and used n/s yield of 14 MeV neutrons from the ING-07T generator operating on 400 Hz frequency. Figure 3 shows some examples of measured rate distributions as a function of time after the neutron pulse. The ratio of fission neutron response to source neutron response can be an informative parameter, since it depends on amount of 235 U present, but does not depend on the neutron generator yield. The ratio of the amplitudes B/A in the two exponential terms in Eq. (1) can be used as such a parameter. The measured relationships of В/А to the amount of 235 U can be regarded as calibration curves of the given set-up for different matrix types and densities and so can be further used to determine the 235 U amount in controlled containers. A set of such calibration curves is shown in Fig

4 V. F. Batyaev, O. V. Bochkarev & S. V. Sklyarov Fig. 3. Time distributions of fission neutrons responses for 235 U samples in an empty container (no matrix) for an 8 minute measurement time and n/s neutron yield. Fig. 4. Calibration relationship of В/А to mass of 235 U located in the container center. Extrapolating the measured experimental data towards the lower values, the minimum detectable SNM mass for various matrix materials in the container can be identified. Figure 5 illustrates such extrapolation towards the double error values for the respective background measurements (based on the Neyman Pearson lemma 4 ). The minimum detectable masses obtained in such a way correspond to a 0.84 detection probability and a 0.16 probability of false alarm. To get higher detection probabilities, one needs to use higher quantiles of background uncertainty providing thereby higher values of minimum

5 Fissile Materials Detection via Neutron Differential Die-away detectable masses. For instance, the minimum detectable masses would be 1.7 and 2.6 times higher in the case of 0.95 and 0.99 detection probabilities, respectively. A unified power function of the form B/A=k m 0.9, where m is mass, k is a proportionality coefficient for each matrix, was selected to approximate the curves for the experimental data. The results of this procedure are presented in Table 1. B/A - B/A (background), E-3 Graphite 0.62g/cm 3 Graphite 0.31g/cm 3 No matrix Fe 0.95g/cm 3 Fe 1.59g/cm 3 Depleted U in Boron sphere (C/A) 2σ of backgrounds U mass, g Fig. 5. Extrapolation of experimental data to assess the minimum detectable SNM mass for various matrix materials in container. The data obtained with the 0.16 g/cm 3 polyethylene matrix are not shown since they are close to the 0.62 g/cm 3 graphite data. Table 1. Minimum detectable mass of SNM (extrapolation). # Matrix type 235 U minimum detectable mass (mg) 1 No matrix 4.3 ± Polyethylene 0.16g/cm ± Graphite 0.31 g/cm ± Graphite 0.62 g/cm ± Iron 0.95 g/cm 3 25 ± 9 6 Iron 1.59 g/cm 3 32 ± 11 7 AT-400R container 75 ± 25 (in depleted uranium) E-3 1E-4 C/A, 10-2 As the result of further processing of the experimental data, the information parameter В/А was determined as a function of not only the SNM mass but also the SNM location inside the container. In particular, В/А was measured when a 235 U sample moves inside the container vertically (Fig. 6), along (Fig. 7) and across (Fig. 8) the ING-07 axis

6 V. F. Batyaev, O. V. Bochkarev & S. V. Sklyarov Fig. 6. В/А parameter vs. position of SNM along the height of the container for different matrices. Fig.7. Function of В/А vs. SNM position along the ING07 axis. The distributions presented in Figs. 6 to 8 are determined by: Limited length of 3 He counters and physical features of the matrix materials used in the case of the vertical distribution (Fig. 6); Dependence of the thermal neutron field center location on the type of matrix in the case of the longitudinal distribution (Fig. 7); and Symmetry of counter locations over the longitudinal axis, thereby providing a practically stable lateral distribution (Fig. 8) of summed rates of 3 He counters

7 Fissile Materials Detection via Neutron Differential Die-away Fig. 8. Function of В/А vs. SNM position across the ING07 axis (no matrix in the container). The observed longitudinal and lateral distributions (Figs. 7 and 8) prove a possibility of using individual rates of 3 He counters to determine the horizontal coordinates of SNM location in a container. Determination of the SNM vertical position is not possible without having 3 He counters in the bottom and the lid of the set-up. The experiments have also indicated that the time constant β of the thermal neutron fission response die-away rate depends only on the type and density of matrix and is almost constant over the range of measured uranium mass (Fig. 9). This can be used to determine the type of matrix without additional measurements and apply the appropriate calibration dependence to measure SNM mass. Fig. 9. Function of time constant β vs. SNM mass and various matrices. Lines indicate the averaged values for this type of matrix

8 V. F. Batyaev, O. V. Bochkarev & S. V. Sklyarov 4. Conclusion The technique and experimental set-up for active neutron measurement of the amount of SNM in medium size containers have been tested. Use of a pulsed neutron generator combined with the differential neutron die-away technique allows high sensitivity detection of SNM responses from nuclear production waste in containers without opening them. In the absence of neutron-absorbing materials in a container, the minimum detectable SNM mass is g of 235 U for measurement times of 8 to 15 min. In the case where such materials are present, the minimum detectable mass can be higher by an order of magnitude or more. We presented results only for 235 U because we had no possibility to measure 239 Pu in our lab. However, we consider that a 239 Pu measurement would be more accurate, providing thereby a lower minimum detectable mass due to the higher thermal neutron fission cross-sections of 239 Pu as compared to 235 U. The experiments prove that it is possible to identify the type of matrix without opening a container. The type and density of matrix material are determined by the time constant β of the thermal neutron die-away rate in a container, and the constant itself is almost unaffected by SNM mass. In turn, determining the matrix type and density allows one to choose the appropriate calibration curve of counting rate versus amount of 235 U and to reach reliable accuracies of measuring SNM in containers. The novelty of our work is that we can detect milligram quantities of 235 U using only eight 3 He counters. Most similar assay systems use many more counters (see Ref. 5, for example). In addition, we have obtained longitudinal and lateral distributions to prove it is possible to use the individual rates of 3 He counters to determine the horizontal coordinates of the location of SNM in a container. The results obtained can be used for designing a bigger experimental system (e.g., for assay of 200 liter drums containing nuclear production waste), as well as for measuring the remaining quantity of SNM in spent fuel assemblies and other types of containers where materials fissionable with thermal neutrons are or may be present. References 1. W. Rotter, Annals of Nuclear Science and Engineering 1(7 8), 451 (1974). 2. Kelly A. Jordan and Tsahi Gozani, Nucl. Instr. Meth. Phys. Res. B 261, 365 (2007). 3. Yury N. Barmakov, Evgeny P. Bogolyubov, Oleg V. Bochkarev, Yury G. Polkanov, Vadim L. Romodanov and Dina N. Chernikova, Int. J. Nuclear Energy Science and Technology 6(2), 127 (2011). 4. Yu. V. Prokhorov, ed., Probability and Mathematical Statistics Encyclopedia ( Great Russian Encyclopedia Publishing House, 1999). 5. A.-C. Raoux, J. Loridon, A. Mariani and C. Passard, Nucl. Instr. Meth. Phys. Res. B 266, 4837 (2008)

Pulsed Neutron Interrogation Test Assembly - PUNITA

Pulsed Neutron Interrogation Test Assembly - PUNITA Pulsed Neutron Interrogation Test Assembly - PUNITA Bent Pedersen Nuclear Security Unit Institute for Transuranium Elements - ITU Joint Research Centre presented at IPNDV WG3 meeting, 12-13 May 2016 JRC,

More information

Photoneutron Interrogation of Uranium Samples by a 4 MeV LINAC. A Feasibility Study

Photoneutron Interrogation of Uranium Samples by a 4 MeV LINAC. A Feasibility Study Photoneutron Interrogation of Uranium Samples by a 4 MeV LINAC. A Feasibility Study L. Lakosi, C. T. Nguyen, J. Bagi Institute of Isotopes, Hungarian Academy of Sciences P. O. Box 77, H-1525 Budapest,

More information

Effect of Cosmic-ray Shielding in Passive Neutron Coincidence Counting

Effect of Cosmic-ray Shielding in Passive Neutron Coincidence Counting Effect of Cosmic-ray Shielding in Passive Neutron Coincidence Counting E. Alvarez, C.G. Wilkins CANBERRA Harwell Ltd. B528.10 Unit 1, Harwell International Business Centre, Didcot, Oxfordshire, OX11 0TA

More information

Verification measurements of alpha active waste

Verification measurements of alpha active waste Verification measurements of alpha active waste Bent Pedersen Nuclear Security Unit Institute for Transuranium Elements (ITU), JRC Operational Issues in Radioactive Waste Management and Nuclear Decommissioning

More information

Verification measurements of alpha active waste

Verification measurements of alpha active waste Verification measurements of alpha active waste Bent Pedersen Nuclear Security Unit Directorate Nuclear Safety and Security JRC 9th Edition of the International Summer School on Nuclear Decommissioning

More information

High Precision Nondestructive Assay to Complement DA. H.O. Menlove, M.T. Swinhoe, and J.B. Marlow Los Alamos National Laboratory

High Precision Nondestructive Assay to Complement DA. H.O. Menlove, M.T. Swinhoe, and J.B. Marlow Los Alamos National Laboratory High Precision Nondestructive Assay to Complement DA H.O. Menlove, M.T. Swinhoe, and J.B. Marlow Los Alamos National Laboratory LA-UR-07-6857 Abstract Large scale spent fuel reprocessing plants and fuel

More information

Digital simulation of neutron and gamma measurement devices

Digital simulation of neutron and gamma measurement devices 3Security of radioactive materials and transport 3 2 Digital simulation of neutron and gamma measurement devices A.-L. WEBER (IRSN) 1 - Maximum activity that a radioactive element can present without being

More information

INSTRUMENTAL TECHNIQUE FOR THE DETECTION AND IDENTIFICATION OF RADIOACTIVE, FISSILE AND EXTRA HAZARDOUS SUBSTANCES

INSTRUMENTAL TECHNIQUE FOR THE DETECTION AND IDENTIFICATION OF RADIOACTIVE, FISSILE AND EXTRA HAZARDOUS SUBSTANCES 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China INSTRUMENTAL TECHNIQUE FOR THE DETECTION AND IDENTIFICATION OF RADIOACTIVE, FISSILE AND EXTRA HAZARDOUS SUBSTANCES Nikolay

More information

Active Mode Calibration of the Combined Thermal Epithermal Neutron (CTEN) System

Active Mode Calibration of the Combined Thermal Epithermal Neutron (CTEN) System Active Mode Calibration of the Combined Thermal Epithermal Neutron (CTEN) System John M. Veilleux Los Alamos National Laboratory, Los Alamos, NM 87545, email: veilleux@lanl.gov October 2, 21 ABSTRACT The

More information

Neutron and Gamma Ray Imaging for Nuclear Materials Identification

Neutron and Gamma Ray Imaging for Nuclear Materials Identification Neutron and Gamma Ray Imaging for Nuclear Materials Identification James A. Mullens John Mihalczo Philip Bingham Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6010 865-574-5564 Abstract This

More information

Fysikgå rden 4, SE Gö teborg, Sweden b Swedish Radiation Safety Authority, SE Stockholm, Sweden

Fysikgå rden 4, SE Gö teborg, Sweden b Swedish Radiation Safety Authority, SE Stockholm, Sweden Gamma Rossi-alpha, Feynman-alpha and Gamma Differential Die-Away concepts as a potential alternative/complement to the traditional thermal neutron based analysis in Safeguards Dina Chernikova a,, Syed

More information

Power Installations based on Activated Nuclear Reactions of Fission and Synthesis

Power Installations based on Activated Nuclear Reactions of Fission and Synthesis Yu.V. Grigoriev 1,2, A.V. Novikov-Borodin 1 1 Institute for Nuclear Research RAS, Moscow, Russia 2 Joint Institute for Nuclear Research, Dubna, Russia Power Installations based on Activated Nuclear Reactions

More information

DESIGN AND OPERATION OF THE COMBINED TECHNOLOGY AUTOMATED WASTE CHARACTERISATION SYSTEM

DESIGN AND OPERATION OF THE COMBINED TECHNOLOGY AUTOMATED WASTE CHARACTERISATION SYSTEM 11-A-429-INMM DESIGN AND OPERATION OF THE COMBINED TECHNOLOGY AUTOMATED WASTE CHARACTERISATION SYSTEM ABSTRACT John A. Mason, Marc R. Looman and Robert A. Price ANTECH, A. N. Technology Ltd. Unit 6, Thames

More information

SNM detection by means of thermal neutron interrogation and a liquid scintillation detector

SNM detection by means of thermal neutron interrogation and a liquid scintillation detector Journal of Instrumentation OPEN ACCESS SNM detection by means of thermal neutron interrogation and a liquid scintillation detector To cite this article: A Ocherashvili et al Related content - Time dependent

More information

Integrated Waste Assay System (IWAS)

Integrated Waste Assay System (IWAS) Features Combines multiple assay techniques Quantitative and isotopic gamma-ray analysis Passive neutron multiplicity coincidence counting Active neutron interrogation using Differential Die-Away Technique

More information

Chem 481 Lecture Material 4/22/09

Chem 481 Lecture Material 4/22/09 Chem 481 Lecture Material 4/22/09 Nuclear Reactors Poisons The neutron population in an operating reactor is controlled by the use of poisons in the form of control rods. A poison is any substance that

More information

A VERY HIGH EFFICIENCY NEUTRON COUNTER FOR THE MEASUREMENT OF PLUTONIUM IN DECOMMISSIONING WASTES. J.A. Mason/A.N. Technology Ltd.

A VERY HIGH EFFICIENCY NEUTRON COUNTER FOR THE MEASUREMENT OF PLUTONIUM IN DECOMMISSIONING WASTES. J.A. Mason/A.N. Technology Ltd. Proceedings of ICEM 03: The 9 th International Conference on Environmental Remediation and Radioactive Waste Management September 1 5, 003, Examination Schools, Oxford, England ICEM03-4659 A VERY HIGH

More information

Research in NDA Techniques for Waste Characterization at the JRC

Research in NDA Techniques for Waste Characterization at the JRC 1 Research in NDA Techniques for Waste Characterization at the JRC Bent Pedersen Nuclear Security Unit Institute for Transuranium Elements Joint Research Centre presented at Annual meeting of LABONET Network

More information

Evaluation of Nondestructive Assay Characterization Methods for Pipe- Over-Pack Containers

Evaluation of Nondestructive Assay Characterization Methods for Pipe- Over-Pack Containers Evaluation of Nondestructive Assay Characterization Methods for Pipe- Over-Pack Containers S.B. Stanfield, J.R. Wachter, D.L. Cramer Canberra Instruments Inc. 800 Research Pkwy, Meriden, CT 06450 USA ABSTRACT

More information

A New MCNPX PTRAC Coincidence Capture File Capability: A Tool for Neutron Detector Design

A New MCNPX PTRAC Coincidence Capture File Capability: A Tool for Neutron Detector Design Abstract A New MCNPX PTRAC Coincidence Capture File Capability: A Tool for Neutron Detector Design L. G. Evans, M.A. Schear, J. S. Hendricks, M.T. Swinhoe, S.J. Tobin and S. Croft Los Alamos National Laboratory

More information

Neutron Dose near Spent Nuclear Fuel and HAW after the 2007 ICRP Recommendations

Neutron Dose near Spent Nuclear Fuel and HAW after the 2007 ICRP Recommendations Neutron Dose near Spent Nuclear Fuel and HAW after the 2007 ICRP Recommendations Gunter Pretzsch Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbh Radiation and Environmental Protection Division

More information

WM 05 Conference, February 27 - March 3, 2005, Tucson, AZ INTEGRATED WASTE ASSAY SYSTEM (IWAS) AND ANALYSIS ENHANCEMENTS

WM 05 Conference, February 27 - March 3, 2005, Tucson, AZ INTEGRATED WASTE ASSAY SYSTEM (IWAS) AND ANALYSIS ENHANCEMENTS INTEGRATED WASTE ASSAY SYSTEM (IWAS) AND ANALYSIS ENHANCEMENTS R.D. McElroy, Jr. and S. Croft Canberra Industries, Inc. ABSTRACT The Integrated Waste Assay System (IWAS) is a hybrid waste assay system

More information

DESIGN AND PERFORMANCE OF THE INTEGRATED WASTE ASSAY SYSTEM (IWAS)

DESIGN AND PERFORMANCE OF THE INTEGRATED WASTE ASSAY SYSTEM (IWAS) DESIGN AND PERFORMANCE OF THE INTEGRATED WASTE ASSAY SYSTEM (IWAS) Robert D. McElroy, Jr., Stephen Croft, Brian Young, Ludovic Bourva Canberra Industries, Inc., Meriden, CT USA ABSTRACT The Integrated

More information

Department of Chemistry, University of Rochester, Rochester, N.Y POC:

Department of Chemistry, University of Rochester, Rochester, N.Y POC: A Mobile Accelerator-Based Neutron Diagnostics Instrument W. Udo Schröder and Jan Tōke Department of Chemistry, University of Rochester, Rochester, N.Y. 14627 POC: schroeder@chem.rochester.edu Project

More information

(a) (i) State the proton number and the nucleon number of X.

(a) (i) State the proton number and the nucleon number of X. PhysicsAndMathsTutor.com 1 1. Nuclei of 218 84Po decay by the emission of an particle to form a stable isotope of an element X. You may assume that no emission accompanies the decay. (a) (i) State the

More information

Quality control of neutron-absorber materials for the nuclear fuel cycle, Principle of the JEN-3 neutron Backscattering gauge

Quality control of neutron-absorber materials for the nuclear fuel cycle, Principle of the JEN-3 neutron Backscattering gauge Quality control of neutron-absorber materials for the nuclear fuel cycle, Principle of the JEN-3 neutron Backscattering gauge Hamid MAKIL (CEADRT/LIST/LCAE) Patrick BRISSET (IAEA) ICARST 2017, 24 28 April

More information

Measurements of Neutron Total and Capture Cross Sections at the TOF spectrometers of the Moscow Meson Factory

Measurements of Neutron Total and Capture Cross Sections at the TOF spectrometers of the Moscow Meson Factory Measurements of Neutron Total and Capture Cross Sections at the TOF spectrometers of the Moscow Meson Factory Yu.V. Grigoriev 1,2, D.V. Khlustin 1, Zh.V. Mezentseva 2, Yu.V. Ryabov 1 1 Institute for Nuclear

More information

General Overview of Radiation Detection and Equipment

General Overview of Radiation Detection and Equipment www.inl.gov INL/MIS-11-22727 General Overview of Radiation Detection and Equipment International Nuclear Safeguards Policy and Information Analysis Course Monterey Institute of International Studies June

More information

Portable neutron generators of VNIIA and their applications

Portable neutron generators of VNIIA and their applications Portable neutron generators of VNIIA and their applications * E-mail: vmiker@sci.lebedev.ru Yu.Barmakov E-mail: vniia@vniia.ru E.Bogolubov E-mail: vniia@vniia.ru V.Ryzhkov E-mail: vniia@vniia.ru Practical

More information

Experiments with massive uranium targets - on the way to technologies for Relativistic Nuclear Energy

Experiments with massive uranium targets - on the way to technologies for Relativistic Nuclear Energy Experiments with massive uranium targets - on the way to technologies for Relativistic Nuclear Energy A.Baldin, V.Furman, N.Gundorin, M.Kadykov, Yu. Kopatch, A.Rogov, S.Tyutyunnikov Joint Institute for

More information

LA-UR-99-6217 Approved for public release; distribution is unlimited. Title: THE CALIBRATION OF THE DSNC FOR THE MEASUREMENT OF 244 Cm AND PLUTONIUM Author(s): H. O. Menlove, P. M. Rinard, and S. F. Klosterbuer,

More information

Use of Imaging for Nuclear Material Control and Accountability

Use of Imaging for Nuclear Material Control and Accountability Use of Imaging for Nuclear Material Control and Accountability James A. Mullens, Paul A. Hausladen, Philip Bingham, Daniel E Archer, Brandon Grogan, John T Mihalczo Oak Ridge National Laboratory Abstract

More information

Simulation of nonorganic scintillation detector response for the problems of active interrogation by tagged neutron technology

Simulation of nonorganic scintillation detector response for the problems of active interrogation by tagged neutron technology Computational Methods and Experimental Measurements XVII 171 Simulation of nonorganic scintillation detector response for the problems of active interrogation by tagged neutron technology V. F. Batyaev,

More information

Evaluation of radiation dose rates due to calibration and interrogation neutron sources while using the AWCC in horizontal configuration

Evaluation of radiation dose rates due to calibration and interrogation neutron sources while using the AWCC in horizontal configuration IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 2278-4861.Volume 8, Issue 5 Ver. I (Sep - Oct. 2016), PP 60-64 www.iosrjournals.org Evaluation of radiation dose rates due to calibration and interrogation

More information

Emerging Capabilities for Advanced Nuclear Safeguards Measurement Solutions

Emerging Capabilities for Advanced Nuclear Safeguards Measurement Solutions Emerging Capabilities for Advanced Nuclear Safeguards Measurement Solutions Robert McElroy, Stephen Croft, Angela Lousteau, Ram Venkataraman, Presented at the Novel Technologies, Techniques, and Methods

More information

What do we know from GCSE?

What do we know from GCSE? Radioactivity jessica.wade08@imperial.ac.uk www.makingphysicsfun.com Department of Physics & Centre for Plastic Electronics, Imperial College London Faculty of Natural & Mathematical Sciences, King s College

More information

Principles and Applications of Neutron Based Inspection Techniques. Tsahi Gozani Rapiscan Laboratories 520Almanor Ave, Sunnyvale, CA

Principles and Applications of Neutron Based Inspection Techniques. Tsahi Gozani Rapiscan Laboratories 520Almanor Ave, Sunnyvale, CA Principles and Applications of Neutron Based Inspection Techniques Tsahi Gozani Rapiscan Laboratories 520Almanor Ave, Sunnyvale, CA Presentation to the International Topical meeting on Nuclear Research

More information

Fast Neutron Multiplicity Counter: Development of an active-mode counter UM-INL Collaboration

Fast Neutron Multiplicity Counter: Development of an active-mode counter UM-INL Collaboration Fast Neutron Multiplicity Counter: Development of an active-mode counter UM-INL Collaboration T.H. Shin 1, A. Di Fulvio 1, D.L. Chichester 2, S.D. Clarke 1, S.A. Pozzi 1 * thshin@umich.edu 1 Department

More information

Neutron Based Techniques for the Detection of Illicit Materials and Explosives

Neutron Based Techniques for the Detection of Illicit Materials and Explosives Neutron Based Techniques for the Detection of Illicit Materials and Explosives R. E. Mayer, A. Tartaglione, J. Blostein,, C. Sepulveda Soza M. Schneebeli,, P. D Avanzo,, L. Capararo Neutron Physics Group

More information

An industrial radiography exposure device based on measurement of transmitted gamma-ray intensity

An industrial radiography exposure device based on measurement of transmitted gamma-ray intensity Journal of Physics: Conference Series PAPER OPEN ACCESS An industrial radiography exposure device based on measurement of transmitted gamma-ray intensity To cite this article: C Polee et al 2015 J. Phys.:

More information

Radioactivity III: Measurement of Half Life.

Radioactivity III: Measurement of Half Life. PHY 192 Half Life Spring 2010 1 Radioactivity III: Measurement of Half Life. Introduction This experiment will once again use the apparatus of the first experiment, this time to measure radiation intensity

More information

Chapter 21. Preview. Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions

Chapter 21. Preview. Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions Preview Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions Section 1 The Nucleus Lesson Starter Nuclear reactions result in much larger energy

More information

Higher -o-o-o- Past Paper questions o-o-o- 3.6 Radiation

Higher -o-o-o- Past Paper questions o-o-o- 3.6 Radiation Higher -o-o-o- Past Paper questions 2000-2010 -o-o-o- 3.6 Radiation 2000 Q29 Radium (Ra) decays to radon (Rn) by the emission of an alpha particle. Some energy is also released by this decay. The decay

More information

Term 3 Week 2 Nuclear Fusion & Nuclear Fission

Term 3 Week 2 Nuclear Fusion & Nuclear Fission Term 3 Week 2 Nuclear Fusion & Nuclear Fission Tuesday, November 04, 2014 Nuclear Fusion To understand nuclear fusion & fission Nuclear Fusion Why do stars shine? Stars release energy as a result of fusing

More information

Convertible source system of thermal neutron and X-ray at Hokkaido University electron linac facility

Convertible source system of thermal neutron and X-ray at Hokkaido University electron linac facility IL NUOVO CIMENTO 38 C (2015) 187 DOI 10.1393/ncc/i2015-15187-9 Colloquia: UCANS-V Convertible source system of thermal neutron and X-ray at Hokkaido University electron linac facility T. Kamiyama( ), K.

More information

Detection of Neutron Sources in Cargo Containers

Detection of Neutron Sources in Cargo Containers Science and Global Security, 14:145 149, 2006 Copyright C Taylor & Francis Group, LLC ISSN: 0892-9882 print / 1547-7800 online DOI: 10.1080/08929880600993063 Detection of Neutron Sources in Cargo Containers

More information

Aluminum Half-Life Experiment

Aluminum Half-Life Experiment Aluminum Half-Life Experiment Definition of half-life (t ½ ): The half-life of any declining population is the time required for the population to decrease by a factor of 50%. Radioactive isotopes represent

More information

Unit 2 Exam - Atomic Structure and Nuclear

Unit 2 Exam - Atomic Structure and Nuclear 1. The atomic number of an atom is always equal to the total number of. neutrons in the nucleus. protons in the nucleus 5. The mass number of an atom is equal to the number of. neutrons, only. protons,

More information

Physics/Global Studies 280 Nuclear Weapons, Nuclear War, and Arms Control. Midterm Examination March 14

Physics/Global Studies 280 Nuclear Weapons, Nuclear War, and Arms Control. Midterm Examination March 14 Physics/Global Studies 280 Nuclear Weapons, Nuclear War, and Arms Control Midterm Examination 2013 March 14 Full Name UIUC ID No. This is a closed book examination you are not to consult any materials

More information

WM2015 Conference, March 15 19, 2015, Phoenix, Arizona, USA

WM2015 Conference, March 15 19, 2015, Phoenix, Arizona, USA A Study of Differential Die Away Performance with Neutron Interrogation Pulse Width 15407 Ludovic Bourva *, Christophe Bedouet **, Rosemary Lester *, Ken Lambert *, Bruno Vernet ** * Canberra UK Ltd -

More information

Seaborg s Plutonium?

Seaborg s Plutonium? Seaborg s Plutonium? Eric B. Norman, Keenan J. Thomas, Kristina E. Telhami* Department of Nuclear Engineering University of California Berkeley, CA 94720 Abstract Passive x-ray and gamma ray analysis was

More information

THORIUM SELF-SUFFICIENT FUEL CYCLE OF CANDU POWER REACTOR

THORIUM SELF-SUFFICIENT FUEL CYCLE OF CANDU POWER REACTOR International Conference Nuclear Energy for New Europe 2005 Bled, Slovenia, September 5-8, 2005 ABSTRACT THORIUM SELF-SUFFICIENT FUEL CYCLE OF CANDU POWER REACTOR Boris Bergelson, Alexander Gerasimov Institute

More information

Performance Review of the High Efficiency Neutron Counter

Performance Review of the High Efficiency Neutron Counter Performance Review of the High Efficiency Neutron Counter S. Philips, S. Croft, R.D. McElroy, M. Villani Canberra Industries Inc., 800 Research Parkway, Meriden, CT 06450 USA ABSTRACT A performance review

More information

CRITICAL AND SUBCRITICAL EXPERIMENTS USING THE TRAINING NUCLEAR REACTOR OF THE BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS

CRITICAL AND SUBCRITICAL EXPERIMENTS USING THE TRAINING NUCLEAR REACTOR OF THE BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS CRITICAL AND SUBCRITICAL EXPERIMENTS USING THE TRAINING NUCLEAR REACTOR OF THE BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS É. M. Zsolnay Department of Nuclear Techniques, Budapest University of Technology

More information

Powerful Nanosecond Single- Shot Technique for Detection of Illicit Materials and Explosives

Powerful Nanosecond Single- Shot Technique for Detection of Illicit Materials and Explosives Powerful Nanosecond Single- Shot Technique for Detection of Illicit Materials and Explosives V.A. Gribkov, S.V. Latyshev, R. Miklaszewski, M. Chernyshova, K. Drozdowicz, U. Wiącek, A.V. Dubrovsky, B.D.

More information

SCANNING OF CARGO CONTAINERS BY GAMMA-RAY AND FAST NEUTRON RADIOGRAPHY

SCANNING OF CARGO CONTAINERS BY GAMMA-RAY AND FAST NEUTRON RADIOGRAPHY Armenian Journal of Physics, 2012, vol. 5, issue 1, pp. 1-7 SCANNING OF CARGO CONTAINERS BY GAMMA-RAY AND FAST NEUTRON RADIOGRAPHY A. M. Yousri*, A. M. Osman, W. A. Kansouh, A. M. Reda*, I. I. Bashter*,

More information

THE INSTALLATION FOR EXPERIMENTAL NEUTRON SPECTRA RESEARCH IN REACTOR MATERIALS COMPOSITIONS Hliustin D.V. Institute for Nuclear Research, Moscow,

THE INSTALLATION FOR EXPERIMENTAL NEUTRON SPECTRA RESEARCH IN REACTOR MATERIALS COMPOSITIONS Hliustin D.V. Institute for Nuclear Research, Moscow, THE INSTALLATION FOR EXPERIMENTAL NEUTRON SPECTRA RESEARCH IN REACTOR MATERIALS COMPOSITIONS Hliustin D.V. Institute for Nuclear Research, Moscow, Russia Classical neutron spectrum of fast breeder reactors

More information

WM2013 Conference, February 24 28, 2013, Phoenix, Arizona, USA

WM2013 Conference, February 24 28, 2013, Phoenix, Arizona, USA The Underwater Spectrometric System Based on CZT Detector for Survey of the Bottom of MR Reactor Pool 13461 Victor Potapov, Alexey Safronov, Oleg Ivanov, Sergey Smirnov, Vyacheslav Stepanov National Research

More information

A Trial of Neutrino Detection from Joyo Fast Research Reactor

A Trial of Neutrino Detection from Joyo Fast Research Reactor A Trial of Neutrino Detection from Joyo Fast Research Reactor F.Suekane Tohoku University For KASKA group, made up of; Tohoku Univ., Tokyo Inst. of Tech., Niigata Univ., Tokyo Metropolitan Univ., Tohoku

More information

BWXT Y-12 Y-12. A BWXT/Bechtel Enterprise SMALL, PORTABLE, LIGHTWEIGHT DT NEUTRON GENERATOR FOR USE WITH NMIS

BWXT Y-12 Y-12. A BWXT/Bechtel Enterprise SMALL, PORTABLE, LIGHTWEIGHT DT NEUTRON GENERATOR FOR USE WITH NMIS BWXT Y-12 A BWXT/Bechtel Enterprise Report No.: Y/LB-16,078 (Paper) SMALL, PORTABLE, LIGHTWEIGHT DT NEUTRON GENERATOR FOR USE WITH NMIS J. Reichardt J. T. Mihalczo R. B. Oberer L. G. Chiang J. K. Mattingly

More information

WM2014 Conference, March 2 6, 2014, Phoenix, Arizona, USA

WM2014 Conference, March 2 6, 2014, Phoenix, Arizona, USA Experimental Comparison between High Purity Germanium and Scintillator Detectors for Determining Burnup, Cooling Time and Decay Heat of Used Nuclear Fuel - 14488 Peter Jansson *, Sophie Grape *, Stephen

More information

Reactor radiation skyshine calculations with TRIPOLI-4 code for Baikal-1 experiments

Reactor radiation skyshine calculations with TRIPOLI-4 code for Baikal-1 experiments DOI: 10.15669/pnst.4.303 Progress in Nuclear Science and Technology Volume 4 (2014) pp. 303-307 ARTICLE Reactor radiation skyshine calculations with code for Baikal-1 experiments Yi-Kang Lee * Commissariat

More information

CHARACTERIZING THE DETECTOR RESPONSE AND TESTING THE PERFORMANCE OF A NEW WELL COUNTER FOR NEUTRON COINCIDENCE MEASUREMENTS OF PLUTONIUM IN RESIDUES

CHARACTERIZING THE DETECTOR RESPONSE AND TESTING THE PERFORMANCE OF A NEW WELL COUNTER FOR NEUTRON COINCIDENCE MEASUREMENTS OF PLUTONIUM IN RESIDUES LA-UR-01-3848 CHARACTERIZING THE DETECTOR RESPONSE AND TESTING THE PERFORMANCE OF A NEW WELL COUNTER FOR NEUTRON COINCIDENCE MEASUREMENTS OF PLUTONIUM IN RESIDUES A. P. Belian, M. C. Browne, N. Ensslin,

More information

M.Cagnazzo Atominstitut, Vienna University of Technology Stadionallee 2, 1020 Wien, Austria

M.Cagnazzo Atominstitut, Vienna University of Technology Stadionallee 2, 1020 Wien, Austria Measurements of the In-Core Neutron Flux Distribution and Energy Spectrum at the Triga Mark II Reactor of the Vienna University of Technology/Atominstitut ABSTRACT M.Cagnazzo Atominstitut, Vienna University

More information

A Proposal of Nuclear Materials Detection and Inspection Systems in Heavily Shielded Suspicious Objects by Non-destructive Manner.

A Proposal of Nuclear Materials Detection and Inspection Systems in Heavily Shielded Suspicious Objects by Non-destructive Manner. Magic Maggiore Technical Reachback Workshop 15 min. (March 28-30, 2017, JRC Ispra, Italy) A Proposal of Nuclear Materials Detection and Inspection Systems in Heavily Shielded Suspicious Objects by Non-destructive

More information

NDA Analysis of Legacy INL Wastes for disposal at WIPP D.C. Warner, R.N. Ceo, D.E. Gulbransen Canberra Industries, Inc.

NDA Analysis of Legacy INL Wastes for disposal at WIPP D.C. Warner, R.N. Ceo, D.E. Gulbransen Canberra Industries, Inc. NDA Analysis of Legacy INL Wastes for disposal at WIPP D.C. Warner, R.N. Ceo, D.E. Gulbransen Canberra Industries, Inc. Abstract This paper discusses Nondestructive Assay (NDA) of legacy radioactive wastes

More information

NUCLEAR CHEMISTRY. LAST TOPIC OF THE YEAR!! Name: CHANGING THE NUCLEUS OF AN ATOM. 1 P age

NUCLEAR CHEMISTRY. LAST TOPIC OF THE YEAR!! Name: CHANGING THE NUCLEUS OF AN ATOM. 1 P age NUCLEAR CHEMISTRY CHANGING THE NUCLEUS OF AN ATOM LAST TOPIC OF THE YEAR!! Name: 1 P age Why do unstable isotopes undergo nuclear reactions? Do Now: Draw Bohr models of three different isotopes of carbon

More information

He-3 Neutron Detectors

He-3 Neutron Detectors Application He-3 Neutron Detectors General Considerations, Applications: He-3 filled proportional counters are standard neutron detectors and are most suitable for the detection of thermal neutrons. Larger

More information

Lecture 14, 8/9/2017. Nuclear Reactions and the Transmutation of Elements Nuclear Fission; Nuclear Reactors Nuclear Fusion

Lecture 14, 8/9/2017. Nuclear Reactions and the Transmutation of Elements Nuclear Fission; Nuclear Reactors Nuclear Fusion Lecture 14, 8/9/2017 Nuclear Reactions and the Transmutation of Elements Nuclear Fission; Nuclear Reactors Nuclear Fusion Nuclear Reactions and the Transmutation of Elements A nuclear reaction takes place

More information

Distinguishing fissions of 232 Th, 237 Np and 238 U with beta-delayed gamma rays

Distinguishing fissions of 232 Th, 237 Np and 238 U with beta-delayed gamma rays Distinguishing fissions of 232, 237 and 238 with beta-delayed gamma rays A. Iyengar 1, E.B. Norman 1, C. Howard 1, C. Angell 1, A. Kaplan 1, J. J. Ressler 2, P. Chodash 1, E. Swanberg 1, A. Czeszumska

More information

WM2014 Conference, March 2 6, 2014, Phoenix, Arizona, USA

WM2014 Conference, March 2 6, 2014, Phoenix, Arizona, USA Determination of Components of Fuel Matrix in Water and in Bottom Slimes in the MR Reactor Ponds in NRC Kurchatov Institute 14038 Alexey Stepanov *, Iurii Simirskii *, Ilya Semin *, Anatoly Volkovich *

More information

Reactivity monitoring of a subcritical assembly using beam-trips and current-mode fission chambers: The Yalina-Booster program

Reactivity monitoring of a subcritical assembly using beam-trips and current-mode fission chambers: The Yalina-Booster program 1 ADS/ET-4 Reactivity monitoring of a subcritical assembly using beam-trips and current-mode fission chambers: The Yalina-Booster program M. Fernández-Ordóñez 1, D. Villamarín 1, V. Bécares 1, E.M. González-Romero

More information

Analyzing Radiation. Pre-Lab Exercise Type of Radiation Alpha Particle Beta Particle Gamma Ray. Mass (amu) 4 1/2000 0

Analyzing Radiation. Pre-Lab Exercise Type of Radiation Alpha Particle Beta Particle Gamma Ray. Mass (amu) 4 1/2000 0 Analyzing Radiation Introduction Radiation has always been a natural part of our environment. Radiation on earth comes from many natural sources; the origin of all types of naturally occurring radiation

More information

PERFORMANCE IMPROVEMENT OF CZT DETECTORS BY LINE ELECTRODE GEOMETRY

PERFORMANCE IMPROVEMENT OF CZT DETECTORS BY LINE ELECTRODE GEOMETRY Applications of Nuclear Techniques (CRETE3) International Journal of Modern Physics: Conference Series Vol. 27 (24) 4644 (8 pages) The Authors DOI:.42/S294546446 PERFORMANCE IMPROVEMENT OF CZT DETECTORS

More information

PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY

PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY THE ATOMIC NUCLEUS / NUCLEAR RADIUS & DENSITY / PROPERTIES OF NUCLEAR RADIATION / INTENSITY & BACKGROUND RADIATION / EXPONENTIAL LAW OF DECAY

More information

P7 Radioactivity. Student Book answers. P7.1 Atoms and radiation. Question Answer Marks Guidance

P7 Radioactivity. Student Book answers. P7.1 Atoms and radiation. Question Answer Marks Guidance P7. Atoms and radiation a radiation from U consists = particles, radiation from lamp = electromagnetic waves, radiation from U is ionising, radiation from lamp is non-ionising b radioactive atoms have

More information

Evaluation of Radiation Characteristics of Spent RBMK-1500 Nuclear Fuel Storage Casks during Very Long Term Storage

Evaluation of Radiation Characteristics of Spent RBMK-1500 Nuclear Fuel Storage Casks during Very Long Term Storage SESSION 7: Research and Development Required to Deliver an Integrated Approach Evaluation of Radiation Characteristics of Spent RBMK-1500 Nuclear Fuel Storage Casks during Very Long Term Storage A. Šmaižys,

More information

MEASUREMENT OF SPENT FUEL ASSEMBLIES IN SPRR-300

MEASUREMENT OF SPENT FUEL ASSEMBLIES IN SPRR-300 MEASUREMENT OF SPENT FUEL ASSEMBLIES IN SPRR-300 CHEN Wei, HU Zhiyong, YANG Rui Institute of Nuclear Physics and Chemistry, Sichuan, China 1 Preface SPRR-300 is a pool-typed research reactor which uses

More information

Status report of CPHS and neutron activities at Tsinghua University

Status report of CPHS and neutron activities at Tsinghua University IL NUOVO CIMENTO 38 C (2015) 185 DOI 10.1393/ncc/i2015-15185-y Colloquia: UCANS-V Status report of CPHS and neutron activities at Tsinghua University X. Wang( 1 )( 2 )( ),Q.Xing( 1 )( 2 ),S.Zheng( 1 )(

More information

MC simulation of a PGNAA system for on-line cement analysis

MC simulation of a PGNAA system for on-line cement analysis Nuclear Science and Techniques 21 (2010) 221 226 MC simulation of a PGNAA system for on-line cement analysis YANG Jianbo 1 TUO Xianguo 1,* LI Zhe 1 MU Keliang 2 CHENG Yi 1 MOU Yunfeng 3 1 State Key Laboratory

More information

The Nucifer Experiment: Non-Proliferation with Reactor Antineutrinos

The Nucifer Experiment: Non-Proliferation with Reactor Antineutrinos The Nucifer Experiment: Non-Proliferation with Reactor Antineutrinos Andi S. Cucoanes1 for the Nucifer Collaboration* * V.M.Bui2, M.Cribier1, A.S.Cucoanes1, M.Fallot2, M.Fechner1, J.Gaffiot1, L.Giot2,

More information

Performance Characterization of A New Cam System M.J. Koskelo 1, J.C. Rodgers 2, D.C. Nelson 2, A.R. McFarland 3 and C.A. Ortiz 3

Performance Characterization of A New Cam System M.J. Koskelo 1, J.C. Rodgers 2, D.C. Nelson 2, A.R. McFarland 3 and C.A. Ortiz 3 Performance Characterization of A New Cam System M.J. Koskelo 1, J.C. Rodgers 2, D.C. Nelson 2, A.R. McFarland 3 and C.A. Ortiz 3 1 CANBERRA Industries, Meriden, CT 06450 2 Los Alamos National Laboratory,

More information

Nuclear fission as a tool to contrast the contraband of special nuclear material

Nuclear fission as a tool to contrast the contraband of special nuclear material PRAMANA c Indian Academy of Sciences Vol. 85, No. 3 journal of September 2015 physics pp. 497 504 Nuclear fission as a tool to contrast the contraband of special nuclear material VIESTI GIUSEPPE 1, CESTER

More information

Characterization of a Portable Neutron Coincidence Counter Angela Thornton and W. Charlton Texas A&M University College Station, TX

Characterization of a Portable Neutron Coincidence Counter Angela Thornton and W. Charlton Texas A&M University College Station, TX Characterization of a Portable Neutron Coincidence Counter Angela Thornton and W. Charlton Texas A&M University College Station, TX 77843 Abstract Neutron coincidence counting is a technique widely used

More information

TECHNICAL WORKING GROUP ITWG GUIDELINE ON LABORATORY APPLICATIONS OF HIGH-RESOLUTION GAMMA SPECTROMETRY

TECHNICAL WORKING GROUP ITWG GUIDELINE ON LABORATORY APPLICATIONS OF HIGH-RESOLUTION GAMMA SPECTROMETRY NUCLE A R FORENSIC S INTERN ATION A L TECHNICAL WORKING GROUP ITWG GUIDELINE ON LABORATORY APPLICATIONS OF HIGH-RESOLUTION GAMMA SPECTROMETRY This document was designed and printed at Lawrence Livermore

More information

Appendix A. Physics and Technology of Nuclear-Explosive Materials

Appendix A. Physics and Technology of Nuclear-Explosive Materials Appendix A Physics and Technology of Nuclear-Explosive Materials NEM and Fissile Materials Nuclear weapons exploit the explosive release of nuclear energy from an exponentially growing chain reaction sustained

More information

Nuclear Energy ECEG-4405

Nuclear Energy ECEG-4405 Nuclear Energy ECEG-4405 Today s Discussion Technical History and Developments Atom Nuclear Energy concepts and Terms Features Fission Critical Mass Uranium Fission Nuclear Fusion and Fission Fusion Fission

More information

Special Nuclear Material Detection Studies With The SMANDRA Mobile System

Special Nuclear Material Detection Studies With The SMANDRA Mobile System Special Nuclear Material Detection Studies With The SMANDRA Mobile System D. Cester a, G. Nebbia b, L. Stevanato a,b,g. Viesti a,b, F. Neri c, S. Petrucci c, S. Selmi c,c. Tintori c, P. Peerani d, A. Tomanin

More information

Using Electronic Neutron Generators in Active Interrogation to Detect Shielded Fissionable Material

Using Electronic Neutron Generators in Active Interrogation to Detect Shielded Fissionable Material INL/CON-08-14272 PREPRINT Using Electronic Neutron Generators in Active Interrogation to Detect Shielded Fissionable Material 2008 Nuclear Science Symposium/Medical Imaging Conference David L. Chichester

More information

CHAPTER 4: NUCLEAR INSTRUMENTATION MODULE 2: LOG RANGE DETECTORS

CHAPTER 4: NUCLEAR INSTRUMENTATION MODULE 2: LOG RANGE DETECTORS Chula/ongkom University CHAPTER 4: NUCLEAR NSTRUMENTATON MODULE 2: LOG RANGE DETECTORS on Chambers on chambers are modified versions of a gas ionization detector but the electrodes are more closely spaced

More information

ARACOR Eagle- Matched Operations and Neutron Detector Performance Tests

ARACOR Eagle- Matched Operations and Neutron Detector Performance Tests Idaho National Engineering and Environmental Laboratory INEEL/EXT-02-00823 June 2002 ARACOR Eagle- Matched Operations and Neutron Detector Performance Tests J. L. Jones K. J. Haskell J. M. Hoggan D. R.

More information

Neutronic Design on a Small Accelerator based 7 Li (p, n) Neutron Source for Neutron Scattering Experiments

Neutronic Design on a Small Accelerator based 7 Li (p, n) Neutron Source for Neutron Scattering Experiments 2010-08-16 Neutronic Design on a Small Accelerator based 7 Li (p, n) Neutron Source for Neutron Scattering Experiments Fujio Hiraga, Takanori Okazaki and Yoshiaki Kiyanagi Hokkaido University 1 Technical

More information

Nuclear fission is used in nuclear power stations to generate electricity. Nuclear fusion happens naturally in stars.

Nuclear fission is used in nuclear power stations to generate electricity. Nuclear fusion happens naturally in stars. 1 (a) Nuclear fission is used in nuclear power stations to generate electricity. Nuclear fusion happens naturally in stars. (i) Explain briefly the difference between nuclear fission and nuclear fusion.

More information

A Monte Carlo Simulation for Estimating of the Flux in a Novel Neutron Activation System using 252 Cf Source

A Monte Carlo Simulation for Estimating of the Flux in a Novel Neutron Activation System using 252 Cf Source IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 2278-4861.Volume 7, Issue 3 Ver. II (May. - Jun. 2015), PP 80-85 www.iosrjournals.org A Monte Carlo Simulation for Estimating of the Flux in a Novel Neutron

More information

Nuclear Theory - Course 127 FISSION

Nuclear Theory - Course 127 FISSION Nuclear Theory - Course 127 FISSION After having looked at neutron reactions in general, we shall use this lesson to describe the fission reaction and its products in some detail. The Fission Reaction

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 5. Title: Reactor Kinetics and Reactor Operation

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 5. Title: Reactor Kinetics and Reactor Operation Lectures on Nuclear Power Safety Lecture No 5 Title: Reactor Kinetics and Reactor Operation Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture (1) Reactor Kinetics Reactor

More information

1. Which is the most commonly used molten metal for cooling of nuclear reactors? A. Zinc B. Sodium C. Calcium D. Mercury

1. Which is the most commonly used molten metal for cooling of nuclear reactors? A. Zinc B. Sodium C. Calcium D. Mercury 1. Which is the most commonly used molten metal for cooling of nuclear reactors? A. Zinc B. Sodium C. Calcium D. Mercury 2. Commercial power generation from fusion reactor is not yet possible, because

More information

CLASSIFICATION AND IMAGING OF SPENT NUCLEAR FUEL DRY CASKS USING COSMIC RAY MUONS

CLASSIFICATION AND IMAGING OF SPENT NUCLEAR FUEL DRY CASKS USING COSMIC RAY MUONS CLASSIFICATION AND IMAGING OF SPENT NUCLEAR FUEL DRY CASKS USING COSMIC RAY MUONS S. Chatzidakis, P. A. Hausladen, S. Croft, J. A. Chapman, J. J. Jarrell, J. M. Scaglione Oak Ridge National Laboratory

More information

Fissile material experiments at the Device Assembly Facility

Fissile material experiments at the Device Assembly Facility Fissile material experiments at the Device Assembly Facility CVT Workshop October 20, 2016 Michael Hamel 1, Pete Chapman 2, Michael Streicher 1 1 University of Michigan 2 North Carolina State University

More information

Rρ corresponds to the doublets counting

Rρ corresponds to the doublets counting Some techniques applied for plutonium measurements in waste drums B. Autrusson, J.L. Dufour, P. Funk, T. Lambert, N. Pépin, B. Thaurel Institut de Protection et de Sûreté Nucléaire, BP 6, 92265 Fontenay-aux-Roses,

More information