Flash point of organic binary mixtures containing alcohols: experiment and prediction

Size: px
Start display at page:

Download "Flash point of organic binary mixtures containing alcohols: experiment and prediction"

Transcription

1 Cent. Eur. J. Chem. 11(3) DOI: /s Central European Journal of Chemistry Flash point of organic binary mixtures containing alcohols: experiment and prediction Research Article Mariana Hristova 1*, Dimitar Damgaliev University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria Received 11 August 2012; Accepted 1 November 2012 Abstract: The flash points of three organic binary mixtures containing alcohols were measured in the present work. The experimental data was obtained using the Pensky-Martens closed cup tester. The experimental data were compared with the values calculated by the Liaw model. Activity coefficients were calculated by the Wilson equation and NRTL equation. The accuracy of predicted flash point values is dependent on the thermodynamic model used for activity coefficient. Keywords: Flash point Binary mixture Pensky-Martens Prediction Versita Sp. z o.o. 1. Introduction The flash point (FP) is one of the most important flammability characteristics of liquids and low-melting substances. Knowledge of the flash points is important for classification of materials according to the classes defined in each particular regulation [1,2] and has great practical significance in handling, transport, storage and packaging of these materials. The flash point is defined as the lowest temperature (corrected to a pressure of kpa) at which the application of an ignition source causes the vapors of a sample specimen to ignite under specified testing conditions [3]. Flash points are determined experimentally by heating the liquid in a container and then introducing a small flame just above the liquid surface. The temperature at which there is a flash/ignition is recorded as the flash point. Two general methods are called closed-cup and opencup [4,5]. The closed-cup method prevents vapors from escaping and therefore usually results in a flash point that is a few degrees lower than in an open cup. Because the two methods give different results, one must always list the testing method when listing the flash point. Flash points of common pure chemical substances are widely reported, but very limited data are available for mixtures. Since the experimental measurement of flash point is expensive and time consuming, predictive theoretical methods are required to estimate the flash points of both pure components and mixtures. Several prediction models are presented in the literature for the prediction of mixture flash point. Wickey et al. [6] reported a method for calculating the flash point of miscible, ideal solutions of petroleum blends. Catoire and Paulmer [7] proposed a model for total miscible combustible solvent blends. McGovern studied a method [8] for estimating the flash points of mixtures of oxygenated and hydrocarbon solvents and petroleum distillates. Affens and McLaren [9] suggested the model for ideal solution by the lower flammability limit (LFL) temperature dependence assumption; White [10] simplified the Affens model by ignoring the temperature dependence of LFL. Liaw et al. [11-15] have reported a series of models, which could be used for predicting the flash points for ideal and non ideal solutions. The basic assumption in these models is that the liquid phase is in equilibrium with the vapor. The non-ideality of the liquid phase is accounted by liquid-phase activity coefficients by means of thermodynamic models. The activity coefficient is a dimensionless parameter that measures the deviation from ideality in a mixture. Some of the models that can be used to obtain the activity coefficients are: Margules 388 * mariana_hristova@abv.bg

2 M. Hristova, D. Damgaliev Corrected flash point = T (101.3 P) Figure 1. Photograph of the experimental apparatus. [16], Van Laar [17], Wilson [18], NRTL [19], UNIFAC [20] and UNIQUAC [21]. The first four models for calculating the activity coefficients depend on experimental binary interaction parameters (BIPs). The UNIQUAC model requires only pure component molar volumes as well as surface area and volume parameters. By contrast, predictive models such as the UNIFAC do not need experimental BIPs. The contributions due to molecular interactions are obtained from a database using a wide range of experimental results. In general, Liaw et al. s model is the most frequently used, but accuracy of predicted mixture flash points depends on the reliability of input data. The flash points of three binary mixtures, 1-propanol + 1-pentanol, 4-methyl-2-pentanone (MIBK)+1-butanol and ethanol + aniline, were measured by Pensky- Martens closed cup tester, and compared with the values calculating by using Liaw`s model. The activity coefficients were estimated by using the Raoult s law, Wilson and NRTL equations. 2. Experimental procedure The experimental data was obtained using the Pensky- Martens closed cup tester (Fig. 1) model PM 1, SUB (Berlin, Germany).The closed cup tester was operated according to the standard test method, EN ISO 2719 [22]. The mixture was heated at a rate of 1.5ºC min -1 with continual stirring. The temperature control was sustained by electrical heating. Tester thermometer having a range from -7º to +110º C was used. The ambient barometric pressure was observed and recorded at the time of the test. When the pressure differed from 760 mm Hg (101.3 kpa), the flash point was corrected as follows: where T 0 is the observed flash point (ºC); P is barometric pressure (kpa). The mole fraction of each component was determined by measuring the mass using a Sartorius digital balance (sensitivity g, maximum load 100 g). The sample was prepared and transferred to the cup of the apparatus at least 10ºC below the expected flash point. The sample was not stirred while the flame was lowered into the cup. The flash point was the temperature at which the test flame application caused a distinct flash in the interior of the cup. The measured value was the mean of two measurements which do not differ by more than 2ºC. All materials used in this study were purchased from Merck and Fluka. Purities were at least 99.5% (analytical grade) for all compounds used for these experimental flash point determinations. 3. Results and discussion The flash point of a binary mixture can be estimated by the model developed by Liaw et al. [11]: sat sat where x i,, P and i P i, are the mole fraction, fp activity coefficient, vapour pressure at temperature T, and vapour pressure at the flash point temperature of the mixture components, respectively. If the mixture is an ideal, Eq. 1 becomes: The temperature that satisfies Eqs. 1 or 2 is the flash point temperature of the mixture. sat The vapour pressure, P, can be estimated from i an equation, such as Antoine s equation, if the required constants are known: sat Bi log Pi = Ai (3) T + C i where A i, B i and C i are the parameters of compound i. This correlation should not be used outside the temperature range at which the parameters were obtained. The parameters for the Antoine equation can be obtained from different collections [23,24]. The activity coefficients,, were estimated by the Wilson equation and the NRTL equation. The estimated activity coefficients were subsequently used to predict the corresponding flash points. In addition, it is necessary to input the flash points of the pure components into such (1) (2) 389

3 Flash point of organic binary mixtures containing alcohols: experiment and prediction Table 1. Antoine coefficients, flash points and molecular volume for pure components. Substance CAS number Antoine coefficients* [23] A B C V i L (cm 3 mol -1 ) FP (ºC) Exp. Aniline ±0.5 Ethanol ±0.7 1-Butanol ±0.5 1-Propanol ±0.9 1-Pentanol ±0.5 MIBK * B log P( mmhg) = A 0 T ( C) + C ±0.8 Table 2. VLE parameters of the Wilson and NRTL equations for the studied systems*. Mixtures Wilson NRTL Ref. A 12 A 21 A 12 A 21 α 4-methyl-2-pentanone (1)+1-butanol (2) [26] 1-propanol (1)+1-pentanol (2) [27] Ethanol (1)+aniline (2) [25] Wilson: ; NRTL: Figure 2. Comparison of the flash point prediction curves with experimentally derived data for 1-propanol (1) + 1-pentanol mixture. a model to predict the flash point of a mixture. The pure compound data are listed in Table 1. The parameters of the Wilson and NRTL equations were also from the literature [25-27]. It is well known that these parameters are obtained by regression of the experimental data for such binary mixtures and are listed in Table 2. The measured flash points of studied binary mixtures and those predicted by Liaw s model are presented in Tables 3-5 respectively, where ΔT fp = T experimental T predicted. In Figs. 2-4, the flash point variation between the model predictive curves and the experimentallyderived data for the binary solutions are compared. Most liquid mixtures made of members of homologous series are practically ideal. The propanol-pentanol mixture exhibits no deviation from ideal behavior and no azeotropes are present [27]. This mixture has properties that can be predicted with a simple mixing rule that ignores interactions among the individual components because these chemicals are very similar. Fig. 2 shows that predicted results by the Wilson equation and as ideal solution (Raoult s law; activity coefficients equal unity) are in excellent agreement with the experimental data. On the other hand, the NRTL model predicts flash points which differ considerably from experimental data even if the mixture exhibits minimum flash point behavior. Similar results can also be seen for ethanol-aniline mixture (Fig. 3). Experimental data for the ethanolaniline mixture were taken from the literature [28]. The Wilson and NRTL predicted values are lower than the experimental values measured. As indicated in Fig. 3, the values in the complete set of flash point experimental data are lower than those calculated for the corresponding ideal mixture. This indicates the positive deviation of the mixture from ideal behavior. In other words, the volatility of this mixture is higher and its boiling point lower than the corresponding values estimated for ideal mixtures of the same components. The formation of this mixture is associated with the predominance of repulsive interactions. Nevertheless, 390

4 M. Hristova, D. Damgaliev Table 3. Experimental flash points and predictions for 1-propanol (1) + 1-pentanol mixture. X 1 Exp. (ºC) Ideal DT fp / o C Wilson DT fp / o C NRTL DT fp / o C Table 4. Experimental flash points and predictions for Ethanol (1) Aniline (2). X 1 Exp. (ºC) Ideal DT fp / o C Wilson DT fp / o C NRTL DT fp / o C Table 5. Experimental flash points and predictions for 4-methyl-2-pentanone (1) +1-butanol (2). X 1 Exp. (ºC) Ideal DT fp / o C Wilson DT fp / o C NRTL DT fp / o C

5 Flash point of organic binary mixtures containing alcohols: experiment and prediction Table 6. Average absolute deviation (A.A.D.) between calculated and experimental flash points. Solution Ideal Wilson NRTL 1-propanol (1) + 1-pentanol Ethanol (1) Aniline (2) methyl-2-pentanone (1) +1-butanol (2) point values from experimental data and predicted by the Wilson equation is approximately 5ºC. The flash point predictions for 4-methyl-2- pentanone +1-butanol mixture are presented in Fig. 4. All thermodynamic models agree in their flash point predictions. The ideal solution model predicts higher but acceptable flash point values. Table 6 includes average absolute deviation (A.A.D.) for three binary solutions: (4) Figure 3. Comparison of the flash point prediction curves with experimentally derived data for Ethanol (1) Aniline (2). A.A.D. is a measure of agreement between the experimental data and the calculated values. In the prediction model, it was assumed that the vapour phase and liquid phase of a solution are in equilibrium. The predicted data was only adequate for the data determined by the closed cup test method, and may not be appropriate to apply to the data obtained from the open cup test method because of its condition of having deviated from the vapour-liquid equilibrium. 4. Conclusions Figure 4. Comparison of the flash point prediction curves with experimentally derived data for 4-methyl-2-pentanone (1) +1-butanol (2). this effect is not strong enough to cause flash point values to be lower than the value obtained for the pure light component. The Wilson equation better represents the experimental data. The largest difference in the flash The flash points of binary mixtures containing alcohols, 1-propanol + 1-pentanol, 4-methyl-2-pentanone (MIBK) +1-butanol and ethanol + aniline, were measured by Pensky-Martens closed cup tester. The experimental data were compared with values calculated by using Liaw`s model. The activity coefficients were estimated by the Wilson equation and the NRTL equation. For the 4-methyl-2-pentanone + 1-butanol mixture, all the predictions agree with the experimental data. Significant deviations were observed for the other two mixtures when Wilson and NRTL models are used. However, the calculated values based on the Wilson equation were found to be better than those based on the NRTL equation. 392

6 M. Hristova, D. Damgaliev References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] Regulation (EC) No 1907/2006 of the European Parliament and of the Council concerning the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labeling and packaging of substances and mixtures ASTM. Annual book of standards. Philadelphia, PA: American Society for Testing and Materials, (2002) American Society for Testing and Materials, ASTM E : Selection and Use of ASTM Standards for the Determination of Flash Point of Chemicals by Closed Cup Methods (ASTM International, West Conshohocken, PA, 2000) American Society for Testing and Materials, ASTM 1310: Standard Test Method for Flash Point and Fire Point of Liquids by Tag Open-Cup Apparatus (ASTM International, West Conshohocken, PA, 2001) R.O. Wickey, D.H. Chittenden, Hydrocarb. Process, 42(6), 157 (1963) L. Catoire, S. Paulmier, J. Phys. Chem.Ref. Data 35, 9 (2006) J.L. McGovern, J. Coats Technol. 64, 810, 39 (1992) W.A. Affens, G.W. McLaren, J. Chem. Eng. Data 17, 482 (1972) D. White, C.L. Beyler, C. Fulper, J. Leonard, Fire Saf. J. 28, 1 (1997) H.-J. Liaw, Y.H. Lee, C.L. Tang, H.H. Hsu, J.H. Liu, J. Loss Prev. Process Ind. 15, 429 (2002) H.-J. Liaw, Y.Y. Chiu, J. Hazard. Mater. 101, 83 (2003) H.-J. Liaw, Y.Y. Chiu, J. Hazard. Mater. 137, 38 (2006) [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] H.-J. Liaw, Y.H. Lee, Chien-Tsun, V.Gerbaud, Chem. Eng. Sci. 63, 4543 (2008) H.-J. Liaw, Y.H. Lee, V. Gerbaud, Y.H. Li, Fluid Phase Equilib. 300, 70 (2011) K. Whol, Chem. Eng. Prog. 49, 218 (1953) R.C. Reid, J.M. Prausnitz, J.M. Poling, The Properties of Gases and Liquids (McGraw-Hill, New York, USA, 1987) G.M. Wilson, J. Am. Chem. Soc. 86, 127 (1964) H. Renon, J.M. Prausnitz, AIChe Journal, 14, 135 (1968) A. Fredenslund, R.L. Jones, J.M. Prausnitz, AIChE Journal 21, 1086 (1975) D.S.Abrams, J.M. Prausnitz, AIChE Journal, 21, 116 (1975) EN ISO Standard Test Methods for Flash Point by Pensky-Martens Closed Cup Tester T. Boublik, V. Fried, E. Hala, Vapour Pressure of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd edition (Elsevier Science Ltd, Amsterdam, New York, 1984) B.E. Poling, J.M. Prausnitz, J.P. O Çonnell, The Properties of Gases and Liquids, 5th edition (McGraw-Hill, New York, 2001) S. Munjal, O. Muthu, J.R. Khurma, B.D. Smith, Fluid Phase Equilibria 12, 51 (1983) E. Lladosa, J.B. Montón, M.C. Burguet, R. Muñoz, Fluid Phase Equilibria 247, 175 (2006) N.F. Martinez, E. Lladosa, M.C. Burguet, J.B. Montón, M. Yazimon, Fluid Phase Equilibria 277, 49 (2009) M. Vidal, PhD Thesis (Texas A&M University, College Station, TX, 2006) 393

PRACTICAL DATA CORRELATION OF FLASHPOINTS OF BINARY MIXTURES BY A RECIPROCAL FUNCTION: THE CONCEPT AND NUMERICAL EXAMPLES

PRACTICAL DATA CORRELATION OF FLASHPOINTS OF BINARY MIXTURES BY A RECIPROCAL FUNCTION: THE CONCEPT AND NUMERICAL EXAMPLES HERMAL SCIENCE, Year 0, Vol. 5, No. 3, pp. 905-90 905 Open forum PRACICAL DAA CORRELAION OF FLASHPOINS OF BINARY MIXURES BY A RECIPROCAL FUNCION: HE CONCEP AND NUMERICAL EXAMPLES by Mariana HRISOVA a,

More information

Prediction and measurement of the lower flash points for flammable binary solutions by using a setaflash closed cup tester

Prediction and measurement of the lower flash points for flammable binary solutions by using a setaflash closed cup tester Korean J. Chem. Eng., 8(5), 1161-1165 (011) DOI: 10.1007/s11814-010-0478-y INVITED REVIEW PAPER Prediction and measurement of the lower flash points for flammable binary solutions by using a setaflash

More information

FLASH POINT FOR BINARY MIXTURES

FLASH POINT FOR BINARY MIXTURES Engineering Journal of Qatar University, Vol. 7, 1994, p. 27-36 FLASH POINT FOR BINARY MIXTURES A.B. Donaldson* and Saleh AI-Sharafi** *Visiting Professor in the Department of Chemical Engineering, Qatar

More information

This is an author-deposited version published in: Eprints ID: 4499

This is an author-deposited version published in:   Eprints ID: 4499 Open Archive Toulouse Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited

More information

Phase equilibria properties of binary and ternary systems containing isopropyl ether + isobutanol + benzene at K.

Phase equilibria properties of binary and ternary systems containing isopropyl ether + isobutanol + benzene at K. Phase equilibria properties of binary and ternary systems containing isopropyl ether + isobutanol + benzene at 313.15 K. R.M. Villamañán 1, M.C. Martín 2, C.R. Chamorro 2, M.A. Villamañán 2, J.J. Segovia

More information

Isobaric Vapor-Liquid Equilibria of Mesitylene + 1- Heptanol and Mesitylene +1-Octanol at 97.3 kpa

Isobaric Vapor-Liquid Equilibria of Mesitylene + 1- Heptanol and Mesitylene +1-Octanol at 97.3 kpa World Academy of Science, Engineering and Technology 7 9 Isobaric Vapor-Liquid Equilibria of Mesitylene + - Heptanol and Mesitylene +-Octanol at 97.3 kpa Seema Kapoor, Sushil K. Kansal, Baljinder K. Gill,

More information

Agung Ari Wibowo, S.T, M.Sc THERMODYNAMICS MODEL

Agung Ari Wibowo, S.T, M.Sc THERMODYNAMICS MODEL Agung Ari Wibowo, S.T, M.Sc THERMODYNAMICS MODEL THERMODYNAMICS MODEL For the description of phase equilibria today modern thermodynamic models are available. For vapor-liquid equilibria it can bedistinguished

More information

Vapor liquid equilibria for the binary system 2,2 dimethylbutane + 1,1 dimethylpropyl methyl ether (TAME) at , , and 338.

Vapor liquid equilibria for the binary system 2,2 dimethylbutane + 1,1 dimethylpropyl methyl ether (TAME) at , , and 338. Fluid Phase Equilibria 221 (2004) 1 6 Vapor liquid equilibria for the binary system 2,2 dimethylbutane + 1,1 dimethylpropyl methyl ether (TAME) at 298.15, 318.15, and 338.15 K Armando del Río a, Baudilio

More information

Inertization Effects on the Explosion Parameters of Different Mix Ratios of Ethanol and Toluene Experimental Studies

Inertization Effects on the Explosion Parameters of Different Mix Ratios of Ethanol and Toluene Experimental Studies 111 This article is available in PDF-format, in colour, at: www.wydawnictwa.ipo.waw.pl/materialy-wysokoenergetyczne.html Materiały Wysokoenergetyczne / High-Energetic Materials, 2016, 8, 111 117 ISSN 2083-0165

More information

Introduction (1) where ij denotes the interaction energy due to attractive force between i and j molecules and given by; (2)

Introduction (1) where ij denotes the interaction energy due to attractive force between i and j molecules and given by; (2) (7)7 Prediction of Vapor-Liquid Equilibria of Binary Systems Consisting of Homogeneous Components by Using Wilson Equation with Parameters Estimated from Pure-Component Properties Shigetoshi KOBUCHI, Kei

More information

BINARY MIXTURE FLAMMABILITY CHARACTERISTICS FOR HAZARD ASSESSMENT

BINARY MIXTURE FLAMMABILITY CHARACTERISTICS FOR HAZARD ASSESSMENT BINARY MIXTURE FLAMMABILITY CHARACTERISTICS FOR HAZARD ASSESSMENT A Dissertation by MIGVIA DEL C. VIDAL VÁZQUEZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment

More information

Isobaric Vapour-Liquid Equilibrium of Binary Mixture of 1, 2-Di-chloroethane with 1-Heptanol at Kpa

Isobaric Vapour-Liquid Equilibrium of Binary Mixture of 1, 2-Di-chloroethane with 1-Heptanol at Kpa Isobaric Vapour-Liquid Equilibrium of Binary Mixture of 1, 2-Di-chloroethane with 1-Heptanol at 95.72 Kpa Sai kumar Bitta Department Of Chemical Engineering Chaitanya Bharathi Institute of Technology Guide:

More information

Note: items marked with * you should be able to perform on a closed book exam. Chapter 10 Learning Objective Checklist

Note: items marked with * you should be able to perform on a closed book exam. Chapter 10 Learning Objective Checklist Note: items marked with * you should be able to perform on a closed book exam. Chapter 10 Learning Objective Checklist Sections 10.1-10.13 find pure component properties on a binary P-x-y or T-x-y diagram.*

More information

Isobaric Vapor Liquid Equilibria of Systems containing N-Alkanes and Alkoxyethanols

Isobaric Vapor Liquid Equilibria of Systems containing N-Alkanes and Alkoxyethanols Isobaric Vapor Liquid Equilibria of Systems containing N-Alkanes and Alkoxyethanols Sunghyun Jang, Moon Sam Shin, Yongjin Lee, Hwayong Kim * School of Chemical Engineering & Institute of Chemical Processes,

More information

Isobaric Vapour Liquid Equilibrium for Acetone + Methanol + Calcium bromide at different concentration

Isobaric Vapour Liquid Equilibrium for Acetone + Methanol + Calcium bromide at different concentration International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X Volume 3, Issue 3 (August 2012), PP. 45-49 Isobaric Vapour Liquid Equilibrium for Acetone + Methanol +

More information

Distillation Course MSO2015

Distillation Course MSO2015 Distillation Course MSO2015 Distillation Distillation is a process in which a liquid or vapour mixture of two or more substances is separated into its component fractions of desired purity, by the application

More information

Vapor liquid equilibrium of carbon dioxide with ethyl caproate, ethyl caprylate and ethyl caprate at elevated pressures

Vapor liquid equilibrium of carbon dioxide with ethyl caproate, ethyl caprylate and ethyl caprate at elevated pressures J. of Supercritical Fluids 28 (2004) 1 9 Vapor liquid equilibrium of carbon dioxide with ethyl caproate, ethyl caprylate and ethyl caprate at elevated pressures Weng-Hong Hwu, Jaw-Shin Cheng, Kong-Wei

More information

Boiling points for five binary systems of sulfolane with aromatic hydrocarbons at kpa

Boiling points for five binary systems of sulfolane with aromatic hydrocarbons at kpa Fluid Phase Equilibria 190 (2001) 61 71 Boiling points for five binary systems of sulfolane with aromatic hydrocarbons at 101.33 kpa Yang-Xin Yu, Ming-Yan He, Guang-Hua Gao, Zong-Cheng Li Department of

More information

Extraction of Phenol from Industrial Water Using Different Solvents

Extraction of Phenol from Industrial Water Using Different Solvents Research Journal of Chemical Sciences ISSN 31-606X. Extraction of Phenol from Industrial Water Using Different Solvents Abstract Sally N. Jabrou Department of Radiology, Health and Medical Technical College

More information

Status and results of group contribution methods

Status and results of group contribution methods Pure & Appl. Cbem., Vol. 65, No. 5, pp. 919926, 1993. Printed in Great Britain. @ 1993 IUPAC Status and results of group contribution methods J. Gmehling, K. Fischer, J. Li, M. Schiller Universitat Oldenburg,

More information

Computer Aided Identification of Acetone and Chloroform Mixture Behavior

Computer Aided Identification of Acetone and Chloroform Mixture Behavior Computer Aided Identification of Acetone and Chloroform Mixture Behavior Sarah Torkamani Chemical Engineering PhD Student Department of Chemical and Petroleum Engineering, Sharif University of Technology,

More information

EXTRACTIVE DISTILLATION OF ETHYLBENZENE AND STYRENE USING SULFOLANE AS SOLVENT: LOW PRESSURE ISOBARIC VLE DATA

EXTRACTIVE DISTILLATION OF ETHYLBENZENE AND STYRENE USING SULFOLANE AS SOLVENT: LOW PRESSURE ISOBARIC VLE DATA Distillation Absorption 2010 A.B. de Haan, H. Kooman and A. Górak (Editors) All rights reserved by authors as per DA2010 copyright notice EXTRACTIVE DISTILLATION OF ETHYLBENZENE AND STYRENE USING SULFOLANE

More information

Chapter 2 Equilibria, Bubble Points, Dewpoints, Flash Calculations, and Activity Coefficients

Chapter 2 Equilibria, Bubble Points, Dewpoints, Flash Calculations, and Activity Coefficients Chapter 2 Equilibria, Bubble Points, Dewpoints, Flash Calculations, and Activity Coefficients 2.1 Vapour Pressure Calculations The basis for all phase equilibrium calculations are the vapour pressures

More information

Flash point correlation with specific gravity, refractive index, and viscosity of base oil fractions

Flash point correlation with specific gravity, refractive index, and viscosity of base oil fractions Flash point correlation with specific gravity, refractive index, and viscosity of base oil fractions 171 Asian Chemistry Letters Vol. 14, No.2 (10) 171-176 Flash point correlation with specific gravity,

More information

Publication V. Reprinted with permission from Elsevier Elsevier Science

Publication V. Reprinted with permission from Elsevier Elsevier Science Publication V Ouni T., Zaytseva A., Uusi-Kyyny P., Pokki J.-P. and Aittamaa J., Vapour-liquid equilibrium for the 2-methylpropane + methanol, +ethanol, +2-propanol, +2-butanol and +2-methyl-2-propanol

More information

Modified Raoult's Law and Excess Gibbs Free Energy

Modified Raoult's Law and Excess Gibbs Free Energy ACTIVITY MODELS 1 Modified Raoult's Law and Excess Gibbs Free Energy Equilibrium criteria: f V i = L f i For vapor phase: f V i = y i i P For liquid phase, we may use an activity coefficient ( i ), giving:

More information

Vapor liquid equilibria of carbon dioxide with diethyl oxalate, ethyl laurate, and dibutyl phthalate binary mixtures at elevated pressures

Vapor liquid equilibria of carbon dioxide with diethyl oxalate, ethyl laurate, and dibutyl phthalate binary mixtures at elevated pressures Fluid Phase Equilibria 181 (2001) 1 16 Vapor liquid equilibria of carbon dioxide with diethyl oxalate, ethyl laurate, and dibutyl phthalate binary mixtures at elevated pressures Kong-Wei Cheng, Muoi Tang

More information

Vapor liquid equilibria of carbon dioxide with ethyl benzoate, diethyl succinate and isoamyl acetate binary mixtures at elevated pressures

Vapor liquid equilibria of carbon dioxide with ethyl benzoate, diethyl succinate and isoamyl acetate binary mixtures at elevated pressures Journal of Supercritical Fluids 21 (2001) 111 121 wwwelseviercom/locate/supflu Vapor liquid equilibria of carbon dioxide with ethyl benzoate, diethyl succinate and isoamyl acetate binary mixtures at elevated

More information

A Generalized Correlation for Pool Boiling Heat Transfer Coefficient Based on Corresponding State Rule for Pure Compounds and Binary Mixtures

A Generalized Correlation for Pool Boiling Heat Transfer Coefficient Based on Corresponding State Rule for Pure Compounds and Binary Mixtures A Generalized Correlation for Pool Boiling Heat Transfer Coefficient Based on Corresponding State Rule for Pure Compounds and Binary Mixtures HASAN QABAZARD and MAHMOOD MOSHFEGHIAN 1 Petroleum Research

More information

Optimization of the Sulfolane Extraction Plant Based on Modeling and Simulation

Optimization of the Sulfolane Extraction Plant Based on Modeling and Simulation Korean J. Chem. Eng., 17(6), 712-718 (2000) Optimization of the Sulfolane Extraction Plant Based on Modeling and Simulation Yu-Jung Choi, Tae-In Kwon and Yeong-Koo Yeo Department of Chemical Engineering,

More information

Vapor-liquid equilibrium

Vapor-liquid equilibrium Vapor-liquid equilibrium From Wikipedia, the free encyclopedia Vapor-liquid equilibrium, abbreviated as VLE by some, is a condition where a liquid and its vapor (gas phase) are in equilibrium with each

More information

DETERMINATION AND PREDICTION OF THE ISOBARIC VAPOR- LIQUID-LIQUID EQUILIBRIUM DATA

DETERMINATION AND PREDICTION OF THE ISOBARIC VAPOR- LIQUID-LIQUID EQUILIBRIUM DATA DETERMINATION AND PREDICTION OF THE ISOBARIC VAPOR- LIQUID-LIQUID EQUILIBRIUM DATA Koichi Iwakabe and Hitoshi Kosuge Department of Chemical Engineering, Tokyo Institute of Technology 12-1, Ookayama-2,

More information

EXTRACTION OF DECANE AND HEXANE WITH SUPERCRITICAL PROPANE: EXPERIMENTS AND MODELING

EXTRACTION OF DECANE AND HEXANE WITH SUPERCRITICAL PROPANE: EXPERIMENTS AND MODELING International Journal of Chemical & Petrochemical Technology (IJCPT) ISSN 2277-4807 Vol. 3, Issue 2, Jun 2013, 71-82 TJPRC Pvt. Ltd. EXTRACTION OF DECANE AND HEXANE WITH SUPERCRITICAL PROPANE: EXPERIMENTS

More information

Fluid Phase Equilibria (2001)

Fluid Phase Equilibria (2001) Fluid Phase Equilibria 187 188 (2001) 299 310 Vapor liquid equilibria for the binary systems decane + 1,1-dimethylethyl methyl ether (MTBE) and decane + 1,1-dimethylpropyl methyl ether (TAME) at 308.15,

More information

Prediction of the flash point of ternary ideal mixtures

Prediction of the flash point of ternary ideal mixtures Electronc Journal of New Materals, Energy and Envronment Volume No. (25), -5 url: http://ejnmee.eu/ eissn: 2367-6868 redcton of the flash pont of ternary deal mxtures M. Hrstova Unversty of Chemcal Technology

More information

All rights reserved. Armando B. Corripio, PhD, PE Flash Distillation Flash Drum Variables and Specifications... 2

All rights reserved. Armando B. Corripio, PhD, PE Flash Distillation Flash Drum Variables and Specifications... 2 Flash Distillation All rights reserved. Armando B. Corripio, PhD, PE. 2013 Contents Flash Distillation... 1 1 Flash Drum Variables and Specifications... 2 2 Flash Drum Balances and Equations... 4 2.1 Equilibrium

More information

For an incompressible β and k = 0, Equations (6.28) and (6.29) become:

For an incompressible β and k = 0, Equations (6.28) and (6.29) become: Internal Energy and Entropy as Functions of T and V These are general equations relating the internal energy and entropy of homogeneous fluids of constant composition to temperature and volume. Equation

More information

Overall: 75 ECTS: 7.0

Overall: 75 ECTS: 7.0 Course: Chemical Engineering Thermodynamics Language: English Lecturer: Prof. dr. sc. Marko Rogošić TEACHING WEEKLY SEMESTER Lectures 3 45 Laboratory 1 15 Seminar 1 15 Overall: 75 ECTS: 7.0 PURPOSE: Within

More information

MODELLING OF MULTICOMPONENT DISTILLATION FOR OPTIMIZATION AND ON-LINE CONTROL SHORT-CUT MODEL AND MODEL ADAPTATION

MODELLING OF MULTICOMPONENT DISTILLATION FOR OPTIMIZATION AND ON-LINE CONTROL SHORT-CUT MODEL AND MODEL ADAPTATION Journal of Chemical Technology Nikolay and Kozarev Metallurgy, 50, 3, 2015, 273-277 MODELLING OF MULTICOMPONENT DISTILLATION FOR OPTIMIZATION AND ON-LINE CONTROL SHORT-CUT MODEL AND MODEL ADAPTATION University

More information

THERMODYNAMIC CONSISTENCY TESTS FOR PHASE EQUILIBRIUM IN LIQUID SOLUTE+SUPERCRITICAL SOLVENT MIXTURES

THERMODYNAMIC CONSISTENCY TESTS FOR PHASE EQUILIBRIUM IN LIQUID SOLUTE+SUPERCRITICAL SOLVENT MIXTURES THERMODYNAMIC CONSISTENCY TESTS FOR PHASE EQUILIBRIUM IN LIQUID SOLUTE+SUPERCRITICAL SOLVENT MIXTURES José O. Valderrama 1, and Víctor H. Alvarez 1 Fac. de Ingeniería, Depto. Ing. Mecánica, Univ. de la

More information

Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION

Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION Outline: Introduction to multicomponent distillation Phase Equilibria in Multicomponent Distillation (Pg. 737) Bubble-point and dew-point calculation

More information

TERNARY LIQUID-LIQUID AND MISCIBLE BINARY VAPOR-LIQUID EQUILIBRIUM DATA FOR THE TWO AND WATER ACETONITRILE-ETHYL ACETATE

TERNARY LIQUID-LIQUID AND MISCIBLE BINARY VAPOR-LIQUID EQUILIBRIUM DATA FOR THE TWO AND WATER ACETONITRILE-ETHYL ACETATE TERNARY LIQUID-LIQUID AND MISCIBLE BINARY VAPOR-LIQUID EQUILIBRIUM DATA FOR THE TWO SYSTEMS n-hexane ETHANOL ACETONITRILE AND WATER ACETONITRILE-ETHYL ACETATE Hiroshi SUGI and Takashi KATAYAMA Department

More information

Group contribution methodsðideal tools for the synthesis and design of separation processes*

Group contribution methodsðideal tools for the synthesis and design of separation processes* Pure Appl. Chem., Vol. 71, No. 6, pp. 939±949, 1999. Printed in Great Britain. q 1999 IUPAC Group contribution methodsðideal tools for the synthesis and design of separation processes* JuÈ rgen Gmehling²

More information

Prediction of phase equilibria in waterralcoholralkane systems

Prediction of phase equilibria in waterralcoholralkane systems Fluid Phase Equilibria 158 160 1999 151 163 Prediction of phase equilibria in waterralcoholralkane systems Epaminondas C. Voutsas ), Iakovos V. Yakoumis, Dimitrios P. Tassios Laboratory of Thermodynamics

More information

EXPERIMENT 7 - Distillation Separation of a Mixture

EXPERIMENT 7 - Distillation Separation of a Mixture EXPERIMENT 7 - Distillation Separation of a Mixture Purpose: a) To purify a compound by separating it from a non-volatile or less-volatile material. b) To separate a mixture of two miscible liquids (liquids

More information

ChemSep Case Book: Handling Missing Components

ChemSep Case Book: Handling Missing Components ChemSep Case Book: Handling Missing Components Ross Taylor and Harry Kooijman In their book Conceptual Design of Distillation Systems M.F. Doherty and M.F. Malone (McGraw-Hill, 2001) describe a process

More information

REV. CHIM. (Bucureºti) 58 Nr

REV. CHIM. (Bucureºti) 58 Nr 1069 High-Pressure Vapour-Liquid Equilibria of Carbon Dioxide + 1-Pentanol System Experimental Measurements and Modelling CATINCA SECUIANU*, VIOREL FEROIU, DAN GEANÃ Politehnica University Bucharest, Department

More information

An augmented hard core equation of state generalized in terms of T,, P, and o

An augmented hard core equation of state generalized in terms of T,, P, and o Pure&App/. Chern., Vol. 61, No. 8, pp. 1413-1418, 1989. Printed in Great Britain. 0 1989 IUPAC An augmented hard core equation of state generalized in terms of T,, P, and o 1 2 Hasan Orbey and Juan H.

More information

,, Seong-Bo Kim,Hai-SongBae, and Jeong-Sik Han

,, Seong-Bo Kim,Hai-SongBae, and Jeong-Sik Han Jungho Cho, So-Jin Park,, Myung-Jae Choi,, Seong-Bo Kim,Hai-SongBae, and Jeong-Sik Han Department of Chemical Engineering, Dong-Yang University, Kyoungbuk, 750-711, Korea *Department of Chemical Engineering,

More information

Available online at ScienceDirect. Procedia Engineering 84 (2014 )

Available online at  ScienceDirect. Procedia Engineering 84 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 84 (2014 ) 285 292 2014ISSST, 2014 International Symposium on Safety Science and Technology Auto-ignition characteristics of

More information

PART 2 PHYSICAL HAZARDS

PART 2 PHYSICAL HAZARDS PART 2 PHYSICAL HAZARDS CHAPTER 2.1 EXPLOSIVES 2.1.1 Definitions and general considerations 2.1.1.1 An explosive substance (or mixture) is a solid or liquid substance (or mixture of substances) which

More information

Vapor-liquid equilibria for the binary mixtures of methanol+ cyclopentyl methyl ether (CPME)

Vapor-liquid equilibria for the binary mixtures of methanol+ cyclopentyl methyl ether (CPME) Korean J. Chem. Eng., 33(10), 2961-2967 (2016) DOI: 10.1007/s11814-016-0145-z INVITED REVIEW PAPER pissn: 0256-1115 eissn: 1975-7220 Vapor-liquid equilibria for the binary mixtures of methanol+ cyclopentyl

More information

Modeling of the solubility of Naproxen and Trimethoprim in different solvents at different temperature

Modeling of the solubility of Naproxen and Trimethoprim in different solvents at different temperature MATE Web of onferences 3, 01057 (2013) DOI: 10.1051/ matecconf/20130301057 Owned by the authors, published by EDP Sciences, 2013 Modeling of the solubility of Naproxen and Trimethoprim in different solvents

More information

Comparison of distillation arrangement for the recovery process of dimethyl sulfoxide

Comparison of distillation arrangement for the recovery process of dimethyl sulfoxide Korean J. Chem. Eng., 24(3), 438-444 (2007) SHORT COMMUNICATION Comparison of distillation arrangement for the recovery process of dimethyl sulfoxide Jungho Cho and Dong Min Kim* Department of Chemical

More information

Densities and Viscosities of the Ternary Mixtures Water + Butyl Acetate + Methanol and Water + Ethyl Propionate + Methanol at 303.

Densities and Viscosities of the Ternary Mixtures Water + Butyl Acetate + Methanol and Water + Ethyl Propionate + Methanol at 303. 926 J. Chem. Eng. Data 2000, 45, 926-931 Densities and Viscosities of the Ternary Mixtures Water + Butyl Acetate + Methanol and Water + Ethyl Propionate + Methanol at 303.15 K Zoran P. Visak, Abel G. M.

More information

CHAPTER 3 EXPERIMENTAL SET UP AND PROCEDURE

CHAPTER 3 EXPERIMENTAL SET UP AND PROCEDURE 16 CHAPTER 3 EXPERIMENTAL SET UP AND PROCEDURE 3.1 DETERMINATION OF VAPOUR LIQUID EQUILIBRIA Iso baric vapor liquid equilibria data have been obtained, using a Smith and Bonner (1949) type still, a modified

More information

CORRELATION OF (LIQUID + LIQUID) EQUILIBRIUM OF SYSTEMS INCLUDING IONIC LIQUIDS

CORRELATION OF (LIQUID + LIQUID) EQUILIBRIUM OF SYSTEMS INCLUDING IONIC LIQUIDS Brazilian Journal of Chemical Engineering ISSN 0104-6632 Printed in Brazil www.abeq.org.br/bjche Vol. 24, No. 01, pp. 143-149, January - March, 2007 CORRELATION OF (LIQUID + LIQUID) EQUILIBRIUM OF SYSTEMS

More information

Modified solvation model for salt effect on vapor liquid equilibria

Modified solvation model for salt effect on vapor liquid equilibria Fluid Phase Equilibria 194 197 (2002) 701 715 Modified solvation model for salt effect on vapor liquid equilibria Hideaki Takamatsu, Shuzo Ohe Department of Chemical Engineering, Graduated School of Engineering,

More information

Thermodynamic Interactions between PVA-Solvent Mixtures, by Means of Inverse Gas Chromatography Measurements

Thermodynamic Interactions between PVA-Solvent Mixtures, by Means of Inverse Gas Chromatography Measurements Thermodynamic Interactions between PVA-Solvent Mixtures, by Means of Inverse Gas Chromatography Measurements Eduardo Díez*, Gabriel Ovejero, María Dolores Romero, Ismael Díaz, Sofie Bertholdy Grupo de

More information

ASIAN JOURNAL OF CHEMISTRY

ASIAN JOURNAL OF CHEMISTRY Asian Journal of Chemistry; Vol., No. (14), 79-779 ASIAN JOURNAL OF CHEMISTRY http://dx.doi.org/1.1433/ajchem.14.1741 Experimental Study of Vapor-Liquid Equilibrium and Optimization of Pressure-Swing Distillation

More information

Liquid liquid equilibria of aqueous mixtures containing selected dibasic esters and/or methanol

Liquid liquid equilibria of aqueous mixtures containing selected dibasic esters and/or methanol Fluid Phase Equilibria 248 (2006) 174 180 Liquid liquid equilibria of aqueous mixtures containing selected dibasic esters and/or methanol Shih-Bo Hung a, Ho-Mu Lin a, Cheng-Ching Yu b, Hsiao-Ping Huang

More information

A Simple Continuous Mixture Droplet Evaporation Model with Multiple Distribution Functions

A Simple Continuous Mixture Droplet Evaporation Model with Multiple Distribution Functions Introduction A Simple Continuous Mixture Droplet Evaporation Model with Multiple Distribution Functions William Hallett and Claire Grimwood Dept. of Mechanical Engineering, University of Ottawa, Ottawa,

More information

DETERMINATION OF OPTIMAL ENERGY EFFICIENT SEPARATION SCHEMES BASED ON DRIVING FORCES

DETERMINATION OF OPTIMAL ENERGY EFFICIENT SEPARATION SCHEMES BASED ON DRIVING FORCES DETERMINATION OF OPTIMAL ENERGY EFFICIENT SEPARATION SCHEMES BASED ON DRIVING FORCES Abstract Erik Bek-Pedersen, Rafiqul Gani CAPEC, Department of Chemical Engineering, Technical University of Denmark,

More information

Improvement of separation process of synthesizing MIBK by the isopropanol one-step method

Improvement of separation process of synthesizing MIBK by the isopropanol one-step method Korean J. Chem. Eng., 23(2), 264-270 (2006) SHORT COMMUNICATION Improvement of separation process of synthesizing MIBK by the isopropanol one-step method Zhigang Lei, Jianwei Li, Chengyue Li and Biaohua

More information

4.3 CONCLUSION: HOW TO CHOOSE A MODEL The right questions Ionic liquids What is the property of interest?

4.3 CONCLUSION: HOW TO CHOOSE A MODEL The right questions Ionic liquids What is the property of interest? Chapter 4 From Phases to Method (Models) Selection 325 4.2.7.2 Ionic liquids Ionic liquids are a new kind of solvent receiving considerable attention in the research community. These solvents are in fact

More information

SOLUBILITY OF CO 2 IN BRANCHED ALKANES IN ORDER TO EXTEND THE PPR78 MODEL TO SUCH SYSTEMS

SOLUBILITY OF CO 2 IN BRANCHED ALKANES IN ORDER TO EXTEND THE PPR78 MODEL TO SUCH SYSTEMS SOLUBILITY OF CO IN BRANCHED ALKANES IN ORDER TO EXTEND THE PPR78 MODEL TO SUCH SYSTEMS Fabrice MUTELET, Stéphane VITU and Jean-Noël JAUBERT (*) Institut National Polytechnique de Lorraine, Ecole Nationale

More information

CH2351 Chemical Engineering Thermodynamics II Unit I, II Phase Equilibria. Dr. M. Subramanian

CH2351 Chemical Engineering Thermodynamics II Unit I, II   Phase Equilibria.   Dr. M. Subramanian CH2351 Chemical Engineering Thermodynamics II Unit I, II Phase Equilibria Dr. M. Subramanian Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam

More information

Level 4: General structure of separation system

Level 4: General structure of separation system Level 4: General structure of separation system Cheng-Ching Yu Dept of Chem. Eng. National Taiwan University ccyu@ntu.edu.tw 02-3365-1759 1 Separation Systems Typical reaction/separation structure Remark:

More information

Standard Guide for Sampling and Testing Volatile Solvents and Chemical Intermediates for Use in Paint and Related Coatings and Material 1

Standard Guide for Sampling and Testing Volatile Solvents and Chemical Intermediates for Use in Paint and Related Coatings and Material 1 Designation: D 268 01 Standard Guide for Sampling and Testing Volatile Solvents and Chemical Intermediates for Use in Paint and Related Coatings and Material 1 This standard is issued under the fixed designation

More information

Exam 3 Solutions. ClO g. At 200 K and a total pressure of 1.0 bar, the partial pressure ratio for the chlorine-containing compounds is p ClO2

Exam 3 Solutions. ClO g. At 200 K and a total pressure of 1.0 bar, the partial pressure ratio for the chlorine-containing compounds is p ClO2 Chemistry 360 Dr. Jean M. Standard Fall 2016 Name KEY Exam 3 Solutions 1.) (14 points) Consider the gas phase decomposition of chlorine dioxide, ClO 2, ClO 2 ( g) ClO ( g) + O ( g). At 200 K and a total

More information

Simulation of Molecular Distillation Process for Lactic Acid

Simulation of Molecular Distillation Process for Lactic Acid J. Chem. Chem. Eng. 10 (2016) 230-234 doi: 10.17265/1934-7375/2016.05.005 D DAVID PUBLISHING Simulation of Molecular Distillation Process for Lactic Acid Andrea Komesu 1, Johnatt Allan Rocha de Oliveira

More information

Batch extractive distillation of mixture methanol-acetonitrile using aniline as a asolvent

Batch extractive distillation of mixture methanol-acetonitrile using aniline as a asolvent 48 Pol. J. Chem. Polish Tech., Journal Vol. 14, of No. Chemical 3, 2012 Technology, 14, 3, 48 53, 10.2478/v10026-012-0083-4 Batch extractive distillation of mixture methanol-acetonitrile using aniline

More information

DISTILLATION SIMULATION WITH COSMO-RS

DISTILLATION SIMULATION WITH COSMO-RS DISILLAION SIMULAION WIH COSMO-RS R. aylor*, **, H.A. Kooiman***, A. Klamt****, and F. Eckert**** * Department of Chemical Engineering, Clarkson University, Potsdam, NY 3699-5705, USA ** Department of

More information

IlE. Simulation of a Distillation Column on an IBM PC, Accounting for Real Behaviour of Electrolyte Solutions * c I

IlE. Simulation of a Distillation Column on an IBM PC, Accounting for Real Behaviour of Electrolyte Solutions * c I ~~ Chem. Eng. Technol. 14 (1991) 295-300 295 Simulation of a Distillation Column on an IBM PC, Accounting for Real Behaviour of Electrolyte Solutions * Andre Bosen and Manfred Roth** This contribution

More information

Densities, Viscosities, and Surface and Interfacial Tensions of the Ternary Mixture Water + Ethyl Butyrate + Methanol at K

Densities, Viscosities, and Surface and Interfacial Tensions of the Ternary Mixture Water + Ethyl Butyrate + Methanol at K 1266 J. Chem. Eng. Data 2003, 48, 1266-1270 Densities, Viscosities, and Surface and Interfacial Tensions of the Ternary Mixture Water + Ethyl Butyrate + Methanol at 303.15 K Mirjana Lj. Kijevcanin, Inês

More information

물 - 에탄올공비증류공정의최적화 공주대학교화학공학부조정호

물 - 에탄올공비증류공정의최적화 공주대학교화학공학부조정호 물 - 에탄올공비증류공정의최적화 공주대학교화학공학부조정호 1 1 2 3 4 5 6 7 8 목차 :(1) 공비혼합물을형성하는이성분계의분리공비혼합물의분류올바른열역학모델식의선정원료조건, 제품사양및유틸리티삼성분계액액상평형도상에서의공비증류공정의설계농축기 (Concentrator) 의전산모사기법경사분리기 (Decanter) 의전산모사기법공비증류탑 (Azeotropic

More information

Equilibrated Vapor Concentrations for Bicomponent Organic Solvents

Equilibrated Vapor Concentrations for Bicomponent Organic Solvents J Occup Health 1998; 40: 13 136 Journal of Occupational Health Equilibrated Vapor Concentrations for Bicomponent Organic Solvents Hajime HORI 1 and Isamu TANAKA 1 Department of Environmental Management

More information

Isobaric vapor-liquid equilibrium for methanol+benzene+1-octyl-3-methylimidazolium tetrafluoroborate

Isobaric vapor-liquid equilibrium for methanol+benzene+1-octyl-3-methylimidazolium tetrafluoroborate Korean J. Chem. Eng., 29(7), 941-945 (2012) DOI: 10.1007/s11814-011-0262-7 INVITED REVIEW PAPER Isobaric vapor-liquid equilibrium for methanol+benzene+1-octyl-3-methylimidazolium tetrafluoroborate Qunsheng

More information

Continuous Thermodynamics of Petroleum Fluids Fractions

Continuous Thermodynamics of Petroleum Fluids Fractions Chemical Engineering and Processing Volume 40, Issue 5, Pages 431 435, 2001 DOI: 10.1016/S0255-2701(00)00140-9 Print ISSN: 02552701 G.Reza Vakili-Nezhaad a, Hamid Modarress b, G.Ali Mansoori c a Uniersity

More information

Prediction of surface tension of binary mixtures with the parachor method

Prediction of surface tension of binary mixtures with the parachor method Prediction of surface tension of binary mixtures with the parachor method Tomáš Němec 1,a Institute of Thermomechanics ASCR, v.v.i., Dolejškova, 18 Praha 8, Czech Republic Abstract. The parachor method

More information

Volumetric Study of the Binary Mixtures Containing a Branched Hexane and an Isomeric Chlorobutane

Volumetric Study of the Binary Mixtures Containing a Branched Hexane and an Isomeric Chlorobutane 78 Journal of Applied Solution Chemistry and Modeling, 205, 4, 78-84 Volumetric Study of the Binary Mixtures Containing a Branched Hexane and an Isomeric Chlorobutane Hernando Guerrero, Félix M. Royo and

More information

A comparative study on the recovery of 1,2-dichloroethane and the removal of benzene contained in the byproducts of VCM process

A comparative study on the recovery of 1,2-dichloroethane and the removal of benzene contained in the byproducts of VCM process Korean J. Chem. Eng., 27(3), 970-976 (2010) DOI: 10.1007/s11814-010-0206-7 RAPID COMMUNICATION A comparative study on the recovery of 1,2-dichloroethane and the removal of benzene contained in the byproducts

More information

Optimization of Batch Distillation Involving Hydrolysis System

Optimization of Batch Distillation Involving Hydrolysis System 273 Optimization of Batch Distillation Involving Hydrolysis System Elmahboub A. Edreder 1, Iqbal M. Mujtaba 2, Mansour Emtir 3* 1 Libyan Petroleum Institute, P.O. Box 6431, Tripoli, Libya 2 School of Engineering

More information

DESIGN AND CONTROL OF BUTYL ACRYLATE REACTIVE DISTILLATION COLUMN SYSTEM. I-Lung Chien and Kai-Luen Zeng

DESIGN AND CONTROL OF BUTYL ACRYLATE REACTIVE DISTILLATION COLUMN SYSTEM. I-Lung Chien and Kai-Luen Zeng DESIGN AND CONTROL OF BUTYL ACRYLATE REACTIVE DISTILLATION COLUMN SYSTEM I-Lung Chien and Kai-Luen Zeng Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei

More information

A modification of Wong-Sandler mixing rule for the prediction of vapor-liquid equilibria in binary asymmetric systems

A modification of Wong-Sandler mixing rule for the prediction of vapor-liquid equilibria in binary asymmetric systems Korean J. Chem. Eng., 28(7), 16131618 (2011) DOI: 10.1007/s1181401005347 INVITED REVIEW PAPER A modification of WongSandler mixing rule for the prediction of vaporliquid equilibria in binary asymmetric

More information

Distillation. JAMES R. FAIR Department of Chemical Engineering The University of Texas Austin, Texas. 5.1 INTRODUCTION 5.

Distillation. JAMES R. FAIR Department of Chemical Engineering The University of Texas Austin, Texas. 5.1 INTRODUCTION 5. PART Il I N D I V I D U A L S E P A R A T I O N P R O C E S S E S C H A P T E R 5 Distillation JAMES R. FAIR Department of Chemical Engineering The University of Texas Austin, Texas 5.1 INTRODUCTION 5.M

More information

Thermally Coupled Distillation Systems: Study of an Energy-efficient Reactive Case

Thermally Coupled Distillation Systems: Study of an Energy-efficient Reactive Case F. O. BARROSO-MUÑOZ et al., Thermally Coupled Distillation Systems: Study of, Chem. Biochem. Eng. Q. 21 (2) 115 120 (2007) 115 Thermally Coupled Distillation Systems: Study of an Energy-efficient Reactive

More information

Measurement and Correlation for Solubility of Dimethyl-2,6-naphthalene Dicarboxylate in Organic Solvents

Measurement and Correlation for Solubility of Dimethyl-2,6-naphthalene Dicarboxylate in Organic Solvents Chin. J. Chem. Eng., 15(2) 215 22 (27) Measurement and Correlation for Solubility of Dimethyl-2,6-naphthalene Dicarboxylate in Organic Solvents XIA Qing( 夏清 )* and MA Peisheng( 马沛生 ) School of Chemi Engineering

More information

VOL. 11, NO. 3, FEBRUARY 2016 ISSN

VOL. 11, NO. 3, FEBRUARY 2016 ISSN COMPARATIVE ANALYSIS OF EXPERIMENTAL AND NUMERICAL INVESTIGATION ON THERMOPHYSICAL PROPERTIES IN HYDROCARBON MIXTURES USING JOUYBAN-ACREE MODEL AT VARIOUS TEMPERATURES R. Ramesh, T. K. Thanusha, M. Y.

More information

When using a chemical process simulator, the most

When using a chemical process simulator, the most Computational Methods Understand Thermodynamics to Improve Process Simulations David Hill Fred C. Justice, P.E. Chemstations, Inc. Selecting a thermodynamic model is an important step in process simulation

More information

Correlation of High Pressure Density Behaviors for Fluid Mixtures made of Carbon Dioxide with Solvent at K

Correlation of High Pressure Density Behaviors for Fluid Mixtures made of Carbon Dioxide with Solvent at K The Open Thermodynamics Journal, 9, 3, -6 Open Access Correlation of High Pressure Density Behaviors for Fluid Mixtures made of Carbon Dioxide with Solvent at 33.5 K Masahiro Kato, *, Masaki Kokubo, Kensuke

More information

Classification and Labelling

Classification and Labelling Classification and Labelling Physical Hazards Eugen Anwander, Institute for Environment & Food Safety State of Vorarlberg / Austria Tour through the Topic physico-chemical hazards today (DSD 67/548/EEC)

More information

Review of Chemical Equilibrium Introduction

Review of Chemical Equilibrium Introduction Review of Chemical Equilibrium Introduction Copyright c 2015 by Nob Hill Publishing, LLC This chapter is a review of the equilibrium state of a system that can undergo chemical reaction Operating reactors

More information

Chapter 11. Intermolecular Forces and Liquids and Solids. Chemistry, Raymond Chang 10th edition, 2010 McGraw-Hill

Chapter 11. Intermolecular Forces and Liquids and Solids. Chemistry, Raymond Chang 10th edition, 2010 McGraw-Hill Chemistry, Raymond Chang 10th edition, 2010 McGraw-Hill Chapter 11 Intermolecular Forces and Liquids and Solids Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department

More information

ScienceDirect. Modelling CO 2 Water Thermodynamics Using SPUNG Equation of State (EoS) concept with Various Reference Fluids

ScienceDirect. Modelling CO 2 Water Thermodynamics Using SPUNG Equation of State (EoS) concept with Various Reference Fluids Available online at www.sciencedirect.com ScienceDirect Energy Procedia 51 (2014 ) 353 362 7th Trondheim CCS Conference, TCCS-7, June 5-6 2013, Trondheim, Norway Modelling CO 2 Water Thermodynamics Using

More information

~ K 에서 2- 브로모프로판 - 메탄올이성분혼합물의밀도, 점성도, 여분성질

~ K 에서 2- 브로모프로판 - 메탄올이성분혼합물의밀도, 점성도, 여분성질 Journal of the Korean Chemical Society 00, Vol. 54, No. Printed in the Republic of Korea DOI 0.50/jkcs.00.54.0.07 98.5 ~ 38.5 K 에서 - 브로모프로판 - 메탄올이성분혼합물의밀도, 점성도, 여분성질 Hua Li*, Zhen Zhang, and Lei Zhao School

More information

Contractor Endrick Divyakant 1, Prof. R.P.Bhatt 2

Contractor Endrick Divyakant 1, Prof. R.P.Bhatt 2 Measuring the Changes Due To Addition of Calcium Chloride in Acetic Acid Water Mixture and Generate the VLE Data with the Help of Extractive Distillation Contractor Endrick Divyakant 1, Prof. R.P.Bhatt

More information

Reflections on the use of the McCabe and Thiele method

Reflections on the use of the McCabe and Thiele method From the Selectedorks of João F Gomes January 2007 Reflections on the use of the McCabe and Thiele method Contact Author Start Your Own Selectedorks Notify Me of New ork Available at: http://works.bepress.com/joao_gomes/42

More information

Experimental and Simulation Study on the Reactive Distillation Process for the Production of Ethyl Acetate

Experimental and Simulation Study on the Reactive Distillation Process for the Production of Ethyl Acetate Experimental and Simulation Study on the Reactive Distillation Process for the Production of Ethyl Acetate Jongkee Park, Na-Hyun Lee, So-Jin Park, and Jungho Cho, Separation Process Research Center, Korea

More information

Preliminary Evaluation of the SPUNG Equation of State for Modelling the Thermodynamic Properties of CO 2 Water Mixtures

Preliminary Evaluation of the SPUNG Equation of State for Modelling the Thermodynamic Properties of CO 2 Water Mixtures Available online at www.sciencedirect.com Energy Procedia 26 (2012 ) 90 97 2 nd Trondheim Gas Technology Conference Preliminary Evaluation of the SPUNG Equation of State for Modelling the Thermodynamic

More information