DISCRETE CHOICE METHODS AND THEIR APPLICATIONS TO SHORT TERM TRAVEL DECISIONS Moshe Ben-Akiva and Michel Bierlaire

Size: px
Start display at page:

Download "DISCRETE CHOICE METHODS AND THEIR APPLICATIONS TO SHORT TERM TRAVEL DECISIONS Moshe Ben-Akiva and Michel Bierlaire"

Transcription

1 AND THEIR APPLICATIONS TO SHORT TERM TRAVEL DECISIONS Mosh B-Akiva ad Michl Birlair Chaptr for th Trasportatio Scic Hadbook MIT, April 1999 Itroductio Modlig travl bhavior is a ky aspct of dmad aalysis, whr aggrgat dmad is th accumulatio of idividuals dcisios. I this chaptr, w focus o short-trm travl dcisios. Th most importat short-trm travl dcisios iclud choic of dstiatio for a o-work trip, choic of travl mod, choic of dpartur tim ad choic of rout. It is importat to ot that short-trm dcisios ar coditioal o log-trm travl ad mobility dcisios such as car owrship ad rsidtial ad work locatios. Th aalysis of travl bhavior is typically disaggrgat, maig that th modls rprst th choic bhavior of idividual travlrs. Discrt choic aalysis is th mthodology usd to 1

2 2 M. B-Akiva ad M. Birlair aalyz ad prdict travl dcisios. Thrfor, w bgi this chaptr with a rviw of th thortical ad practical aspcts of discrt choic modls. Aftr a brif discussio of gral assumptios, w itroduc th radom utility modl, which is th most commo thortical basis of discrt choic modls. W th prst th altrativ discrt choic modl forms such as Logit, Nstd Logit, Gralizd Extrm Valu ad Probit, as wll as mor rct dvlopmts such as Hybrid Logit ad th Latt Class choic modl. Fially, w laborat o th applicatios of ths modls to two spcific short trm travl dcisios: rout choic ad dpartur tim choic. Discrt Choic Modls W provid hr a brif ovrviw of th gral framwork of discrt choic modls. W rfr th radr to B-Akiva ad Lrma (1985) for th dtaild dvlopmts. Gral modlig assumptios Th framwork for a discrt choic modl ca b prstd by a st of gral assumptios. W distiguish amog assumptios about th: 1. dcisio-makr -- dfiig th dcisio-makig tity ad its charactristics; 2. altrativs -- dtrmiig th optios availabl to th dcisiomakr; 3. attributs -- masurig th bfits ad costs of a altrativ to th dcisio-makr; ad 4. dcisio rul -- dscribig th procss usd by th dcisiomakr to choos a altrativ.

3 M. B-Akiva ad M. Birlair 3 Dcisio-makr Discrt choic modls ar also rfrrd to as disaggrgat modls, maig that th dcisio-makr is assumd to b a idividual. Th idividual dcisio-makig tity dpds o th particular applicatio. For istac, w may cosidr that a group of prsos (a houshold or a orgaizatio, for xampl) is th dcisio-makr. I doig so, w may igor all itral itractios withi th group, ad cosidr oly th dcisios of th group as a whol. W rfr to dcisio-makr ad idividual itrchagably throughout this chaptr. To xplai th htrogity of prfrcs amog dcisio-makrs, a disaggrgat modl must iclud thir charactristics such as th socio-coomic variabls of ag, gdr, ducatio ad icom. Altrativs Aalyzig idividual dcisio makig rquirs ot oly kowldg of what has b chos, but also of what has ot b chos. Thrfor, assumptios must b mad about availabl optios, or altrativs, that a idividual cosidrs durig a choic procss. Th st of cosidrd altrativs is calld th choic st. A discrt choic st cotais a fiit umbr of altrativs that ca b xplicitly listd. Th choic of a travl mod is a typical xampl of a choic from a discrt choic st. Th idtificatio of th list of altrativs is a complx procss usually rfrrd to as choic st gratio. Th most widly usd mthod for choic st gratio uss dtrmiistic critria of altrativ availability. For xampl, th possssio of a drivr s lics dtrmis th availability of th auto driv optio. Th uivrsal choic st cotais all pottial altrativs i th applicatio s cotxt. Th choic st is th subst of th uivrsal choic st cosidrd by, or availabl to, a particular idividual.

4 4 M. B-Akiva ad M. Birlair Altrativs i th uivrsal choic st that ar ot availabl to th idividual ar thrfor xcludd from th choic st. I additio to availability, th dcisio-makr s awarss of th altrativ could also affct th choic st. Th bhavioral aspcts of awarss itroduc ucrtaity i modlig th choic st gratio procss ad motivat th us of probabilistic choic st gratio modls that prdict th probability of ach fasibl choic st withi th uivrsal st. A discrt choic modl with a probabilistic choic st gratio modl is dscribd latr i this chaptr as a spcial cas of th latt class choic modl. Attributs Each altrativ i th choic st is charactrizd by a st of attributs. Not that som attributs may b gric to all altrativs, ad som may b altrativ-spcific. A attribut is ot cssarily a dirctly masurabl quatity. It ca b ay fuctio of availabl data. For xampl, istad of cosidrig travl tim as a attribut of a trasportatio mod, th logarithm of th travl tim may b usd, or th ffct of out-ofpockt cost may b rprstd by th ratio btw th out-ofpockt cost ad th icom of th idividual. Altrativ dfiitios of attributs as fuctios of availabl data must usually b tstd to idtify th most appropriat. Dcisio rul Th dcisio rul is th procss usd by th dcisio-makr to valuat th attributs of th altrativs i th choic st ad dtrmi a choic. Most modls usd for travl bhavior applicatios ar basd o utility thory, which assums that th dcisio-makr s prfrc for a altrativ is capturd by a valu, calld utility, ad th dcisio-makr slcts th altrativ i th choic st with th highst utility.

5 M. B-Akiva ad M. Birlair 5 This cocpt, mployd by cosumr thory of micro-coomics, prsts strog limitatios for practical applicatios. Th udrlyig assumptios of this approach ar oft violatd i dcisio-makig xprimts. Th complxity of huma bhavior suggsts that th dcisio rul should iclud a probabilistic dimsio. Som modls assum that th dcisio rul is itrisically probabilistic, ad v complt kowldg of th problm would ot ovrcom th ucrtaity. Othrs cosidr th idividuals dcisio ruls as dtrmiistic, ad motivat th ucrtaity from th limitd capability of th aalyst to obsrv ad captur all th dimsios of th choic procss, du to its complxity. Spcific familis of modls ca b drivd dpdig o th assumptios about th sourc of ucrtaity. Modls with probabilistic dcisio ruls, lik th modl proposd by Luc (1959), or th limiatio by aspcts approach proposd by Tvrsky (1972), assum a dtrmiistic utility ad a probabilistic dcisio procss. Radom utility modls, usd itsivly i coomtrics ad i travl bhavior aalysis, ar basd o dtrmiistic dcisio ruls, whr utilitis ar rprstd by radom variabls. Radom Utility thory Radom utility modls assum, as dos th coomic cosumr thory, that th dcisio-makr has a prfct discrimiatio capability. Howvr, th aalyst is assumd to hav icomplt iformatio ad, thrfor, ucrtaity must b tak ito accout. Maski (1977) idtifis four diffrt sourcs of ucrtaity: uobsrvd altrativ attributs; uobsrvd idividual charactristics (also calld uobsrvd tast variatios ); masurmt rrors; ad proxy, or istrumtal, variabls.

6 6 M. B-Akiva ad M. Birlair Th utility is modld as a radom variabl i ordr to rflct this ucrtaity. Mor spcifically, th utility that idividual associats with altrativ i i th choic st C is giv by U i = V i + ε i, whr V i is th dtrmiistic (or systmatic) part of th utility, ad ε i is th radom trm, capturig th ucrtaity. Th altrativ with th highst utility is chos. Thrfor, th probability that altrativ i is chos by dcisio-makr from choic st C is P(i C ) = P[ U i U j j C ] = P[U i = max j C U j ]. I th followig w itroduc th assumptios cssary to mak a radom utility modl opratioal. Locatio ad scal paramtrs Cosidrig two arbitrary ral umbrs α ad, whr > 0, w hav that P[ U i U j j C ] = P[U i +α U j +α j C ] = P[ U i -U j 0 j C ]. Th abov illustrats th fact that oly th sigs of th diffrcs btw utilitis ar rlvat hr, ad ot utilitis thmslvs. Th cocpt of ordial utility is rlativ ad ot absolut. I ordr to stimat ad us a spcific modl arbitrary valus hav to b slctd for α ad. Th slctio of th scal paramtr is usually basd o a covit ormalizatio of o of th variacs of th radom trms. Th locatio paramtr α is usually st to zro. S also th discussio blow of Altrativ Spcific Costats.

7 M. B-Akiva ad M. Birlair 7 Altrativ Spcific Costats Th mas of th radom trms ca b assumd to b qual to ay covit valu c (usually zro, or th Eulr costat γ for Logit modls). This is ot a rstrictiv assumptio. If w dot th ma of th rror trm of altrativ i by m i = E[ε i ], w ca dfi a w radom variabl i = ε i - m i +c such that E[ i ]=c. W hav P[ U i U j j C ] = P[ V i + m i + i V j + m j + j j C ], a modl i which th dtrmiistic part of th utilitis ar V i + m i ad th radom trms ar i (with ma c). Th trms m i ar th icludd as Altrativ Spcific Costats (ASC) that captur th mas of th radom trms. Thrfor, w may assum without loss of grality that th rror trms of radom utility modls hav a costat ma c by icludig altrativ spcific costats i th dtrmiistic part of th utility fuctios. As oly diffrcs btw utilitis ar rlvat, oly diffrcs btw ASCs ar rlvat as wll. It is commo practic to dfi th locatio paramtr α as th gativ of o of th ASCs. This is quivalt to costraiig that ASC to zro. From a modlig viwpoit, th choic of th particular altrativ whos ASC is costraid is arbitrary. Howvr, Birlair, Lota ad Toit (1997) hav show that th stimatio procss may b affctd by this choic. I th cotxt of th Multiomial Logit Modl, thy show that costraiig th sum of ASCs to 1 is optimal for th spd of covrgc of th stimatio procss. This rsult is also gralizd for th Nstd Logit Modl. Th dtrmiistic trm of th utility Th dtrmiistic trm V i of ach altrativ is a fuctio of th attributs of th altrativ itslf ad th charactristics of th dcisio-makr. That is

8 8 M. B-Akiva ad M. Birlair V i = V(z i, S ) whr z i is th vctor of attributs as prcivd by idividual for altrativ i, ad S is th vctor of charactristics of idividual. This formulatio is simplifid usig ay appropriat vctor valud fuctio h that dfis a w vctor of attributs from both z i ad S, that is x i = h(z i, S ). Th choic of h is vry gral, ad svral forms may b tstd to idtify th bst rprstatio i a spcific applicatio. It is usually assumd to b cotiuous ad mootoic i z i. For a liar i th paramtrs utility spcificatio, h must b a fully dtrmid fuctio (maig that is dos ot cotai ukow paramtrs). Th w hav V i = V(x i ). A liar i th paramtrs fuctio is dotd as follows V = β x. i k ik k Th dtrmiistic trm of th utility is thrfor fully spcifid by th vctor of paramtrs β. Th radom part of th utility Amog th may pottial modls that ca b drivd for th radom parts of th utility fuctios, w dscrib blow th most popular. Th modls withi th Logit family ar basd o a probability distributio fuctio of th maximum of a sris of radom variabls, itroducd by Gumbl (1958). Probit ad Probitlik modls ar basd o th Normal distributio motivatd by th Ctral Limit Thorm.

9 M. B-Akiva ad M. Birlair 9 Th mai advatag of th Probit modl is its ability to captur all corrlatios amog altrativs. Howvr, du to th high complxity of its formulatio, vry fw applicatios hav b dvlopd. Th Logit modl has b much mor popular, bcaus of its tractability, but it imposs rstrictios o th covariac structur. Thy may b uralistic i som cotxts. Th drivatio of othr modls i th Logit family is aimd at rlaxig rstrictios, whil maitaiig tractability. W discuss hr th spcificatio ad proprtis of th modls from th Logit family (th Multiomial Logit modl, th Nstd Logit modl, th Cross-Nstd modl ad th Gralizd Extrm Valu modl). Aftr prstig th Probit modl, w itroduc mor advacd modls. Th Gralizd Factor Aalytical Rprstatio ad th Hybrid Logit modls ar dsigd to bridg th gap btw Logit ad Probit modls. Th Latt Class Choic modl is a furthr xtsio dsigd to xplicitly iclud i th modl discrt uobsrvd factors. Th LOGIT family Logit-basd modls hav b widly usd for travl dmad aalysis. Practitiors ad rsarchrs hav usd, rfid ad xtdd th origial Biary Logit Modl to obtai a class of modls basd o similar assumptios. W rfr to this class as th Logit-family. Multiomial Logit Modl Th Logistic Probability Uit, or th Logit Modl, was first itroducd i th cotxt of biary choic whr th logistic distributio is usd. Its gralizatio to mor tha two altrativs is rfrrd to as th Multiomial Logit Modl. Th Multiomial Logit Modl is drivd from th assumptio that th rror trms of th utility fuctios ar idpdt ad idtically Gumbl

10 10 M. B-Akiva ad M. Birlair distributd (or Typ I xtrm valu). That is, ε i for all i, is distributd as: ( ε η) [ ] F( ε ) = xp, > 0 [ ] f ( ε ) = ( ε η ) xp ( ε η) whr η is a locatio paramtr ad is a strictly positiv scal paramtr. Th ma of this distributio is whr γ = lim k k i= 1 η + γ / 1 l( k) i is th Eulr costat. Th variac of th distributio is π 2 /6 2. Th probability that a giv idividual chooss altrativ i withi th choic st C is giv by Vi P ( i C ) =. V j j C A importat proprty of th Multiomial Logit Modl is Idpdc from Irrlvat Altrativs (IIA). This proprty ca b statd as follows: Th ratio of th probabilitis of ay two altrativs is idpdt of th choic st. That is, for ay choic sts C 1 ad C 2 such that C 1 C ad C 2 C, ad for ay altrativs i ad j i both C 1 ad C 2, w hav

11 M. B-Akiva ad M. Birlair 11 ( i C1) ( j C ) P P 1 ( i C2) ( j C ) P =. P A quivalt dfiitio of th IIA proprty is: Th ratio of th choic probabilitis of ay two altrativs is uaffctd by th systmatic utilitis of ay othr altrativs. Th IIA proprty of Multiomial Logit Modls is a limitatio for som practical applicatios. This limitatio is oft illustratd by th rd bus/blu bus paradox i th modal choic cotxt. W us hr istad th followig path choic xampl. Cosidr a commutr travlig from origi O to dstiatio D. H/sh is cofrotd with th path choic problm dscribd i Figur 1 blow, whr th choic st is {1,2a,2b} ad th oly attribut cosidrd for th choic is travl tim. W assum furthrmor that th travl tim for ay altrativ is th sam, that is V(1) = V(2a) = V(2b) = T, ad that th travl tim o th small sctios a ad b is δ. 2 O Path 2 a D b Path 1 Figur 1 Th probability of ach altrativ providd by th Multiomial Logit Modl for this xampl is

12 12 M. B-Akiva ad M. Birlair T 1 P( 1 { 1, 2a, 2b}) = P( 2a { 1, 2a, 2b}) = P( 2b { 1, 2a, 2b}) = T = 3 j { 1, 2a, 2b} Clarly, this rsult is idpdt of th valu of δ. Howvr, wh δ is sigificatly smallr tha th total travl tim T, w xpct th probabilitis to b clos to 50%/25%/25%. Th Multiomial Logit Modl is ot cosistt with this ituitiv rsult. This situatio appars i choic problms with sigificatly corrlatd radom utilitis, as it is clarly th cas i th path choic xampl. Idd, altrativs 2a ad 2b ar so similar that thir utilitis shar may uobsrvd attributs of th path ad, thrfor, th assumptio of idpdc of th radom parts is ot valid i this cotxt. Nstd Logit Modl Th Nstd Logit Modl, first proposd by B-Akiva (1973 ad 1974), is a xtsio of th Multiomial Logit Modl dsigd to captur som corrlatios amog altrativs. It is basd o th partitioig of th choic st C ito M sts C m such that ad C = M m=1 C m C m C m = m m. Th utility fuctio of ach altrativ is composd of a trm spcific to th altrativ ad a trm associatd with th st. If i is a altrativ from st C m, w hav ~ U = V + ~ ~ ε + V + ~ ε. i i i Cm Cm

13 M. B-Akiva ad M. Birlair 13 Th rror trms ~ ε i ad ~ ε Cm ar supposd to b idpdt. As i th Multiomial Logit Modl, th rror trms ~ ε i ar assumd to b idpdt ad idtically Gumbl distributd, with scal paramtr m (it ca b diffrt for ach st). Th distributio of ~ ε Cm is such that th radom variabl maxu j is Gumbl j C m distributd with scal paramtr. Each st withi th choic st is associatd with a composit utility V Cm = ~ V Cm 1 + l m j C m Th scod trm is calld xpctd maximum utility, LOGSUM, iclusiv valu or accssibility i th litratur. Th probability for idividual to choos altrativ i withi st C m is giv by whr ~ mv j P( i C ) = P( C C ) P( i C ) m m. ad P( C m P( i C ) = m C ) j C m = M l= 1 VC m ~ mvi ~ mv. j VCl, Paramtrs ad m rflct th corrlatio amog altrativs withi th st C m. Th covariac btw th utility of two altrativs i ad j i st C m is

14 14 M. B-Akiva ad M. Birlair Cov( U i, U j var( ~ ε ) = 0 Cm ad th corrlatio is 2 1 Corr( U, ) = 2 i U j m 0 ) if i ad j C othrwis if i ad j C othrwis Thrfor, as th corrlatio is o gativ, w hav 0 1, m m m. ad = 1 corr( U, U ) = 0. m i j Th paramtrs ad m ar closly rlatd i th modl. Actually, oly thir ratio is maigful. It is ot possibl to idtify thm sparatly. A commo practic is to arbitrarily costrai o of thm to a spcific valu (usually 1). As a xampl, w apply ow th Nstd Logit Modl to th rout choic problm dscribd i Figur 1. W partitio th choic st C ={1,2a,2b} ito C 1 ={1} ad C 2 ={2a,2b}. Th probability of choosig path 1 is giv by 1 P (1 {1,2a,2b}) =, 1+ 2 whr 2 is th scal paramtr of th radom trm associatd with C 2, ad is th scal paramtr of th choic btw C 1 ad C 2. 2

15 M. B-Akiva ad M. Birlair 15 Not that w rquir 0 / 2 1. Th probability of th two othr paths is P (2a C ) = P(2b C ) = I this xampl, w d to ormaliz ithr or 2 to 1. I th lattr cas w hav ad 1 P( 1 { 1, 2a, 2b}) = P( 2a C ) = P( 2b C ) = ad w rquir that 0 1. Not that for =1 w obtai th MNL rsult. For approachig zro, w obtai th xpctd rsult wh paths 2a ad 2b fully ovrlap. A modl whr th scal paramtr is ormalizd to 1 is said to b ormalizd from th top. A modl whr o of th paramtrs m is ormalizd to 1 is said to b ormalizd from th bottom. Th lattr may produc a simplr formulatio of th modl. W illustrat it usig th followig xampl. I th cotxt of a mod choic with C ={bus, mtro, car, bik}, w cosidr a modl with two sts: C 1 ={bus,mtro} cotais th public trasportatio mods ad C 2 ={car,bik} cotais th privat trasportatio mods. For th xampl s sak, w cosidr th followig dtrmiistic trms of th utility fuctios: V bus =β 1 t bus ; V mtro =β 1 t mtro ; V car =β 2 t car ; V bik =β 2 t bik

16 16 M. B-Akiva ad M. Birlair whr t i is th travl tim usig mod i ad β 1 ad β 2 ar paramtrs to b stimatd. Not that w hav o paramtr for privat ad o for public trasportatio, ad w hav ot icludd th altrativ spcific costats i ordr to kp th xampl simpl. Applyig th Nstd Logit Modl, w obtai t t t ( 1β1 bus 1β 1 mtro 1β1 bus l + ) P ( 1 bus) = 1β1t bus 1β1tmtro t t t 2 t l( 1β1 bus 1β 1 mtro ) l( 2β2 car + + β 2 bik ) Dfi θ 1 = / 1, θ 2 = / 2, β 1 * = 1 β 1 ad β 2 * = 2 β 2 to obtai P(bus) = * β1tbus * β1 tbus + * β1 tmtro β * t * t 1 bus β + 1 mtro 1l θ β* t * t 1 bus β + 1 mtro 1l θ + θ β * t * t 2 car β + 2 bik 2 l with 0 θ 1,θ 2 1. This formulatio simplifis th stimatio procss. For this raso, it has b adoptd by th B-Akiva ad Lrma (1985) txtbook ad i stimatio packags lik ALOGIT (Daly, 1987) ad HiLoW (Birlair, 1995, Birlair ad Vadvyvr, 1995). W mphasiz hr that ths packags should b usd with cautio wh th sam paramtrs ar prst i mor tha o st. Spcific tchiqus ispird from artificial trs proposd by Bradly ad Daly (1991) must b usd to obtai a corrct spcificatio of th modl. I th abov xampl, if 1 = 2, th imposig th rstrictio β 1 =β 2 is straightforward. Howvr, for th cas of 1 2 ad β 1 =β 2 =β, w dfi β*= 1 2 β ad crat artificial ods blow ach altrativ, with a scal 2 for th first st ad scal 1 for th scod. W rfr th radr to Kopplma ad Ch (1998) for furthr discussio. A dirct xtsio of th Nstd Logit Modl cosists i partitioig som or all sts ito sub-sts which ca i tur, b dividd ito sub-sts. Th modl dscribd abov is valid at vry,

17 M. B-Akiva ad M. Birlair 17 layr of th stig, ad th whol modl is gratd rcursivly. Bcaus of th complxity of ths modls, thir structur is usually rprstd as a tr. Clarly, th umbr of pottial structurs rflctig th corrlatio amog altrativs ca b vry larg. No tchiqu has b proposd thus far to idtify th most appropriat corrlatio structur dirctly from th data. Th Nstd Logit Modl is dsigd to captur choic problms whr altrativs withi ach st ar corrlatd. No corrlatio across sts ca b capturd by th Nstd Logit Modl. Wh altrativs caot b partitiod ito wll sparatd sts to rflct thir corrlatio, th Nstd Logit Modl is ot appropriat. Cross-Nstd Logit Modl Th Cross-Nstd Logit Modl is a dirct xtsio of th Nstd Logit Modl, whr ach altrativ may blog to mor tha o st. Similar to th Nstd Logit Modl, th choic st C is partitiod ito M sts C m. Morovr, for ach altrativ i ad ach st m, paramtrs α im (0 α im 1) rprstig th dgr of mmbrship of altrativ i i st m ar dfid. Th utility of altrativ i is giv by U = ~ V + ~ + ~ ε V + ~ ε + lα. Th rror trms ~ ε i ad im i i Cm Cm im ~ ε C m ar idpdt. Th rror trms ar idpdt ad idtically Gumbl distributd, with uit ~ ε i scal paramtr (this assumptio is ot th most gral, but simplifis th drivatio of th modl). Th distributio of such that th radom variabl maxu j C m jm ε ~ C m is is Gumbl distributd with scal paramtr. Th probability for idividual to choos altrativ i is giv by

18 18 M. B-Akiva ad M. Birlair whr M P( i C ) = P( C C ) P ( i C ) m m m= 1 P( C m C ) = M l= 1 VC m VCl, ad V Cm ~ = V Cm + l Vi αim P ( i Cm ) = ~ V α j C m ~ V j jm α. j C m This modl was first prstd by McFadd (1978) as a spcial cas of th GEV modl that is prstd blow. It was applid by Small (1987) for dpartur tim choic ad by Vovsha (1998) for rout choic. Gralizd Extrm Valu Th Gralizd Extrm Valu (GEV) modl has b drivd from th radom utility modl by McFadd (1978). This gral modl cosists of a larg family of modls that iclud th Multiomial Logit ad th Nstd Logit modls. Th probability of choosig altrativ i withi C is jm ~ j G V V 1 J (,..., ) Vi V V 1 J (,..., ) V i P( i C ) =. G,

19 M. B-Akiva ad M. Birlair 19 J is th umbr of altrativs i C ad G is a o-gativ diffrtiabl fuctio dfid o IR + J with th followig proprtis: 1. G is homogous of dgr > 0 1, 2. lim G( x1,..., xi,..., x J ) =, i = 1,..., J xi 3. th kth partial drivativ with rspct to k distict x i is ogativ if k is odd, ad o-positiv if k is v, that is, for ay distict i 1, i k {1, J } w hav k k G J ( 1) ( x) 0 x IR x... x +. i1 ik Th Multiomial Logit Modl, th Nstd Logit Modl ad th Cross-Nstd Logit Modl ar GEV modls, with for th Logit modl, G( x) = J x i i = 1 G( x) = for th Nstd Logit modl ad M m= 1 m x i i C m m 1 McFadd s origial formulatio with =1 was gralizd to >0 by B-Akiva ad Fraçois (1983).

20 20 M. B-Akiva ad M. Birlair M G( x) = α m= 1 j C for th Cross-std Logit modl. m jm x j m Multiomial Probit Modl Th Probability Uit (or Probit) modl should hav b calld Normit, for Normal Probability Uit modl. It is drivd from th assumptio that th rror trms of th utility fuctios ar ormally distributd. Th Probit modl capturs xplicitly th corrlatio amog all altrativs. Thrfor, w adopt a vctor otatio for th utility fuctios: U = V + ε, whr U, V ad ε ar (J 1) vctors. Th vctor of rror trms ε =[ε 1,ε 2,...,ε J ] T is multivariat ormal distributd with a vctor of mas 0 ad a J xj variac-covariac matrix Σ. Th probability that a giv idividual chooss altrativ i from th choic st C is giv by P( i C ) = P( U U 0 j C ). j i Dotig i th (J -1 J ) matrix such that i U =[U 1 -U i,,u (i-1) -U i,u (i+1) -U i,, U -U i] T, w hav that Th dsity fuctio is giv by i U ~ N( i V, i Σ i T ). J

21 M. B-Akiva ad M. Birlair 21 whr fi ( x) = λ xp 1 ( 2 x V ) i T ( Σ i T i ) 1 ( x V i ) ad λ = (2π ) J 1 2 Σ i T i 1/ ( i C ) = P( i 0) =... fi ( x) dx1... dxi 1dxi dxj P U. Th matrix i is such that th ith colum cotais -1 vrywhr. If th ith colum is rmovd, th rmaiig (J 1 J 1) matrix is th idtity matrix. For xampl, i th cas of a triomial choic modl, w hav = W ot that h multifold itgral bcoms itractabl v for a rlativly low umbr of altrativs. Morovr, th umbr of ukow paramtrs i th variac-covariac matrix grows with th squar of th umbr of altrativs. W rfr th radr to McFadd (1989) for a dtaild discussio of multiomial Probit modls. W prst blow th Gralizd Factor Aalytic formulatio dsigd to dcras th dgr of complxity of Probit modls. Gralizd Factor Aalytic Spcificatio of th Radom Utility Th gral formulatio of th factor aalytic formulatio is

22 22 M. B-Akiva ad M. Birlair U = V + ε = V + F ζ, whr U is a (J 1) vctor of utilitis, V is a (J 1) vctor of dtrmiistic utilitis, ε is a (J 1) vctor of radom trms, ζ is a (M 1) vctor of factors which ar IID stadard ormal distributd, ad F is a J M matrix of loadigs that map th factors to th radom utility vctor. This spcificatio is vry gral. If M = J, th umbr of altrativs i th uivrsal st, w ca dfi th matrix F as th Cholsky factor of th variac-covariac matrix Σ, that is Σ=F F T. F is th obtaid by rmovig th rows associatd with uavailabl altrativs. W dscrib hr spcial cass of factor aalytical rprstatios. Thy ar discussd i mor dtails by B-Akiva ad Bolduc (1996). Htroscdasticity A htroscdastic 2 modl is obtaid wh F is a J J diagoal matrix. Lt T b a diagoal matrix cotaiig th altrativ spcific stadard dviatios σ i. F is obtaid by rmovig th rows ad colums of th uavailabl altrativs. W obtai th followig modl, i scalar form: Factor Aalytic U i = V i + σ i ζ i. I this modl, th gral matrix F is dividd ito a matrix of loadigs Q ad a diagoal matrix T cotaiig th factor spcific stadard dviatios. W obtai th followig modl, 2 Htroscdasticity hr rfrs to diffrt variacs amog th altrativs. W us it i this cotxt to rfr to a diagoal variac-covariac matrix with pottially diffrt trms o th diagoal.

23 M. B-Akiva ad M. Birlair 23 Or, i scalar form: U =V + Q T ζ. M U = V + q σ ζ i i im m m m= 1 whr q im ar th lmts of Q ad σ m ar th diagoal lmts of T. Th matrix Q is ormalizd so that = 1. 2 q im i, m Wh th matrix Q is kow ad dos ot d to b stimatd th modl is rfrrd to as th Error Compot Formulatio. Gral Autorgrssiv Procss W cosidr th cas whr th rror trm ε is gratd from a first-ordr autorgrssiv procss: ε = ρw ε + T ζ, whr W is a (J J ) matrix of wights dscribig th ifluc of ach compot of th rror trms o th othrs, ad ζ ~N(0,I j ), as abov. Th w hav ε = (I-ρW ) -1 T ζ, which is a spcial cas of th factor aalytic rprstatio with Q = (I-ρW ) -1.,

24 24 M. B-Akiva ad M. Birlair Hybrid Logit Modl Th Multiomial Probit with a Logit krl, or Hybrid Logit 3, modl has b itroducd by B-Akiva ad Bolduc (1996). It is itdd to bridg th gap btw Logit ad Probit modls by combiig th advatags of both of thm. It is basd o th followig utility fuctios: U i = V i + ξ i + υ i, whr ξ i ar ormally distributd ad captur corrlatio btw altrativs, ad υ i ar idpdt ad idtically distributd Gumbl variabls. If th ξ i ar giv, th modl corrspods to a Multiomial Logit formulatio: P( i C, ξ ) = j C Vi + ξi V j + ξi whr ξ =[ξ 1,..., ξ J ] T is th vctor of uobsrvd radom trms. Thrfor, th probability to choos altrativ i is giv by P ( i C ) = ξ P( i C, ξ ) f ( ξ ) dξ whr f(ξ ) is th probability dsity fuctio of ξ. This modl is a gralizatio of th Multiomial Probit Modl wh th distributio f(ξ ) is a multivariat ormal. Othr distributios may also b usd. Th arlist applicatio of this modl to captur radom cofficits i th Logit Modl (s blow) was by Cardll ad Dubar (1980). Mor rct rsults highlightd th robustss of Hybrid Logit (s McFadd ad Trai, 1997)., 3 Somtims calld Mixd Logit

25 M. B-Akiva ad M. Birlair 25 Hybrid Logit with factor aalytical rprstatio. Th Hybrid Logit Modl ca b combid with th factor aalytical rprstatio prstd abov to allow practical stimatio usig a simulatd maximum liklihood procdur (s B-Akiva ad Bolduc, 1996). Th Probit rror trm is trasformd usig ay appropriat factor aalytical rprstatio to obtai th followig choic probability: P( i C ) = P( i C, ζ ) N( 0, I ) dζ. M ζ This formulatio of th multiomial Probit is spcially usful wh th umbr of altrativs is so high that th us of probability simulators is rquird. Radom cofficits W coclud our discussio of th Hybrid Logit modl with a formulatio of th Multiomial Logit Modl with radomly distributd cofficits: U =V +υ = X β +υ. Assum that β ~N(β,Ω). If Γ is th Cholsky factor of Ω such that ΓΓ T =Ω, w rplac β by β+γζ to obtai U = X β+ X Γζ +υ. It is a Hybrid Logit modl with a factor aalytic rprstatio with F = X Γ. Latt class choic modl Latt class choic modls ar also dsigd to captur uobsrvd htrogity. Th udrlyig assumptio is that th htrogity is gratd by discrt costructs. Ths costructs ar ot dirctly obsrvabl ad thrfor ar rprstd by latt classs.

26 26 M. B-Akiva ad M. Birlair For xampl, htrogity may b producd by tast variatios across sgmts of th populatio, or wh choic sts cosidrd by idividuals vary (latt choic st). Th latt class choic modl is giv by: S P( i X ) = P( i X ; βs, Cs ) P( s X ; θ) s= 1 whr S is th umbr of latt classs, X is th vctor of attributs of altrativs ad charactristics of dcisio-makr, β s ar th choic modl paramtrs spcific to class s, C s is th choic st spcific to class s, ad θ is a ukow paramtr vctor. Th modl P( s X ; θ) is th class mmbrship modl, ad is th class-spcific choic modl. P( i X ; β, C ) A spcial cas: latt choic sts s s A spcial cas is th choic modl with latt choic sts: P( i, ) = P( i C ) P( C ) C G whr G is th st of all o-mpty substs of th uivrsal choic st M, ad P(i C ) is a choic modl. W ot hr that th siz of G grows xpotially with th siz of th uivrsal choic st. Th latt choic st ca b modld usig th cocpt of altrativ availability. Th, a list of costraits or critria ar usd to charactriz th availability of altrativs. For ach altrativ i, a biary radom variabl A i is dfid such that A i =1 if altrativ

27 M. B-Akiva ad M. Birlair 27 i is availabl to idividual, ad 0 othrwis. A list of K i costraits is dfid as follows: A i = 1 if H ik 0, k=1,,k i. For xampl, i a path choic cotxt, o may cosidr that a path is ot availabl is th ratio btw its lgth ad th shortst path lgth is abov som thrshold, rprstd by a radom variabl. Th associatd costrait for path i would th b: L i / L * 2+ε whr L * is th lgth of th shortst path, L i is th lgth of path i ad ε a radom variabl with zro ma. It mas that, o avrag, paths logr tha twic th lgth of th shortst path ar rjctd. Th probability for a altrativ to b availabl is giv by P(A i = 1) = P(H ik 0 k=1,,k i ). Th latt choic st probability is th: P( C P( Ai = 1, i C ad Aj = 0, j C ) ) =. 1 P( A = 0, l M ) l If th availability critria ar assumd to b idpdt, w hav i C P( A i = 1) l M j C = 0) P( C ) =. 1 P( A = 0) l P( A Swait ad B-Akiva (1987) stimat a latt choic st modl of mod choic i a Brazilia city. i

28 28 M. B-Akiva ad M. Birlair Rout choic applicatios Th rout choic problm ca b statd as follows. Giv a trasportatio twork composd of ods, liks, origis ad dstiatios; ad giv a origi o, a dstiatio d ad a trasportatio mod m, what is th chos rout btw o ad d o mod m. This discrt choic problm has spcific charactristics. First, th uivrsal choic st is usually vry larg. Scod, ot all physically fasibl altrativs ar cosidrd by th dcisio-makr. Third, th altrativs ar usually corrlatd, du to ovrlappig paths. W ow dscrib typical assumptios associatd with rout choic modls. Dcisio-Makr Th travlr s charactristics most oft usd for rout choic applicatios ar: Valu-of-tim. Obviously, travl tim is a ky attribut of altrativ routs. Its ifluc o bhavior, howvr, may vary across idividuals. A Wall Strt brokr is likly to prciv ad valuat travl tim diffrtly from a rtird Floridia. Th ssitivity of a idividual to travl tim is usually rfrrd to as th valu-of-tim. It ca b rprstd by a cotiuous variabl (.g., th dollar-valu quivalt of a miut spt travlig) or by a discrt variabl idtifyig th dcisio-makr s valu-of-tim as low, mdium or high. Accss to iformatio. Iformatio about twork coditios may sigificatly ifluc rout choic bhavior. Thrfor, it may b importat that a rout choic modl xplicitly diffrtiats travlrs with accss to such iformatio from thos without accss. It may b modld by a sigl biary

29 M. B-Akiva ad M. Birlair 29 attribut (accss/o accss) or by svral biary variabls idtifyig th typ of iformatio availabl to th travlr (pr-trip iformatio, o-board computr, tc.) Trip purpos. Th purpos of th trip may sigificatly ifluc th rout choic bhavior. For xampl, a trip to work may b associatd with a palty for lat arrival, whil a shoppig trip would usually hav o such palty. Howvr, ot that th trip purpos may b highly corrlatd with th valu-of-tim. Altrativs Idtifyig th choic st i a rout choic cotxt is a difficult task. Two mai approachs ca b cosidrd. First, it may b assumd that ach idividual ca pottially choos ay path btw hr/his origi ad dstiatio. Th choic st is asy to idtify, but th umbr of altrativs ca b vry larg, causig opratioal problms i stimatig ad applyig th modl. Morovr, this assumptio is bhaviorally uralistic. Scod, a rstrictd umbr of paths may b cosidrd i th choic st. Th choic st gratio ca b dtrmiistic or stochastic, dpdig o th aalyst s kowldg of th problm. Dial (1971) proposs to iclud i th choic st rasoabl paths composd of liks that would ot mov th travlr farthr away from hr/his dstiatio. Th lablig approach (proposd by B-Akiva t al., 1984) icluds paths mtig spcific critria, such as shortst paths, fastst paths, most scic paths, paths with fwst stop lights, paths with last cogstio, paths with gratst portio of frways, paths with o lft turs, tc. A applicatio of a implicit probabilistic choic st gratio modl has b proposd by Casctta ad Papola (1998), whr th utility fuctio associatd with path i by idividual is dfid as

30 30 M. B-Akiva ad M. Birlair U i = V i + l q i + ε i, whr q i is a radom variabl with ma q i 1 = k 1+ A γ k X ik A X ik ar th attributs for availability ad prcptio of th path ad γ k ar paramtrs to b stimatd. Som rct modls (Nguy ad Pallottio, 1987, Nguy, Pallottio ad Gdrau, 1988) cosidr hyprpaths istad of paths as altrativs. A hyprpath is a collctio of paths with associatd stratgis at dcisio ods. This tchiqu is particularly appropriat for a public trasportatio twork. Attributs I dscribig th attributs of th altrativs to b icludd i th utility fuctio, w d to distiguish btw lik-additiv ad o-lik-additiv attributs. If i is a path composd of liks a Γ i, x i is a lik-additiv attribut of i if x =, i x a a Γi whr x a is th corrspodig attribut of lik a. For xampl, th travl tim o a path is th sum of th travl tims o liks composig th path. Qualitativ attributs ar i gral o-likadditiv. For xampl, a biary variabl x i qual to o if th path is a habitual path ad 0 othrwis, is o-additiv. I th cotxt of public trasportatio, variabls lik trasfrs ad fars ar usually ot lik-additiv. Th distictio is importat bcaus som modls,.

31 M. B-Akiva ad M. Birlair 31 dsigd to avoid path umratio, us lik attributs ad ot path attributs. Amog th may attributs that ca pottially b icludd i a utility fuctio, travl tim is probably th most importat. But what dos travl tim ma for th dcisio-makr? How dos sh/h prciv travl tim? May modls ar basd o th assumptio that most travlrs ar sufficitly xpricd ad kowldgabl about usual twork coditios ad, thrfor, ar abl to stimat travl tims accuratly. This assumptio may b satisfactory for plaig applicatios usig static modls. With th mrgc of Itlligt Trasportatio Systms, modls that ar abl to prdict th impact of ral-tim iformatio hav b dvlopd. I this cotxt, th "prfct kowldg" assumptio is cotradictory with th ITS srvics that provid iformatio. Svral approachs ca b usd to captur prcptios of travl tims. O approach rprsts travl tim as a radom variabl i th utility fuctio. This ida was itroducd by Burrll (1968) ad is capturd by a radom utility modl. Also, th ucrtaity or th variability of travl tim alog a giv path ca b xplicitly icludd as a attribut of th path. I additio to travl tim, th followig attributs ar usually icludd. Path lgth. Th lgth of th path is likly to ifluc th dcisio makr s choic. Also, this attribut is asy to masur. Not that it may b highly corrlatd with travl tim, spcially i ucogstd tworks. Travl cost. I additio to th obvious bhavioral motivatio, icludig travl cost i th utility fuctio is cssary to forcast th impact of tolls ad cogstio pricig, for xampl. It is commo practic to distiguish th so-calld out-of-pockt costs (lik tolls), which ar dirctly associatd

32 32 M. B-Akiva ad M. Birlair with a spcific trip, from othr gral costs (lik car opratig costs). Trasit spcific. Attributs spcific to rout choic i trasit tworks iclud umbr of trasfrs, waitig ad walkig tim ad srvic frqucy. Othrs. Traffic coditios (.g. lvl of cogstio, volum of coflictig traffic strams or pdstria movmts), obstacls (.g. umbr of stop sigs, umbr of traffic lights, umbr of lft turs agaist traffic), road typs (.g. dummy variabl capturig prfrc for frways) ad road coditio (.g. surfac quality, umbr of las, safty, scry) ar som of th othr attributs that may b cosidrd. Whthr to iclud thm i th utility fuctio dpds o thir bhavioral prtic i a spcific cotxt, ad o data availability. Dcisio Ruls Shortst path Th simplst possibl dcisio rul i th rout choic cotxt assums that ach idividual chooss th path with th highst utility. Modls basd o dtrmiistic utility maximizatio ar supportd by fficit algorithms to comput shortst paths i a graph (.g. Dijkstra, 1959, ad Dial, 1969). Howvr, th bhavioral limitatios of this approach hav motivatd th dvlopmt of stochastic modls basd o th radom utility modl.

33 M. B-Akiva ad M. Birlair 33 Logit rout choic A Multiomial Logit Modl with a fficit algorithm for rout choic has b proposd by Dial (1971). Usig th cocpt of rasoabl paths to dfi th choic st ad assumig th paths attributs to b lik-additiv, this algorithm avoids xplicit path umratio. As dscribd arlir, th IIA proprty of th Multiomial Logit Modl is th major wakss of Dial s algorithm i th cotxt of highly ovrlappig routs. Thrfor, its us is limitd to tworks with spcific topologis. A Logit modl may also b usd with a choic st gratio modl, such as th Lablig approach, that rsults i a small siz choic st with limitd ovrlap. Probit rout choic Giv th shortcomigs of th Logit rout choic modl, Probit modls hav b proposd i th cotxt of stochastic twork loadig by Burrll (1968) ad Dagazo ad Shffi (1977). Th two problms i this cas ar (i) th complxity of th variaccovariac matrix ad (ii) th lack of a aalytical formulatio for th probabilitis. Th covariac structur ca b simplifid wh path utilitis ar lik-additiv, th variac of lik utility is proportioal to th utility itslf, ad th covariac of utilitis of two diffrt liks is zro. A Mot-Carlo simulatio is oft usd to circumvt th absc of a closd aalytical form. C-Logit Th C-Logit modl, proposd by Casctta t al. (1996) i th cotxt of rout choic, is a Multiomial Logit Modl which capturs th corrlatio amog altrativs i a dtrmiistic way. Thy add to th dtrmiistic part of th utility fuctio a trm,

34 34 M. B-Akiva ad M. Birlair calld commoality factor, that capturs th dgr of similarity btw th altrativ ad all othr altrativs i th choic st. ( Vi CFi ) P ( i C ) = ( V j CF j ) j C Casctta t al. (1996) propos th followig spcificatio for th commoality factor CF i = β CF l j C L i ij L L j γ whr L ij is th lgth 4 of liks commo to paths i ad j, ad L i ad L j ar th ovrall lgth of paths i ad j, rspctivly. β CF is a cofficit to b stimatd. Th paramtr γ may b stimatd or costraid to a covit valu, oft 1 or 2. Cosidrig th path choic xampl i Figur 1, th commoality factor for path 1 is zro bcaus it dos ot ovrlap with ay othr path. Th commoality factor for paths 2a ad 2b is β CF l(1 + [(T-δ)/T] γ ). Not that th commoality factor of a altrativ is ot o of its attributs. It ca b viwd as a masur of how th altrativ is prcivd withi a choic st. PS-Logit Path-Siz Logit is a applicatio of th otio of lmtal altrativs ad siz variabls. S B-Akiva ad Lrma (Chaptr 9) for dtails about modls with lmtal ad aggrgat altrativs. I th rout choic cotxt, w assum that a 4 or ay othr lik-additiv attribut

35 M. B-Akiva ad M. Birlair 35 ovrlappig path may ot b prcivd as a distict altrativ. Idd, a path cotais liks which may b shard by svral paths. Hc, th siz of a path with o or mor shard liks may b lss tha o. W iclud a siz variabl i th utility of a path to obtai th followig modl : whr th siz S i is dfid by ( Vi + l Si ) P ( i C ) = ( V j + l S j ) j C l 1 a S i = * a Γ L i i LC δ aj j C L j, ad Γ i is th st of liks i path i; l a ad L i ar th lgth of lik a ad path i, rspctivly; δ aj is th lik-path icidc variabl that is o if lik a is o path j ad 0 othrwis; ad L * C is th lgth of th shortst path i C. Cosidrig agai th path choic problm from Figur 1, th siz of path 1 is 1, ad th siz of paths 2a ad 2b is (T+δ)/2T. It is itrstig to ot that th siz variabl formulatio is quivalt to th commoality factor formulatio for th xtrm cass whr δ=0 or δ=t, assumig that β CF =1 ad for ay valu of γ. Howvr, th two modls ar diffrt for itrmdiary valus. Dpartur choic applicatios Modlig th choic of dpartur tim appars i th cotxt of dyamic traffic assigmt as a xtsio of th rout choic problm. It is importat to distiguish th dpartur tim choic

36 36 M. B-Akiva ad M. Birlair itslf ad th choic of chagig dpartur tim. Th lattr appars usually i th cotxt of Travlr Iformatio Systms, whr idividuals may rvisit a prvious choic usig additioal iformatio. W ow dscrib typical modlig assumptios associatd with th dpartur tim choic modl. Dcisio-Makr Th rlvat travlr s sociocoomic charactristics ar similar to thos of rout choic modls. Additioal charactristics importat for dpartur tim choic ar dsird arrival tim ad paltis for arly ad lat arrival. I th cotxt of dpartur tim chag, th idividual s habitual or historical dpartur tim must also b kow. Altrativs Th choic st spcificatio for dpartur tim modls is a itricat problm. First, th cotiuous tim must b discrtizd. A rasoabl compromis must b foud btw a fi tmporal rsolutio ad th modl complxity. Idd, thr is a pottially larg umbr of altrativs, particularly for ralistic dyamic traffic applicatios. Scod, th corrlatio amog altrativs caot b igord, spcially wh tim itrvals ar short. Choosig btw th 7:45-7:50 ad 7:50-7:55 tim itrvals diffrs from choosig btw 7:45-7:50 ad 8:45-8:50. I th first cas, th two altrativs ar likly to shar uobsrvd attributs. Third, th prcptio of th altrativs dpds o trip travl tim. Most idividuals roud tim ad th roudig may dpd o th travl tim ad travl tim variability. For short trips, 7:52 may b roudd to 7:50, whras for log trips it may b approximatd by 8:00.

37 M. B-Akiva ad M. Birlair 37 Th choic st gratio cosists of dfiig a accptabl rag of dpartur tim itrvals cosidrd by a idividual. A commo procdur is basd o th dsird arrival tim AT *. Lt [AT,mi ; AT,max ] b th fasibl arrival tim itrval, ad lt [TT,mi ; TT,max ] b th rag of travl tims. Th th itrval of accptabl dpartur tims is [DT,mi ; DT,max ] = [AT,mi -TT,max ; AT,max -TT,mi ]. Small (1987) aalyzd th impact of trucatig th dpartur tim choic st. H cocludd that thr is o problm if th tru modl is a Multiomial Logit Modl. Som adjustmts ar dd if a Cross-Nstd Logit with ordrd altrativs is assumd. I th cotxt of dpartur tim chag, th altrativs may b dscribd i a rlativ way. Atoiou t al. (1997) propos a choic st with fiv altrativs: do ot chag, switch to a arlir or a latr dpartur, by o or two tim itrvals. Attributs Travl tim is a ky attribut of dpartur tim altrativs. Othr importat attributs ar th arly ad lat schdul dlays. Giv a dsird arrival tim AT *, a palty-fr itrval is dfid: [AT *,mi;at *,max]. It is assumd that th idividual suffrs o palty if th arrival tims lis withi th itrval. Th actual arrival tim AT is qual to DT +TT(DT ),whr TT(DT ) is th travl tim if th trip starts at tim DT. Th arly schdul dlay is dfid as Max [AT *.mi AT, 0] ad th lat schdul dlay is dfid as Max [AT AT *.max, 0].

38 38 M. B-Akiva ad M. Birlair I th cotxt of dpartur tim chag, a palty ca also b associatd with dpartur tims vry diffrt from th habitual choic, capturig th irtia associatd with habits. Dcisio Ruls Small (1982) ad Casctta t al. (1992) us Multiomial Logit Modls for dpartur tim choic. Howvr, th itrisic aformtiod corrlatio amog altrativs is ot capturd by such modls. Small (1987) proposd a Ordrd Gralizd Extrm Valu modl. It is a Cross-Nstd Logit Modl, whr m adjact dpartur tim itrvals ar std togthr, capturig thir itrisic corrlatio. A sigl dpartur tim itrval blogs to m diffrt sts, sourc of th cross-std structur. I th cotxt of dpartur tim chag, Atoiou t al. (1997) propos a Nstd Logit Modl for joit choic of dpartur tim ad rout. Liu ad Mahmassai (1998) propos a Probit modl whr day-to-day corrlatio is assumd. Coclusio Discrt choic mthods ar costatly volvig to accommodat th rquirmts of spcific applicatios. This is a xcitig fild of rsarch, whr a dp udrstadig of th udrlyig thortical assumptios is cssary both to apply th modls ad dvlop w os. I this Chaptr, w hav summarizd th fudamtal aspcts of discrt choic thory, ad w hav itroducd rct modl dvlopmts, illustratig thir richss. A discussio o rout choic ad dpartur tim choic applicatios hav show how spcific aspcts of ral applicatios must b addrssd.

39 M. B-Akiva ad M. Birlair 39 Ackowldgmt W wish to thak Scott Rammig for his usful iput ad suggstios. W also bfitd from commts by Joa Walkr, Adra Papola ad Juli Brardi. Rfrcs Adrso, S. P., d Palma, A. ad Thiss, J.-F. (1992). Discrt Choic Thory of Product Diffrtiatio, MIT Prss, Cambridg, Ma. Atoiou, C., B-Akiva, M.E., Birlair, M., ad Mishalai, R. (1997) Dmad Simulatio for Dyamic Traffic Assigmt. Procdigs of th 8th IFAC/IFIP/IFORS symposium o trasportatio systms. B-Akiva, M. ad Fraçois, B. (1983). homogous gralizd xtrm valu modl, Workig papr, Dpartmt of Civil Egirig, MIT, Cambridg, Ma. B-Akiva, M. E. (1973). Structur of passgr travl dmad modls, PhD thsis, Dpartmt of Civil Egirig, MIT, Cambridg, Ma. B-Akiva, M. E. (1974). Structur of passgr travl dmad modls, Trasportatio Rsarch Rcord 526. B-Akiva, M. E. ad Boccara, B. (1995). Discrt choic modls with latt choic sts, Itratioal Joural of Rsarch i Marktig 12: B-Akiva, M. E. ad Lrma, S. R. (1985). Discrt Choic Aalysis: Thory ad Applicatio to Travl Dmad, MIT Prss, Cambridg, Ma. B-Akiva, M. E., Brgma, M. J., Daly, A. J. ad Ramaswamy, R. (1984). Modlig itr-urba rout choic bhaviour, i J. Volmullr ad R. Hamrslag (ds), Procdigs from th ith itratioal symposium o trasportatio ad traffic thory, VNU Scic Prss, Utrcht, Nthrlads, pp B-Akiva, M. E., Cya, M. ad d Palma, A. (1984). Dyamic modl of pak priod cogstio, Trasportatio Rsarch B 18(4 5):

40 40 M. B-Akiva ad M. Birlair Birlair, M. (1995).A robust algorithm for th simultaous stimatio of hirarchical logit modls, GRT Rport 95/3, Dpartmt of Mathmatics, FUNDP. Birlair, M. (1998). Discrt choic modls, i M. Labbé, G. Laport, K.Taczos ad Ph. Toit (ds), Opratios Rsarch i Traffic ad Trasportatio Maagmt, Vol. 166 of NATO ASI Sris, Sris F: Computr ad Systms Scics, Sprigr Vrlag, pp Birlair, M. ad Vadvyvr, Y. (1995).HiLoW: th itractiv usr's guid, Trasportatio Rsarch Group - FUNDP, Namur. Birlair, M., Lota, T. ad Toit, Ph. L. (1997). O th ovrspcificatio of multiomial ad std logit modls du to altrativ spcific costats, Trasportatio Scic 31(4): Bolduc, D., Forti, B. ad Fourir, M.-A. (1996). Th ffct of ictiv policis o th practic locatio of doctors: A multiomial Probit aalysis, Joural of labor coomics 14(4): 703. Bradly, M. A. ad Daly, A. (1991). Estimatio of logit choic modls usig mixd statd prfrcs ad rvald prfrcs iformatio, Mthods for udrstadig travl bhaviour i th 1990's, Itratioal Associatio for Travl Bhaviour, Québc, pp.~ th itratioal cofrc o travl bhaviour. Burrll, J. E. (1968). Multipath rout assigmt ad its applicatio to capacity rstrait. Procdigs of th 4 th itratioal symposium o th thory of road traffic flow, Karslruh, Grmay. Cardll ad Dubar (1980).Masurig th socital impacts of automobil dowsizig, Trasportatio Rsarch A 14(5 6): Casctta, E. ad Papola, A. (1998). Radom utility modls with implicit availability/prcptio of choic altrativs for th simulatio of travl dmad, Tchical rport, Uivrsita dgli Studi di Napoli Fdrico II. Casctta, E., Nuzzolo, A. ad Biggiro, L. (1992). Aalysis ad Modlig of Commutrs Dpartur Tim ad Rout Choic i Urba Ntworks. Procdigs of th Scod Itratioal CAPRI Smiar o Urba Traffic Ntworks.

41 M. B-Akiva ad M. Birlair 41 Casctta, E., Nuzzolo, A., Russo, F. ad Vittta, A. (1996). A modifid logit rout choic modl ovrcomig path ovrlappig problms. Spcificatio ad som calibratio rsults for itrurba tworks, Procdigs of th 13th Itratioal Symposium o th Thory of Road Traffic Flow (Lyo, Frac). Chag, G. L. ad Mahmassai, H. S. (1986). Exprimts with dpartur tim choic dyamics of urba commutrs, Trasportatio Rsarch B 20(4): Chag, G. L. ad Mahmassai, H. S. (1988). Travl tim prdictio ad dpartur tim adjustmt dyamics i a cogstd traffic systm, Trasportatio Rsarch B 22 (3): Dagazo, C. F. ad Shffi, Y. (1977). O stochastic modls of traffic assigmt. Trasportatio Scic 11(3): Daly, A. (1987). Estimatig tr logit modls, Trasportatio Rsarch B 21(4): d Palma, A., Khattak, A. J. ad Gupta, D. (1997). Commutrs dpartur tim dcisios i Brussls, Blgium, Trasportatio Rsarch Rcord 1607: Dial, R. B. (1969). Algorithm 360: shortst path forst with topological ordrig., Commuicatios of ACM 12: Dial, R. B. (1971). A probabilistic multipath traffic assigmt algorithm which obviats path umratio, Trasportatio Rsarch 5(2): Dijkstra, E. W. (1959). A ot o two problms i coctio with graphs, Numrisch Mathmatik 1: Gumbl, E. J. (1958). Statistics of Extrms, Columbia Uivrsity Prss, Nw York. Hdrickso, C. ad Kocur, G. (1981). Schdul dlay ad dpartur tim dcisios i a dtrmiistic modl, Trasportatio Scic 15: Hdrickso, C. ad Plak, E. (1984). Th flxibility of dpartur tims for work trips, Trasportatio Rsarch A 18:

42 42 M. B-Akiva ad M. Birlair Hshr, D. A. ad Johso, L. W. (1981). Applid discrt choic modlig, Croom Hlm, Lodo. Horowitz, J. L., Kopplma, F. S. ad Lrma, S. R. (1986). A slf-istructig cours i disaggrgat mod choic modlig, Tchology Sharig Program, US Dpartmt of Trasportatio, Washigto, D.C Khattak, A. J. ad d Palma, A. (1997). Th impact of advrs wathr coditios o th propsity to chag travl dcisios: a survy of Brussls commutrs, Trasportatio Rsarch A 31(3): Kopplma, F. S. ad W, C.-H. (1997). Th paird combiatorial logit modl: proprtis, stimatio ad applicatio, Trasportatio Rsarch Board, 76th Aual Mtig, Washigto DC. Papr # Kopplma, F. S. ad W, C.-H. (1998). Altrativ std logit modls: Structur, proprtis ad stimatio, Trasportatio Rsarch B. (forthcomig). Liu, Y.-H. ad Mahmassai, H. (1998). Dyamic aspcts of dpartur tim ad rout dcisio bhavior udr ATIS: modlig framwork ad xprimtal rsults, prstd at th 77 th aual mtig of th Trasportatio Rsarch Board, Washigto DC. Luc, R. (1959). Idividual choic bhavior: a thortical aalysis, J. Wily ad Sos, Nw York. Luc, R. D. ad Supps, P. (1965). Prfrc, utility ad subjctiv probability, i R. D. Luc, R. R. Bush ad E. Galatr (ds), Hadbook of Mathmatical Psychology, J. Wily ad Sos, Nw York. Maski, C. (1977). Th structur of radom utility modls, Thory ad Dcisio 8: McFadd, D. (1978). Modlig th choic of rsidtial locatio, i A. K. t al. (d.), Spatial itractio thory ad rsidtial locatio, North-Hollad, Amstrdam, pp

43 M. B-Akiva ad M. Birlair 43 McFadd, D. (1989). A mthod of simulatd momts for stimatio of discrt rspos modls without umrical itgratio, Ecoomtrica 57(5): McFadd, D. ad Trai, K. (1997). Mixd multiomial logit modls for discrt rspos, Tchical rport, Uivrsity of Califoria, Brkly, Ca. Nguy, S. ad Pallottio, S. (1987). Traffic assigmt for larg scal trasit tworks, i A. Odoi (d.), Flow cotrol of cogstd tworks, Sprigr Vrlag. Nguy, S., Pallottio, S. ad Gdrau, M. (1998). Implicit Eumratio of Hyprpaths i a Logit Modl for Trasit Ntworks. Trasportatio Scic 32(1). Small, K. (1982). Th schdulig of cosumr activitis: work trips, Th Amrica Ecoomic Rviw pp Small, K. (1987). A discrt choic modl for ordrd altrativs, Ecoomtrica 55(2): Swait, J.D. ad B-Akiva, M. (1987). Icorporatig Radom Costraits i Discrt Modls of Choic St Gratio, Trasportatio Rsarch B 21(2). Tvrsky, A. (1972). Elimiatio by aspcts: a thory of choic, Psychological Rviw 79: Vovsha, P. (1997). Cross-std logit modl: a applicatio to mod choic i th Tl- Aviv mtropolita ara, Trasportatio Rsarch Board, 76th Aual Mtig, Washigto DC.Papr # Whys, D., Rdad, G. ad Nwbold, P. (1996). Gral practitiors' choic of rfrral dstiatio: A Probit aalysis, Maagrial ad Dcisio Ecoomics 17(6): 587. Yai, T., Iwakura, S. ad Morichi, S. (1997). Multiomial Probit with structurd covariac for rout choic bhavior, Trasportatio Rsarch B 31(3):

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

INTRODUCTION TO SAMPLING DISTRIBUTIONS

INTRODUCTION TO SAMPLING DISTRIBUTIONS http://wiki.stat.ucla.du/socr/id.php/socr_courss_2008_thomso_econ261 INTRODUCTION TO SAMPLING DISTRIBUTIONS By Grac Thomso INTRODUCTION TO SAMPLING DISTRIBUTIONS Itro to Samplig 2 I this chaptr w will

More information

Journal of Modern Applied Statistical Methods

Journal of Modern Applied Statistical Methods Joural of Modr Applid Statistical Mthods Volum Issu Articl 6 --03 O Som Proprtis of a Htrogous Trasfr Fuctio Ivolvig Symmtric Saturatd Liar (SATLINS) with Hyprbolic Tagt (TANH) Trasfr Fuctios Christophr

More information

ln x = n e = 20 (nearest integer)

ln x = n e = 20 (nearest integer) H JC Prlim Solutios 6 a + b y a + b / / dy a b 3/ d dy a b at, d Giv quatio of ormal at is y dy ad y wh. d a b () (,) is o th curv a+ b () y.9958 Qustio Solvig () ad (), w hav a, b. Qustio d.77 d d d.77

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor .8 NOISE.8. Th Nyquist Nois Thorm W ow wat to tur our atttio to ois. W will start with th basic dfiitio of ois as usd i radar thory ad th discuss ois figur. Th typ of ois of itrst i radar thory is trmd

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering haptr. Physical Problm for Fast Fourir Trasform ivil Egirig Itroductio I this chaptr, applicatios of FFT algorithms [-5] for solvig ral-lif problms such as computig th dyamical (displacmt rspos [6-7] of

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

Page 1. Before-After Control-Impact (BACI) Power Analysis For Several Related Populations (Variance Known) Richard A. Hinrichsen. September 24, 2010

Page 1. Before-After Control-Impact (BACI) Power Analysis For Several Related Populations (Variance Known) Richard A. Hinrichsen. September 24, 2010 Pag for-aftr Cotrol-Impact (ACI) Powr Aalysis For Svral Rlatd Populatios (Variac Kow) Richard A. Hirichs Sptmbr 4, Cavat: This primtal dsig tool is a idalizd powr aalysis built upo svral simplifyig assumptios

More information

PPS (Pottial Path Spac) i y i l j Vij (2) H x PP (Pottial Path ra) (gravity-typ masur) i i i j1 cij (1) D j j c ij ij 4)7) 8), 9) D j V ij j i 198 1)1

PPS (Pottial Path Spac) i y i l j Vij (2) H x PP (Pottial Path ra) (gravity-typ masur) i i i j1 cij (1) D j j c ij ij 4)7) 8), 9) D j V ij j i 198 1)1 1 2 3 1 (68-8552 4 11) E-mail: taimoto@ss.tottori-u.ac.jp 2 (68-8552 4 11) 3 (657-851 1-1) Ky Words: accssibility, public trasportatio plaig, rural aras, tim allocatio, spac-tim prism 197 Hady ad Nimir

More information

Estimation of Consumer Demand Functions When the Observed Prices Are the Same for All Sample Units

Estimation of Consumer Demand Functions When the Observed Prices Are the Same for All Sample Units Dpartmt of Agricultural ad Rsourc Ecoomics Uivrsity of Califoria, Davis Estimatio of Cosumr Dmad Fuctios Wh th Obsrvd Prics Ar th Sam for All Sampl Uits by Quirio Paris Workig Papr No. 03-004 Sptmbr 2003

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Part B: Trasform Mthods Chaptr 3: Discrt-Tim Fourir Trasform (DTFT) 3. Discrt Tim Fourir Trasform (DTFT) 3. Proprtis of DTFT 3.3 Discrt Fourir Trasform (DFT) 3.4 Paddig with Zros ad frqucy Rsolutio 3.5

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

15/03/1439. Lectures on Signals & systems Engineering

15/03/1439. Lectures on Signals & systems Engineering Lcturs o Sigals & syms Egirig Dsigd ad Prd by Dr. Ayma Elshawy Elsfy Dpt. of Syms & Computr Eg. Al-Azhar Uivrsity Email : aymalshawy@yahoo.com A sigal ca b rprd as a liar combiatio of basic sigals. Th

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

Page 1 BACI. Before-After-Control-Impact Power Analysis For Several Related Populations (Variance Known) October 10, Richard A.

Page 1 BACI. Before-After-Control-Impact Power Analysis For Several Related Populations (Variance Known) October 10, Richard A. Pag BACI Bfor-Aftr-Cotrol-Impact Powr Aalysis For Svral Rlatd Populatios (Variac Kow) Octobr, 3 Richard A. Hirichs Cavat: This study dsig tool is for a idalizd powr aalysis built upo svral simplifyig assumptios

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Asmptotic xpasios ar usd i aalsis to dscrib th bhavior of a fuctio i a limitig situatio. Wh a fuctio ( x, dpds o a small paramtr, ad th solutio of

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005 Mark Schm 67 Ju 5 GENERAL INSTRUCTIONS Marks i th mark schm ar plicitly dsigatd as M, A, B, E or G. M marks ("mthod" ar for a attmpt to us a corrct mthod (ot mrly for statig th mthod. A marks ("accuracy"

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12 REVIEW Lctur 11: Numrical Fluid Mchaics Sprig 2015 Lctur 12 Fiit Diffrcs basd Polyomial approximatios Obtai polyomial (i gral u-qually spacd), th diffrtiat as dd Nwto s itrpolatig polyomial formulas Triagular

More information

Bayesian Estimations in Insurance Theory and Practice

Bayesian Estimations in Insurance Theory and Practice Advacs i Mathmatical ad Computatioal Mthods Baysia Estimatios i Isurac Thory ad Practic VIERA PACÁKOVÁ Dpartmt o Mathmatics ad Quatitativ Mthods Uivrsity o Pardubic Studtská 95, 53 0 Pardubic CZECH REPUBLIC

More information

Bipolar Junction Transistors

Bipolar Junction Transistors ipolar Juctio Trasistors ipolar juctio trasistors (JT) ar activ 3-trmial dvics with aras of applicatios: amplifirs, switch tc. high-powr circuits high-spd logic circuits for high-spd computrs. JT structur:

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

Law of large numbers

Law of large numbers Law of larg umbrs Saya Mukhrj W rvisit th law of larg umbrs ad study i som dtail two typs of law of larg umbrs ( 0 = lim S ) p ε ε > 0, Wak law of larrg umbrs [ ] S = ω : lim = p, Strog law of larg umbrs

More information

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei.

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei. 37 1 How may utros ar i a uclus of th uclid l? 20 37 54 2 crtai lmt has svral isotops. Which statmt about ths isotops is corrct? Thy must hav diffrt umbrs of lctros orbitig thir ucli. Thy must hav th sam

More information

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES Digst Joural of Naomatrials ad Biostructurs Vol 4, No, March 009, p 67-76 NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES A IRANMANESH a*, O KHORMALI b, I NAJAFI KHALILSARAEE c, B SOLEIMANI

More information

A Novel Approach to Recovering Depth from Defocus

A Novel Approach to Recovering Depth from Defocus Ssors & Trasducrs 03 by IFSA http://www.ssorsportal.com A Novl Approach to Rcovrig Dpth from Dfocus H Zhipa Liu Zhzhog Wu Qiufg ad Fu Lifag Collg of Egirig Northast Agricultural Uivrsity 50030 Harbi Chia

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray 7 Octobr 3 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls Dscrib th dsig o

More information

The Interplay between l-max, l-min, p-max and p-min Stable Distributions

The Interplay between l-max, l-min, p-max and p-min Stable Distributions DOI: 0.545/mjis.05.4006 Th Itrplay btw lma lmi pma ad pmi Stabl Distributios S Ravi ad TS Mavitha Dpartmt of Studis i Statistics Uivrsity of Mysor Maasagagotri Mysuru 570006 Idia. Email:ravi@statistics.uimysor.ac.i

More information

Chapter 4 - The Fourier Series

Chapter 4 - The Fourier Series M. J. Robrts - 8/8/4 Chaptr 4 - Th Fourir Sris Slctd Solutios (I this solutio maual, th symbol,, is usd for priodic covolutio bcaus th prfrrd symbol which appars i th txt is ot i th fot slctio of th word

More information

ANOVA- Analyisis of Variance

ANOVA- Analyisis of Variance ANOVA- Aalii of Variac CS 700 Comparig altrativ Comparig two altrativ u cofidc itrval Comparig mor tha two altrativ ANOVA Aali of Variac Comparig Mor Tha Two Altrativ Naïv approach Compar cofidc itrval

More information

Bayesian Test for Lifetime Performance Index of Exponential Distribution under Symmetric Entropy Loss Function

Bayesian Test for Lifetime Performance Index of Exponential Distribution under Symmetric Entropy Loss Function Mathmatics ttrs 08; 4(): 0-4 http://www.scicpublishiggroup.com/j/ml doi: 0.648/j.ml.08040.5 ISSN: 575-503X (Prit); ISSN: 575-5056 (Oli) aysia Tst for iftim Prformac Idx of Expotial Distributio udr Symmtric

More information

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error.

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error. Drivatio of a Prdictor of Cobiatio # ad th SE for a Prdictor of a Positio i Two Stag Saplig with Rspos Error troductio Ed Stak W driv th prdictor ad its SE of a prdictor for a rado fuctio corrspodig to

More information

International Journal of Advanced and Applied Sciences

International Journal of Advanced and Applied Sciences Itratioal Joural of Advacd ad Applid Scics x(x) xxxx Pags: xx xx Cotts lists availabl at Scic Gat Itratioal Joural of Advacd ad Applid Scics Joural hompag: http://wwwscic gatcom/ijaashtml Symmtric Fuctios

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

t i Extreme value statistics Problems of extrapolating to values we have no data about unusually large or small ~100 years (data) ~500 years (design)

t i Extreme value statistics Problems of extrapolating to values we have no data about unusually large or small ~100 years (data) ~500 years (design) Extrm valu statistics Problms of xtrapolatig to valus w hav o data about uusually larg or small t i ~00 yars (data h( t i { h( }? max t i wids v( t i ~500 yars (dsig Qustio: Ca this b do at all? How log

More information

Outline. Ionizing Radiation. Introduction. Ionizing radiation

Outline. Ionizing Radiation. Introduction. Ionizing radiation Outli Ioizig Radiatio Chaptr F.A. Attix, Itroductio to Radiological Physics ad Radiatio Dosimtry Radiological physics ad radiatio dosimtry Typs ad sourcs of ioizig radiatio Dscriptio of ioizig radiatio

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

Restricted Factorial And A Remark On The Reduced Residue Classes

Restricted Factorial And A Remark On The Reduced Residue Classes Applid Mathmatics E-Nots, 162016, 244-250 c ISSN 1607-2510 Availabl fr at mirror sits of http://www.math.thu.du.tw/ am/ Rstrictd Factorial Ad A Rmark O Th Rducd Rsidu Classs Mhdi Hassai Rcivd 26 March

More information

Technical Support Document Bias of the Minimum Statistic

Technical Support Document Bias of the Minimum Statistic Tchical Support Documt Bias o th Miimum Stattic Itroductio Th papr pla how to driv th bias o th miimum stattic i a radom sampl o siz rom dtributios with a shit paramtr (also kow as thrshold paramtr. Ths

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

A Propagating Wave Packet Group Velocity Dispersion

A Propagating Wave Packet Group Velocity Dispersion Lctur 8 Phys 375 A Propagating Wav Packt Group Vlocity Disprsion Ovrviw and Motivation: In th last lctur w lookd at a localizd solution t) to th 1D fr-particl Schrödingr quation (SE) that corrsponds to

More information

Empirical Study in Finite Correlation Coefficient in Two Phase Estimation

Empirical Study in Finite Correlation Coefficient in Two Phase Estimation M. Khoshvisa Griffith Uivrsity Griffith Busiss School Australia F. Kaymarm Massachustts Istitut of Tchology Dpartmt of Mchaical girig USA H. P. Sigh R. Sigh Vikram Uivrsity Dpartmt of Mathmatics ad Statistics

More information

Class #24 Monday, April 16, φ φ φ

Class #24 Monday, April 16, φ φ φ lass #4 Moday, April 6, 08 haptr 3: Partial Diffrtial Equatios (PDE s First of all, this sctio is vry, vry difficult. But it s also supr cool. PDE s thr is mor tha o idpdt variabl. Exampl: φ φ φ φ = 0

More information

EMPLOYMENT AND THE DISTRIBUTION OF INCOME. Andrés Velasco

EMPLOYMENT AND THE DISTRIBUTION OF INCOME. Andrés Velasco EMPLOYMENT AND THE DISTRIBUTION OF INCOME Adrés Vlasco Ju 2011 Motivatio My xpric as Fiac Miistr Chil: hatd discussios o iquality. But... Focus oly o th wag distributio Discussios o th shap of th wag distributio

More information

Ideal crystal : Regulary ordered point masses connected via harmonic springs

Ideal crystal : Regulary ordered point masses connected via harmonic springs Statistical thrmodyamics of crystals Mooatomic crystal Idal crystal : Rgulary ordrd poit masss coctd via harmoic sprigs Itratomic itractios Rprstd by th lattic forc-costat quivalt atom positios miima o

More information

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted?

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted? All bodis at a tmpratur T mit ad absorb thrmal lctromagtic radiatio Blackbody radiatio I thrmal quilibrium, th powr mittd quals th powr absorbd How is blackbody radiatio absorbd ad mittd? 1 2 A blackbody

More information

Periodic Structures. Filter Design by the Image Parameter Method

Periodic Structures. Filter Design by the Image Parameter Method Prioic Structurs a Filtr sig y th mag Paramtr Mtho ECE53: Microwav Circuit sig Pozar Chaptr 8, Sctios 8. & 8. Josh Ottos /4/ Microwav Filtrs (Chaptr Eight) microwav filtr is a two-port twork us to cotrol

More information

Motivation. We talk today for a more flexible approach for modeling the conditional probabilities.

Motivation. We talk today for a more flexible approach for modeling the conditional probabilities. Baysia Ntworks Motivatio Th coditioal idpdc assuptio ad by aïv Bays classifirs ay s too rigid spcially for classificatio probls i which th attributs ar sowhat corrlatd. W talk today for a or flibl approach

More information

DETECTION OF RELIABLE SOFTWARE USING SPRT ON TIME DOMAIN DATA

DETECTION OF RELIABLE SOFTWARE USING SPRT ON TIME DOMAIN DATA Itratioal Joural of Computr Scic, Egirig ad Applicatios (IJCSEA Vol., No.4, August DETECTION OF RELIABLE SOFTWARE USING SRT ON TIME DOMAIN DATA G.Krisha Moha ad Dr. Satya rasad Ravi Radr, Dpt. of Computr

More information

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G.

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G. O a problm of J. d Graaf coctd with algbras of uboudd oprators d Bruij, N.G. Publishd: 01/01/1984 Documt Vrsio Publishr s PDF, also kow as Vrsio of Rcord (icluds fial pag, issu ad volum umbrs) Plas chck

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

Folding of Hyperbolic Manifolds

Folding of Hyperbolic Manifolds It. J. Cotmp. Math. Scics, Vol. 7, 0, o. 6, 79-799 Foldig of Hyprbolic Maifolds H. I. Attiya Basic Scic Dpartmt, Collg of Idustrial Educatio BANE - SUEF Uivrsity, Egypt hala_attiya005@yahoo.com Abstract

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

UNIT 2: MATHEMATICAL ENVIRONMENT

UNIT 2: MATHEMATICAL ENVIRONMENT UNIT : MATHEMATICAL ENVIRONMENT. Itroductio This uit itroducs som basic mathmatical cocpts ad rlats thm to th otatio usd i th cours. Wh ou hav workd through this uit ou should: apprciat that a mathmatical

More information

Comparison of Simple Indicator Kriging, DMPE, Full MV Approach for Categorical Random Variable Simulation

Comparison of Simple Indicator Kriging, DMPE, Full MV Approach for Categorical Random Variable Simulation Papr 17, CCG Aual Rport 11, 29 ( 29) Compariso of Simpl Idicator rigig, DMPE, Full MV Approach for Catgorical Radom Variabl Simulatio Yupg Li ad Clayto V. Dutsch Ifrc of coditioal probabilitis at usampld

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

Traveling Salesperson Problem and Neural Networks. A Complete Algorithm in Matrix Form

Traveling Salesperson Problem and Neural Networks. A Complete Algorithm in Matrix Form Procdigs of th th WSEAS Itratioal Cofrc o COMPUTERS, Agios Nikolaos, Crt Islad, Grc, July 6-8, 7 47 Travlig Salsprso Problm ad Nural Ntworks A Complt Algorithm i Matrix Form NICOLAE POPOVICIU Faculty of

More information

Global Chaos Synchronization of the Hyperchaotic Qi Systems by Sliding Mode Control

Global Chaos Synchronization of the Hyperchaotic Qi Systems by Sliding Mode Control Dr. V. Sudarapadia t al. / Itratioal Joural o Computr Scic ad Egirig (IJCSE) Global Chaos Sychroizatio of th Hyprchaotic Qi Systms by Slidig Mod Cotrol Dr. V. Sudarapadia Profssor, Rsarch ad Dvlopmt Ctr

More information

6. Comparison of NLMS-OCF with Existing Algorithms

6. Comparison of NLMS-OCF with Existing Algorithms 6. Compariso of NLMS-OCF with Eistig Algorithms I Chaptrs 5 w drivd th NLMS-OCF algorithm, aalyzd th covrgc ad trackig bhavior of NLMS-OCF, ad dvlopd a fast vrsio of th NLMS-OCF algorithm. W also mtiod

More information

ELECTRONIC APPENDIX TO: ELASTIC-PLASTIC CONTACT OF A ROUGH SURFACE WITH WEIERSTRASS PROFILE. Yan-Fei Gao and A. F. Bower

ELECTRONIC APPENDIX TO: ELASTIC-PLASTIC CONTACT OF A ROUGH SURFACE WITH WEIERSTRASS PROFILE. Yan-Fei Gao and A. F. Bower ELECTRONIC APPENDIX TO: ELASTIC-PLASTIC CONTACT OF A ROUGH SURFACE WITH WEIERSTRASS PROFILE Ya-Fi Gao ad A. F. Bowr Divisio of Egirig, Brow Uivrsity, Providc, RI 9, USA Appdix A: Approximat xprssios for

More information

Normal Form for Systems with Linear Part N 3(n)

Normal Form for Systems with Linear Part N 3(n) Applid Mathmatics 64-647 http://dxdoiorg/46/am7 Publishd Oli ovmbr (http://wwwscirporg/joural/am) ormal Form or Systms with Liar Part () Grac Gachigua * David Maloza Johaa Sigy Dpartmt o Mathmatics Collg

More information

A Note on Quantile Coupling Inequalities and Their Applications

A Note on Quantile Coupling Inequalities and Their Applications A Not o Quatil Couplig Iqualitis ad Thir Applicatios Harriso H. Zhou Dpartmt of Statistics, Yal Uivrsity, Nw Hav, CT 06520, USA. E-mail:huibi.zhou@yal.du Ju 2, 2006 Abstract A rlatioship btw th larg dviatio

More information

Data Assimilation 1. Alan O Neill National Centre for Earth Observation UK

Data Assimilation 1. Alan O Neill National Centre for Earth Observation UK Data Assimilation 1 Alan O Nill National Cntr for Earth Obsrvation UK Plan Motivation & basic idas Univariat (scalar) data assimilation Multivariat (vctor) data assimilation 3d-Variational Mthod (& optimal

More information

Numerov-Cooley Method : 1-D Schr. Eq. Last time: Rydberg, Klein, Rees Method and Long-Range Model G(v), B(v) rotation-vibration constants.

Numerov-Cooley Method : 1-D Schr. Eq. Last time: Rydberg, Klein, Rees Method and Long-Range Model G(v), B(v) rotation-vibration constants. Numrov-Cooly Mthod : 1-D Schr. Eq. Last tim: Rydbrg, Kli, Rs Mthod ad Log-Rag Modl G(v), B(v) rotatio-vibratio costats 9-1 V J (x) pottial rgy curv x = R R Ev,J, v,j, all cocivabl xprimts wp( x, t) = ai

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

Partition Functions and Ideal Gases

Partition Functions and Ideal Gases Partitio Fuctios ad Idal Gass PFIG- You v lard about partitio fuctios ad som uss ow w ll xplor tm i mor dpt usig idal moatomic diatomic ad polyatomic gass! for w start rmmbr: Q( N ( N! N Wat ar N ad? W

More information

MILLIKAN OIL DROP EXPERIMENT

MILLIKAN OIL DROP EXPERIMENT 11 Oct 18 Millika.1 MILLIKAN OIL DROP EXPERIMENT This xprimt is dsigd to show th quatizatio of lctric charg ad allow dtrmiatio of th lmtary charg,. As i Millika s origial xprimt, oil drops ar sprayd ito

More information

ECE594I Notes set 6: Thermal Noise

ECE594I Notes set 6: Thermal Noise C594I ots, M. odwll, copyrightd C594I Nots st 6: Thrmal Nois Mark odwll Uivrsity of Califoria, ata Barbara rodwll@c.ucsb.du 805-893-344, 805-893-36 fax frcs ad Citatios: C594I ots, M. odwll, copyrightd

More information

FUZZY ACCEPTANCE SAMPLING AND CHARACTERISTIC CURVES

FUZZY ACCEPTANCE SAMPLING AND CHARACTERISTIC CURVES Itratioal Joural of Computatioal Itlligc Systms, Vol. 5, No. 1 (Fbruary, 2012), 13-29 FUZZY ACCEPTANCE SAMPLING AND CHARACTERISTIC CURVES Ebru Turaoğlu Slçu Uivrsity, Dpartmt of Idustrial Egirig, 42075,

More information

A Prey-Predator Model with an Alternative Food for the Predator, Harvesting of Both the Species and with A Gestation Period for Interaction

A Prey-Predator Model with an Alternative Food for the Predator, Harvesting of Both the Species and with A Gestation Period for Interaction Int. J. Opn Problms Compt. Math., Vol., o., Jun 008 A Pry-Prdator Modl with an Altrnativ Food for th Prdator, Harvsting of Both th Spcis and with A Gstation Priod for Intraction K. L. arayan and. CH. P.

More information

Further Results on Pair Sum Graphs

Further Results on Pair Sum Graphs Applid Mathmatis, 0,, 67-75 http://dx.doi.org/0.46/am.0.04 Publishd Oli Marh 0 (http://www.sirp.org/joural/am) Furthr Rsults o Pair Sum Graphs Raja Poraj, Jyaraj Vijaya Xavir Parthipa, Rukhmoi Kala Dpartmt

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordiary Diffrtial Equatio Aftr radig thi chaptr, you hould b abl to:. dfi a ordiary diffrtial quatio,. diffrtiat btw a ordiary ad partial diffrtial quatio, ad. Solv liar ordiary diffrtial quatio with fid

More information

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels LUR 3 illig th bads Occupacy o Availabl rgy Lvls W hav dtrmid ad a dsity o stats. W also d a way o dtrmiig i a stat is illd or ot at a giv tmpratur. h distributio o th rgis o a larg umbr o particls ad

More information

ω (argument or phase)

ω (argument or phase) Imagiary uit: i ( i Complx umbr: z x+ i y Cartsia coordiats: x (ral part y (imagiary part Complx cougat: z x i y Absolut valu: r z x + y Polar coordiats: r (absolut valu or modulus ω (argumt or phas x

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

Minimax Rényi Redundancy

Minimax Rényi Redundancy 07 IEEE Itratioal Symposium o Iformatio Thory ISIT Miimax Réyi Rdudacy Smih Yagli Pricto Uivrsity Yücl Altuğ Natra, Ic Srgio Vrdú Pricto Uivrsity Abstract Th rdudacy for uivrsal losslss comprssio i Campbll

More information

Estimation of apparent fraction defective: A mathematical approach

Estimation of apparent fraction defective: A mathematical approach Availabl onlin at www.plagiarsarchlibrary.com Plagia Rsarch Library Advancs in Applid Scinc Rsarch, 011, (): 84-89 ISSN: 0976-8610 CODEN (USA): AASRFC Estimation of apparnt fraction dfctiv: A mathmatical

More information

(Reference: sections in Silberberg 5 th ed.)

(Reference: sections in Silberberg 5 th ed.) ALE. Atomic Structur Nam HEM K. Marr Tam No. Sctio What is a atom? What is th structur of a atom? Th Modl th structur of a atom (Rfrc: sctios.4 -. i Silbrbrg 5 th d.) Th subatomic articls that chmists

More information

Minimax Rényi Redundancy

Minimax Rényi Redundancy Miimax Réyi Rdudacy Smih Yagli Pricto Uivrsity Yücl Altuğ Natra, Ic Srgio Vrdú Pricto Uivrsity Abstract Th rdudacy for uivrsal losslss comprssio i Campbll s sttig is charactrizd as a miimax Réyi divrgc,

More information

MATH 681 Notes Combinatorics and Graph Theory I. ( 4) n. This will actually turn out to be marvelously simplifiable: C n = 2 ( 4) n n + 1. ) (n + 1)!

MATH 681 Notes Combinatorics and Graph Theory I. ( 4) n. This will actually turn out to be marvelously simplifiable: C n = 2 ( 4) n n + 1. ) (n + 1)! MATH 681 Nots Combiatorics ad Graph Thory I 1 Catala umbrs Prviously, w usd gratig fuctios to discovr th closd form C = ( 1/ +1) ( 4). This will actually tur out to b marvlously simplifiabl: ( ) 1/ C =

More information

ONLINE SUPPLEMENT Optimal Markdown Pricing and Inventory Allocation for Retail Chains with Inventory Dependent Demand

ONLINE SUPPLEMENT Optimal Markdown Pricing and Inventory Allocation for Retail Chains with Inventory Dependent Demand Submittd to Maufacturig & Srvic Opratios Maagmt mauscript MSOM 5-4R2 ONLINE SUPPLEMENT Optimal Markdow Pricig ad Ivtory Allocatio for Rtail Chais with Ivtory Dpdt Dmad Stph A Smith Dpartmt of Opratios

More information