Abstract. 1 Introduction

Size: px
Start display at page:

Download "Abstract. 1 Introduction"

Transcription

1 An experiment in modelling vertical P-transport in the unsaturated zone of a former sewage farm with a simple compartment model S. Pudenz, G. Nutzmann, J. Gelbrecht Institute of Freshwater and Fish Ecology, D Berlin, Germany Abstract A modelling concept is evaluated to predict the vertical transport of phosphate in the unsaturated zone corresponding to experimental data from a wastewater irrigation field test site. In contrast to deterministic models, compartment models are subject to several simplifying assumptions requiring a small data set. So the assumption of a time constant soil moisture profile is proved in calculating the water balance with a deterministic model. Based on measured phosphate distribution, different combinations of the K<j coefficient and a sink term are used to describe the retention and leaching process of phosphate in the unsaturated zone. Deviations from measured data, especially in the upper soil layers, and investigations into the sorption behavior indicate that a Langmuir isotherm may describe the process sufficiently. 1 Introduction Wastewater irrigation during the last years in the north-east of Berlin (Hobrechtsfelde) has led to increasing concentrations of nutrients (P, N) and other pollutants in surface as well as in subsurface waters and in the soil, Nutzmann et al. [1]. Now, the stoppage of wastewater application in 1987 has caused an intrinsic reduction of soil and water pollution, but under the influence of acid rain, phosphate compounds and heavy metals, sorbed on inorganic matter, are being mobilized and leached into the near-surface groundwater. To examine and to control this leaching an artificial groundwater recharge experiment with purificated wastewater irrigation was started and a field test site was installed. Because of ourfieldobservations we obtainedfirstand foremost more detailed information about water balance (atmospheric conditions, soil water,

2 382 Water Pollution groimdwater) than about the geochemical behavior of phosphate in the vadose zone. Therefore, a model is selected which requires only a small data set. Compartment models are often used to predict exposure of contaminants in the environment over long-time periods and due to several simplifying assumptions only a small data set is required. In contrast to spatial- and timediscrete models they calculate intramedium transport of contaminants taking into account a mass-balance concept. The EXSOL model, Matthies et al. [2], is an one-dimensional vertical multi-layer model considering the processes of advection with pore water flow, hydrodynamic dispersion, sorption (IQ-concept), decay, root uptake, and others. It is obvious that modelling transport of phosphate compounds in soil demands information about some transport parameters (e.g. dispersivity), sorption and precipitation behavior and the geochemical conditions. Considering these processes in a more or less operational sense, a combination of a geochemical model and a transport model allows satisfactory prediction of phosphate mobility in a laboratory scale, Isenbeck-Schroter et al. [3]. But a transfer of these results to different hydrological and geochemical conditions at field scale seems to be complicated and another conceptual model is developed here. To find out if the assumption of a time-constant soil moisture profile is sufficient for modelling vertical transport of phosphate with a compartment model over a long-time period the dynamic water balance in the unsaturated zone of the irrigation test site is calculated with a deterministic flow model based on measured hydrologic boundary conditions and soil moisture data. Furthermore, the purpose of the paper is to show how well predictions for environmental exposure of phosphate can be made if only a limited set of experimental data is available. 2 Modelling of unsaturated water balance The SUNSOL model [4], based on the Richards-equation, demands besides the input of boundary conditions information about the hydraulic properties. On the field test site in Berlin-Hobrechtsfelde several measuring devices were installed to observe the hydrologic components like irrigation, rainfall, meteorological data for estimating the potential evapotranspiration and groundwater level movement in a continuous manner (for more details see Ginzel et al.)^. Furthermore, soil moisture and pressure head in three soil horizons at 50 cm, 160 cm and 215 cm depth are also measured continuously. The potential evapotranspiration rate, calculated with the Penman-Monteith model*', is estimated to 2.78 mm/d. To get a complete description of the upper boundary the ratio between infiltration and evapotranspiration versus time has to be computed. In the following Table 1 the irrigation quantities (m^) and the rainfall (mm) from April 1993 to April 1994 are given as monthly sums. Considering the irrigated area of max nf, it is obvious that the artificial infiltration rate is one order of magnitude greater than the rainfall and both

3 Water Pollution 383 components (irrigation + rain) influence the soil water flux more than the evapotranspiration. Table 1: Irrigation and rainfall from april 1993 to april t 4/93 5/93 6/93 7/93 8/93 9/93 10/3 11/93 12/93 1/94 2/94 3/94 Q(nv>) N(mm) Modelling the artificial irrigation regime on the test site two different phases are considered here: the infiltration of purificated waste water continues during three hours per day, and a following redistribution phase of 21 hours is assumed. The subsurface water flow at the test site was simulated in a time-period of one week. During five days an intermittent irrigation took place. That means, after irrigation (3 hours) the soil moisture is redistributed (21 hours) in the entire profile and a groundwater recharge is observed. From the mass balance, calculated at all time-steps, different partitions like infiltration, evapotranspiration, mass change in the profile and groundwater recharge are separated and the cumulative daily results are given in Table 2. Table 2: Mass balance of unsaturated flow simulation: all quantities in (cm/d). AQ: mass change in the profile; I-E: infiltr. - pot. evapotr.; GWr: groundwater recharge. AQ day I-E GWr A zero trend of the the mass change in the profile after five days of intermittent irrigation indicates that infiltration effects directly the groundwater recharge. The daily recharge rate after one week is in the same range as at the beginning of the simulation. Furthermore it is shown, that infiltration and redistribution processes are approximately in balance, and for predicting the transport of contaminants in a long-time-scale a stationary-state water regime can be considered here. 3 Compartment modelling of phosphate transport The EXSOL model was originally developed to describe the transport and transformation of organics in soif. It assumes a time constant vertical water flow in a one-dimensional soil column and an instantaneous equilibrium partitioning of the chemical between adsorbed, dissolved and gaseous phases. The soil column of

4 384 Water Pollution one unit area consists of up to ten layers and in which each layer is divided into sub-layers. Transport between the layers and the compartments soil water, soil air and soil matrix is described using capacity coefficients for the vapor, solid and liquid phases. The model is based on the one-dimensional convection-dispersion equation: where C, is the total concentration in soil, D is the diffusion-dispersion coefficient, V is the fluid velocity and A represents an additional removal term which is specified as a (pseudo-) first-order degradation kinetic. At the soil surface a steady state input flux type boundary condition is imposed for the chemical input. At the bottom of the soil column a zero concentration gradient is assumed. The equation is solved by a Crank-Nicolson finite difference approximation scheme. To simulate transport, each soil layer requires the input of values for the porosity n, bulk density p, dispersion coefficient D, distribution coefficient K& degradation constant X (if requested as sink term), water content 0 and the Darcy water flux q. Measured and estimated data for EXSOL simulations are listed in Table 3. Phosphate concentrations were determined as total phosphorus TP. The volumetric water content was calculated by SUNSOL (see below). Dispersion was neglected. Porosity and volumetric water content were averaged on a layer thickness of each 20 cm, the rock density over the entire profile. Table 3: Soil parameters depth (cm) p (kg/of) n(-) (vol.%) First, phosphate transport was modelled over a period of 275 d (May Nov. 1993). The mean net infiltration rate (vertical boundary water flux) for this period was calculated to mm/d and the TP input, with the irrigation water, was capt constant as a surface boundary condition with a value of g/m^*d. The soil compartment with a thickness of 1.2 m was subdivided into 6 equidistant layers with depths of 0.2 m. Different Kd - values, constant over the entire column and variable for each layer and in combination with a sink or degradation rate (e.g. as a precipitation term) are used. All parameters are fitted according to the measurement of Nov. 93. The best fits are given in Table 4.

5 Table 4: Fitted Kd - values and degradation rates Water Pollution 385 depth (m) variable K<j I (cm%) II X( ly y) 1.5 * jo-' 1.0* 10-' 1.0* io-= 1.0* 10 s 1.0* 10-' constant K^ I 33.5 (cmvg) II *10^ Both, the fitted distribution coefficients and degradation rates are used to model over a second period of 62 d (Dec Jan. 94) under a minor deviation of boundary conditions. Thus, the mean net infiltration rate is calculated to rnm/d and the steady state input flux to g/nf*d P-concentration (g/kg) 2.0 Q_ CD ID variable Kd variable K^ and decay Kd=10 - decay=0.0001/d 1.50 I/ t\y JJ.3 77 C measured concentration Figure 1: Comparison of calculated (fitted) with measured concentrations for the period of 275d. Under the condition of a variable Kd, especially without decay, the fitting result for the simulation period of 275 d seems to be sufficient. However, regarding the simulation period over 62 d (see Figure 2) it is emphasized that the differences between calculated and measured concentrations in the upper soil layers are serious; after all, the variable Kd - concept (case I and II) provides better results than a constant Kd. Considering only the fitted K<j - values and degradation rates, and neglecting the chemical background both may be sensitive to a minor deviation of boundary conditions (net infiltration and TP input rate). But instead of investigating this assumption we have to look at the sorption behavior.

6 386 Water Pollution P-concentration (g/kg) CL CD "D variable K<j variable Ky and decay Kd=10 - decay=0.0001/d I/ l\jj OvJ.O ~Z "Z C measured concentration 2.00^ Figure 2: Comparison of calculated with measured concentrations for the period of 62 d i measured (0-30 cm) measured (60-90 cm) Langmuir (0-30 cm) Langmuir (60-90cm) Equilibrium concentration c (mg P/l) Figure 3: Measured concentrations compared with a derived Langmuir isotherm. Sorption capacity 0-30cm=0.237 mg P/g, 60-90cm = mg P/g.

7 Water Pollution Experimental sorption behavior Here, the result of an investigation into the sorption behavior of phosphate with a comparable soil is presented. Soil samples of two different depths have been used, mainly because of the high concentration in th eupper soil, as shown in Figure 2. The Langmuir isotherms (see Figure 3) result form a comparsion with a 'two-site' Langmuir isotherm and a Freundlich isotherm. The relatively high sorption capacity of the sample 0-30 cm may result from the high part of humic substances. Regarding in this case the additional phosphate input during modelling transport, the sorption capacity of the derived isotherm emphasizes that an adequate description of the phosphate enrichment in the upper soil can be achieved. 5 Conclusions It is obvious that a combination of precipitation and sorption leads to phosphorus retention. Commonly these processes are described utilizing a two-site Langmuir isotherm (sometimes kinetic), a combination of a Langmuir isotherm and a precipitation term or just one Langmuir isotherm (see e.g. Isenbeck-Schroter et al., 1993; van der Zee a. Bolt, 1991; Sposito, 1982)^'^ whereas investigations on the application of the K<j - value to phosphorus transport seems not to exist. Nevertheless, a fit of variable K<j - values into measured data is possible. Again, an application of these values to modified boundary conditions is not feasible. The difference between the two derived Langmuir isotherms indicates that even in this case both isotherms are appropriate to represent enrichment and migration of phosphate. Further investigations involving the Langmuir isotherm will be accomplished. Acknowledgement We are greatfull to B. Mekiffer and our colleague H.J. Exner, who provided the chemical analysis of soil samples and the sorption data. References 1. Nlitzmann, G., Ginzel, G., Handke, H., Scholz, H., Siegert, G. & Schwamm, D. Hydrologisch-hydrogeologische Untersuchung der ehemaligen Rie self elder Berlin-Buck (Abschlufibericht), Inst. Gewasserokologie u. Binnenfischerei, Berlin, Matthies, M., Behrendt, H. & Munzer, B. EXSOL - Modellfur den Transport und Verbleib von Stoffen in Boden, GSF-Bericht 23/87, Munchen-Neuherberg, 1987.

8 388 Water Pollution 3. Isenbeck-Schroter, M., Doring, U., Moller, A., Schroter, J. & MattheB, G. (1993): Experimental approach and simulation of the retention processes limiting orthophosphate transport in groundwater, /. Contam. Hydro!., 1993, 14, Niitzmann, G. A simple finite element method for modeling one-dimensional water and solute transport in variably saturated soils, Acta Hydrophys., 1991, 35, Ginzel, G., Handke, H. & Nutzmann, G. Untersuchungen zur Wiedervernassung ehemaliger Rieselfeldstandorte im Nordosten Berlins, Z. dt. geol Ges. (submitted), Beven, K. A sensitivity analysis of the Penman-Monteith actual evapotranspiration estimates, /. HydroL, 1979,44, Matthies, M., Bruggemann, R., Miinzer, B., Schernewski, G. & Trapp, S. Exposure and ecotoxicity for environmental chemicals (e4chem): application of fate models for surface water and soil, Ecol Modelling, 1989,47, Sposito, G. On the use of the Langmuir equation in the interpretation of "adsorption" phenomena. H The "two-surface" Langmuir equation, Soil Sci. Soc. Am. /., 1982, 46, Van der Zee, S.E.A.T.M.& Bolt, G.H. Deterministic and stochastic modelling of reactive solute transport, J. Contam. Hydrol., 1991, 7,

12 SWAT USER S MANUAL, VERSION 98.1

12 SWAT USER S MANUAL, VERSION 98.1 12 SWAT USER S MANUAL, VERSION 98.1 CANOPY STORAGE. Canopy storage is the water intercepted by vegetative surfaces (the canopy) where it is held and made available for evaporation. When using the curve

More information

Soil Water Atmosphere Plant (SWAP) Model: I. INTRODUCTION AND THEORETICAL BACKGROUND

Soil Water Atmosphere Plant (SWAP) Model: I. INTRODUCTION AND THEORETICAL BACKGROUND Soil Water Atmosphere Plant (SWAP) Model: I. INTRODUCTION AND THEORETICAL BACKGROUND Reinder A.Feddes Jos van Dam Joop Kroes Angel Utset, Main processes Rain fall / irrigation Transpiration Soil evaporation

More information

Computational modelling of reactive transport in hydrogeological systems

Computational modelling of reactive transport in hydrogeological systems Water Resources Management III 239 Computational modelling of reactive transport in hydrogeological systems N. J. Kiani, M. K. Patel & C.-H. Lai School of Computing and Mathematical Sciences, University

More information

Lecture 16 Groundwater:

Lecture 16 Groundwater: Reading: Ch 6 Lecture 16 Groundwater: Today 1. Groundwater basics 2. inert tracers/dispersion 3. non-inert chemicals in the subsurface generic 4. non-inert chemicals in the subsurface inorganic ions Next

More information

Unsaturated Flow (brief lecture)

Unsaturated Flow (brief lecture) Physical Hydrogeology Unsaturated Flow (brief lecture) Why study the unsaturated zone? Evapotranspiration Infiltration Toxic Waste Leak Irrigation UNSATURATAED ZONE Aquifer Important to: Agriculture (most

More information

Temperature dependent multiphase flow and transport

Temperature dependent multiphase flow and transport Temperature dependent multiphase flow and transport J.F. Sykes, A.G. Merry and J. Zhu Department of Civil Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 E-mail: sykesj@uwaterloo.ca

More information

Chemical Hydrogeology

Chemical Hydrogeology Physical hydrogeology: study of movement and occurrence of groundwater Chemical hydrogeology: study of chemical constituents in groundwater Chemical Hydrogeology Relevant courses General geochemistry [Donahoe]

More information

SAFETY ASSESSMENT CODES FOR THE NEAR-SURFACE DISPOSAL OF LOW AND INTERMEDIATE-LEVEL RADIOACTIVE WASTE WITH THE COMPARTMENT MODEL: SAGE AND VR-KHNP

SAFETY ASSESSMENT CODES FOR THE NEAR-SURFACE DISPOSAL OF LOW AND INTERMEDIATE-LEVEL RADIOACTIVE WASTE WITH THE COMPARTMENT MODEL: SAGE AND VR-KHNP SAFETY ASSESSMENT CODES FOR THE NEAR-SURFACE DISPOSAL OF LOW AND INTERMEDIATE-LEVEL RADIOACTIVE WASTE WITH THE COMPARTMENT MODEL: SAGE AND VR-KHNP J. B. Park, J. W. Park, C. L. Kim, M. J. Song Korea Hydro

More information

1 BASIC CONCEPTS AND MODELS

1 BASIC CONCEPTS AND MODELS 1 BASIC CONCEPTS AND ODELS 1.1 INTRODUCTION This Volume III in the series of textbooks is focused on applications of environmental isotopes in surface water hydrology. The term environmental means that

More information

(9C/(9t)t = a(x,t) (92C/3x2)t + b(x,t) (9C/9 x)t + c(x,t)ct + d(x,t)

(9C/(9t)t = a(x,t) (92C/3x2)t + b(x,t) (9C/9 x)t + c(x,t)ct + d(x,t) ABSTRACT Safe management Including disposal of radioactive wastes from the various parts of the nuclear fuel cycle is an important aspect of nuclear technology development. The problem of managing radioactive

More information

Help Models. Overview. 1. Base Map. 2. HELP Model for Paved Location A (near Bldg G-1)

Help Models. Overview. 1. Base Map. 2. HELP Model for Paved Location A (near Bldg G-1) Help Models SAIC May 25, 2005 Overview 1. Base Map 2. HELP Model for Paved Location A (near Bldg G-1) Soil Column Surface Conditions Subsurface Properties Basecase Model 3. HELP Model for Unpaved Location

More information

THE ESTIMATION OF THE RADIONUCLIDE TRANSPORT PARAMETERS USING THE CDE MODEL

THE ESTIMATION OF THE RADIONUCLIDE TRANSPORT PARAMETERS USING THE CDE MODEL Romanian Reports in Physics, Vol. 59, No. 4, P. 1193 104, 007 Dedicated to Prof. Dumitru Barbu Ion s 70th Anniversary THE ESTIMATION OF THE RADIONUCLIDE TRANSPORT PARAMETERS USING THE CDE MODEL C. BUCUR

More information

Emerging Contaminant Soil Fate Model Subroutine Development for SWAT

Emerging Contaminant Soil Fate Model Subroutine Development for SWAT Emerging Contaminant Soil Fate Model Subroutine Development for SWAT Louis J. Thibodeaux and Eileen M. Canfield Louisiana State University Cain Department of Chemical Engineering Jesse Coates Hall, South

More information

Analytical solutions for water flow and solute transport in the unsaturated zone

Analytical solutions for water flow and solute transport in the unsaturated zone Models for Assessing and Monitoring Groundwater Quality (Procsedines of a Boulder Symposium July 1995). IAHS Publ. no. 227, 1995. 125 Analytical solutions for water flow and solute transport in the unsaturated

More information

Evaluation of reactive transport parameters to assess specific vulnerability in karst systems

Evaluation of reactive transport parameters to assess specific vulnerability in karst systems Evaluation of reactive transport parameters to assess specific vulnerability in karst systems M. Sinreich, F. Cornaton & F. Zwahlen Centre of Hydrogeology (CHYN), Neuchâtel University, Switzerland ABSTRACT:

More information

Numerical Simulations of Radionuclide Transport through Clay and Confining Units in a Geological Repository using COMSOL

Numerical Simulations of Radionuclide Transport through Clay and Confining Units in a Geological Repository using COMSOL Numerical Simulations of Radionuclide Transport through Clay and Confining Units in a Geological Repository using COMSOL J. Hansmann *1, M. L. Sentis 1, C. Belardinelli 2, B. J. Graupner 1, M. Hugi 1 and

More information

1. Water in Soils: Infiltration and Redistribution

1. Water in Soils: Infiltration and Redistribution Contents 1 Water in Soils: Infiltration and Redistribution 1 1a Material Properties of Soil..................... 2 1b Soil Water Flow........................... 4 i Incorporating K - θ and ψ - θ Relations

More information

Physicochemical Processes

Physicochemical Processes Lecture 3 Physicochemical Processes Physicochemical Processes Air stripping Carbon adsorption Steam stripping Chemical oxidation Supercritical fluids Membrane processes 1 1. Air Stripping A mass transfer

More information

Snow Melt with the Land Climate Boundary Condition

Snow Melt with the Land Climate Boundary Condition Snow Melt with the Land Climate Boundary Condition GEO-SLOPE International Ltd. www.geo-slope.com 1200, 700-6th Ave SW, Calgary, AB, Canada T2P 0T8 Main: +1 403 269 2002 Fax: +1 888 463 2239 Introduction

More information

Building a Robust Numerical Model for Mass Transport Through Complex Porous Media

Building a Robust Numerical Model for Mass Transport Through Complex Porous Media Presented at the COMSOL Conference 2008 Hannover Building a Robust Numerical Model for Mass Transport Through Complex Porous Media Janez Perko, Dirk Mallants Belgian Nuclear Research Centre SCK CEN Elise

More information

ψ ae is equal to the height of the capillary rise in the soil. Ranges from about 10mm for gravel to 1.5m for silt to several meters for clay.

ψ ae is equal to the height of the capillary rise in the soil. Ranges from about 10mm for gravel to 1.5m for silt to several meters for clay. Contents 1 Infiltration 1 1a Hydrologic soil horizons...................... 1 1b Infiltration Process......................... 2 1c Measurement............................ 2 1d Richard s Equation.........................

More information

Savannah River Site Mixed Waste Management Facility Southwest Plume Tritium Phytoremediation

Savannah River Site Mixed Waste Management Facility Southwest Plume Tritium Phytoremediation Savannah River Site Mixed Waste Management Facility Southwest Plume Tritium Phytoremediation Evaluating Irrigation Management Strategies Over 25 Years Prepared November 2003 Printed February 27, 2004 Prepared

More information

1906 Dilip kumar Jaiswal et al./ Elixir Pollution 31 (2011) Available online at (Elixir International Journal)

1906 Dilip kumar Jaiswal et al./ Elixir Pollution 31 (2011) Available online at   (Elixir International Journal) 196 Dilip kumar Jaiswal et al./ Eliir Pollution 31 (211) 196-191 ARTICLE INF O Article history: Received: 21 December 21; Received in revised form: 16 January 211; Accepted: 1 February 211; Keywords Advection,

More information

GEOCHEMISTRY, GROUNDWATER AND POLLUTION,

GEOCHEMISTRY, GROUNDWATER AND POLLUTION, GEOCHEMISTRY, GROUNDWATER AND POLLUTION, 2 ND EDITION C.A.J. APPELO Hydrochemical Consultant, Amsterdam, the Netherlands D. POSTMA Environment & Resources DTU, Technical University of Denmark, Kgs. Lyngby,

More information

1D Verification Examples

1D Verification Examples 1 Introduction 1D Verification Examples Software verification involves comparing the numerical solution with an analytical solution. The objective of this example is to compare the results from CTRAN/W

More information

Department of Ocean Engineering, Indian Institute of Technology-Madras, Chennai , India. *Corresponding author.

Department of Ocean Engineering, Indian Institute of Technology-Madras, Chennai , India. *Corresponding author. J. Earth Syst. Sci. (2018) 127:53 c Indian Academy of Sciences https://doi.org/10.1007/s12040-018-0950-3 Interaction of dissolution, sorption and biodegradation on transport of BTEX in a saturated groundwater

More information

Colloid and colloid-facilitated transport modeling using HPx

Colloid and colloid-facilitated transport modeling using HPx Colloid and colloid-facilitated transport modeling using HPx D. Jacques 1, D. Zhou 2, J. Makselon 3, I. Engelhardt 2, and S. Thiele-Bruh 4 1 SCK-CEN, 2 TU Berlin, 3 Forschungszentrum Jülich GmbH, 4 University

More information

Chapter 1. Introduction

Chapter 1. Introduction Introduction 1 Introduction Scope Numerous organic chemicals are introduced into the environment by natural (e.g. forest fires, volcanic activity, biological processes) and human activities (e.g. industrial

More information

ABSTRACT INTRODUCTION

ABSTRACT INTRODUCTION Transport of contaminants from non-aqueous phase liquid pool dissolution in subsurface formations C.V. Chrysikopoulos Department of Civil Engineering, University of California, ABSTRACT The transient contaminant

More information

Quantifying shallow subsurface flow and salt transport in the Canadian Prairies

Quantifying shallow subsurface flow and salt transport in the Canadian Prairies Quantifying shallow subsurface flow and salt transport in the Canadian Prairies Andrew Ireson GIWS, University of Saskatchewan www.usask.ca/water Uri Nachshon Garth van der Kamp GIWS, University of Saskatchewan

More information

Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur. Lecture 6

Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur. Lecture 6 Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur Lecture 6 Good morning and welcome to the next lecture of this video course on Advanced Hydrology.

More information

Homogenization and numerical Upscaling. Unsaturated flow and two-phase flow

Homogenization and numerical Upscaling. Unsaturated flow and two-phase flow Homogenization and numerical Upscaling Unsaturated flow and two-phase flow Insa Neuweiler Institute of Hydromechanics, University of Stuttgart Outline Block 1: Introduction and Repetition Homogenization

More information

RT3D Rate-Limited Sorption Reaction

RT3D Rate-Limited Sorption Reaction GMS TUTORIALS RT3D Rate-Limited Sorption Reaction This tutorial illustrates the steps involved in using GMS and RT3D to model sorption reactions under mass-transfer limited conditions. The flow model used

More information

EXAMPLE PROBLEMS. 1. Example 1 - Column Infiltration

EXAMPLE PROBLEMS. 1. Example 1 - Column Infiltration EXAMPLE PROBLEMS The module UNSATCHEM is developed from the variably saturated solute transport model HYDRUS-1D [Šimůnek et al., 1997], and thus the water flow and solute transport parts of the model have

More information

GROUNDWATER EXPOSURE ASSESSMENT FOR WOOD PRESERVATIVES

GROUNDWATER EXPOSURE ASSESSMENT FOR WOOD PRESERVATIVES GROUNDWATER EXPOSURE ASSESSMENT FOR WOOD PRESERVATIVES (SOIL STUDIES APPLICABILITY FOR MOBILE OR PERSISTENT SUBSTANCES AND DT 50 /K OC INPUT VALUES FOR PELMO/PEARL MODELS) This document was agreed upon

More information

Abstract. This research is supported by US Army Corps of Engineers under Grant No. DACA K-0055 with Penn State.

Abstract. This research is supported by US Army Corps of Engineers under Grant No. DACA K-0055 with Penn State. Modeling Water Flow and Chemical and Sediment Transport in Watershed Systems Hwai-Ping Cheng and Gour-Tsyh Yeh Department of Civil and Environmental Engineering, The Pennsylvania State University, University

More information

Sorption of Contaminants from Solution: Terms & Principles

Sorption of Contaminants from Solution: Terms & Principles PlumeStop Technical Bulletin 2.1 Sorption of Contaminants from Solution: Terms & Principles Quick Reference: Basis of PlumeStop sorption PlumeStop sorption isotherms Significance as a remediation tool

More information

A THIRD-ORDER NUMERICAL SCHEME WITH UPWIND WEIGHTING FOR SOLVING THE SOLUTE TRANSPORT EQUATION

A THIRD-ORDER NUMERICAL SCHEME WITH UPWIND WEIGHTING FOR SOLVING THE SOLUTE TRANSPORT EQUATION INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, VOL. 40, 1623 1637 (1997) A THIRD-ORDER NUMERICAL SCHEME WITH UPWIND WEIGHTING FOR SOLVING THE SOLUTE TRANSPORT EQUATION KANGLE HUANG, JIR[ I

More information

Numerical Solution of the Two-Dimensional Time-Dependent Transport Equation. Khaled Ismail Hamza 1 EXTENDED ABSTRACT

Numerical Solution of the Two-Dimensional Time-Dependent Transport Equation. Khaled Ismail Hamza 1 EXTENDED ABSTRACT Second International Conference on Saltwater Intrusion and Coastal Aquifers Monitoring, Modeling, and Management. Mérida, México, March 3-April 2 Numerical Solution of the Two-Dimensional Time-Dependent

More information

Hydrological process simulation in the earth dam and dike by the Program PCSiWaPro

Hydrological process simulation in the earth dam and dike by the Program PCSiWaPro Fakultät Umweltwissenschaften, Fachrichtung Hydrowissenschaften. Hydrological process simulation in the earth dam and dike by the Program PCSiWaPro Jinxing Guo, Peter-Wolfgang Graeber Table of contents

More information

POINT SOURCES OF POLLUTION: LOCAL EFFECTS AND IT S CONTROL Vol. II - Contaminant Fate and Transport Process - Xi Yang and Gang Yu

POINT SOURCES OF POLLUTION: LOCAL EFFECTS AND IT S CONTROL Vol. II - Contaminant Fate and Transport Process - Xi Yang and Gang Yu CONTAMINANT FATE AND TRANSPORT PROCESS Xi Yang and Gang Yu Department of Environmental Sciences and Engineering, Tsinghua University, Beijing, P. R. China Keywords: chemical fate, physical transport, chemical

More information

16 Rainfall on a Slope

16 Rainfall on a Slope Rainfall on a Slope 16-1 16 Rainfall on a Slope 16.1 Problem Statement In this example, the stability of a generic slope is analyzed for two successive rainfall events of increasing intensity and decreasing

More information

NATURAL ZEOLITE AS A PERMEABLE REACTIVE BARRIER

NATURAL ZEOLITE AS A PERMEABLE REACTIVE BARRIER NATURAL ZEOLITE AS A PERMEABLE REACTIVE BARRIER PREDICTION OF LEAD CONCENTRATION PROFILE THROUGH ZEOLITE BARRIER N. Vukojević Medvidović, J. Perić, M. Trgo, M. Ugrina, I. Nuić University of Split, Faculty

More information

Comparison of Heat and Mass Transport at the Micro-Scale

Comparison of Heat and Mass Transport at the Micro-Scale Comparison of Heat and Mass Transport at the Micro-Scale Ekkehard Holzbecher, Sandra Oehlmann October 10 th, 2012 Excerpt from the Proceedings of the 2012 COMSOL Conference in Milan Heat & Mass Transfer

More information

5. Boundary Exchange: Air-Water and Sediment-Water Interfaces

5. Boundary Exchange: Air-Water and Sediment-Water Interfaces 5. Boundary Exchange: Air-Water and Sediment-Water Interfaces In the previous chapter we introduced transformation and described both homogeneous and heterogeneous reactions. Now, we would like to look

More information

Regeneration of Sorptive Capacity

Regeneration of Sorptive Capacity Quick Reference: Background PlumeStop Technical Bulletin 4.1 Regeneration of Sorptive Capacity PlumeStop binding site bio- regeneration Extended functional longevity PlumeStop Liquid Activated Carbon is

More information

RADIONUCLIDE DIFFUSION IN GEOLOGICAL MEDIA

RADIONUCLIDE DIFFUSION IN GEOLOGICAL MEDIA GEOPHYSICS RADIONUCLIDE DIFFUSION IN GEOLOGICAL MEDIA C. BUCUR 1, M. OLTEANU 1, M. PAVELESCU 2 1 Institute for Nuclear Research, Pitesti, Romania, crina.bucur@scn.ro 2 Academy of Scientists Bucharest,

More information

Code-to-Code Benchmarking of the PORFLOW and GoldSim Contaminant Transport Models using a Simple 1-D Domain

Code-to-Code Benchmarking of the PORFLOW and GoldSim Contaminant Transport Models using a Simple 1-D Domain Code-to-Code Benchmarking of the PORFLOW and GoldSim Contaminant Transport Models using a Simple 1-D Domain - 11191 Robert A. Hiergesell and Glenn A. Taylor Savannah River National Laboratory SRNS Bldg.

More information

Groundwater chemistry

Groundwater chemistry Read: Ch. 3, sections 1, 2, 3, 5, 7, 9; Ch. 7, sections 2, 3 PART 14 Groundwater chemistry Introduction Matter present in water can be divided into three categories: (1) Suspended solids (finest among

More information

Modeling Hg Reactive Transport in Soil Systems Using HP1

Modeling Hg Reactive Transport in Soil Systems Using HP1 Modeling Hg Reactive Transport in Soil Systems Using HP1 Bertrand Leterme and Diederik Jacques Performance Assessments, Institute Environment, Health and Safety, Belgian Nuclear Research Centre, Mol, Belgium,

More information

Contaminant Transport in the Unsaturated Zone Theory and Modeling

Contaminant Transport in the Unsaturated Zone Theory and Modeling 22 Contaminant Transport in the Unsaturated Zone Theory and Modeling Ji rí Šimůnek University of California Riverside Martinus Th. van Genuchten George E. Brown, Jr, Salinity Laboratory, USDA-ARS 22.1

More information

A Novel approach of the modified BET Isotherm towards continuous column study

A Novel approach of the modified BET Isotherm towards continuous column study Journal of Scientific & Industrial Research Vol. 73, July 2014, pp. 489-494 A Novel approach of the modified BET Isotherm towards continuous column study Rangabhashiyam S, Anu N, Giri Nangagopal M S and

More information

Recap: Introduction 12/1/2015. EVE 402 Air Pollution Generation and Control. Adsorption

Recap: Introduction 12/1/2015. EVE 402 Air Pollution Generation and Control. Adsorption EVE 402 Air Pollution Generation and Control Chapter #6 Lectures Adsorption Recap: Solubility: the extent of absorption into the bulk liquid after the gas has diffused through the interface An internal

More information

http://www.diva-portal.org This is the published version of a paper presented at 16th International Conference on Heavy Metals in the Environment (ICHMET), SEP 23-27, 2012, Rome, ITALY. Citation for the

More information

Radionuclide Migration: Prediction Experience

Radionuclide Migration: Prediction Experience Radionuclide Migration: Prediction Experience V.V. Martianov, M.Yu. Sheglov, A.V. Guskov State Unitary Enterprise MosSIA Radon 2/14, 7th Rostovsky pereulok, Moscow 119121 Russia ABSTRACT Many different

More information

2006 Drought in the Netherlands (20 July 2006)

2006 Drought in the Netherlands (20 July 2006) 2006 Drought in the Netherlands (20 July 2006) Henny A.J. van Lanen, Wageningen University, the Netherlands (henny.vanlanen@wur.nl) The Netherlands is suffering from tropical heat and it is facing a meteorological

More information

Treatment of Colloids in the Safety Case

Treatment of Colloids in the Safety Case Treatment of Colloids in the Safety Case Clay Colloids in Aqueous Systems 3 4 February 2016, Berlin Dr Amy Shelton, Radioactive Waste Management (RWM) KBS-3 Concept Based on the multi- barrier principles

More information

dynamics of f luids in porous media

dynamics of f luids in porous media dynamics of f luids in porous media Jacob Bear Department of Civil Engineering Technion Israel Institute of Technology, Haifa DOVER PUBLICATIONS, INC. New York Contents Preface xvii CHAPTER 1 Introduction

More information

Application of the random walk method to simulate the transport of kinetically adsorbing solutes

Application of the random walk method to simulate the transport of kinetically adsorbing solutes Groundwater Contamination (Proceedings of the Symposium held during the Third IAHS Scientific Assembly, Baltimore, MD, May 1989), IAHS Publ. no. 185, 1989 Application of the random walk method to simulate

More information

Eckhard Worch. Adsorption. Technology in Water. Treatment. Fundamentals, Processes, and Modeling DE GRUYTER

Eckhard Worch. Adsorption. Technology in Water. Treatment. Fundamentals, Processes, and Modeling DE GRUYTER Eckhard Worch Adsorption Technology in Water Treatment Fundamentals, Processes, and Modeling DE GRUYTER Contents Preface xi 1 Introduction 1 1.1 Basic concepts and definitions 1 1.1.1 Adsorption as a surface

More information

PREDICTION OF CADMIUM ACCUMULATION IN A HETEROGENEOUS SOIL USING A SCALED SORPTION MODEL

PREDICTION OF CADMIUM ACCUMULATION IN A HETEROGENEOUS SOIL USING A SCALED SORPTION MODEL ModelCARE 90: Calibration and Reliability in Groundwater Modelling (Proceedings of the conference held in The Hague, September 1990). IAHS Publ. no. 195, 1990. PREDICTION OF CADMIUM ACCUMULATION IN A HETEROGENEOUS

More information

Numerical modelling of reactive transport processes in fractured porous media

Numerical modelling of reactive transport processes in fractured porous media Groundwater Quality: Remediation and Protection (Proceedings of the GQ'98 Conference held at Tubingen, Germany, September 1998). IAHS Publ. no. 250, 1998. 313 Numerical modelling of reactive transport

More information

12. Lead, Pb (atomic no. 82)

12. Lead, Pb (atomic no. 82) 12. Lead, Pb (atomic no. 82) - Sources of Pb contamination include mining, metal processing, lead battery manufacturing, chemical and paint manufacturing, and lead wastes. -USEPA drinking water action

More information

Post Sorption Contaminant Biodegradation

Post Sorption Contaminant Biodegradation Quick Reference: PlumeStop Technical Bulletin 3.1 Post Sorption Contaminant Biodegradation Demonstration of post sorption contaminant biodegradation Net acceleration of contaminant biodegradation rate

More information

KEY WORDS heavy metals, geochemistry, solute transport, mathematical model, unsaturated flow, remediation

KEY WORDS heavy metals, geochemistry, solute transport, mathematical model, unsaturated flow, remediation MODELING OF HEAVY METAL MOVEMENT IN VEGETATED, UNSATURATED SOILS WITH EMPHASIS ON GEOCHEMISTRY K.V. Nedunuri 1, R.S. Govindaraju 1, L.E. Erickson 2 and A.P. Schwab 3, 1 Department of Civil Engineering,

More information

Chapter 7: Anion and molecular retention

Chapter 7: Anion and molecular retention I. Anions and molecules of importance in soils Anions of major importance to agricultural soils and soil chemistry are: H 2 PO - 4, HPO 2-4, SO 2-4, HCO - 3, NO - 3, Cl -, F - and OH -. Also, micronutrients

More information

EXPERIENCES FROM THE SOURCE-TERM ANALYSIS OF A LOW AND INTERMEDIATE LEVEL RADWASTE DISPOSAL FACILITY

EXPERIENCES FROM THE SOURCE-TERM ANALYSIS OF A LOW AND INTERMEDIATE LEVEL RADWASTE DISPOSAL FACILITY EXPERIENCES FROM THE SOURCE-TERM ANALYSIS OF A LOW AND INTERMEDIATE LEVEL RADWASTE DISPOSAL FACILITY Jin Beak Park, Joo-Wan Park, Eun-Young Lee and Chang-Lak Kim Korea Hydro & Nuclear Power Co., Ltd. (KHNP)

More information

EVALUATION OF CRITICAL FRACTURE SKIN POROSITY FOR CONTAMINANT MIGRATION IN FRACTURED FORMATIONS

EVALUATION OF CRITICAL FRACTURE SKIN POROSITY FOR CONTAMINANT MIGRATION IN FRACTURED FORMATIONS ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology An ISO 3297: 2007 Certified Organization, Volume 2, Special Issue

More information

Chemical Kinetic Retention and Transport in Soils and Geological Media

Chemical Kinetic Retention and Transport in Soils and Geological Media Software Models for Chemical Kinetic Retention and Transport in Soils and Geological Media htpp:/www.spess.lsu.edu/chem_transport User s Manual Magdi Selim School of Plant, Environmental and Soil Science

More information

TEMPORALLY DEPENDENT DISPERSION THROUGH SEMI-INFINITE HOMOGENEOUS POROUS MEDIA: AN ANALYTICAL SOLUTION

TEMPORALLY DEPENDENT DISPERSION THROUGH SEMI-INFINITE HOMOGENEOUS POROUS MEDIA: AN ANALYTICAL SOLUTION IJRRAS 6 () February www.arpapress.com/volumes/vol6issue/ijrras_6 5.pdf TEMPORALLY EPENENT ISPERSION THROUGH SEMI-INFINITE HOMOGENEOUS POROUS MEIA: AN ANALYTICAL SOLUTION R.R.Yadav, ilip Kumar Jaiswal,

More information

6.6 Solute Transport During Variably Saturated Flow Inverse Methods

6.6 Solute Transport During Variably Saturated Flow Inverse Methods 6.6 Solute Transport During Variably Saturated Flow Inverse Methods JIÌÍ ŠIMæNEK AND MARTINUS TH. VAN GENUCHTEN, USDA-ARS, George E. Brown, Jr. Salinity Laboratory, Riverside, California DIEDERIK JACQUES,

More information

10. FIELD APPLICATION: 1D SOIL MOISTURE PROFILE ESTIMATION

10. FIELD APPLICATION: 1D SOIL MOISTURE PROFILE ESTIMATION Chapter 1 Field Application: 1D Soil Moisture Profile Estimation Page 1-1 CHAPTER TEN 1. FIELD APPLICATION: 1D SOIL MOISTURE PROFILE ESTIMATION The computationally efficient soil moisture model ABDOMEN,

More information

WATER ON AND UNDER GROUND. Objectives. The Hydrologic Cycle

WATER ON AND UNDER GROUND. Objectives. The Hydrologic Cycle WATER ON AND UNDER GROUND Objectives Define and describe the hydrologic cycle. Identify the basic characteristics of streams. Define drainage basin. Describe how floods occur and what factors may make

More information

Analytical approach predicting water bidirectional transfers: application to micro and furrow irrigation

Analytical approach predicting water bidirectional transfers: application to micro and furrow irrigation Advances in Fluid Mechanics VI 633 Analytical approach predicting water bidirectional transfers: application to micro and furrow irrigation D. Crevoisier Irrigation Research Unit, Cemagref Montpellier,

More information

Comparative Study of Transport and Diffusion Coefficient of Copper and Cadmium in Saturated Clay and Fined Grained Soil

Comparative Study of Transport and Diffusion Coefficient of Copper and Cadmium in Saturated Clay and Fined Grained Soil International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES) Impact Factor: 5.22 (SJIF-217), e-issn: 2455-2585 Volume 4, Issue 7, July-218 Comparative Study of Transport and

More information

ADVECTION IN IN BIOIRRIGATED MUDDY SEDIMENTS-CAN IT BE RELEVANT? A MODEL STUDY

ADVECTION IN IN BIOIRRIGATED MUDDY SEDIMENTS-CAN IT BE RELEVANT? A MODEL STUDY XIX International Conference on Water Resources CMWR 2012 University of Illinois at Urbana-Champaign June 17-22, 2012 ADVECTION IN IN BIOIRRIGATED MUDDY SEDIMENTS-CAN IT BE RELEVANT? A MODEL STUDY Andreas

More information

Diffusive Evolution of Gaseous and Hydrate Horizons of Methane in Seabed

Diffusive Evolution of Gaseous and Hydrate Horizons of Methane in Seabed Diffusive Evolution of Gaseous and Hydrate Horizons of Methane in Seabed Denis S. Goldobin (University of Leicester), et al. ( Quaternary Hydrate Stability ) MethaneNet Early Career Workshop Milton Keynes

More information

2. Irrigation. Key words: right amount at right time What if it s too little too late? Too much too often?

2. Irrigation. Key words: right amount at right time What if it s too little too late? Too much too often? 2. Irrigation Key words: right amount at right time What if it s too little too late? 2-1 Too much too often? To determine the timing and amount of irrigation, we need to calculate soil water balance.

More information

CHAPTER 2. SOIL-WATER POTENTIAL: CONCEPTS AND MEASUREMENT

CHAPTER 2. SOIL-WATER POTENTIAL: CONCEPTS AND MEASUREMENT SSC107 Fall 2000 Chapter 2, Page - 1 - CHAPTER 2. SOIL-WATER POTENTIAL: CONCEPTS AND MEASUREMENT Contents: Transport mechanisms Water properties Definition of soil-water potential Measurement of soil-water

More information

An Introduction to COMSOL Multiphysics v4.3b & Subsurface Flow Simulation. Ahsan Munir, PhD Tom Spirka, PhD

An Introduction to COMSOL Multiphysics v4.3b & Subsurface Flow Simulation. Ahsan Munir, PhD Tom Spirka, PhD An Introduction to COMSOL Multiphysics v4.3b & Subsurface Flow Simulation Ahsan Munir, PhD Tom Spirka, PhD Agenda Provide an overview of COMSOL 4.3b Our products, solutions and applications Subsurface

More information

Global phosphorus cycle

Global phosphorus cycle Global phosphorus cycle OCN 623 Chemical Oceanography 11 April 2013 2013 Arisa Okazaki and Kathleen Ruttenberg Outline 1. Introduction on global phosphorus (P) cycle 2. Terrestrial environment 3. Atmospheric

More information

Batch Adsorption Test of Phenol on Soils

Batch Adsorption Test of Phenol on Soils Batch Adsorption Test of Phenol on Soils Mohd Raihan Taha Dept. of Civil & Structural Engineering, and Institute for Environment & Development (LESTARI) Universiti Kebangsaan Malaysia Contents Introduction

More information

Groundwater. (x 1000 km 3 /y) Reservoirs. Oceans Cover >70% of Surface. Groundwater and the. Hydrologic Cycle

Groundwater. (x 1000 km 3 /y) Reservoirs. Oceans Cover >70% of Surface. Groundwater and the. Hydrologic Cycle Chapter 13 Oceans Cover >70% of Surface Groundwater and the Hydrologic Cycle Oceans are only 0.025% of Mass Groundwater Groundwater is liquid water that lies in the subsurface in fractures in rocks and

More information

PlumeStop Technical Bulletin 3.1: Post Sorption Contaminant Biodegradation

PlumeStop Technical Bulletin 3.1: Post Sorption Contaminant Biodegradation Quick Reference: PlumeStop Technical Bulletin 3.1 Post Sorption Contaminant Biodegradation Post sorption contaminant biodegradation Net acceleration of contaminant biodegradation rate Background PlumeStop

More information

Laboratory Investigation of Transport and Treatment of Chromium in Groundwater at Liwa district, Abu Dhabi

Laboratory Investigation of Transport and Treatment of Chromium in Groundwater at Liwa district, Abu Dhabi Laboratory Investigation of Transport and Treatment of Chromium in Groundwater at Liwa district, Abu Dhabi Wali Al-Rahman 1, Munjed Maraqa 2 1 Department of Chemical and Petroleum Engineering, U.A.E. University,

More information

Groundwater. (x 1000 km 3 /y) Oceans Cover >70% of Surface. Groundwater and the. Hydrologic Cycle

Groundwater. (x 1000 km 3 /y) Oceans Cover >70% of Surface. Groundwater and the. Hydrologic Cycle Chapter 17 Oceans Cover >70% of Surface Groundwater and the Hydrologic Cycle Vasey s Paradise, GCNP Oceans are only 0.025% of Mass Groundwater Groundwater is liquid water that lies in the subsurface in

More information

Points to Learn. τ C. τ R. conservative substance reactive substance. τ W V Q. out. out

Points to Learn. τ C. τ R. conservative substance reactive substance. τ W V Q. out. out Pots to Learn Steady State: defition Assimilation capacity - Concept - Mathematical defition: Transfer Coefficient, β =C /C Residence time: hydraulic conservative substance reactive substance τ R = a =

More information

Print version. Sorption of PPCPs. Organic compounds in water and wastewater. Soonmi Kim. CEE 697z - Lecture #24

Print version. Sorption of PPCPs. Organic compounds in water and wastewater. Soonmi Kim. CEE 697z - Lecture #24 Print version Sorption of PPCPs Organic compounds in water and wastewater Soonmi Kim Outline Introduction Studies; sorption of PPCPs Introduction Sorption? Sorption is a physical and chemical process by

More information

Introduction Studies; sorption of PPCPs

Introduction Studies; sorption of PPCPs Print version Sorption of PPCPs Organic compounds in water and wastewater Soonmi Kim Outline Introduction Studies; sorption of PPCPs 1 Introduction Sorption? Sorption is a physical and chemical process

More information

Physical Final Exam

Physical Final Exam Physical 2 2014 Final Exam 1) When benzoic acid is added to an oil and water emulsion it will distribute itself as follows: a) dissolve only in water b) dissolve only in oil c) it will disperse in both

More information

Reactive-transport modelling of electrokinetic extraction of heavy metals from marine sediments

Reactive-transport modelling of electrokinetic extraction of heavy metals from marine sediments EREM63 Reactive-transport modelling of electrokinetic extraction of heavy metals from marine sediments Matteo Masi a, *, Alessio Ceccarini b, Renato Iannelli a a University of Pisa, Department of Energy,

More information

EQUILIBRIUM, MASS CONSERVATION, AND KINETICS

EQUILIBRIUM, MASS CONSERVATION, AND KINETICS EQUILIBRIUM, MASS CONSERVATION, AND KINETICS Contents 1 Concentration 2 Species Mass Balance (Mass Conservation) 3 Equilibrium 4 Chemical Kinetics: Generation or Depletion of a Mass Species 5 Chapter Summary

More information

Surface Complexation.

Surface Complexation. Surface Complexation. Jean-François Gaillard, Notes for CE-367 OBJECTIVES To show how the presence of particles in natural and engineered systems controls the fate of many trace elements. The concepts

More information

v. 8.0 GMS 8.0 Tutorial RT3D Double Monod Model Prerequisite Tutorials None Time minutes Required Components Grid MODFLOW RT3D

v. 8.0 GMS 8.0 Tutorial RT3D Double Monod Model Prerequisite Tutorials None Time minutes Required Components Grid MODFLOW RT3D v. 8.0 GMS 8.0 Tutorial Objectives Use GMS and RT3D to model the reaction between an electron donor and an electron acceptor, mediated by an actively growing microbial population that exists in both soil

More information

RT3D Double Monod Model

RT3D Double Monod Model GMS 7.0 TUTORIALS RT3D Double Monod Model 1 Introduction This tutorial illustrates the steps involved in using GMS and RT3D to model the reaction between an electron donor and an electron acceptor, mediated

More information

Coalbed Methane Properties

Coalbed Methane Properties Coalbed Methane Properties Subtopics: Permeability-Pressure Relationship Coal Compressibility Matrix Shrinkage Seidle and Huitt Palmer and Mansoori Shi and Durucan Constant Exponent Permeability Incline

More information

Three-dimensional Modelling of Reactive Solutes Transport in Porous Media

Three-dimensional Modelling of Reactive Solutes Transport in Porous Media 151 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 41, 214 Guest Editors: Simonetta Palmas, Michele Mascia, Annalisa Vacca Copyright 214, AIDIC Servizi S.r.l., ISBN 978-88-9568-32-7; ISSN 2283-9216

More information

The Sorption Properties of Humate Injected into the Subsurface System. Hansell Gonzalez Raymat DOE Fellow Graduate Student, Ph.D.

The Sorption Properties of Humate Injected into the Subsurface System. Hansell Gonzalez Raymat DOE Fellow Graduate Student, Ph.D. The Sorption Properties of Humate Injected into the Subsurface System Hansell Gonzalez Raymat DOE Fellow Graduate Student, Ph.D. in Chemistry Background Background Approximately 1.8 billion gallons of

More information

University of Pretoria. Matthys Dippenaar and Louis van Rooy Engineering Geology and Hydrogeology, Geology Department July 2017, Livingstone, Zambia

University of Pretoria. Matthys Dippenaar and Louis van Rooy Engineering Geology and Hydrogeology, Geology Department July 2017, Livingstone, Zambia University of Pretoria Contributions to the Characterisation of the Vadose Zone f or Hydrogeological and Geotechnical Applications Matthys Dippenaar and Louis van Rooy Engineering Geology and Hydrogeology,

More information

Comparison of Heat and Mass Transport at the Micro-Scale

Comparison of Heat and Mass Transport at the Micro-Scale Comparison of Heat and Mass Transport at the Micro-Scale E. Holzbecher, S. Oehlmann Georg-August Univ. Göttingen *Goldschmidtstr. 3, 37077 Göttingen, GERMANY, eholzbe@gwdg.de Abstract: Phenomena of heat

More information