Name: Rate of reaction. Class: Higher revision questions. Date: 57 minutes. Time: 56 marks. Marks: Comments: Page 1 of 24

Size: px
Start display at page:

Download "Name: Rate of reaction. Class: Higher revision questions. Date: 57 minutes. Time: 56 marks. Marks: Comments: Page 1 of 24"

Transcription

1 Rate of reaction Higher revision questions Name: Class: Date: Time: 57 minutes Marks: 56 marks Comments: Page of 24

2 A student investigated the rate of the reaction between magnesium and dilute hydrochloric acid. The student used the apparatus shown in Figure to collect the gas produced. Figure (a) Outline a plan to investigate how the rate of this reaction changed when the concentration of the hydrochloric acid was changed. Describe how you would do the investigation and the measurements you would make. Describe how you would make it a fair test. You do not need to write about safety precautions. (6) Page 2 of 24

3 (b) Figure 2 shows the gas syringe during one of the experiments. Figure 2 What is the volume of gas collected? Tick one box. 5.3 cm cm cm cm 3 () Page 3 of 24

4 (c) Figure 3 shows the student s results for one concentration of hydrochloric acid. Figure 3 The table below shows the student s results when the concentration was two times greater than the results on Figure 3 Time in seconds Volume of gas produced in cm Plot the results in the table above on the grid in Figure 3. Draw a line of best fit. (3) Page 4 of 24

5 (d) Give one conclusion about how the rate of reaction changed when the concentration of hydrochloric acid was changed. () (Total marks) 2 A student investigated the reaction between magnesium metal and dilute hydrochloric acid. The student placed 25 cm 3 of dilute hydrochloric acid in a conical flask and set up the apparatus as shown in the diagram. The student: took the bung out of the flask and added a single piece of magnesium ribbon 8 cm long put the bung back in the flask and started a stopwatch recorded the volume of gas collected after minute repeated the experiment using different temperatures of acid. Page 5 of 24

6 Volume = cm 3 () The student plotted his results on a graph. Temperature of acid in C (a) Write the correct state symbols in the equation. Choose from (s) for solid, (l) for liquid, (g) for gas and (aq) for aqueous. Mg (.) + 2 HCl (.) MgCl 2 (.) + H 2 (.) (2) (b) The diagram shows a gas syringe after minute. (i) What volume of gas has been collected in the gas syringe after minute? (ii) Use the graph to determine the temperature of the acid used in this experiment. Temperature = C () Page 6 of 24

7 (iii) Calculate the average rate of reaction, in cm 3 of hydrogen made per second (cm 3 /s), for this experiment. Rate of reaction = cm 3 /s (2) (c) The student s graph has been reprinted to help you answer this question. Temperature of acid in C One of the results on the graph is anomalous. (i) Draw a circle on the graph around the anomalous point. () Page 7 of 24

8 (ii) Suggest what may have happened to cause this anomalous result. Explain your answer. (2) (d) Explain how the student could improve the accuracy of the volume of gas recorded at each temperature. (3) (e) The student then used the same apparatus to measure the volume of gas produced every 0 seconds at 40 C. The student s results are shown on the graph. Page 8 of 24

9 Time in seconds The rate at which the gas was produced got faster over the first 60 seconds. The student s teacher gave two possible explanations of why the reaction got faster. Explanation There was a layer of magnesium oxide on the surface of the magnesium. The layer of magnesium oxide prevented the magnesium reacting with the acid. As the magnesium oxide reacted slowly with the acid, the magnesium was exposed to the acid and hydrogen gas was produced. Explanation 2 The reaction is exothermic, and so the temperature of the acid increased during the reaction. (i) Describe further experimental work the student could do to see if Explanation is correct. (2) Page 9 of 24

10 (ii) Describe further experimental work the student could do to see if Explanation 2 is correct. (2) (Total 6 marks) 3 A student investigates how the concentration of an acid affects the rate of a reaction. This is the method used.. Put a 3 cm piece of magnesium ribbon into a conical flask. 2. Add 50 cm 3 of 0.5 mol / dm 3 hydrochloric acid to the flask. 3. Collect and measure the volume of gas produced at 0 second intervals. 4. Repeat with different concentrations of hydrochloric acid using the same length of magnesium ribbon and volume of acid. Page 0 of 24

11 The student s results are shown in the figure below. (a) How do the results show that increasing the concentration of acid increases the rate of reaction? You must use data from the graph in your answer. (2) Page of 24

12 (b) Explain why the rate of reaction changes as the concentration of the acid increases. You should answer in terms of particles. (3) (c) Student A said that the final volume of gas collected was lower for a concentration of 0.5 mol dm 3 because the reaction had not finished. Student B said it was because all the acid had reacted. Describe further experimental work the students could do to find out which student was correct. (2) (Total 7 marks) Page 2 of 24

13 4 A student investigated the rate of reaction between sodium thiosulfate solution and dilute hydrochloric acid, as shown in Figure. The reaction produced a precipitate, which made the mixture turn cloudy. The student timed how long it took until she could no longer see the cross. She calculated the rate of the reaction. (a) The equation for the reaction is: Na 2 S 2 O 3 (aq) + 2 HCl(aq) 2 NaCl(aq) + S(s) + SO 2 (g) + H 2 O(l) Name the product that made the mixture go cloudy. () Page 3 of 24

14 (b) The student investigated the effect of changing the temperature of the sodium thiosulfate solution on the rate of reaction. She plotted her results on a graph, as shown in Figure 2. Describe the trends shown in the student s results. (2) Page 4 of 24

15 (c) The student then investigated the effect of changing the concentration of sodium thiosulfate solution on the rate of the reaction. (i) Suggest two variables the student would need to control to make sure that her results were valid. (2) (ii) From this investigation the student correctly concluded: As the concentration of sodium thiosulfate solution doubles, the rate of reaction doubles. Explain the student s conclusion in terms of particles. (3) (Total 8 marks) Page 5 of 24

16 5 Magnesium reacts with dilute sulphuric acid. magnesium + sulphuric acid magnesium sulphate + hydrogen A student measured the volume of hydrogen given off every 0 seconds. The results are shown on the graph. (a) The average rate of hydrogen production in the first 0 seconds is (60 cm 3 0 s) = 6 cm 3 /s. (i) Calculate the average rate of production of hydrogen between 30 seconds and 50 seconds. Show clearly how you work out your answer. Rate cm 3 /s (3) Page 6 of 24

17 (ii) Explain, as fully as you can, why the average rate between 30 and 50 seconds is different from the rate between 0 and 0 seconds. (2) (b) In industry, enzymes are used in both batch processes and continuous processes. Give one reason why continuous processes are usually more profitable than batch processes. () (Total 6 marks) 6 The apparatus shown in the diagram was used to investigate the rate of reaction of excess marble chips with dilute hydrochloric acid, HCl. Marble is calcium carbonate, formula CaCO 3. The salt formed is calcium chloride, CaCl 2. (a) Write a balanced equation for the reaction. (2) Page 7 of 24

18 The following results were obtained from the experiment. Time in minutes Reading on balance in g (b) (i) Plot the results and draw a graph on the axes below. (ii) Continue the graph you have drawn to show the expected reading after minutes. (3) () (iii) On the axes above, sketch a graph of the result which would be obtained if in a similar experiment the same mass of powdered marble was used instead of marble chips. (2) (Total 8 marks) Page 8 of 24

19 Mark schemes (a) Level 3 (5 6 marks): A coherent method is described with relevant detail, which demonstrates a broad understanding of the relevant scientific techniques and procedures. The steps in the method are logically ordered with the dependent and control variables correctly identified. The method would lead to the production of valid results. Level 2 (3 4 marks): The bulk of a method is described with mostly relevant detail, which demonstrates a reasonable understanding of the relevant scientific techniques and procedures. The method may not be in a completely logical sequence and may be missing some detail. Level ( 2 marks): Simple statements are made which demonstrate some understanding of some of the relevant scientific techniques and procedures. The response may lack a logical structure and would not lead to the production of valid results. 0 marks: No relevant content Indicative content remove bung and add magnesium start stopclock / timer measure volume of gas at fixed time intervals repeat with different concentrations of acid control volume of acid control initial temperature of acid control amount / mass / length / particle size of magnesium 6 (b) 6.5 cm 3 (c) (d) all points plotted correctly allow mark for 4 points plotted correctly best fit straight line drawn when the concentration of acid increased the rate of reaction increased or vice versa answer must use the terms rate of reaction linked to concentration 2 [] 2 (a) (s) (aq) (aq) (g) must be in this order 2 marks if all four correct mark if 2 or 3 correct 2 Page 9 of 24

20 (b) (i) 55 (ii) 54 (iii) 0.92 ignore units allow ecf from (b)(i) correct answer with or without working gains 2 marks ecf from volume in (b)(i) accept 2 d.p. up to calculator value if answer incorrect, allow rate = (b)(i) / 60 for mark 2 (c) (i) circle round point at (48,22) (ii) problem () and explanation () explanation must give lower volume of gas or slower reaction ignore human error unless qualified problem with bung e.g. bung not placed in firmly / quickly enough so gas lost or problem with reagent e.g. acid was diluted or acid not replaced so reaction slower or problem with temperature e.g. temperature was lower than recorded temperature so reaction slower or problem with measurement e.g. length of magnesium less than 8 cm or timed for less than a minute so less gas produced 2 Page 20 of 24

21 (d) repeat the experiment (several times) because anomalous results could be excluded and then the mean can be determined / calculated accept suggestion of alteration to method, which is explained as to why it would reduce the error, for 3 marks (e.g. place the magnesium in a container within the flask () so it can be tipped into the acid once the bung is in place (). This will prevent anomalous results or gas loss ()) ignore idea of more accurate gas syringe ignore shorter time intervals (e) (i) use clean magnesium or use magnesium without oxide coating compare results (ii) either measure the temperature of the acid before (adding magnesium) and after adding magnesium or place the conical flask in a water bath (at 40 C) () compare results () [6] 3 (a) (as concentration increases) answers must refer to data from graph to gain full marks relationship identified from the graph eg the same volume of gas is collected in a shorter time or more gas is collected in the same time or reaction reaches completion in a shorter time Page 2 of 24

22 reference to relevant data to evidence relationship eg 20 ml collected in 0 seconds at 0.5 mol / dm 3 in 6.5 s at.0 mol / dm 3 and in 4 s at 2.0 mol / dm 3 or at 0 seconds volume collected is 20 cm 3 with 0.5 mol / dm 3, 30 cm 3 with.0 mol / dm 3, 50 cm 3 with 2.0 mol / dm 3 or total volume collected reaches maximum of 00ml in 20 seconds at 2.0 mol / dm 3 but takes twice as long at.0 mol / dm 3 and at 0.5 mol / dm 3 (b) (c) reactions occur when particles collide increasing concentration means there are more particles in the same volume so there are more collisions leave for longer if gas continues to be produced student A is right or repeat with more acid () if more gas is produced student B is right () [7] 4 (a) sulfur / sulphur / S / S(s) (b) as the temperature increases, the rate of reaction increases allow two correct values for rate quoted (from graph) at different temperatures the rate of increase increases or there is an exponential relationship accept the rate of reaction increases slowly (from 20 C to 50 C) then increases more rapidly for 2 marks answer MUST be based on rate / speed of reaction Page 22 of 24

23 (c) (i) any two from: temperature (of the reactants) concentration of hydrochloric acid volume of hydrochloric acid volume of sodium thiosulfate the (size / darkness / thickness of the) cross total volume of solution. if no other marks gained, allow mark for: rate of stirring OR amount of hydrochloric acid / sodium thiosulfate OR volume of solution 2 (ii) (because as the concentration increases) the number of particles per unit volume increases or particles are closer together. idea of more particles in a given space is required for the first mark. ignore references to area. (therefore) the frequency of (successful) collisions increases allow increased chance / probability of collisions number of collisions increases is insufficient here. must mention per unit time or frequency. ignore speed of collisions. if reference to space and time missing from M and M2 but they are otherwise correct, then award mark. so the number of particles (per unit volume) doubles or (the frequency of) collisions doubles. students can score 2 marks for a qualitative explanation; the third mark is for a quantitative explanation. [8] 5 (a) (i) 2.25 correct answer gains three marks if incorrect allow mark for 2 correct readings (30 and 75) and further mark for allow e.c.f. 3 (ii) concentration of reactant(s) lower fewer collisions per second / time unit Page 23 of 24

24 (b) labour costs lower / enzymes costs lower not stop and start [6] 6 (a) CaCO 3 + 2HC CaC 2 + CO 2 + H 2 O one mark for CO 2 and H 2 O or H 2 CO 3 one mark for balancing the equation 2 (b) (i) linear suitable scale for y axis ± one small square accurate plots deduct one mark for each error plot smooth curve through the points or a line of best fit this mark requires a neat smooth curve (ii) curve becomes almost horizontal at or above do not credit a straight line reaching at mins accept a plot at (iii) steeper initial part to curve becoming nearly horizontal between and g [8] Page 24 of 24

Name: Rate of reaction. Class: Foundation revision questions. Date: 47 minutes. Time: 46 marks. Marks: Comments: Page 1 of 21

Name: Rate of reaction. Class: Foundation revision questions. Date: 47 minutes. Time: 46 marks. Marks: Comments: Page 1 of 21 Rate of reaction Foundation revision questions Name: Class: Date: Time: 47 minutes Marks: 46 marks Comments: Page of 2 (a) The figure below represents the reaction of sulfur dioxide with oxygen. Oxygen

More information

A student investigated three glow sticks. One was placed in water at 5 C, one in water at 40 C and one in water at 70 C.

A student investigated three glow sticks. One was placed in water at 5 C, one in water at 40 C and one in water at 70 C. 1 The picture shows three glowsticks. Photograph supplied by istockphoto/thinktsock Glow sticks contain several chemicals. When a glow stick is bent the chemicals mix. A chemical reaction takes place which

More information

Page 2. Q1.Marble chips are mainly calcium carbonate (CaCO 3 ).

Page 2. Q1.Marble chips are mainly calcium carbonate (CaCO 3 ). Q1.Marble chips are mainly calcium carbonate (CaCO 3 ). A student investigated the rate of reaction between marble chips and hydrochloric acid (HCl). Figure 1 shows the apparatus the student used. Figure

More information

Figure 1. Oxygen. (g) +... (g)... SO 3. The pressure of the reacting gases was increased.

Figure 1. Oxygen. (g) +... (g)... SO 3. The pressure of the reacting gases was increased. Q1. Figure 1 represents a reaction in the production of sulfuric acid. Figure 1 Oxygen Sulfur dioxide Sulfur trioxide (a) Complete and balance the equation for the reaction.... SO 2 (g) +... (g)... SO

More information

Phosphoric acid is made by reacting phosphate rock with sulfuric acid. Only three of the methods shown below will increase the rate of this reaction.

Phosphoric acid is made by reacting phosphate rock with sulfuric acid. Only three of the methods shown below will increase the rate of this reaction. Q. The picture shows a lump of phosphate rock. Rob Lavinsky, irocks.com CC-BY-SA-3.0 [CC-BY-SA-3.0], via Wikimedia Commons Phosphoric acid is made by reacting phosphate rock with sulfuric acid. Only three

More information

Q1. A student investigated the rate of reaction between marble and hydrochloric acid.

Q1. A student investigated the rate of reaction between marble and hydrochloric acid. Q. A student investigated the rate of reaction between marble and hydrochloric acid. The student used an excess of marble. The reaction can be represented by this equation. CaCO 3 (s) + 2HC (aq) CaC 2

More information

Q1.A student investigated the rate of reaction between sodium thiosulfate solution and dilute hydrochloric acid, as shown in Figure 1.

Q1.A student investigated the rate of reaction between sodium thiosulfate solution and dilute hydrochloric acid, as shown in Figure 1. Q1.A student investigated the rate of reaction between sodium thiosulfate solution and dilute hydrochloric acid, as shown in Figure 1. The reaction produced a precipitate, which made the mixture turn cloudy.

More information

Draw one line from each solution to the ph value of the solution. Solution ph value of the solution

Draw one line from each solution to the ph value of the solution. Solution ph value of the solution 1 The ph scale is a measure of the acidity or alkalinity of a solution. (a) Draw one line from each solution to the ph value of the solution. Solution ph value of the solution 5 Acid 7 9 Neutral 11 13

More information

Answer all the questions.

Answer all the questions. Answer all the questions.. A student investigates the reaction between sodium thiosulfate and hydrochloric acid. Look at the diagram below. It shows the apparatus he uses. After a time he cannot see the

More information

C8 Rates and Equilibrium Exam Pack and Mark Scheme

C8 Rates and Equilibrium Exam Pack and Mark Scheme C8 Rates and Equilibrium Exam Pack and Mark Scheme Name: Class: Date: Time: 7 minutes Marks: 7 marks Comments: Page of 46 Pieces of zinc react with dilute acid to form hydrogen gas. The graph shows how

More information

NCEA COLLATED QUESTIONS ON RATES OF REACTION

NCEA COLLATED QUESTIONS ON RATES OF REACTION NCEA COLLATED QUESTIONS ON RATES OF REACTION Previously part of expired AS 90301, now part of 91166, Demonstrate understanding of chemical reactivity 2012 (91166 exam) When dilute hydrochloric acid, HCl(aq),

More information

Rates of Reaction. Question Paper. Save My Exams! The Home of Revision. Exam Board. Page 1. Score: /249. Percentage: /100

Rates of Reaction. Question Paper. Save My Exams! The Home of Revision. Exam Board. Page 1. Score: /249. Percentage: /100 Rates of Reaction Question Paper Level Subject Exam Board Unit Topic Difficulty Level Booklet GCSE Chemistry AQA C2 Rates of Reaction Silver Level Question Paper Time Allowed: 249 minutes Score: /249 Percentage:

More information

N Goalby chemrevise.org

N Goalby chemrevise.org 4.6 Rate and Extent of Chemical Change Rates of Reaction The rate of a chemical reaction can be found by measuring the amount of a reactant used or the amount of product formed over time: Rate of reaction

More information

C6 THE RATE AND EXTENT OF CHEMICAL CHANGE

C6 THE RATE AND EXTENT OF CHEMICAL CHANGE C6 THE RATE AND EXTENT OF CHEMICAL CHANGE Question Practice Name: Class: Date: Time: 2 minutes Marks: 206 marks Comments: HIGHER TIER Page of 73 A student investigated the rate of the reaction between

More information

Nitrogen and hydrogen are passed over iron to produce ammonia in the Haber Process.

Nitrogen and hydrogen are passed over iron to produce ammonia in the Haber Process. Q.(a) Nitrogen and hydrogen are passed over iron to produce ammonia in the Haber Process. Balance the equation for the reaction. N 2 + H 2 NH 3 What is iron used for in the Haber process? M.(a) N 2 + 3

More information

Q1. The chart shows the processes involved in the manufacture of nitric acid from ammonia.

Q1. The chart shows the processes involved in the manufacture of nitric acid from ammonia. Q1. The chart shows the processes involved in the manufacture of nitric acid from ammonia. (a) Complete the word equation for the reaction that takes place in the first reaction vessel. ammonia +... nitrogen

More information

Changing Reaction Rates

Changing Reaction Rates Changing Reaction Rates 1 of 30 Boardworks Ltd 2016 Changing Reaction Rates 2 of 30 Boardworks Ltd 2016 Rates of reaction 3 of 30 Boardworks Ltd 2016 Why are some reactions faster than others? Reactions,

More information

A group of students investigated the volume of gas produced.

A group of students investigated the volume of gas produced. Q1.Lithium carbonate reacts with dilute hydrochloric acid. A group of students investigated the volume of gas produced. This is the method used. 1. Place a known mass of lithium carbonate in a conical

More information

Calcium carbonate reacts with dilute hydrochloric acid to produce the gas carbon dioxide

Calcium carbonate reacts with dilute hydrochloric acid to produce the gas carbon dioxide RATES OF REACTION High Demand Questions QUESTIONSHEET 1 Calcium carbonate reacts with dilute hydrochloric acid to produce the gas carbon dioxide. The table below gives the results from a reaction when

More information

C6 Rate and Extent of Chemical Change

C6 Rate and Extent of Chemical Change C6 Rate and Extent of Chemical Change 35 Questions Name: Class: Date: Time: Marks: Comments: Page of A student investigated the rate of the reaction between magnesium and dilute hydrochloric acid. The

More information

4-6 Chemistry /5-6 Trilogy Rate and extent of chemical change

4-6 Chemistry /5-6 Trilogy Rate and extent of chemical change 4-6 Chemistry /5-6 Trilogy Rate and extent of chemical change.0 A student heated hydrated cobalt chloride. The word equation shows the reaction. hydrated cobalt chloride (pink) anhydrous cobalt chloride

More information

What does rate of reaction mean?

What does rate of reaction mean? 1 of 39 2 of 39 What does rate of reaction mean? 3 of 39 The speed of different chemical reactions varies hugely. Some reactions are very fast and others are very slow. The speed of a reaction is called

More information

concentration in mol / dm

concentration in mol / dm 1 Fatimah investigates the reaction between sodium hydrogencarbonate and dilute hydrochloric acid. She always adds 0.5 g of sodium hydrogencarbonate to 20 cm 3 of dilute hydrochloric acid. She measures

More information

Paper Reference (complete below)

Paper Reference (complete below) Centre No. Paper Reference (complete below) Surname Initial(s) Candidate No. Signature Paper Reference(s) 4335/03 4437/08 London Examinations IGCSE Chemistry 4335 Paper 3 Science (Double Award) 4437 Paper

More information

Name: C4 TITRATIONS. Class: Question Practice. Date: 97 minutes. Time: 96 marks. Marks: GCSE CHEMISTRY ONLY. Comments:

Name: C4 TITRATIONS. Class: Question Practice. Date: 97 minutes. Time: 96 marks. Marks: GCSE CHEMISTRY ONLY. Comments: C4 TITRATIONS Question Practice Name: Class: Date: Time: 97 minutes Marks: 96 marks Comments: GCSE CHEMISTRY ONLY Page of 3 Sodium hydroxide neutralises sulfuric acid. The equation for the reaction is:

More information

A student adds the following volumes of aqueous sodium thiosulfate, dilute hydrochloric acid and distilled water to the conical flask.

A student adds the following volumes of aqueous sodium thiosulfate, dilute hydrochloric acid and distilled water to the conical flask. 1 When aqueous sodium thiosulfate and dilute hydrochloric acid are mixed, a precipitate of insoluble sulfur is produced. This makes the mixture difficult to see through. Na 2 S 2 O 3 (aq) + 2HCl (aq) S(s)

More information

No Brain Too Small. Credits: Four

No Brain Too Small. Credits: Four No Brain Too Small Level 1 Science 2015 90944 Demonstrate understanding of aspects of acids and bases Credits: Four Achievement Achievement with Merit Achievement with Excellence Demonstrate understanding

More information

Quickly add 50 cm 3 of acid.

Quickly add 50 cm 3 of acid. 1 One of the instructions for an experiment reads as follows. What is the best piece of apparatus to use? Quickly add 50 cm 3 of acid. a a conical flask a a 2 student uses the apparatus shown in the diagram

More information

Exampro GCSE Chemistry

Exampro GCSE Chemistry Exampro GCSE Chemistry C Chapter 4 Higher Name: Class: Author: Date: Time: 59 Marks: 59 Comments: Page of 0 Q. The picture shows a lump of phosphate rock. Rob Lavinsky, irocks.com CC-BY-SA-3.0 [CC-BY-SA-3.0],

More information

Kinetics & Equilibrium Review Packet. Standard Level. 1. Which quantities in the enthalpy level diagram are altered by the use of a catalyst?

Kinetics & Equilibrium Review Packet. Standard Level. 1. Which quantities in the enthalpy level diagram are altered by the use of a catalyst? Kinetics & Equilibrium Review Packet Standard Level 1. Which quantities in the enthalpy level diagram are altered by the use of a catalyst? Enthalpy I II III Time A. I and II only B. I and III only C.

More information

The rate equation relates mathematically the rate of reaction to the concentration of the reactants.

The rate equation relates mathematically the rate of reaction to the concentration of the reactants. 1.9 Rate Equations Rate Equations The rate equation relates mathematically the rate of reaction to the concentration of the reactants. For the following reaction, aa + bb products, the generalised rate

More information

C6 Quick Revision Questions

C6 Quick Revision Questions C6 Quick Revision Questions H = Higher tier only All questions apply for combined and separate science Question 1... of 50 List 3 ways the time of a reaction can be measured. Answer 1... of 50 Loss of

More information

Year 10 Chemistry. Practice questions. Topics

Year 10 Chemistry. Practice questions. Topics Year 10 Chemistry Practice questions Topics 1 Group 1 2 Group 7 3 Reactivity series 4 Air and Water 5 Rates of reaction 6 Electrolysis 7 Acids, Alkali and Salts Objective: Evaluate group 1 & 7 reactivity

More information

Rates. Specification points. Year 10 - Rates of Reaction

Rates. Specification points. Year 10 - Rates of Reaction Rates Specification points Year 10 - Rates of Reaction Calculating rates of reactions The rate of a chemical reaction can be found by measuring the quantity of a reactant used or the quantity of product

More information

CIE Chemistry A-Level Practicals for Papers 3 and 5

CIE Chemistry A-Level Practicals for Papers 3 and 5 CIE Chemistry A-Level Practicals for Papers 3 and 5 Rate of Reaction Disappearing cross: Change in rate of the reaction of sodium thiosulphate with hydrochloric acid as temperature is changed: Na 2 S 2

More information

Q1. A student investigated the rate of reaction between marble and hydrochloric acid. (aq) + H 2

Q1. A student investigated the rate of reaction between marble and hydrochloric acid. (aq) + H 2 Q. A student investigated the rate of reaction between marble and hydrochloric acid. The student used an excess of marble. The reaction can be represented by this equation: CaCO 3 (s) + HCl(aq) CaCl (aq)

More information

London Examinations IGCSE

London Examinations IGCSE Centre No. Paper Reference (complete below) Surname Initial(s) Candidate No. Signature Paper Reference(s) 4335/03 4437/08 London Examinations IGCSE Chemistry 4335 Paper 3 Science (Double Award) 4437 Paper

More information

B410U10-1 S16-B410U10-1. CHEMISTRY Component 1 The Language of Chemistry, Structure of Matter and Simple Reactions

B410U10-1 S16-B410U10-1. CHEMISTRY Component 1 The Language of Chemistry, Structure of Matter and Simple Reactions Surname Centre Number Candidate Number Other Names 2 GCE AS NEW AS B410U10-1 S16-B410U10-1 CHEMISTRY Component 1 The Language of Chemistry, Structure of Matter and Simple Reactions A.M. FRIDAY, 27 May

More information

Answer ALL questions.

Answer ALL questions. Answer ALL questions. 01. The three states of matter are solid, liquid and gas. The diagram shows how the particles are arranged in each of these states. (a) Use words from the box to show the changes

More information

Module One: Introducing Chemistry. Rates of Reaction. By the end of this lesson you should be able to:

Module One: Introducing Chemistry. Rates of Reaction. By the end of this lesson you should be able to: Lesson Six Aims By the end of this lesson you should be able to: describe the effects on rates of reaction of: o surface area of a solid o concentration of a solution o pressure of a gas o temperature

More information

3.2.2 Kinetics. Effect of Concentration. 135 minutes. 134 marks. Page 1 of 13

3.2.2 Kinetics. Effect of Concentration. 135 minutes. 134 marks. Page 1 of 13 3.. Kinetics Effect of Concentration 35 minutes 34 marks Page of 3 M. (a) Activation energy;- The minimum energy needed for a reaction to occur / start () Catalyst effect:- Alternative route (or more molecules

More information

Manufature and Uses(Sulfur)

Manufature and Uses(Sulfur) Manufature and Uses(Sulfur) Question Paper Level Subject Exam Board Topic Sub-Topic Paper Type Booklet IGCSE Chemistry CIE Sulfur Manufacture and uses (Includes Sulfur dioxide questions) Alternative to

More information

London Examinations IGCSE

London Examinations IGCSE Centre No. Paper Reference Surname Initial(s) Candidate No. Signature Paper Reference(s) 4335/03 4437/08 London Examinations IGCSE Chemistry 4335 Paper 3 Science (Double Award) 4437 Paper 8 Foundation

More information

N Goalby chemrevise.org

N Goalby chemrevise.org 4.6 Rate and Extent of Chemical Change Rates of Reaction The rate of a chemical reaction can be found by measuring the amount of a reactant used or the amount of product formed over time: Rate of reaction

More information

Concrete setting. This reaction is quite slow. It will take a couple of days for the concrete to fully harden.

Concrete setting. This reaction is quite slow. It will take a couple of days for the concrete to fully harden. 10.1 Rates of reaction Fast and slow Some reactions are fast and some are slow. Look at these examples: The precipitation of silver chloride, when you mix solutions of silver nitrate and sodium chloride.

More information

Assessment Schedule 2011 Science: Demonstrate understanding of aspects of acids and bases (90944)

Assessment Schedule 2011 Science: Demonstrate understanding of aspects of acids and bases (90944) NCEA Level 1 Science (90944) 2011 page 1 of 6 Assessment Schedule 2011 Science: Demonstrate understanding of aspects of acids and bases (90944) Evidence Statement Question Evidence Merit Excellence ONE

More information

REACTION RATES AND REVERSIBLE REACTIONS

REACTION RATES AND REVERSIBLE REACTIONS NAME SCHOOL INDEX NUMBER DATE REACTION RATES AND REVERSIBLE REACTIONS 1. 1989 Q 4 P1 The graph shows the loss in total mass of a mixture of marble chips and dilute hydrochloric acid with time at 250C Loss

More information

Q1. The gas-phase reaction between hydrogen and chlorine is very slow at room temperature. (g) + Cl 2. (g) 2HCl(g) (2)

Q1. The gas-phase reaction between hydrogen and chlorine is very slow at room temperature. (g) + Cl 2. (g) 2HCl(g) (2) Q1. The gas-phase reaction between hydrogen and chlorine is very slow at room temperature. H 2 (g) + Cl 2 (g) 2HCl(g) (a) Define the term activation energy....... Give one reason why the reaction between

More information

Topic 6 Test Kinetics Wed 4/5/17 [28 marks]

Topic 6 Test Kinetics Wed 4/5/17 [28 marks] Topic 6 Test Kinetics Wed 4/5/17 [28 marks] 1. Consider the reaction between magnesium and hydrochloric acid. Which factors will affect the reaction rate? I. The collision frequency of the reactant particles

More information

A student wanted to make 11.0 g of copper chloride

A student wanted to make 11.0 g of copper chloride Q1.A student investigated the reactions of copper carbonate and copper oxide with dilute hydrochloric acid. In both reactions one of the products is copper chloride. (a) Describe how a sample of copper

More information

4-3 Quantitative chemistry Chemistry

4-3 Quantitative chemistry Chemistry 4-3 Quantitative chemistry Chemistry.0 This question is about carbonates.. Sodium carbonate, Na 2CO 3, is used as a water softener. Give the number of atoms of each type in sodium carbonate. [3 marks]

More information

London Examinations IGCSE

London Examinations IGCSE Centre No. Candidate No. Surname Signature Initial(s) Paper Reference(s) 4335/03 London Examinations IGCSE Chemistry Paper 03 Written alternative to coursework Tuesday 10 May 2005 Afternoon Time: 1 hour

More information

Mole Calculations. Specification points. Year 10 Moles I Quantitative Chemistry

Mole Calculations. Specification points. Year 10 Moles I Quantitative Chemistry Mole Calculations Specification points Year 0 Moles I Quantitative Chemistry Relative formula mass know How to calculate the relative formula mass of a compound What a mole is and Avagadro s number How

More information

Which two diagrams show suitable methods for investigating the rate (speed) of the reaction?

Which two diagrams show suitable methods for investigating the rate (speed) of the reaction? 1 liquid X reacts with solid Y to form a gas. Which two diagrams show suitable methods for investigating the rate (speed) of the reaction? 1 2 cotton wool cotton wool X Y X Y balance 3 4 stopper stopper

More information

Lower Sixth Chemistry. Sample Entrance Examination

Lower Sixth Chemistry. Sample Entrance Examination Lower Sixth Chemistry Sample Entrance Examination Time allowed: 60 minutes Name: Total : 60 Marks INSTRUCTIONS : Answer all questions Answers should be written in the spaces provided Dictionaries or reference

More information

ANSWERS AND MARK SCHEMES QUESTIONSHEET 1

ANSWERS AND MARK SCHEMES QUESTIONSHEET 1 QUESTIONSHEET 1 (i) scales 1 plotting all the points accurately 1 drawing a smooth curve ignoring the 6 min point 1 (ii) I curve drawn to the left of curve A 1 curve to start at 71.00 g and to finish at

More information

Excellence International School Chemistry Academic Year Grade 9 Revision sheet 3 Topic: unit 8 speed of reaction

Excellence International School Chemistry Academic Year Grade 9 Revision sheet 3 Topic: unit 8 speed of reaction Unit 9 : 9.1&9.2 Name:... Class:.. Date: Paper 2 Excellence International School Chemistry Academic Year 2016-2017 Grade 9 Revision sheet 3 Topic: unit 8 speed of reaction 1 st term 1. A student was investigating

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level CHEMISTRY

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level CHEMISTRY Centre Number Candidate Number Name UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level CHEMISTRY 9701/05 Paper 5 Planning,

More information

(a) What name is given to this method? (1) (b) Which piece of apparatus should be used to measure the 25.0cm 3 of KOH?

(a) What name is given to this method? (1) (b) Which piece of apparatus should be used to measure the 25.0cm 3 of KOH? 1 This apparatus can be used in a method to find the volume of sulfuric acid required to neutralise a solution of potassium hydroxide (KOH). burette containing 0.100mol/dm 3 H 2 SO 4 conical flask 25.0cm

More information

What does rate of reaction mean?

What does rate of reaction mean? Junior Science What does rate of reaction mean? It is not how much of a product is made, but instead how quickly a reaction takes place. The speed of a reaction is called the rate of the reaction. What

More information

~~b. '~' o o. magnesium + sulphuric acid -) magnesium sulphate + hydrogen

~~b. '~' o o. magnesium + sulphuric acid -) magnesium sulphate + hydrogen ~~b. '~' "1I3nk A teacher Investigates how the rate of reaction between magnesium and excess sulphuric acid changes as the concentration of the acid changes. The word equation for the reaction is:.) magnesium

More information

1. KINETICS. Kinetics answers

1. KINETICS. Kinetics answers 1. KINETICS 1.1. Rate determining step 1.2. Calculating reaction rate 1.3. Measuring reaction rate in the lab 1.4. Determining the rate equation 1.5. Arrhenius and rate Kinetics answers 1.1. Rate determining

More information

Explain why the two curves become horizontal after a given period of time. (1mark)

Explain why the two curves become horizontal after a given period of time. (1mark) RATE OF REACTION (i) The graph below shows the amount of calcium carbonate and calcium chloride varying with time in the reaction: CaCO3 2HCl CaCl H O CO2 s aq 2 aq 2 L g 1. Which curve shows the amount

More information

Cambridge International Examinations Cambridge Ordinary Level

Cambridge International Examinations Cambridge Ordinary Level Cambridge International Examinations Cambridge Ordinary Level *4822877046* CHEMISTRY 5070/41 Paper 4 Alternative to Practical October/November 2018 1 hour Candidates answer on the Question Paper. No Additional

More information

Describe in full the colour change at the end-point of this titration. ... (1)

Describe in full the colour change at the end-point of this titration. ... (1) Q1. (a) A solution of barium hydroxide is often used for the titration of organic acids. A suitable indicator for the titration is thymol blue. Thymol blue is yellow in acid and blue in alkali. In a titration

More information

HKCEE Past Paper Questions: Part 9 Rate of Reactions Part A: Multiple Choices

HKCEE Past Paper Questions: Part 9 Rate of Reactions Part A: Multiple Choices HKCEE Past Paper Questions: Part 9 Rate of Reactions Part A: Multiple Choices 1. HKCEE 1996 II Q11 In an experiment, 1.6 g of sulphur are burnt completely in air to form sulphur dioxide. What volume of

More information

Rate (speed) of reaction

Rate (speed) of reaction Rate (speed) of reaction Question Paper 1 Level IGSE Subject hemistry (62/971) Exam oard ambridge International Examinations (IE) Topic hemical reactions Sub-Topic Rate (speed) of reaction ooklet Question

More information

Choose words from the list to complete the sentences below. electrical heat light kinetic. an endothermic an exothermic a neutralisation a reduction

Choose words from the list to complete the sentences below. electrical heat light kinetic. an endothermic an exothermic a neutralisation a reduction Q1. The diagram shows some magnesium ribbon burning. (a) Choose words from the list to complete the sentences below. electrical heat light kinetic an endothermic an exothermic a neutralisation a reduction

More information

Paper Reference. Sample Assessment Material Time: 2 hours

Paper Reference. Sample Assessment Material Time: 2 hours Centre No. Candidate No. Paper Reference(s) 4CH0/1C Edexcel IGCSE Chemistry Chemistry Paper 1 Sample Assessment Material Time: 2 hours Materials required for examination Nil Items included with question

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level www.xtremepapers.com CHEMISTRY 9701/05 Paper 5 Planning, Analysis and Evaluation For Examination from

More information

CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education Centre Number Candidate Number Name CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education CHEMISTRY 0620/06 Paper 6 Alternative to Practical Candidates answer on

More information

1 Rate of reaction Reversible reactions + dynamic equilibrium

1 Rate of reaction Reversible reactions + dynamic equilibrium 1 Rate of reaction 2 2 22 3 42 4 Reversible reactions + dynamic equilibrium 57 5 81 6 97 Rate of reaction Question Paper 1 Level GCSE (9-1) Subject Chemistry Exam Board AQA Topic 4.6 Rate + extent chemical

More information

4-4 Chemical changes Chemistry

4-4 Chemical changes Chemistry 4-4 Chemical changes Chemistry.0 A student investigated the reaction of sodium carbonate with dilute hydrochloric acid. The student used the apparatus shown in Figure. Figure Sodium carbonate This is the

More information

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *4657647531* PHYSICAL SCIENCE 0652/61 Paper 6 Alternative to Practical October/November 2017 1 hour

More information

glossary 6 of. boxes with and units. question. the syllabus. to see if. nature. Day. Teacher. Pre readings. Topic. Mr Stocker.

glossary 6 of. boxes with and units. question. the syllabus. to see if. nature. Day. Teacher. Pre readings. Topic. Mr Stocker. This revision booklet contains questions from the Coordinated examinations from 2007 2011. At the end of each question you will find a code corresponding to the year that the question came from. example

More information

Acids, Bases, Salts. Specification points. Year 10/Year 11, Acids, Bases, Salts recaps year 9 work on this topic

Acids, Bases, Salts. Specification points. Year 10/Year 11, Acids, Bases, Salts recaps year 9 work on this topic Acids, Bases, Salts Specification points Year 0/Year, Acids, Bases, Salts recaps year 9 work on this topic Reactions of acids know how to write and predict the products when given reactants for the following

More information

London Examinations IGCSE

London Examinations IGCSE Centre No. Paper Reference Surname Initial(s) Candidate No. Signature Paper Reference(s) 4335/03 4437/08 London Examinations IGCSE Chemistry 4335 Paper 3 Science (Double Award) 4437 Paper 8 Foundation

More information

Paper Reference (complete below)

Paper Reference (complete below) Centre No. Paper Reference (complete below) Surname Initial(s) Candidate No. Signature Paper Reference(s) 4335/03 4437/08 London Examinations IGCSE Chemistry 4335 Paper 3 Science (Double Award) 4437 Paper

More information

GraspIT AQA GCSE Quantitative changes

GraspIT AQA GCSE Quantitative changes A. Chemical measurements part 1 Chemical changes and conservation of mass 1. A piece of magnesium was heated in a crucible. a) Write a balance equation to show how the magnesium reacts with oxygen. (2)

More information

Quantitative Chemistry. AQA Chemistry topic 3

Quantitative Chemistry. AQA Chemistry topic 3 Quantitative Chemistry AQA Chemistry topic 3 3.1 Conservation of Mass and Balanced Equations Chemical Reactions A chemical reaction is when atoms are basically rearranged into something different. For

More information

Cambridge International Examinations Cambridge Ordinary Level

Cambridge International Examinations Cambridge Ordinary Level Cambridge International Examinations Cambridge Ordinary Level *9280327505* CHEMISTRY 5070/42 Paper 4 Alternative to Practical May/June 2015 1 hour Candidates answer on the Question Paper. No Additional

More information

Assessment Schedule 2016 Chemistry: Demonstrate understanding of chemical reactivity (91166)

Assessment Schedule 2016 Chemistry: Demonstrate understanding of chemical reactivity (91166) NCEA Level 2 Chemistry (91166) 2016 page 1 of 6 Assessment Schedule 2016 Chemistry: Demonstrate understanding of chemical reactivity (91166) Evidence Statement Q Evidence Achievement Merit Excellence ONE

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level www.xtremepapers.com UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level *0160609008* CHEMISTRY 5070/43 Paper 4 Alternative to Practical May/June 2010 1 hour

More information

Strontium is extracted from strontium oxide (SrO) by heating a mixture of powdered strontium oxide and powdered aluminium.

Strontium is extracted from strontium oxide (SrO) by heating a mixture of powdered strontium oxide and powdered aluminium. Q1.Group 2 metals and their compounds are used commercially in a variety of processes. (a) Strontium is extracted from strontium oxide (SrO) by heating a mixture of powdered strontium oxide and powdered

More information

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *3002718241* CO-ORDINATED SCIENCES 0654/61 Paper 6 Alternative to Practical May/June 2016 1 hour

More information

1.5 Kinetics. Reacting molecules have to collide with enough energy to break the initial bonds, the activation energy.

1.5 Kinetics. Reacting molecules have to collide with enough energy to break the initial bonds, the activation energy. 1.5 Kinetics Collision theory: Reacting molecules have to collide with enough energy to break the initial bonds, the activation energy. Activation energy Activation energy The minimum amount of energy

More information

Stoichiometry Question Paper

Stoichiometry Question Paper Stoichiometry Question Paper Level Subject Exam Board Topic Sub-Topic Paper Type Booklet IGCSE Chemistry CIE Stoichiometry Alternative to Practical Question Paper Time Allowed: 65 minutes Score: /54 Percentage:

More information

In an investigation of the rate of reaction between hydrochloric acid and pure magnesium, a student obtained the following curve.

In an investigation of the rate of reaction between hydrochloric acid and pure magnesium, a student obtained the following curve. Q1.(a) In an investigation of the rate of reaction between hydrochloric acid and pure magnesium, a student obtained the following curve. The reaction of magnesium with dilute hydrochloric acid is exothermic.

More information

1. Gas Reactions Page 4 2. Measuring the Speed Page 6 3. Increasing the Speed Page Making Foam Page Putting Out a Fire Page 18

1. Gas Reactions Page 4 2. Measuring the Speed Page 6 3. Increasing the Speed Page Making Foam Page Putting Out a Fire Page 18 P & L Johnson 2012 A foam fire extinguisher puts out fires by producing a blanket of foam that contains carbon dioxide rather than air. This smothers the fire preventing oxygen getting to the fuel. In

More information

In the exam you will be asked to tackle questions such as the one below.

In the exam you will be asked to tackle questions such as the one below. Get started AO3 2 Preparing salts This unit will help you to plan, describe and understand an experiment to prepare a salt. In the exam you will be asked to tackle questions such as the one below. Exam-style

More information

Concentration 0. 5 M solutions 1. 0 M solutions. Rates Fast Slow. Which factor would account for the faster reaction rate in Experiment 1?

Concentration 0. 5 M solutions 1. 0 M solutions. Rates Fast Slow. Which factor would account for the faster reaction rate in Experiment 1? 72. Consider the following experimental results: Experiment 1 Experiment 2 2+ - - 4 2 2 4 aq Reactants Fe ( aq) + MnO4 ( aq) MnO ( aq) + H C O ( ) Temperature 20 C 40 C Concentration 0. 5 M solutions 1.

More information

FACTFILE: GCE CHEMISTRY

FACTFILE: GCE CHEMISTRY FACTFILE: GCE CHEMISTRY 2.9 KINETICS Learning Outcomes Students should be able to: 2.9.1 recall how factors, including concentration, pressure, temperature and catalyst, affect the rate of a chemical reaction;

More information

CHEMISTRY. How Far, How Fast? THURSDAY 11 JANUARY 2007 ADVANCED SUBSIDIARY GCE 2813/01. Morning. Time: 45 minutes

CHEMISTRY. How Far, How Fast? THURSDAY 11 JANUARY 2007 ADVANCED SUBSIDIARY GCE 2813/01. Morning. Time: 45 minutes ADVANCED SUBSIDIARY GCE 83/0 CHEMISTRY How Far, How Fast? THURSDAY JANUARY 007 Morning Additional materials: Scientific calculator Data Sheet for Chemistry (Inserted) Time: 45 minutes INSTRUCTIONS TO CANDIDATES

More information

STOICHIOMETRIC RELATIONSHIPS

STOICHIOMETRIC RELATIONSHIPS STOICHIOMETRIC RELATIONSHIPS Most chemical reactions involve two or more substances reacting with each other. Substances react with each other in certain ratios, and stoichiometry is the study of the ratios

More information

An equation for the decomposition of hydrogen peroxide is shown below.

An equation for the decomposition of hydrogen peroxide is shown below. An equation for the decomposition of hydrogen peroxide is shown below. 2H 2 O 2 2H 2 O + O 2 State the measurements you would take in order to investigate the rate of this reaction............. (Total

More information

burette filled with sulphuric acid conical flask 25.0 cm 3 of sodium hydroxide(aq) concentration 2.24 mol / dm 3

burette filled with sulphuric acid conical flask 25.0 cm 3 of sodium hydroxide(aq) concentration 2.24 mol / dm 3 1 Crystals of sodium sulphate-10-water, Na 2 SO 4.10H 2 O, are prepared by titration. burette filled with sulphuric acid conical flask 25.0 cm 3 of sodium hydroxide(aq) concentration 2.24 mol / dm 3 (a)

More information

1 hour 30 minutes plus your additional time allowance

1 hour 30 minutes plus your additional time allowance GCE AS/A Level 1091/01 LEGACY CHEMISTRY CH1 A.M. FRIDAY, 27 May 2016 1 hour 30 minutes plus your additional time allowance Surname Other Names Centre Number Candidate Number 2 WJEC CBAC Ltd. BE*(S16-1091-01)

More information

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *6537478123* COMBINED SCIENCE 0653/62 Paper 6 Alternative to Practical May/June 2018 1 hour Candidates

More information

(i) State the time taken for all the peroxodisulfate ions to react. [1] (ii) Suggest a method of measuring the rate of this reaction.

(i) State the time taken for all the peroxodisulfate ions to react. [1] (ii) Suggest a method of measuring the rate of this reaction. 9 (i) State the time taken for all the peroxodisulfate ions to react. [1].............................. minutes (ii) Suggest a method of measuring the rate of this reaction. [1]............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

More information

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *7007324309* CO-ORDINATED SCIENCES 0654/62 Paper 6 Alternative to Practical May/June 2017 1 hour

More information