What is the course about?

Size: px
Start display at page:

Download "What is the course about?"

Transcription

1 What is the course about? Part 1 Organic Chemistry: organocatalysis (1 Å) m Part 2 Structural Biology: peptide conformations Part m Photochemistry and Photobiology: olefins & vision > 10-8 m (proteins)

2 Fate of Light Energy at the Molecular Level LIGHT ENERGY WASTAGE LIGHT ENERGY EXPLOITATION Fluorescent Probes (few ps) Ang. Chem. Int. Ed Stereoselectivity in Pericyclic Reactions (100 fs) J. Phys. Chem A 2001 Internal Conversion in Cytosine (100 fs) JACS 2002 Fluorescent proteins (ca. 0.3 ns) JACS 2004 Molecular Motion in Biological Photoreceptors (500 fs) PNAS 2000, 2004, 2005, 2006, 2007

3 Thermal Reaction Path Energy Transition Structure (TS) TS or activated complex 1935 Eyring, Evans and Polanyi A B Ground State Reaction Coordinate Minimum Energy Path

4 Photochemical Reaction Path Excited State Conical Intersection (CI) or Photochemical Funnel 1966 Zimmerman, 1972 Michl hν A* Ground State Energy hν A CI B Minimum Energy Paths Excited State Ground State Reaction Coordinate

5 Photochemical Reaction Path Stationary Point Singularity Transition Vector (X 1 ) Branching (or g-h) plane (X 1, X 2 )! TS CI A* A X 1 X 2 X 1 B One Product B One or More Product A

6 Benzene Photochemistry (excited state) (primary) (secondary) h ν 254 nm liquid state under N 2 (e.g. Turro 1986) prefulvene benzvalene (q.y. 0.02) N of photoproduct molecules N of absorbed photons Ground state diradical intermediate

7 Benzene Conical Intersection: Structure unpaired electrons ground state allyl radical 1.4 Å 2.0 Å half-broken bond 1.4 Å This conical intersection defines the "prefulvene" path

8 Benzene Conical Intersection: Branching Space Ψ A Ψ B CI diradical Kekule Energy Excited State Ground State Reaction Coordinate The wavefunction (electronic structure) does not change when passing through the CI.

9 Benzene Conical Intersection: Branching Space X 1 = δ ( E 1 E 2 ) δ q Gradient Difference (fastest escape from energy degeneracy) X 2 = ψ 1 δ δ q ψ 2 Derivative Coupling (fastest change in the electronic structure)

10 Benzene Conical Intersection: Wavefunction Barry phase: the wavefunction (and bonding) changes sign along a loop that contains the intersection! coupled electrons coupled electrons coupled electrons x 1 x 2

11 Benzene Conical Intersection: the branching space 3! χ unstable 1! x 2 -x 1 χ x 1 3! 1! -x 2 x 1 1! 3! unstable -x 2 x 2 -x 1 Branching space diagram

12 A bit of History the first computations: 1969 Van der Lugt and Oosteroff and 1975 Devaquet et al. found that the point of return to the ground state (M*) is an energy minimum. State correlation diagram 2A 1 π 12 π 2 π 32 π 4 S 1! S 1 σ 12 π 1 π 22 σ 2 Avoded crossing Suggests that the non-crossing rule applies not only to diatomic but also to polyatomic molecules 1B 2 1A 1 π 12 π 21 π 31 π 4 S 2! M *! π 12 π 22 π 3 π 4 S 0! S 0 σ 12 π 12 π 2 σ 2 C s symmetry! Slow decay (Fermi Golden Rule - coupling of vibrational states) interpolated and symmetric reaction coordinate

13 A bit of History E. Teller Isr. J. Chem. 7, 227, 1969 in a polyatomic molecule the non-crossing rule, which is rigorously valid for diatomics, fails and two electronic states, even if they have the same symmetry, are allowed to cross at a conical intersection... radiationless decay from the upper to the lower intersecting state occurs within a single vibrational period when the system travels in the vicinity of such intersection points H.C. Longuet-Higgins, The Intersection of Potential Energy Surfaces in Polyatomic Molecules, Proc. R. Soc. Lond. Ser. A., 344, , 1975 thereby disposing of a recent claim that the non-crossing rule for diatomic molecules applies also to polyatomic molecules....

14 Photophysics of octatetraene Ultrafast deactivation channels are not consistent with stable M* intermediate. A* Energy hν hν A CI B Excited State Ground State Reaction Coordinate

15 A bit of History Zimmerman, Michl and Salem were the first to suggest that, in photochemical organic reactions, the point of return M* may correspond to a conical intersection. Zimmerman and Michl call it photochemical funnel. 1966, Howard Zimmerman 1970, Josef Michl 1974, Lionel Salem

16 CASSCF Gradients of the Excited State Energy (Robb, Bernardi, Schlegel and Olivucci). Structure Predicted from Valence Bond Theory allow to draw guess structures (eg for pericyclic reactions)! A bit of History allow the use optimization methods (eg pseudo Newton-Raphson) 1990 First Conical Intersection Detected for the Ethylene Dimerization (Bernardi, Olivucci, Robb). Computation is carried out on the CRAY-XMP in London Å 1.47 Å 2.08 Å with M. A. Robb and F. Bernardi: 25 different organic chromophores undergoing 16 different reactions statistical demonstration using quantum chemistry

17 A bit of History The Norfolk Building King s College London Michael Robb

18 A bit of History First application of ab initio CASPT2//CASSCF: s-cis buta-1,3-diene J. Chem. Phys. 1995! 2A 1 excited state minimum energy path S B 2 S 2 /S 1 2A 1 S 1! S 2 /S 1 20 S 2! 1B 2 S2 M *! 0 hν S 1 /S 0 S 1 /S 0 1A 1 S 0! S 0 C s symmetry! 0.0 1A 1 real crossing between states of the same (A 1 ) symmetry

19 A bit of History the van der Lugt and Oosteroff result is consistent with the existence of a conical intersection at the bottom of the S 1 energy surfaces S 1 σ 12 π 1 π 22 σ 2 π 12 π 2 π 32 π 4 S 1! S 1 FC! S 2 σ 12 π 11 π 21 σ 2 π 12 π 21 π 31 π 4 S 2! M *! CI! π 12 π 22 π 3 π 4 S 0! S 0 σ 12 π 12 π 2 σ 2 S 0 Gradient Based Coordinate! Symmetry Based Coordinate!

20 Computational Tools Intrinsic Reaction Coordinate (IRC) Conical Interersection Optimization (CIO) Initial Relaxation Direction (IRD) Trajectory (Classical or Semi-classical) Energy Minimum and Transition State Optimization

21 Construction of a Photochemical Reaction Path FC! CI IRD! TS 2 M 2 TS 1 IRD! CIO! M 1 X 2 X 1 IRC! reactant! Upper state! Lower state! Thermal! product! TSO! TS!

22 Construction of Photochemical Reaction Path Caltech 1999 Nobel Prize for Chemistry

23 Photochemical Reaction Path in Textbooks 2001

24 Photochemical Reaction Path in Textbooks 1990 the use of computational methods to elucidate reaction mechanisms has not really made a major impact on the way in which organic photochemist think about such mechanisms Turro, N. J. (1990). J. Photochem. Photobiol., A: Chemistry Conical Intersections near Zero-Order Surface Crossings 6.12 The Non-Crossing Rule and Its Violations: Conical Intersections and their Visualization 6.13 Some Important and Unique Properties of Conical Intersections 6.30 Concerted Photochemical Pericyclic Reactions and Conical Intersections

25 Computational Photochemistry optimization of a singularity wavefunction/density (orbital occupancies) MOLECULAR AND ELECTRONIC STRUCTURE OF THE CROSSING: NATURE OF THE PHOTOCHEMICAL FUNNEL equilibrium geometries and transition states EXCITED STATE REACTION PATHS: EXCITED STATE DECAY branching plane almost routine GROUND STATE RELAXATION PATHS: PHOTOPRODUCT SELECTIVITY Newton equations of motion feasible since 2007! TRAJECTORIES: REACTION TIME SCALES AND QUANTUM YIELDS still unpractical or impossible

26 Computational Photochemistry (further info M. Olivucci, Ed. Computational Photochemistry, Elsevier 2005

27 Different Electronic States = Different Conical Intersection Structure = Different Chemistry Hydrocarbons Schiff bases Avoided Crossing rule valid! 2A 1 S 1! S 2 /S 1 S 2 2A 1 S 2 1B 2 S 1! S B 2 S 2 M *! Avoided Crossing rule invalid S 1 /S 0 M *! S 1 /S 0 Avoided Crossing rule invalid 1A 1 S 0! S 0 1A 1 S 0! S 0 (π π*) 2 π π* - +

28 The Chemistry of Conical Intersections: Bond-Making, Bond Breaking and Group Transfer σ-bond Making C 1 σ-bond Breaking Group (or σ-bond) Exchange

29 The Chemistry of Conical Intersections: Conjugated Hydrocarbons J. Am. Chem. Soc. 1995, 117, Crossing between the ground state and a (π-π*) doubly excited state S 1 π π Polyenes (and polyene radicals) S 0 π π Benzene Cyclohexadienes

30 The Chemistry of Conical Intersections: Multiple conical intersections

31 The Chemistry of Conical Intersections: Selectivity Selectivity may be due to differences in energy 40 E / kcal mol S 1 S cyclizations Z/E isomerization

32 The Chemistry of Conical Intersections: Cyclohexadiene/Hexatriene hν + + Allyl radical moiety triradical moiety

33 The Chemistry of Conical Intersections: Multiple products X 1 X 2

34 The Chemistry of Conical Intersections: Change in bonding Selectivity may be affected by the excited state dynamics 5! 6! x 2 -x 1 5! χ x 1 5! 6! 6! 5! 6! -x 2 unstable

35 The Chemistry of Conical Intersections: Protonated Schiff Bases cis 2 1 N H 2 ( + ) trans N H 2 ( + ) Retinal Rhodopsin NH Light NH Cis Form Trans Form (Appears in ca. 200 fs)

36 The Chemistry of Conical Intersections: Charge Transfer Crossing between the ground state and a (π-π*) singly excited state 1.46 Å 1.38 Å π π hν S Å N 1.33 Å Å π π + e - 90 S 0 Newman projection

37 The Chemistry of Conical Intersections: Charge Transfer Motion Coupled to the Torsion + Unstable (TS) N H 2 N x 2 X 1 + N H 2 -x 1 N H 2 χ x 1 + N H 2 N -x 2 X 2 Stretching + N H 2 Unstable (TS)

38 The Chemistry of Conical Intersections: Charge Transfer χ breaks the double bond hetherolitically + + N H 2 + N H 2 + N H 2 N H 2 breaks the double bond homolitically + N H 2 -x 2 x 2 -x 1 x 1

39 Energy (kcal mol -1 ) The Chemistry of Conical Intersections: Barrierless Photoisomerization Path 0.0 π π FC π π S 2 S 1 CI hν (291 nm) S trans 1.29 MEP co-ordinate (a. u.)

40 The Chemistry of Conical Intersections: Azoalkane Fluorescence Quenching τ=930 nsec, Φ f =0.56 N N N N Cl H Cl Cl τ=13 nsec, Φ f =0.01 Crossing between the ground state and a (n-π*) singly excited state S 1 π n! hν π N n! O O S 0 π n N

41 The Chemistry of Conical Intersections: Azoalkane Fluorescence Quenching S 1 π n! Cl S 0 π n hν N N Azoalkane (pyrazoline) Cl CH 2 Cl 2 N N N N X 1 (coupled electron-proton transfer) X 2 (ring-puckering)

42 The Chemistry of Conical Intersections: Electron Transfer δ+ δ + δ+ δ Cl N H C N + - Cl N H C H Cl x 2 N H Cl Rαδιχαλ Παιρ! Ion Παιρ! x 1 TS (electron transfer)!

4. Organic photosynthetic reactions

4. Organic photosynthetic reactions 4. rganic photosynthetic reactions 100 4.1 eactions of ethenes and aromatic compounds Photoreactivity of ethenes E Geometrical isomerization In π-π* excited states, there is effectively no π bond and so

More information

Excited State Processes

Excited State Processes Excited State Processes Photophysics Fluorescence (singlet state emission) Phosphorescence (triplet state emission) Internal conversion (transition to singlet gr. state) Intersystem crossing (transition

More information

Journal of Photochemistry and Photobiology A: Chemistry 5737 (2001) 1 7

Journal of Photochemistry and Photobiology A: Chemistry 5737 (2001) 1 7 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 Abstract Journal of Photochemistry and Photobiology A: Chemistry 5737 (2001) 1 7 Photochemical processes:

More information

TDDFT as a tool in biophysics

TDDFT as a tool in biophysics TDDFT as a tool in biophysics The primary event in vision Robert Send Universität Karlsruhe 09.09.08 Robert Send TDDFT as a tool in biophysics 09.09.08 1 / 28 Outline 1 Human vision 2 The methods 3 The

More information

Chapter 6. A Qualitative Theory of Molecular Organic Photochemistry

Chapter 6. A Qualitative Theory of Molecular Organic Photochemistry Chapter 6. A Qualitative Theory of Molecular Organic Photochemistry 6.1 Introduction to a Theory of Organic Photoreactions A organic reaction mechanism is usually considered to be a sequence of the critical

More information

Dynamic Electron Correlation Effects On The Ground State Potential Energy Surface Of A Retinal Chromophore Model

Dynamic Electron Correlation Effects On The Ground State Potential Energy Surface Of A Retinal Chromophore Model Bowling Green State University ScholarWorks@BGSU Chemistry Faculty Publications Chemistry 11-2012 Dynamic Electron Correlation Effects On The Ground State Potential Energy Surface Of A Retinal Chromophore

More information

What dictates the rate of radiative or nonradiative excited state decay?

What dictates the rate of radiative or nonradiative excited state decay? What dictates the rate of radiative or nonradiative excited state decay? Transitions are faster when there is minimum quantum mechanical reorganization of wavefunctions. This reorganization energy includes

More information

The Ultrafast Photoisomerizations Of Rhodopsin And Bathorhodopsin Are Modulated By Bond Length Alternation And Hoop Driven Electronic Effects

The Ultrafast Photoisomerizations Of Rhodopsin And Bathorhodopsin Are Modulated By Bond Length Alternation And Hoop Driven Electronic Effects Bowling Green State University ScholarWorks@BGSU Chemistry Faculty Publications Chemistry 3-2011 The Ultrafast Photoisomerizations Of Rhodopsin And Bathorhodopsin Are Modulated By Bond Length Alternation

More information

Advanced Organic Chemistry Chm 512/412 Spring Handout I Photochemistry Part 1. Photophysical Processes Quenching Alkene cis-trans Isomerization

Advanced Organic Chemistry Chm 512/412 Spring Handout I Photochemistry Part 1. Photophysical Processes Quenching Alkene cis-trans Isomerization Advanced rganic Chemistry Chm 512/412 Spring 2010 Handout I Photochemistry Part 1 Photophysical Processes Quenching Alkene cis-trans Isomerization Importance of Photochemistry/Photophysics rganic Synthesis

More information

Computational Studies of the Photoreceptor Rhodopsin. Scott E. Feller Wabash College

Computational Studies of the Photoreceptor Rhodopsin. Scott E. Feller Wabash College Computational Studies of the Photoreceptor Rhodopsin Scott E. Feller Wabash College Rhodopsin Photocycle Dark-adapted Rhodopsin hn Isomerize retinal Photorhodopsin ~200 fs Bathorhodopsin Meta-II ms timescale

More information

Conical Intersections, nonadiabatic couplings with applications to chemical physics

Conical Intersections, nonadiabatic couplings with applications to chemical physics Conical Intersections, nonadiabatic couplings with applications to chemical physics Itamar Borges Jr. Dep. de Química Instituto Militar de Engenharia Introduction Computer development computational investigation

More information

Pericyclic Reactions: Electrocyclic Reaction

Pericyclic Reactions: Electrocyclic Reaction Pericyclic Reaction Pericyclic Reactions: Electrocyclic Reaction 1. Electrocyclic ring closing 2. Electrocyclic ring opening Electrocyclic ring closing reaction is characterized by a. The formation of

More information

Pericyclic Reactions

Pericyclic Reactions Pericyclic eactions Definition: 1. Concerted reaction that proceed via a cyclic transition state 2. No distinct intermediates in the reaction 3. Bond forming and bond breaking steps are simultaneous but

More information

Figure 1: Transition State, Saddle Point, Reaction Pathway

Figure 1: Transition State, Saddle Point, Reaction Pathway Computational Chemistry Workshops West Ridge Research Building-UAF Campus 9:00am-4:00pm, Room 009 Electronic Structure - July 19-21, 2016 Molecular Dynamics - July 26-28, 2016 Potential Energy Surfaces

More information

Retinal Proteins (Rhodopsins) Vision, Bioenergetics, Phototaxis. Bacteriorhodopsin s Photocycle. Bacteriorhodopsin s Photocycle

Retinal Proteins (Rhodopsins) Vision, Bioenergetics, Phototaxis. Bacteriorhodopsin s Photocycle. Bacteriorhodopsin s Photocycle Molecular chanisms of Photoactivation and Spectral Tuning in Retinal Proteins Emad Tajkhorshid Theoretical and Computational Biophysics Group Beckman Institute University of Illinois at Urbana-Champaign

More information

Mapping the Excited State Potential Energy Surface of a Retinal Chromophore Model with Multireference and Equation-of-Motion Coupled-Cluster Methods

Mapping the Excited State Potential Energy Surface of a Retinal Chromophore Model with Multireference and Equation-of-Motion Coupled-Cluster Methods pubs.acs.org/jctc Mapping the Excited State Potential Energy Surface of a Retinal Chromophore Model with Multireference and Equation-of-Motion Coupled-Cluster Methods Samer Gozem, Federico Melaccio, Roland

More information

ORGANIC - BROWN 8E CH DIENES, CONJUGATED SYSTEMS, AND PERICYCLIC REACTIONS

ORGANIC - BROWN 8E CH DIENES, CONJUGATED SYSTEMS, AND PERICYCLIC REACTIONS !! www.clutchprep.com CONCEPT: INTRODUCTION TO CONJUGATION Conjugation exists when three or more atoms with the ability to resonate are adjacent to each other (overlapping). Conjugation provides an electron

More information

10. 6 Photochemistry. Out-class reading: Levine, pp photochemistry

10. 6 Photochemistry. Out-class reading: Levine, pp photochemistry Out-class reading: Levine, pp. 800-804 photochemistry 6.1 Brief introduction of light 1) Photochemistry The branch of chemistry which deals with the study of chemical reaction initiated by light. 2) Energy

More information

Lecture Notes Chem 51B S. King I. Conjugation

Lecture Notes Chem 51B S. King I. Conjugation Lecture Notes Chem 51B S. King Chapter 16 Conjugation, Resonance, and Dienes I. Conjugation Conjugation occurs whenever p-orbitals can overlap on three or more adjacent atoms. Conjugated systems are more

More information

Chap. 12 Photochemistry

Chap. 12 Photochemistry Chap. 12 Photochemistry Photochemical processes Jablonski diagram 2nd singlet excited state 3rd triplet excited state 1st singlet excited state 2nd triplet excited state 1st triplet excited state Ground

More information

Chem 263 Sept 22, Beta-carotene (depicted below) is the orange-red colour in carrots. β-carotene

Chem 263 Sept 22, Beta-carotene (depicted below) is the orange-red colour in carrots. β-carotene hem 263 Sept 22, 2009 onjugated Dienes and olour ontinued Beta-carotene (depicted below) is the orange-red colour in carrots. Xanthophylls β-carotene Xanthophylls are oxygenated carotene molecules. Zeaxanthin,

More information

Theoretical Photochemistry WiSe 2017/18

Theoretical Photochemistry WiSe 2017/18 Theoretical Photochemistry WiSe 2017/18 Lecture 7 Irene Burghardt (burghardt@chemie.uni-frankfurt.de) http://www.theochem.uni-frankfurt.de/teaching/ Theoretical Photochemistry 1 Topics 1. Photophysical

More information

ORGANIC - BRUICE 8E CH.8 - DELOCALIZED ELECTRONS AND THEIR EFFECT

ORGANIC - BRUICE 8E CH.8 - DELOCALIZED ELECTRONS AND THEIR EFFECT !! www.clutchprep.com CONCEPT: RESONANCE STRUCTURES Resonance theory is used to represent all the different ways that the same molecule can distribute its electrons. Atoms move! The only thing that moves

More information

Conjugated Systems, Orbital Symmetry and UV Spectroscopy

Conjugated Systems, Orbital Symmetry and UV Spectroscopy Conjugated Systems, Orbital Symmetry and UV Spectroscopy Introduction There are several possible arrangements for a molecule which contains two double bonds (diene): Isolated: (two or more single bonds

More information

UV-vis (Electronic) Spectra Ch.13 Atkins, Ch.19 Engel

UV-vis (Electronic) Spectra Ch.13 Atkins, Ch.19 Engel XV 74 UV-vis (Electronic) Spectra-2014 -Ch.13 Atkins, Ch.19 Engel Most broadly used analytical tech / especially bio-applic. inexpensive optics / solvent & cell usually not problem intense transitions

More information

A direct method for the location of the lowest energy point on a potential surface crossing

A direct method for the location of the lowest energy point on a potential surface crossing 17 June 1994 CHEMICAL EUEVIER Chemical Physics Letters 223 ( 1994) 269-274 A direct method for the location of the lowest energy point on a potential surface crossing Michael J. Bearpark a, Michael A.

More information

A molecular-dynamics study of the rhodopsin chromophore using ultrasoft pseudopotentials

A molecular-dynamics study of the rhodopsin chromophore using ultrasoft pseudopotentials Progress of Theoretical Physics Supplement No. 138, 2000 107 A molecular-dynamics study of the rhodopsin chromophore using ultrasoft pseudopotentials Minoru Sugihara, 1 ) Peter Entel, 1 Hendrik Meyer,

More information

Introduction to Theories of Chemical Reactions. Graduate Course Seminar Beate Flemmig FHI

Introduction to Theories of Chemical Reactions. Graduate Course Seminar Beate Flemmig FHI Introduction to Theories of Chemical Reactions Graduate Course Seminar Beate Flemmig FHI I. Overview What kind of reactions? gas phase / surface unimolecular / bimolecular thermal / photochemical What

More information

and Ultraviolet Spectroscopy

and Ultraviolet Spectroscopy Organic Chemistry, 7 th Edition L. G. Wade, Jr. Chapter 15 Conjugated Systems, Orbital Symmetry, and Ultraviolet Spectroscopy 2010, Prentice all Conjugated Systems Conjugated double bonds are separated

More information

New σ bond closes a ring. Loss of one π bond and gain of one σ bond

New σ bond closes a ring. Loss of one π bond and gain of one σ bond CHAPTER 1 Pericyclic Reactions 1.1 INTRODUCTION Pericyclic reactions are defined as the reactions that occur by a concerted cyclic shift of electrons. This definition states two key points that characterise

More information

CHAPTER 9 THEORY OF RESONANCE BY, G.DEEPA

CHAPTER 9 THEORY OF RESONANCE BY, G.DEEPA CHAPTER 9 THEORY OF RESONANCE BY, G.DEEPA Conjugation in Alkadienes and Allylic Systems conjugation a series of overlapping p orbitals The Allyl Group allylic position is the next to a double bond 1 allyl

More information

Results for Exam 2_C1403_05: Mean grade = 80, Median grade = 82 For any questions on the exam, please post on the discussion board.

Results for Exam 2_C1403_05: Mean grade = 80, Median grade = 82 For any questions on the exam, please post on the discussion board. Results for Exam 2_C1403_05: Mean grade = 80, Median grade = 82 For any questions on the exam, please post on the discussion board. Results of Course evalution after exam 2 Test: Class Survey after Exam

More information

single-molecule fluorescence resonance energy transfer

single-molecule fluorescence resonance energy transfer single-molecule fluorescence resonance energy transfer (2) determing the Förster radius: quantum yield, donor lifetime, spectral overlap, anisotropy michael börsch 26/05/2004 1 fluorescence (1) absorbance

More information

Lectures Spectroscopy. Fall 2012

Lectures Spectroscopy. Fall 2012 Lectures 19-20 Spectroscopy Fall 2012 1 spectroscopic principles (Chem 1M/1N exps. #6 and #11) 4 1 spectroscopic excitations ( E = h = hc/ ; = c ) (nm) (sec -1 ) radiation technique molecular excitation

More information

Quantum Dynamics of Electronically Excited Molecules: Current Developments and Future Challenges

Quantum Dynamics of Electronically Excited Molecules: Current Developments and Future Challenges Quantum Dynamics of Electronically Excited Molecules: Current Developments and Future Challenges Susanta Mahapatra School of Chemistry University of Hyderabad, Hyderabad 500046 Email: smsc@uohyd.ernet.in,

More information

Chapter 27 Pericyclic Reactions

Chapter 27 Pericyclic Reactions Instructor Supplemental Solutions to Problems 2010 Roberts and Company Publishers Chapter 27 Pericyclic Reactions Solutions to In-Text Problems 27.1 (b) This is a sigmatropic reaction; two electrons are

More information

Lectures Spectroscopy. Fall 2012

Lectures Spectroscopy. Fall 2012 Lectures 19-20 Spectroscopy Fall 2012 1 spectroscopic principles (Chem 1M/1N exps. #6 and #11) 4 spectroscopic excitations ( E = h = hc/ ; = c ) (nm) (sec -1 ) radiation technique molecular excitation

More information

Electrocyclic and Cycloaddition Reactions

Electrocyclic and Cycloaddition Reactions SPEIAL TOPI Electrocyclic and ycloaddition Reactions cis-tetramethylcyclobutene.1 INTRODUTION There are many reactions in which certain symmetry characteristics of molecular orbitals control the overall

More information

Excited-state dynamics of small organic molecules studied by timeresolved photoelectron spectroscopy. Ting Geng

Excited-state dynamics of small organic molecules studied by timeresolved photoelectron spectroscopy. Ting Geng E x c i t e d - s t a t e d y n a m i c s o f s m a l l o r g a n i c m o l e c u l e s s t u d i e d b y t i m e - r e s o l v e d p h o t o e l e c t r o n s p e c t r o s c o p y T i n g G e n g Excited-state

More information

The intricate dance of electrons, photons, and ions when matter responds to light. Yusheng Dou and Roland E. Allen Texas A&M University

The intricate dance of electrons, photons, and ions when matter responds to light. Yusheng Dou and Roland E. Allen Texas A&M University The intricate dance of electrons, photons, and ions when matter responds to light Yusheng Dou and Roland E. Allen Texas A&M University This talk is based on papers at our web site, http://lightandmatter.net.

More information

Of Electrons, Energy, and Excitons

Of Electrons, Energy, and Excitons Of,, and Gert van der Zwan July 17, 2014 1 / 35 Bacterial 2 / 35 Bacterial Bacterial LH1, LH2: excitonic interaction and energy transfer. RC, cytochromes: electron transfer reactions. Q, UQ: proton transfer

More information

Benzene (D 6h Symmetry)

Benzene (D 6h Symmetry) 564-17 Lec 29 Mon-Wed 27,29 Mar17 Vibrations of a Polyatomic Molecule Benzene (D 6h Symmetry) The word "totally symmetric" refers to a function that ALWAYS goes into itself upon ALL symmetry operations

More information

XV 74. Flouorescence-Polarization-Circular-Dichroism- Jablonski diagram Where does the energy go?

XV 74. Flouorescence-Polarization-Circular-Dichroism- Jablonski diagram Where does the energy go? XV 74 Flouorescence-Polarization-Circular-Dichroism- Jablonski diagram Where does the energy go? 1) Excite system through A Absorbance S 0 S n Excite from ground excited singlet S = 0 could be any of them

More information

17.1 Classes of Dienes

17.1 Classes of Dienes 17.1 Classes of Dienes There are three categories for dienes: Cumulated: pi bonds are adjacent. Conjugated: pi bonds are separated by exactly ONE single bond. Isolated: pi bonds are separated by any distance

More information

Conical Intersections. Spiridoula Matsika

Conical Intersections. Spiridoula Matsika Conical Intersections Spiridoula Matsika The Born-Oppenheimer approximation Energy TS Nuclear coordinate R ν The study of chemical systems is based on the separation of nuclear and electronic motion The

More information

Topics Spectroscopy. Fall 2016

Topics Spectroscopy. Fall 2016 Topics 19-20 Spectroscopy Fall 2016 1 SPECTROSCOPY: short wavelength regions ESCA (photoelectron) and UV handout 2 alert approach for spectroscopy material not straight from text chapter must FOLLOW videos,

More information

Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland

Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland 1) Question. Two methods which are widely used for the optimization of molecular geometies are the Steepest descents and Newton-Raphson

More information

17.1 Classes of Dienes

17.1 Classes of Dienes W 2/1 Due: HW14, spec03 Due: n/a M 2/6 Lecture HW14 grading Lect17a Conjugated π systems Lecture quiz Lect17b Lab Lab02 Qual Analysis II (cont) 7-1 17.1 Classes of Dienes There are three categories for

More information

Ch 14 Conjugated Dienes and UV Spectroscopy

Ch 14 Conjugated Dienes and UV Spectroscopy Ch 14 Conjugated Dienes and UV Spectroscopy Conjugated Systems - Conjugated systems have alternating single and double bonds. For example: C=C C=C C=C and C=C C=O - This is not conjugated because the double

More information

Conjugated Dienes and Ultraviolet Spectroscopy

Conjugated Dienes and Ultraviolet Spectroscopy Conjugated Dienes and Ultraviolet Spectroscopy Key Words Conjugated Diene Resonance Structures Dienophiles Concerted Reaction Pericyclic Reaction Cycloaddition Reaction Bridged Bicyclic Compound Cyclic

More information

AN INTRODUCTION TO MOLECULAR ORBITALS

AN INTRODUCTION TO MOLECULAR ORBITALS AN INTRODUCTION TO MOLECULAR ORBITALS by YVES JEAN and FRANCOIS VOLATRON translated and edited by Jeremy Burdett New York Oxford OXFORD UNIVERSITY PRESS 1993 Contents Introduction, xiii I INTRODUCTION

More information

There are several possible arrangements for a molecule which contains two double bonds (diene): 1. Isolated: (two or more single bonds between them)

There are several possible arrangements for a molecule which contains two double bonds (diene): 1. Isolated: (two or more single bonds between them) 1 Chapter 15: Conjugation and Reactions of Dienes I. Introduction to Conjugation There are several possible arrangements for a molecule which contains two double bonds (diene): 1. Isolated: (two or more

More information

Correspondence and requests for materials should be addressed to K.S. (

Correspondence and requests for materials should be addressed to K.S. ( Molecular dynamics simulation of bacteriorhodopsin s photoisomerization using ab initio forces for the excited chromophore Shigehiko Hayashi, Emad Tajkhorshid, and Klaus Schulten Beckman Institute, University

More information

Assumed knowledge. Chemistry 2. Learning outcomes. Electronic spectroscopy of polyatomic molecules. Franck-Condon Principle (reprise)

Assumed knowledge. Chemistry 2. Learning outcomes. Electronic spectroscopy of polyatomic molecules. Franck-Condon Principle (reprise) Chemistry 2 Lecture 11 Electronic spectroscopy of polyatomic molecules Assumed knowledge For bound excited states, transitions to the individual vibrational levels of the excited state are observed with

More information

Photodynamical simulations of cytosine: characterization of the ultra fast bi-exponential UV deactivation

Photodynamical simulations of cytosine: characterization of the ultra fast bi-exponential UV deactivation Supplementary Information Photodynamical simulations of cytosine: characterization of the ultra fast bi-exponential UV deactivation Mario Barbatti, Adélia J. A. Aquino, Jaroslaw J. Szymczak, Dana Nachtigallová

More information

Chapter 14: Conjugated Dienes and Ultraviolet Spectroscopy Diene: molecule with two double bonds Conjugated diene: alternating double and single bonds

Chapter 14: Conjugated Dienes and Ultraviolet Spectroscopy Diene: molecule with two double bonds Conjugated diene: alternating double and single bonds Chapter 14: Conjugated Dienes and Ultraviolet Spectroscopy Diene: molecule with two double bonds Conjugated diene: alternating double and single bonds C-C single bond lkene Diene C=C double bonds Conjugate

More information

Renner-Teller Effect in Tetra-Atomic Molecules

Renner-Teller Effect in Tetra-Atomic Molecules Groupe de Chimie Théorique du MSME Renner-Teller Effect in Tetra-Atomic Molecules Laurent Jutier, G. Dhont, H. Khalil and C. Léonard jutier@univ-mlv.fr (non linear) Outline General Presentation Structure

More information

Vibrational Autoionization in Polyatomic molecules

Vibrational Autoionization in Polyatomic molecules Vibrational Autoionization in Polyatomic molecules S.T. Pratt Annu. Rev. Phys. Chem. 2005. 56:281-308 2006. 12. 4. Choi, Sunyoung 1 Schedule 12/4 (Mon) - Introduction - Theoretical background 12/6 (Wed)

More information

Semiclassical molecular dynamics simulations of excited state double-proton transfer in 7-azaindole dimers

Semiclassical molecular dynamics simulations of excited state double-proton transfer in 7-azaindole dimers JOURNAL OF CHEMICAL PHYSICS VOLUME 110, NUMBER 20 22 MAY 1999 Semiclassical molecular dynamics simulations of excited state double-proton transfer in 7-azaindole dimers Victor Guallar, Victor S. Batista,

More information

Molecular Mechanics. I. Quantum mechanical treatment of molecular systems

Molecular Mechanics. I. Quantum mechanical treatment of molecular systems Molecular Mechanics I. Quantum mechanical treatment of molecular systems The first principle approach for describing the properties of molecules, including proteins, involves quantum mechanics. For example,

More information

Density Functional Theory Study on Mechanism of Forming Spiro-Geheterocyclic Ring Compound from Me 2 Ge=Ge: and Acetaldehyde

Density Functional Theory Study on Mechanism of Forming Spiro-Geheterocyclic Ring Compound from Me 2 Ge=Ge: and Acetaldehyde CHINESE JURNAL F CHEMICAL PHYSICS VLUME 26, NUMBER 1 FEBRUARY 27, 2013 ARTICLE Density Functional Theory Study on Mechanism of Forming Spiro-Geheterocyclic Ring Compound from Me 2 Ge=Ge: and Acetaldehyde

More information

7: Hückel theory for polyatomic molecules

7: Hückel theory for polyatomic molecules 7: ückel theory for polyatomic molecules Introduction Approximate treatment of π electron systems in organic molecules: 1 Approximations 3 4 5 6 1. π and σ frameworks completely separated. Trial wavefunctions

More information

Ab initio study on the low-lying excited states of retinal

Ab initio study on the low-lying excited states of retinal Ab initio study on the low-lying excited states of retinal Manuela Merchán and Remedios González-Luque Departamento de Química Física, Universitat de València, Dr. Moliner 50, Burjassot, E-46100 Valencia,

More information

PHOTOCHEMISTRY NOTES - 1 -

PHOTOCHEMISTRY NOTES - 1 - - 1 - PHOTOCHEMISTRY NOTES 1 st Law (Grotthus-Draper Law) Only absorbed radiation produces chemical change. Exception inelastic scattering of X- or γ-rays (electronic Raman effect). 2 nd Law (Star-Einstein

More information

DIABATIC AND ADIABATIC PROCESSES IN PHOTOCHEMISTRY. TH. FöRSTER

DIABATIC AND ADIABATIC PROCESSES IN PHOTOCHEMISTRY. TH. FöRSTER DIABATIC AND ADIABATIC PROCESSES IN PHOTOCHEMISTRY TH. FöRSTER Inst itut für Physikalische Chemie der Universitdt, 7000 Stuttgart 1, Germany, Wiederholdstrasse 15. ABSTRACT Photochemical reactions may

More information

Transition states and reaction paths

Transition states and reaction paths Transition states and reaction paths Lab 4 Theoretical background Transition state A transition structure is the molecular configuration that separates reactants and products. In a system with a single

More information

Singlet fission for solar energy conversion A theoretical insight

Singlet fission for solar energy conversion A theoretical insight Singlet fission for solar energy conversion A theoretical insight David Casanova Quantum Days in Bilbao July 16, 2014 Harvesting Solar Energy Solar energy 1h = 1 year human consumption We use ~ 0.07% Earth

More information

Proton-Pump Mechanism in Retinal Schiff Base: On the molecular structure of the M-state

Proton-Pump Mechanism in Retinal Schiff Base: On the molecular structure of the M-state Proton-Pump Mechanism in Retinal Schiff Base: On the molecular structure of the M-state Ayan Datta and Swapan K. Pati * Theoretical Sciences Unit and Chemistry and Physics of Materials Unit, Jawaharlal

More information

Lecture 14 February 7, 2011 Reactions O2, Woodward-Hoffmann

Lecture 14 February 7, 2011 Reactions O2, Woodward-Hoffmann Lecture 14 February 7, 2011 Reactions O2, Woodward-Hoffmann Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

More information

OC IV: Organic Photochemistry Exercise 1 Exercise class Page 1 of 11. Exercise 1: Fundamentals, H-Abstraction reactions

OC IV: Organic Photochemistry Exercise 1 Exercise class Page 1 of 11. Exercise 1: Fundamentals, H-Abstraction reactions C IV: rganic otochemistry Exercise 1 Exercise class Page 1 of 11 Exercise 1: Fundamentals, -Abstraction reactions 1. Draw the energy potential curve of the ground state and the first two excited states

More information

CSO 202A. Atoms Molecules and Photons

CSO 202A. Atoms Molecules and Photons CSO 202A Atoms Molecules and Photons Piazza sign-up link: piazza.com/iitk.ac.in/secondsemester2017/cso202 Piazza class link: piazza.com/iitk.ac.in/secondsemester2017/cso202/home Instructors: Dr. Manabendra

More information

MOLECULAR ORBITAL THEORY Chapter 10.8, Morrison and Boyd

MOLECULAR ORBITAL THEORY Chapter 10.8, Morrison and Boyd MOLECULAR ORBITAL THEORY Chapter 10.8, Morrison and Boyd more understanding: why oxygen is paramagnetic, why H2 + exists; explanation of excited electronic states (e.g., visible spectra) eliminates need

More information

Chapter 15 Dienes, Resonance, and Aromaticity

Chapter 15 Dienes, Resonance, and Aromaticity Instructor Supplemental Solutions to Problems 2010 Roberts and Company Publishers Chapter 15 Dienes, Resonance, and Aromaticity Solutions to In-Text Problems 15.2 The delocalization energy is the energy

More information

The wavefunction that describes a bonding pair of electrons:

The wavefunction that describes a bonding pair of electrons: 4.2. Molecular Properties from VB Theory a) Bonding and Bond distances The wavefunction that describes a bonding pair of electrons: Ψ b = a(h 1 ) + b(h 2 ) where h 1 and h 2 are HAOs on adjacent atoms

More information

Modeling of S-N Bond Breaking in an Aromatic Sulfilimine. By Jacob Brunsvold & Katrina Hanson Advisor: Stacey Stoffregen

Modeling of S-N Bond Breaking in an Aromatic Sulfilimine. By Jacob Brunsvold & Katrina Hanson Advisor: Stacey Stoffregen Modeling of S-N Bond Breaking in an Aromatic Sulfilimine By Jacob Brunsvold & Katrina Hanson Advisor: Stacey Stoffregen Outline! Background Photochemical Reaction! Introduction to Photochemistry and Quantum

More information

l ; Y l,l-1, Y l,-1+1; etc., plus a single non-degenerate function Y l,0, in axial symmetry.

l ; Y l,l-1, Y l,-1+1; etc., plus a single non-degenerate function Y l,0, in axial symmetry. Chapter 6 Along "Reaction Paths", Orbitals Can be Connected One-to-One According to Their Symmetries and Energies. This is the Origin of the Woodward-offmann Rules I. Reduction in Symmetry As fragments

More information

Mechanisms for Laser Control of Chemical Reactions

Mechanisms for Laser Control of Chemical Reactions Mechanisms for Laser Control of Chemical Reactions Ben R. Torralva and Roland E. Allen Department of Physics, Texas A&M University, College Station, Texas 77843, USA Abstract During the past several years

More information

CHEM 263 Notes Oct 1, Beta-carotene (depicted below) is responsible for the orange-red colour in carrots.

CHEM 263 Notes Oct 1, Beta-carotene (depicted below) is responsible for the orange-red colour in carrots. EM 263 otes ct 1, 2013 onjugated Dienes and olour ontinued Beta-carotene (depicted below) is responsible for the orange-red colour in carrots. In the below example, astaxanthin, a blue-green pigment in

More information

Fluorescence 2009 update

Fluorescence 2009 update XV 74 Fluorescence 2009 update Jablonski diagram Where does the energy go? Can be viewed like multistep kinetic pathway 1) Excite system through A Absorbance S 0 S n Excite from ground excited singlet

More information

Supporting Information

Supporting Information Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2013 Photochemistry of N-Methylformamide: Matrix Isolation and Nonadiabatic Dynamics Rachel Crespo-Otero, [a] Artur Mardyukov,

More information

5.62 Physical Chemistry II Spring 2008

5.62 Physical Chemistry II Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 5.62 Physical Chemistry II Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.62 Spring 2007 Lecture

More information

Designing Conical Intersections For Light-driven Single Molecule Rotary Motors: From Precessional To Axial Motion

Designing Conical Intersections For Light-driven Single Molecule Rotary Motors: From Precessional To Axial Motion Bowling Green State University ScholarWorks@BGSU Chemistry Faculty Publications Chemistry 4-2014 Designing Conical Intersections For Light-driven Single Molecule Rotary Motors: From Precessional To Axial

More information

Quantum Chemistry. NC State University. Lecture 5. The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy

Quantum Chemistry. NC State University. Lecture 5. The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy Quantum Chemistry Lecture 5 The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy NC State University 3.5 Selective absorption and emission by atmospheric gases (source:

More information

The physical chemistry of the photostability of life

The physical chemistry of the photostability of life The physical chemistry of the photostability of life Andrzej L. Sobolewski Instytut Fizyki, Polskiej Akademii Nauk in collaboration with Wolfganga Domcke 1. Elementary building blocks of life 2. Problem

More information

Core Level Spectroscopies

Core Level Spectroscopies Core Level Spectroscopies Spectroscopies involving core levels are element-sensitive, and that makes them very useful for understanding chemical bonding, as well as for the study of complex materials.

More information

Valence Bond Theory - Description

Valence Bond Theory - Description Bonding and Molecular Structure - PART 2 - Valence Bond Theory and Hybridization 1. Understand and be able to describe the Valence Bond Theory description of covalent bond formation. 2. Understand and

More information

on-line spectroscopy 1!!! Chemistry 1B Fall 2013 Chemistry 1B, Fall 2013 Lecture Spectroscopy Lectures Spectroscopy Fall 2013

on-line spectroscopy 1!!! Chemistry 1B Fall 2013 Chemistry 1B, Fall 2013 Lecture Spectroscopy Lectures Spectroscopy Fall 2013 Lecture 190 Spectroscopy Flipping the lecture discussion Flip teaching (or flipped classroom) is a form of blended learning in which students learn new content online by watching video lectures, usually

More information

Theoretical Photochemistry WiSe 2016/17

Theoretical Photochemistry WiSe 2016/17 Theoretical Photochemistry WiSe 2016/17 Lecture 8 Irene Burghardt burghardt@chemie.uni-frankfurt.de) http://www.theochem.uni-frankfurt.de/teaching/ Theoretical Photochemistry 1 Topics 1. Photophysical

More information

Pericyclic Reaction. Molecular Orbitals in Conjugated Systems (Review)

Pericyclic Reaction. Molecular Orbitals in Conjugated Systems (Review) Pericyclic Reaction - reaction that occurs by a concerted process through a cyclic transition state - concerted means that all bonding changes occur at the same time and in a single step (no intermediates)

More information

1. Photoreduction of Benzophenone in 2-Propanol

1. Photoreduction of Benzophenone in 2-Propanol 1. Photoreduction of Benzophenone in 2-Propanol Topic: photochemistry, photophysics, kinetics, physical-organic chemistry Level: undergraduate physical chemistry Time: 2 x 2 hours (separated by ~24 hours)

More information

Chem G8316_10 Supramolecular Organic Chemistry

Chem G8316_10 Supramolecular Organic Chemistry Chem G8316_10 Supramolecular Organic Chemistry Lecture 5, Wednesday, February 3, 2010 Photophysics of aromatic hydrocarbons Supramolecular effects on the photophysics of aromatic hydrocarbons 1 Course

More information

CASSCF calculations for photoinduced processes in large molecules: choosing when to use the RASSCF, ONIOM and MMVB approximations

CASSCF calculations for photoinduced processes in large molecules: choosing when to use the RASSCF, ONIOM and MMVB approximations 1 CASSCF calculations for photoinduced processes in large molecules: choosing when to use the RASSCF, ONIOM and MMVB approximations Michael J. Bearpark* a, Francois Ogliaro b, Thom Vreven c, Martial Boggio-Pasqua

More information

CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions

CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions I. General Features of Electronic spectroscopy. A. Visible and ultraviolet photons excite electronic state transitions. ε photon = 120 to 1200

More information

Optically Triggered Stepwise Double Proton Transfer in an Intramolecular Proton Relay: A Case Study of 1,8-Dihydroxy-2-naphthaldehyde (DHNA)

Optically Triggered Stepwise Double Proton Transfer in an Intramolecular Proton Relay: A Case Study of 1,8-Dihydroxy-2-naphthaldehyde (DHNA) Supporting Information Optically Triggered Stepwise Double Proton Transfer in an Intramolecular Proton Relay: A Case Study of 1,8-Dihydroxy-2-naphthaldehyde (DHNA) Chia-Yu Peng,, Jiun-Yi Shen,, Yi-Ting

More information

6.8 The HOMO and LUMO Concept of Electronic Transitions The Selection Rules for Electronic Transitions Physical Properties of

6.8 The HOMO and LUMO Concept of Electronic Transitions The Selection Rules for Electronic Transitions Physical Properties of Contents Part I Pericyclic Reactions 1 General Aspects of Pericyclic Reactions... 3 1.1 Introduction... 3 1.2 Molecular Orbitals and Their Symmetry Properties.... 4 1.3 Classification of Pericyclic Reactions...

More information

Infrared Spectroscopy

Infrared Spectroscopy Infrared Spectroscopy The Interaction of Light with Matter Electric fields apply forces to charges, according to F = qe In an electric field, a positive charge will experience a force, but a negative charge

More information

Topics Spectroscopy. Fall 2016

Topics Spectroscopy. Fall 2016 Topics 1920 Spectroscopy Fall 2016 1 SPECTROSCOPY: short wavelength regions ESCA (photoelectron) and UV handout 2 1 alert approach for spectroscopy material not straight from text chapter must FOLLOW videos,

More information

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University AN INTRODUCTION TO QUANTUM CHEMISTRY Mark S. Gordon Iowa State University 1 OUTLINE Theoretical Background in Quantum Chemistry Overview of GAMESS Program Applications 2 QUANTUM CHEMISTRY In principle,

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.80 Lecture

More information