Glass Transitions of Molecular Liquids and Room-Temperature Ionic Liquids

Size: px
Start display at page:

Download "Glass Transitions of Molecular Liquids and Room-Temperature Ionic Liquids"

Transcription

1 Glass Transitions of Molecular Liquids and Room-Temperature Ionic Liquids Osamu Yamamuro (ISSP, University of Tokyo) Coworkers Molecular liquids: T. Matsuo (Osaka Univ.), K. Takeda (Naruto Edu. Univ.), S. Takahara (Okayama Sci. Univ.), I. Tsukushi (Chiba Inst. Tech.), N. Onoda-Yamamuro (Tokyo Denki Univ.), etc. Ionic liquids: Y. Inamura, S. Hayashi, H. Hamaguchi, T. Sakakibara (Univ. of Tokyo) Recent Progress in Glassy Physics (Paris, September 2005)

2 Outline of this talk 1. Introduction What happens at a glass transition? Adam-Gibbs theory and CRR 2. Molecular liquids CRR size determined from configurational entropy 3. Ionic liquids What is RT ionic liquids? CRR size from configurational entropy Dynamics of ionic liquids (quasielastic neutron scattering) Magnetization of a magnetic ionic liquid related to spin glasses 4. Summary

3 What happens at a glass transition T m Heat capacity jump at T g τ T g Steep increase of Structural relaxation time Why drastic slowing down occurs at T g (not at 0 K) without major structural change?

4 Adam-Gibbs theory, CRR and energy landscape cooling Cooperatively Rearranging Region 1 T g S c T m 1 S c (T)k ln W Number of Basins T K 5 log(τ /s) τ = τ 0 exp (z*δµ/rt) = τ 0 exp (A/S c T) CRR size Configurational entropy T g T K

5 Heat capacities of glass-forming hydrocarbon liquids Large and sharp C p jump at T g

6 Calculation of configurational entropy S c (T) = Δ fus S T fus 0 T gl [C p T fus [C p liq (T' )- C p gl (T' )]/ T' dt' (T' )- C p cr (T' )]/ T' dt' 1st term: entropy of fusion 2nd term: entropy decrease due to ordering in liquid 3rd term: correction for vibrational entropy

7 Configurational entropy of molecular liquids S c (T) = s c * N A A / T 2 z *(T) = s c * N A / S c (T) Extrapolation of entropy at hightemperature limit (entropy of a CRR) CRR size (number of molecules) (Adam-Gibbs theory)

8 CRR size of molecular liquids z*(t g ) = 48 molecules Consistent with some hole burning, NMR, and computer simulation studies

9 What is RT ionic liquids? Low vapor-pressure Amphiphilicity Non-combusibility Useful for solvents! Example of RT ionic liquid Typical cation: Butylmethylimidazolium [bmim]+ Anions: Cl, Br, I, BF4, PF6, FeCl4 etc. Prototype ionic liquid Magnetic ionic liquid

10 Magnetic ionic liquid [bmim]fecl4 Water [bmim]fecl4 Single component magnetic liquid! Chemically stable and non-volatile Various applications!

11 Our interests on RT ionic liquids (1) Glass transitions of liquids with intermediate positional ordering due to ionic interactions (2) Low melting temperatures of liquids with strong ionic interaction and large ionic size (3) Magnetic ordering or freezing in structural glasses at low temperatures

12 Heat Capacities of [bmim]cl and [bmim] FeCl 4 crystal I glass & liquid fus 341 crystal glass & liquid g Glass transition with a large C p jump

13 Temperature dependence of configurational entropy Isopropylbenzene 1-Propanol 1-Pentene Toluene 3-Bromopentane 1-Butene Ethylbenzene 3-Methylpentane 2-Methyltetrahydrofuran Propylene carbonate Salol Orthoterphenyl [bmim]cl S c of an ionic liquid is as large as those of molecular liquids Fragile liquid!

14 Temperature dependence of CRR size Butyronitrile Isopropylbenzene 1-Propanol 1-Pentene Toluene 3-Bromopentane 1-Butene Ethylbenzene 3-Methylpentane 2-Methytetrahydrofuran Propylene carbonate Salol Orthoterphenyl [bmim]cl CRR size of ionic liquids is similar to those of molecular liquids

15 Relation between T g and T m [bmim]fecl 4 Closed circles are for molecular liquids 2/3 law is valid for RT ionic liquids

16 I ( Q) Inc,elastic = σ inc 4π Debye-Waller factor : Mean square displacement N exp ( 2W ) 4 Glass Cryst. T g < u 2 > / < u 2 >(20K) Excess <u 2 > increase around T g Onset of fast β relaxation T [K] [bmim]cl Similar to molecular and polymer glasses

17 Analysis of quasielastic scattering (1) 6 [bmim]cl liquid at K Q = 0.38 Å -1 5 Lorenzian fitting S(Q,ω) (arb. unit) Q = 2.43 Å -1 T ( Q,ω ) = 1 π Γ S ( Q) ω 2 + Γ S Q s : HWHM ( ) Q [Å -1 ] ω [mev]

18 Analysis of quasielastic scattering (2) 80x K 335K 320K 300K 300K Fitted by S = DQ 2 Γs [mev] 40 Simple diffusive motion! Q 2 [Å -2 ] 4 5 6

19 Self diffusion coefficient Diffusion Coefficient of liquid [bmim]cl Fitted Line to obtain ΔE D = D 0 exp ΔE RT ln( D [Å 2 s -1 ] ) [bmim]cl ΔE = 10.9 kjmol -1 cf. intermolecular rotational barrier of alkanes (13-15 kjmol -1 ) fitted line : ln(d) = ( ± 0.258) -( ± 83.9)*(1/T) Very flexible motion! T -1 [ K -1 ] x10-3 Similar result for [bmim]fecl 4

20 Magnetization (SQUID) measurement for [bmim]fecl 4 Magnetic moment Inverse magnetic moment Curie-Weise law Liquid and glassy [bmim]fecl 4 is paramagnetic Negative Weise temperatur antiferromagnetic interaction

21 Magnetization measurement (Faraday method) T N Glass Crystal Collaboration with Prof. Sakakibara (ISSP, Univ. of Tokyo) Antiferromagnetic transition at 2.2 K in a crystalline state A sign of saturation of M at 0.5 K in a glassy state What happens at lower temperature? A new-type spin glass?

22 Summary (1) CRR size of molecular liquids is frozen-in at 4-8 molecules at T g. (2) Ionic liquids are similar to molecular liquids (z*, fast β,.) in spite of intermediate positional ordering Orientational degrees of freedom is important (3) [bmim] ion (or butyl-group) is very flexible. Ionic liquids are stabilized entropically Origin of low T m of ionic liquids? (4) [bmim]fecl 4 is paramagnetic liquid and glass. A new type spin glass at lower temperature?

23 Future Study (1) Measurements for more cations and more anions to generalize the present discussion (2) Neutron scattering at slower time scale (NSE, etc.) to see non-arrhenius region (3) Low temperature experiments for [bmim]fecl 4 to see a new spin glass (?)

QENS in the Energy Domain: Backscattering and Time-of

QENS in the Energy Domain: Backscattering and Time-of QENS in the Energy Domain: Backscattering and Time-of of-flight Alexei Sokolov Department of Polymer Science, The University of Akron Outline Soft Matter and Neutron Spectroscopy Using elastic scattering

More information

A macroscopic model that connects the molar excess entropy of a supercooled liquid near its glass transition temperature to its viscosity

A macroscopic model that connects the molar excess entropy of a supercooled liquid near its glass transition temperature to its viscosity 1 A macroscopic model that connects the molar excess entropy of a supercooled liquid near its glass transition temperature to its viscosity Hiroshi Matsuoka a) Department of hysics, Illinois State University,

More information

Free volume and Phase Transitions of 1-Butyl-3-Methylimidazolium Based Ionic Liquids: Positron Lifetime

Free volume and Phase Transitions of 1-Butyl-3-Methylimidazolium Based Ionic Liquids: Positron Lifetime Free volume and Phase Transitions of 1-Butyl-3-Methylimidazolium Based Ionic Liquids: Positron Lifetime Positron Annihilation Laboratory Yu, Yang Oct. 12th. 211 Outline 2 Introduction to free volume Positron

More information

Relaxation in Glass: Review of Thermodynamics. Lecture 11: Thermodynamics in the Glass Transition Region

Relaxation in Glass: Review of Thermodynamics. Lecture 11: Thermodynamics in the Glass Transition Region Relaxation in Glass: Review of hermodynamics Lecture 11: hermodynamics in the Glass ransition Region hermodynamic Functions 1 st Derivatives emperature Dependence of the Entropy swmartin@iastate.edu MI:

More information

Liquids, Solids and Phase Changes

Liquids, Solids and Phase Changes Chapter 10 Liquids, Solids and Phase Changes Chapter 10 1 KMT of Liquids and Solids Gas molecules have little or no interactions. Molecules in the Liquid or solid state have significant interactions. Liquids

More information

Sub -T g Relaxation in Thin Glass

Sub -T g Relaxation in Thin Glass Sub -T g Relaxation in Thin Glass Prabhat Gupta The Ohio State University ( Go Bucks! ) Kyoto (January 7, 2008) 2008/01/07 PK Gupta(Kyoto) 1 Outline 1. Phenomenology (Review). A. Liquid to Glass Transition

More information

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University Physics of disordered materials Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University Course plan Familiarity with the basic description of disordered structures

More information

Nonequilibrium transitions in glassy flows. Peter Schall University of Amsterdam

Nonequilibrium transitions in glassy flows. Peter Schall University of Amsterdam Nonequilibrium transitions in glassy flows Peter Schall University of Amsterdam Liquid or Solid? Liquid or Solid? Example: Pitch Solid! 1 day 1 year Menkind 10-2 10 0 10 2 10 4 10 6 10 8 10 10 10 12 10

More information

States of Matter; Liquids and Solids. Condensation - change of a gas to either the solid or liquid state

States of Matter; Liquids and Solids. Condensation - change of a gas to either the solid or liquid state States of Matter; Liquids and Solids Phase transitions - a change in substance from one state to another Melting - change from a solid to a liquid state Freezing - change of a liquid to the solid state

More information

This lecture: Crystallization and Melting. Next Lecture: The Glass Transition Temperature

This lecture: Crystallization and Melting. Next Lecture: The Glass Transition Temperature Thermal Transitions: Crystallization, Melting and the Glass Transition This lecture: Crystallization and Melting Next Lecture: The Glass Transition Temperature Today: Why do polymers crystallize in a chain

More information

SAMPLE ANSWERS TO HW SET 3B

SAMPLE ANSWERS TO HW SET 3B SAMPLE ANSWERS TO HW SET 3B First- Please accept my most sincere apologies for taking so long to get these homework sets back to you. I have no excuses that are acceptable. Like last time, I have copied

More information

Chem 112 Dr. Kevin Moore

Chem 112 Dr. Kevin Moore Chem 112 Dr. Kevin Moore Gas Liquid Solid Polar Covalent Bond Partial Separation of Charge Electronegativity: H 2.1 Cl 3.0 H Cl δ + δ - Dipole Moment measure of the net polarity in a molecule Q Q magnitude

More information

Dielectric spectra dominated by charge transport processes, as examplified for Ionic Liquids. F.Kremer

Dielectric spectra dominated by charge transport processes, as examplified for Ionic Liquids. F.Kremer Dielectric spectra dominated by charge transport processes, as examplified for Ionic Liquids F.Kremer Content 1. Reminder concerning Broadband Dielectric Spectroscopy (BDS).. What are Ionic Liquids (IL)?

More information

DSC Methods to Quantify Physical Aging and Mobility in Amorphous Systems: Assessing Molecular Mobility

DSC Methods to Quantify Physical Aging and Mobility in Amorphous Systems: Assessing Molecular Mobility DSC Methods to Quantify Physical Aging and Mobility in Amorphous Systems: Assessing Molecular Mobility R. B. Cassel, Ph.D. TA Instruments, 109 Lukens Drive, New Castle, DE 19720, USA ABSTRACT The specific

More information

DIELECTRIC SPECTROSCOPY. & Comparison With Other Techniques

DIELECTRIC SPECTROSCOPY. & Comparison With Other Techniques DIELECTRIC SPECTROSCOPY & Comparison With Other Techniques DIELECTRIC SPECTROSCOPY measures the dielectric and electric properties of a medium as a function of frequency (time) is based on the interaction

More information

Landscape Approach to Glass Transition and Relaxation. Lecture # 4, April 1 (last of four lectures)

Landscape Approach to Glass Transition and Relaxation. Lecture # 4, April 1 (last of four lectures) Landscape Approach to Glass Transition and Relaxation Lecture # 4, April 1 (last of four lectures) Relaxation in the glassy state Instructor: Prabhat Gupta The Ohio State University (gupta.3@osu.edu) Review

More information

Spatially heterogeneous dynamics in supercooled organic liquids

Spatially heterogeneous dynamics in supercooled organic liquids Spatially heterogeneous dynamics in supercooled organic liquids Stephen Swallen, Marcus Cicerone, Marie Mapes, Mark Ediger, Robert McMahon, Lian Yu UW-Madison NSF Chemistry 1 Image from Weeks and Weitz,

More information

Flow of Glasses. Peter Schall University of Amsterdam

Flow of Glasses. Peter Schall University of Amsterdam Flow of Glasses Peter Schall University of Amsterdam Liquid or Solid? Liquid or Solid? Example: Pitch Solid! 1 day 1 year Menkind 10-2 10 0 10 2 10 4 10 6 10 8 10 10 10 12 10 14 sec Time scale Liquid!

More information

Liquids and Solutions Crib Sheet

Liquids and Solutions Crib Sheet Liquids and Solutions Crib Sheet Determining the melting point of a substance from its solubility Consider a saturated solution of B in a solvent, A. Since the solution is saturated, pure solid B is in

More information

Chapter 10 Review Packet

Chapter 10 Review Packet Chapter 10 Review Packet Name 1. If water and carbon dioxide molecules did interact, what major intermolecular force will exist between these molecules? a) Hydrogen bonding b) London dispersion c) Dipole-dipole

More information

Chemistry 2000 Lecture 9: Entropy and the second law of thermodynamics

Chemistry 2000 Lecture 9: Entropy and the second law of thermodynamics Chemistry 2000 Lecture 9: Entropy and the second law of thermodynamics Marc R. Roussel January 23, 2018 Marc R. Roussel Entropy and the second law January 23, 2018 1 / 29 States in thermodynamics The thermodynamic

More information

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation).

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation). A. Introduction. (Section 11.1) CHAPTER 11: STATES OF MATTER, LIQUIDS AND SOLIDS 1. Gases are easily treated mathematically because molecules behave independently. 2. As gas P increases and/or T is lowered,

More information

Thermochemistry Chapter 8

Thermochemistry Chapter 8 Thermochemistry Chapter 8 Thermochemistry First law of thermochemistry: Internal energy of an isolated system is constant; energy cannot be created or destroyed; however, energy can be converted to different

More information

The Second Law of Thermodynamics (Chapter 4)

The Second Law of Thermodynamics (Chapter 4) The Second Law of Thermodynamics (Chapter 4) First Law: Energy of universe is constant: ΔE system = - ΔE surroundings Second Law: New variable, S, entropy. Changes in S, ΔS, tell us which processes made

More information

Solid-State Diffusion and NMR

Solid-State Diffusion and NMR Solid-State Diffusion and NMR P. Heitjans, S. Indris, M. Wilkening University of Hannover Germany Diffusion Fundamentals, Leipzig, 3 Sept. 005 Introduction Diffusivity in Solids as Compared to Liquids

More information

Supporting Information

Supporting Information Supporting Information Page 2-4. The B3LYP optimized gas phase structures of [Bmim + Cl - ] Pd complex. Page 5-10. The B3LYP optimized gas phase structures of [Bmim + Cl - ] Pd 2 complex. Page 11-14. The

More information

CHAPTER 11: INTERMOLECULAR FORCES AND LIQUIDS AND SOLIDS. Chemistry 1411 Joanna Sabey

CHAPTER 11: INTERMOLECULAR FORCES AND LIQUIDS AND SOLIDS. Chemistry 1411 Joanna Sabey CHAPTER 11: INTERMOLECULAR FORCES AND LIQUIDS AND SOLIDS Chemistry 1411 Joanna Sabey Forces Phase: homogeneous part of the system in contact with other parts of the system but separated from them by a

More information

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation).

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation). A. Introduction. (Section 11.1) CHAPTER 11: STATES OF MATTER, LIQUIDS AND SOLIDS 1. Gases are easily treated mathematically because molecules behave independently. 2. As gas P increases and/or T is lowered,

More information

ENTROPY

ENTROPY ENTROPY 6.2.8 6.2.11 ENTHALPY VS. ENTROPY ENTROPY (S) the disorder of a system - solid liquid gas = entropy - gas liquid solid = entropy - mixing substances always = entropy SPONTANEOUS VS. NONSPONTANEOUS

More information

Web Course Physical Properties of Glass. Range Behavior

Web Course Physical Properties of Glass. Range Behavior Web Course Physical Properties of Glass Glass Transformation- Range Behavior Richard K. Brow Missouri University of Science & Technology Department of Materials Science & Engineering Glass Transformation-1

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19 Chemical Thermodynamics Kinetics How fast a rxn. proceeds Equilibrium How far a rxn proceeds towards completion Thermodynamics Study of energy relationships & changes which occur during chemical

More information

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Chem 102--Exam #2 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. When water is measured in a plastic graduated cylinder, a reverse meniscus

More information

Liquid to Glass Transition

Liquid to Glass Transition Landscape Approach to Glass Transition and Relaxation (Lecture # 3, March 30) Liquid to Glass Transition Instructor: Prabhat Gupta The Ohio State University (gupta.3@osu.edu) PKGupta(OSU) Landscape #3

More information

Liquids & Solids: Section 12.3

Liquids & Solids: Section 12.3 Liquids & Solids: Section 12.3 MAIN IDEA: The particles in and have a range of motion and are not easily. Why is it more difficult to pour syrup that is stored in the refrigerator than in the cabinet?

More information

Case study: molecular dynamics of solvent diffusion in polymers

Case study: molecular dynamics of solvent diffusion in polymers Course MP3 Lecture 11 29/11/2006 Case study: molecular dynamics of solvent diffusion in polymers A real-life research example to illustrate the use of molecular dynamics Dr James Elliott 11.1 Research

More information

Modeling the configurational entropy of supercooled liquids and a resolution of the Kauzmann paradox

Modeling the configurational entropy of supercooled liquids and a resolution of the Kauzmann paradox Modeling the configurational entropy of supercooled liquids and a resolution of the Kauzmann paradox Dmitry Matyushov Arizona State University Glass and Entropy II, Aberystwyth, 22 24 April, 2009 activated

More information

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided. CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. a. The gas

More information

Geometrical frustration, phase transitions and dynamical order

Geometrical frustration, phase transitions and dynamical order Geometrical frustration, phase transitions and dynamical order The Tb 2 M 2 O 7 compounds (M = Ti, Sn) Yann Chapuis PhD supervisor: Alain Yaouanc September 2009 ann Chapuis (CEA/Grenoble - Inac/SPSMS)

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19 Chemical Thermodynamics Kinetics How fast a rxn. proceeds Equilibrium How far a rxn proceeds towards completion Thermodynamics Study of energy relationships & changes which occur during chemical

More information

equals the chemical potential µ at T = 0. All the lowest energy states are occupied. Highest occupied state has energy µ. For particles in a box:

equals the chemical potential µ at T = 0. All the lowest energy states are occupied. Highest occupied state has energy µ. For particles in a box: 5 The Ideal Fermi Gas at Low Temperatures M 5, BS 3-4, KK p83-84) Applications: - Electrons in metal and semi-conductors - Liquid helium 3 - Gas of Potassium 4 atoms at T = 3µk - Electrons in a White Dwarf

More information

PHASE CHANGE. Freezing Sublimation

PHASE CHANGE. Freezing Sublimation Melting Graphic Organizer Deposition PHASE CHANGE Freezing Sublimation Boiling Evaporation Condensation PHASE CHANGE Phase change happens as the temperature changes. All matter can move from one state

More information

Chapter 11 SOLIDS, LIQUIDS AND GASES Pearson Education, Inc.

Chapter 11 SOLIDS, LIQUIDS AND GASES Pearson Education, Inc. Chapter 11 SOLIDS, LIQUIDS AND GASES States of Matter Because in the solid and liquid states particles are closer together, we refer to them as. The States of Matter The state of matter a substance is

More information

Supporting Information for. Dynamics of Architecturally Engineered All- Polymer Nanocomposites

Supporting Information for. Dynamics of Architecturally Engineered All- Polymer Nanocomposites Supporting Information for Dynamics of Architecturally Engineered All- Polymer Nanocomposites Erkan Senses,,,,* Madhusudan Tyagi,, Madeleine Pasco, Antonio Faraone,* NIST Center for Neutron Research, National

More information

Chapter 11. Intermolecular Forces and Liquids & Solids

Chapter 11. Intermolecular Forces and Liquids & Solids Chapter 11 Intermolecular Forces and Liquids & Solids The Kinetic Molecular Theory of Liquids & Solids Gases vs. Liquids & Solids difference is distance between molecules Liquids Molecules close together;

More information

Intermolecular Forces and Liquids and Solids

Intermolecular Forces and Liquids and Solids PowerPoint Lecture Presentation by J. David Robertson University of Missouri Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

Entropy Changes & Processes

Entropy Changes & Processes Entropy Changes & Processes Chapter 4 of Atkins: he Second Law: he Concepts Section 4.3 Entropy of Phase ransition at the ransition emperature Expansion of the Perfect Gas Variation of Entropy with emperature

More information

Chem 75 Winter, 2017 Practice Exam 3

Chem 75 Winter, 2017 Practice Exam 3 1. The Handbook of Chemistry and Physics says that PbBr 2 is soluble in water to the tune of 8.441 g per kg of water at 25 C. The molar mass of PbBr 2 is 367 g mol 1. (a) What is the ionic strength of

More information

The dielectric properties of glassy ion-conducting materials

The dielectric properties of glassy ion-conducting materials The dielectric properties of glassy ion-conducting materials F.Kremer Co-authors: J.R. Sangoro, A.Serghei, C. Iacob, S. Naumov, J. Kärger Example for ion-conducting glassy materials: Ionic Liquids (ILs)

More information

Gibb s free energy change with temperature in a single component system

Gibb s free energy change with temperature in a single component system Gibb s free energy change with temperature in a single component system An isolated system always tries to maximize the entropy. That means the system is stable when it has maximum possible entropy. Instead

More information

1. Which molecule will have the strongest intermolecular forces? _D. 2. Which molecule will have the weakest intermolecular forces?

1. Which molecule will have the strongest intermolecular forces? _D. 2. Which molecule will have the weakest intermolecular forces? Use the following information to answer questions 1-5: 1. Which molecule will have the strongest intermolecular forces? _D 2. Which molecule will have the weakest intermolecular forces? _C 3. What is the

More information

Chemistry 112 Spring 2007 Prof. Metz Practice Exam 1 Solutions

Chemistry 112 Spring 2007 Prof. Metz Practice Exam 1 Solutions Chemistry 112 Spring 2007 Prof. Metz Practice Exam 1 Solutions 1. The intermolecular attractive forces would be greatest in which of the following molecules: CH 4, CH 2 Cl 2 and CO 2. (A) CH 4 (B) CH 2

More information

READING. Review of Intermolecular Forces & Liquids (Chapter 12) Ion-Ion Forces. Ion-Dipole Energies

READING. Review of Intermolecular Forces & Liquids (Chapter 12) Ion-Ion Forces. Ion-Dipole Energies Review of Intermolecular Forces & Liquids (Chapter 12) CEM 102 T. ughbanks READIG We will very briefly review the underlying concepts from Chapters 12 on intermolecular forces since it is relevant to Chapter

More information

Ch. 11: Liquids and Intermolecular Forces

Ch. 11: Liquids and Intermolecular Forces Ch. 11: Liquids and Intermolecular Forces Learning goals and key skills: Identify the intermolecular attractive interactions (dispersion, dipole-dipole, hydrogen bonding, ion-dipole) that exist between

More information

12. Spectral diffusion

12. Spectral diffusion 1. Spectral diffusion 1.1. Spectral diffusion, Two-Level Systems Until now, we have supposed that the optical transition frequency of each single molecule is a constant (except when we considered its variation

More information

Melting of ice particles:

Melting of ice particles: Melting of ice particles: When ice particles fall below 0 C they begin to melt, but the process takes some time since heat transfer needs to occur (heat from ambient environment has to supply the latent

More information

CHEMISTRY The Molecular Nature of Matter and Change

CHEMISTRY The Molecular Nature of Matter and Change CHEMISTRY The Molecular Nature of Matter and Change Third Edition Chapter 12 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 11 INTERMOLECULAR FORCES

More information

CHAPTER 4 Physical Transformations of Pure Substances.

CHAPTER 4 Physical Transformations of Pure Substances. I. Generalities. CHAPTER 4 Physical Transformations of Pure Substances. A. Definitions: 1. A phase of a substance is a form of matter that is uniform throughout in chemical composition and physical state.

More information

From L. H. Sperling, "Introduction to Physical Polymer Science, 2'nd Ed."

From L. H. Sperling, Introduction to Physical Polymer Science, 2'nd Ed. PDF File: (Click to Down Load): Chapter1.pdf > => Back to TOC => To Syllabus => Back to Chapter 1 Free Volume and T g In a plot of volume versus temperature through the glass transition, the thermal expansion

More information

Intermolecular Forces and Liquids and Solids Chapter 11

Intermolecular Forces and Liquids and Solids Chapter 11 Intermolecular Forces and Liquids and Solids Chapter 11 A phase is a homogeneous part of the system in contact with other parts of the system but separated from them by a well defined boundary. Phases

More information

DECRIRE LA TRANSITION VITREUSE: Simulations moléculaires et approches topologiques. Matthieu Micoulaut, LPTMC, Paris Sorbonne Universités UPMC

DECRIRE LA TRANSITION VITREUSE: Simulations moléculaires et approches topologiques. Matthieu Micoulaut, LPTMC, Paris Sorbonne Universités UPMC DECRIRE LA TRANSITION VITREUSE: Simulations moléculaires et approches topologiques Matthieu Micoulaut, LPTMC, Paris Sorbonne Universités UPMC C. Yildrim, O. Laurent, B. Mantisi, M. Bauchy «Chasseurs d

More information

Thermal and Statistical Physics Department Exam Last updated November 4, L π

Thermal and Statistical Physics Department Exam Last updated November 4, L π Thermal and Statistical Physics Department Exam Last updated November 4, 013 1. a. Define the chemical potential µ. Show that two systems are in diffusive equilibrium if µ 1 =µ. You may start with F =

More information

Intermolecular Forces and States of Matter AP Chemistry Lecture Outline

Intermolecular Forces and States of Matter AP Chemistry Lecture Outline Intermolecular Forces and States of Matter AP Chemistry Lecture Outline Name: Chemical properties are related only to chemical composition; physical properties are related to chemical composition AND the

More information

They are similar to each other. Intermolecular forces

They are similar to each other. Intermolecular forces s and solids They are similar to each other Different than gases. They are incompressible. Their density doesn t change much with temperature. These similarities are due to the molecules staying close

More information

Theoretical Approaches to the Glass Transition

Theoretical Approaches to the Glass Transition Theoretical Approaches to the Glass Transition Walter Kob Laboratoire des Colloïdes, Verres et Nanomatériaux Université Montpellier 2 http://www.lcvn.univ-montp2.fr/kob Kavli Institute for Theoretical

More information

GEOMETRICALLY FRUSTRATED MAGNETS. John Chalker Physics Department, Oxford University

GEOMETRICALLY FRUSTRATED MAGNETS. John Chalker Physics Department, Oxford University GEOMETRICLLY FRUSTRTED MGNETS John Chalker Physics Department, Oxford University Outline How are geometrically frustrated magnets special? What they are not Evading long range order Degeneracy and fluctuations

More information

Diffusion of propylene adsorbed in Na-Y and Na-ZSM5 zeolites: Neutron scattering and FTIR studies

Diffusion of propylene adsorbed in Na-Y and Na-ZSM5 zeolites: Neutron scattering and FTIR studies PRAMANA c Indian Academy of Sciences Vol. 71, No. 5 journal of November 2008 physics pp. 1153 1157 Diffusion of propylene adsorbed in Na-Y and Na-ZSM5 zeolites: Neutron scattering and FTIR studies S GAUTAM

More information

J. D. Thompson with Tuson Park, Zohar Nussinov, John L. Sarrao Los Alamos National Laboratory and Sang-Wook Cheong Rutgers University

J. D. Thompson with Tuson Park, Zohar Nussinov, John L. Sarrao Los Alamos National Laboratory and Sang-Wook Cheong Rutgers University Dielectric Glassiness in Hole-Doped but Insulating Cuprates and Nickelates J. D. Thompson with Tuson Park, Zohar Nussinov, John L. Sarrao Los Alamos National Laboratory and Sang-Wook Cheong Rutgers University

More information

Intermolecular Forces and Liquids and Solids. Chapter 11. Copyright The McGraw Hill Companies, Inc. Permission required for

Intermolecular Forces and Liquids and Solids. Chapter 11. Copyright The McGraw Hill Companies, Inc. Permission required for Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw Hill Companies, Inc. Permission required for 1 A phase is a homogeneous part of the system in contact with other parts of the

More information

They are similar to each other

They are similar to each other They are similar to each other Different than gases. They are incompressible. Their density doesn t change much with temperature. These similarities are due to the molecules staying close together in solids

More information

UNIT-1 SOLID STATE. Ans. Gallium (Ga) is a silvery white metal, liquid at room temp. It expands by 3.1% on solidifica-tion.

UNIT-1 SOLID STATE. Ans. Gallium (Ga) is a silvery white metal, liquid at room temp. It expands by 3.1% on solidifica-tion. UNIT-1 SOLID STATE 1 MARK QUESTIONS Q. 1. Name a liquefied metal which expands on solidification. Ans. Gallium (Ga) is a silvery white metal, liquid at room temp. It expands by 3.1% on solidifica-tion.

More information

Chapter 11 section 6 and Chapter 8 Sections 1-4 from Atkins

Chapter 11 section 6 and Chapter 8 Sections 1-4 from Atkins Lecture Announce: Chapter 11 section 6 and Chapter 8 Sections 1-4 from Atkins Outline: osmotic pressure electrolyte solutions phase diagrams of mixtures Gibbs phase rule liquid-vapor distillation azeotropes

More information

Intermolecular Forces and Liquids and Solids

Intermolecular Forces and Liquids and Solids Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. A phase is a homogeneous part of the system in contact

More information

Chemical Thermodynamics

Chemical Thermodynamics Page III-16-1 / Chapter Sixteen Lecture Notes Chemical Thermodynamics Thermodynamics and Kinetics Chapter 16 Chemistry 223 Professor Michael Russell How to predict if a reaction can occur, given enough

More information

Research Paper. Comparative Investigation by Two Analytical Approaches of Enthalpy Relaxation for Glassy Glucose, Sucrose, Maltose, and Trehalose

Research Paper. Comparative Investigation by Two Analytical Approaches of Enthalpy Relaxation for Glassy Glucose, Sucrose, Maltose, and Trehalose Pharmaceutical Research, Vol. 22, No. 3, March 2005 ( 2005) DOI: 10.1007/s11095-004-1887-6 Research Paper Comparative Investigation by Two Analytical Approaches of Enthalpy Relaxation for Glassy Glucose,

More information

CHAPTER ELEVEN KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS

CHAPTER ELEVEN KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS CHAPTER ELEVEN AND LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS Differences between condensed states and gases? KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS Phase Homogeneous part

More information

Hydrogen diffusion in potassium intercalated graphite studied by quasielastic neutron scattering

Hydrogen diffusion in potassium intercalated graphite studied by quasielastic neutron scattering Supporting Information for Hydrogen diffusion in potassium intercalated graphite studied by quasielastic neutron scattering Justin Purewal *, J. Brandon Keith, Channing C. Ahn and Brent Fultz California

More information

What is the susceptibility?

What is the susceptibility? What is the susceptibility? Answer which one? M Initial susceptibility Mean susceptibility M st M 0 0 m High field susceptibility i dm = dh H =0 H st H M M st M 0 0 m i H st H H What is the susceptibility?

More information

PHYSICAL REVIEW B 68,

PHYSICAL REVIEW B 68, Downloaded from http://polymerphysics.net Connection between the high-frequency crossover of the temperature dependence of the relaxation time and the change of intermolecular coupling in glass-forming

More information

Heat Capacities, Absolute Zero, and the Third Law

Heat Capacities, Absolute Zero, and the Third Law Heat Capacities, Absolute Zero, and the hird Law We have already noted that heat capacity and entropy have the same units. We will explore further the relationship between heat capacity and entropy. We

More information

Effect of crystallinity on properties. Melting temperature. Melting temperature. Melting temperature. Why?

Effect of crystallinity on properties. Melting temperature. Melting temperature. Melting temperature. Why? Effect of crystallinity on properties The morphology of most polymers is semi-crystalline. That is, they form mixtures of small crystals and amorphous material and melt over a range of temperature instead

More information

Chapter 12. Insert picture from First page of chapter. Intermolecular Forces and the Physical Properties of Liquids and Solids

Chapter 12. Insert picture from First page of chapter. Intermolecular Forces and the Physical Properties of Liquids and Solids Chapter 12 Insert picture from First page of chapter Intermolecular Forces and the Physical Properties of Liquids and Solids Copyright McGraw-Hill 2009 1 12.1 Intermolecular Forces Intermolecular forces

More information

Chapter Practice Test Grosser

Chapter Practice Test Grosser Class: Date: Chapter 10-11 Practice Test Grosser Multiple Choice Identify the choice that best completes the statement or answers the question. 1. According to the kinetic-molecular theory, particles of

More information

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 14: Amorphous State February 14, 2001

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 14: Amorphous State February 14, 2001 Chemical Engineering 160/260 Polymer Science and Engineering Lecture 14: Amorphous State February 14, 2001 Objectives! To provide guidance toward understanding why an amorphous polymer glass may be considered

More information

Inelastic X ray Scattering

Inelastic X ray Scattering Inelastic X ray Scattering with mev energy resolution Tullio Scopigno University of Rome La Sapienza INFM - Center for Complex Dynamics in Structured Systems Theoretical background: the scattering cross

More information

Polymer dynamics. Course M6 Lecture 5 26/1/2004 (JAE) 5.1 Introduction. Diffusion of polymers in melts and dilute solution.

Polymer dynamics. Course M6 Lecture 5 26/1/2004 (JAE) 5.1 Introduction. Diffusion of polymers in melts and dilute solution. Course M6 Lecture 5 6//004 Polymer dynamics Diffusion of polymers in melts and dilute solution Dr James Elliott 5. Introduction So far, we have considered the static configurations and morphologies of

More information

Kinetically arrested long-range magnetic ordered phase. Alok Banerjee

Kinetically arrested long-range magnetic ordered phase. Alok Banerjee Kinetically arrested long-range magnetic ordered phase Alok Banerjee (alok@csr.ernet.in) UGC-DAE Consortium for Scientific Research (CSR) (Formerly: Inter University Consortium for DAE Facilities) http://www.csr.ernet.in/

More information

6 Hydrophobic interactions

6 Hydrophobic interactions The Physics and Chemistry of Water 6 Hydrophobic interactions A non-polar molecule in water disrupts the H- bond structure by forcing some water molecules to give up their hydrogen bonds. As a result,

More information

The Liquid and Solid States

The Liquid and Solid States : The Liquid and Solid States 10-1 10.1 Changes of State How do solids, liquids and gases differ? Figure 10.4 10-2 1 10.1 Changes of State : transitions between physical states Vaporization/Condensation

More information

Chapter 11 Spontaneous Change and Equilibrium

Chapter 11 Spontaneous Change and Equilibrium Chapter 11 Spontaneous Change and Equilibrium 11-1 Enthalpy and Spontaneous Change 11-2 Entropy 11-3 Absolute Entropies and Chemical Reactions 11-4 The Second Law of Thermodynamics 11-5 The Gibbs Function

More information

Question 2 Identify the phase transition that occurs when CO 2 solid turns to CO 2 gas as it is heated.

Question 2 Identify the phase transition that occurs when CO 2 solid turns to CO 2 gas as it is heated. For answers, send email to: admin@tutor-homework.com. Include file name: Chemistry_Worksheet_0039 Price: $4 (c) 2012 www.tutor-homework.com: Tutoring, homework help, help with online classes. Chapter 11

More information

CHM 1046 FINAL REVIEW

CHM 1046 FINAL REVIEW CHM 1046 FINAL REVIEW Prepared & Presented By: Marian Ayoub PART I Chapter Description 6 Thermochemistry 11 States of Matter; Liquids and Solids 12 Solutions 13 Rates of Reactions 18 Thermodynamics and

More information

Liquids, Solids, and Phase Changes

Liquids, Solids, and Phase Changes C h a p t e r 10 Liquids, Solids, and Phase Changes KMT of Liquids and Solids 01 Gases have little or no interactions. Liquids and solids have significant interactions. Liquids and solids have well-defined

More information

Advanced Vitreous State: The Physical Properties of Glass

Advanced Vitreous State: The Physical Properties of Glass Advanced Vitreous State: The Physical Properties of Glass Steve W. Martin MSE Iowa State University swmartin@iastate.edu 8/28/08 Lecture 1: Orientation Students so far Glass Class From Univ. Florida Gregory

More information

Name Chemistry / / Understanding Phase Changes

Name Chemistry / / Understanding Phase Changes Name Chemistry / / Understanding Phase Changes As a piece of ice is exposed to a warmer environment, it begins to absorb heat. The heat causes the solid molecules to vibrate faster. Eventually, the ice

More information

Appendix 4. Appendix 4A Heat Capacity of Ideal Gases

Appendix 4. Appendix 4A Heat Capacity of Ideal Gases Appendix 4 W-143 Appendix 4A Heat Capacity of Ideal Gases We can determine the heat capacity from the energy content of materials as a function of temperature. The simplest material to model is an ideal

More information

Chapter 11. Intermolecular Forces and Liquids and Solids. Chemistry, Raymond Chang 10th edition, 2010 McGraw-Hill

Chapter 11. Intermolecular Forces and Liquids and Solids. Chemistry, Raymond Chang 10th edition, 2010 McGraw-Hill Chemistry, Raymond Chang 10th edition, 2010 McGraw-Hill Chapter 11 Intermolecular Forces and Liquids and Solids Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department

More information

Slightly off-equilibrium dynamics

Slightly off-equilibrium dynamics Slightly off-equilibrium dynamics Giorgio Parisi Many progresses have recently done in understanding system who are slightly off-equilibrium because their approach to equilibrium is quite slow. In this

More information

1. Increasing the pressure above a liquid will cause the boiling point of the liquid to:

1. Increasing the pressure above a liquid will cause the boiling point of the liquid to: JASPERSE CHEM 210 PRACTICE TEST 1 VERSION 2 Ch. 11 Liquids, Solids, and Materials Ch. 10 Gases Ch. 15 The Chemistry of Solutes and Solutions Ch. 13 Chemical Kinetics 1 Constants and/or Formulas Formulas

More information

Chemistry A: States of Matter Packet Name: Hour: Page!1. Chemistry A States of Matter Packet

Chemistry A: States of Matter Packet Name: Hour: Page!1. Chemistry A States of Matter Packet Chemistry A: States of Matter Packet Name: Hour: Page!1 Chemistry A States of Matter Packet Chemistry A: States of Matter Packet Name: Hour: Page!2 Worksheet #1: States of Matter In this packet we will

More information

Chapters 11 and 12: Intermolecular Forces of Liquids and Solids

Chapters 11 and 12: Intermolecular Forces of Liquids and Solids 1 Chapters 11 and 12: Intermolecular Forces of Liquids and Solids 11.1 A Molecular Comparison of Liquids and Solids The state of matter (Gas, liquid or solid) at a particular temperature and pressure depends

More information