MANAGEMENT OF HIGH LEVEL WASTE DERIVED FROM THE THORIUM NUCLEAR FUEL CYCLE

Size: px
Start display at page:

Download "MANAGEMENT OF HIGH LEVEL WASTE DERIVED FROM THE THORIUM NUCLEAR FUEL CYCLE"

Transcription

1 Thorium Energy Conference , Shanghai, Good Hope Hotel: MANAGEMENT OF HIGH LEVEL WASTE DERIVED FROM THE THORIUM NUCLEAR FUEL CYCLE S. Yudintsev Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS, Moscow, Russia

2 Solutions: IV-generation high safety reactors consumed 238 U (fast neutron reactor) and 232 Th (different types). Major challenges to the nuclear energy: 1) Ore resources exhaustion. Low-cost U ores (< 80 $ per kg of U) most probably will be finished through years of exploration. 2) Safety increasing. Probability of accident must be 10-6, or 1 for 2000 years for current fleet in about 500 NPPs. Actually the value is significantly higher ( 1 per 10 years).

3 Th supplementary to U element in nuclear fuel cycle.

4 U Uranium polyisotope (3) monoelement (U) ores

5 Th Thorium monoisotope polyelement (REE, Nb) ores. Th resources may be overestimated to larger values.

6 Promising reactors IV with a Th fuel are: Very High Temperature Gas Reactor & Fast Molten Salt Reactor (ADS in future?). Existed types of reactors: SFR, AHWR.

7 Main factors influenced isolation of waste from Th nuclear cycle: Physical chemical properties of Th Phase & chemical composition of fuel Reactor type and the SNF burn up Phase & chemical composition of SNF Radionuclides contents & heat of SNF Technology of the SNF reprocessing

8 WASTE of Thorium nuclear cycle (+ tails from exploration of Thorium ores) Open cycle Closed cycle: (no reprocessing): THOREX Dry Closed cycle for: U / Pu & U / Pu & U & Th Matrix is the spent nuclear fuel (SNF) itself Waste forms: B-Si glass (FP) Glass-ceramic Ceramic (Th, MA)

9 Tails from Th deposits have lower radiotoxicity than from U ores due to difference in daughter nuclides decay: U deposits ( 238 U): 230 Th (77000 y), 226 Ra (16000 y). Th ores ( 232 Th): 228 Ra (6.7 y) & 228 Th (1.9 y), raditoxicity decreases in 20 times after 30 y.

10 Th is promising fuel for thermal & fast reactors. Fertile, so additional source of neutrons is required. Ch. Le Brun, JNM

11 Similarity and difference of Th and U cycles: to use more energetic potential of Th-based fuel high burn up is needed (>100 MWt d / kg). 232 Th has 3 times larger capture cross-section ( 238 U), 233 Pa has 11 times larger half-live period ( 239 Np).

12 Generation of 233 U and problem of 232 U.

13 Image of spent nuclear fuel Minor actinides in U / Th cycle

14 Advantage of Th cycle: low amounts of Pu and MA. Actually, MA contents strongly depend on driver fuel and in lest extent on its burn up. Separation of seed and blanket parts Radkowsky Thorium Fuel Reactor concept.

15 231 Pa (Т ½ = 3х10 4 y): g/t Th SNF (PWR reactor) ppm 232 U (1 3 ppb in UO 2 SNF of LWR reactor): Content of 232 U >10 ppm remote handling is required.

16 Actinides relations in U nuclear cycle. 232 Th position is there.

17 Generation of actinides in the Th or U cycles. 232 Тh fertile (non-fissile), source of neutrons driver fuel ( 233 U, 235 U, 239 Pu) or ADS is required for start of operation. МА content in SNF may be high, especially in case of Pu rg. Another dangerous МА ( 231 Ра, Т½ = y) is formed.

18 Th-based SNF has more 79 Se (T½ =10 6 y), high burn up and heat generation ( 232 U, 90 Sr).

19 Radiotoxicity of FP in U or Th SNF in ALI (Ali = Annual limit intake). Red : more amount for Th cycle, blue more in U cycle.

20 Evidence of HLW disposal safety: Stability of U, Th, REEs ores and so on. Radioactive minerals study (pyrochlore, monazite, zirconolite ). Geochemical data for rocks around natural reactor in Gabon, Western Africa. Experiments on the waste forms stability, solubility, radionuclides sorption an so on. Theoretical calculations of performance assessment of HLW geological repository.

21 Different methods: age Ma U-Th system was closed for a long time. Crystalline matrices for L n An fraction isolation. 21

22 Only some long-lived RN: fission products: 79 Se, 99 Tc, 129 I, activated isotopes: 14 C, 36 Cl, and daughter isotopes of actinides decay can reach the biosphere.

23 Calculated doses from HLW repository

24 UO 2 - SNF, fresh and after interaction with aerated water. (Th,U,Pu,MA)O 2 : fluorite type structure. Very stable at SNF storage and disposal unlike UO 2 (UO 2 U 3 O 8 ). Th SNF: high content of Pa, Sr, Se, (long lived FP). Se: migration (SeO 4 ) 2-, reduction (Se 0,Se 2- ) deposition.

25 Solubility of ThO 2 in water. Role of complexes with CO 3 2- and colloid particles ( µm). Migration of Pa (IV), Pa (V) as colloids (Pa 5+ is close to Nb 5+ )

26 90 о C, water from J-13, filtration ~5 nm, 10-6 g / l: Sr, Tc, Cs, < U, < Th, <0.2 Np, Pu, Am. Contents of 90 Sr and 137 Cs decreased with time. Solubility of (Th,U)O 2 : 3x10-7 3x10-9 g/m 2 d. Value at least 100 times is lower than for UO 2. (Th,U)O 2 spent fuel, LWBR (Shippingport), 2 5% 235 UO MWt day / kg.

27 SNF reprocessing & HLW separation (TRUEX, DIAMEX, THOREX) allows: To reuse fissile actinides (U, Pu) To facilitate HLW safe isolation To enlarge a repository capacity due to heat & volume of waste decrease Main fractions: Cs-Sr, I, Tc, Np, MPG, Ln-An (Ln - REE Ce ; An - Am, Np, Cm)

28 PUREX: > t UO 2 SNF is reprocessed up to date. THOREX: ThO 2 is more stable than UO 2, (U,Pu)O 2. Additives of (0.05 M HF M AlNO 3 ) to HNO 3. In different schemes (production of U, U+Pu, U+Pu+Th) the different types of the waste forms are required.

29 Average composition of Ln-An fractions: 80-90% Ln % An and 60-70% Ln % Zr % An Ln: Nd>Ce>La~Pr,Sm; An: Am>Cm,Np. Special matrices for wastes are required. Zirconolite, Monazite which else? Ti,Sn,Zr-Pyrochlore & Fe-Garnet

30 Pyrochlore, [8] A [6] 2 B [4] 2 O [4] 6 O, Z=8, Fd3m, a=9-12å and Garnet, [8] A [6] 3 B [4] 2 T 3 O 12, Z=8, Ia3d, a = 11-13Å, structures consist of a network of BO 6 (pyrochlore) or BO 6 and TO 4 (garnet) linked by shared vertices. The voids are occupied by large cations with CN = 8. The AO 8 polyhedra shared edges with BO 6 and TO 4 : correlation between cationic sizes in the sites Natural pyrochlore Nb-Ta-Ti minerals containing up to 30 wt.% U, 9 wt.% Th. Minerals of the garnet group are silicates with low actinides content (< 0.1 wt.%).

31 View on pyrochlore- ( [8] A 2 [6] B 2 O 7, Fd3m) and garnet-type ( [8] A 3 [6] B 2 [4] T 3 O 12, Ia3d) structures. Structure Composition Interdependence.

32 Pyrochlore or garnet-based waste forms (matrices) for actinides (Th, U, Pu), minor actinides (Pa, Np, Am, Cm) and Ln-acinides. Contents of the waste elements can vary from 30 to 70 wt.%. Matrices can be produced by sintering or melting.

33 SAED of Ln-Snpyrochlore at Kr cation irradiation A = 0,12La + 0,24Ce + 0,1Pr + 0,38Nd + 0,08Sm +0,05Eu+0,03Gd

34 Effect of cationic radii ratio in [8] A and [6] B sites of pyrochlores on their critical T values at high energetic 1 MeV Kr 2+ irradiation.

35 HRTEM images of garnet before (a) and after (b d) irradiation with 1 MeV Kr to doses of (b) 0.09 dpa, (c) 0.14 dpa, (d) 0.22 dpa. Fe-garnets at 1 MeV Kr 2+ irradiation

36 Fe- and Al-garnets at Kr bombardment (2,3) and 244 Cm decay (1,4)

37 Corrosion resistance of ferrite garnets: Ca 1.5 GdCe 0.5 ZrFe 4 O 12, Ca 2.5 Ce 0.5 Zr 2 Fe 3 O 12, Ca 1.5 GdTh 0.5 ZrFe 4 O 12 water, 0.01M HCl, 0.01M NaOH, С, S/V=10m 1 Left: Th and Gd release from Ca 1.5 GdTh 0.5 ZrFe 4 O 12 and Cm from Ca 1.5 Gd 0.91 Cm 0.09 Th 0.5 ZrFe 4 O 12 (90 C). Right: SEM/BSE image of Ca 1.5 GdTh 0.5 ZrFe 4 O 12 garnet after its interaction with 0.01 M HCl solution for 30 days.

38 Good experience with U spent fuel. Pyrochemical reprocessing of Th-based SNF: hydrogenation of metal spent fuel chlorination of metal or oxide SNF evaporation of ThCl 4 and UCl 4 at heating electrolysis of molten salts precipitation of minor actinides and FP (Ln) fabrication of the fresh nuclear fuel waste isolation into glass, glass-ceramic, ceramic.

39 HLW (spent electrolite) from pyrochemical reprocessing P-Glass, unstable at high T. CEA, 2009 Phosphate precipitation of Ln and An Sodalite Vance et al, monazite Cl-apatite Vance et al., After 30 y of storage in clays ( 135 Cs) Low loading with HLW only 10 wt.%.

40 Research and commercial reactors with Th fuel, > 200 reactor - years (IAEA TECDOC-1450). Country Reactor Capacity Fuel composition Time Germany HTGR (Pebble bed) 15 MW(e) Th U, Coated Oxide & carbides Germany The same 300 MW(e) The same Germany BWR 60 MW(e) Fuel (Th,Pu)O 2 pellets UK, Sweden HTGR (Pin-in-Block Design) 20 MW(t) Th U Driver, Coated fuel particles, Oxide & Dicarbides USA HTGR 40 MW(e) The same USA (Prismatic Block) 330 MW(e) USA MSBR 7.5 MWt 233 U Molten Fluorides USA BWR (Pins) 24 MW(e) Th U Fuel Oxide USA LWBR PWR (Pins) 100 MW(e) Th U Driver Fuel, Oxide Pellets USA The same 285 MW(e) The same Canada MTR (Pins) MW Th U, Test Fuel India MTR Thermal 40 MW(t); 100 MW(t) Al U Driver Fuel, Th & ThO India PHWR (Pins) 220 MW(e) ThO 2 Pellets 1980 pres. India LMFBR (Pins) 40 MW(t) ThO 2 blanket 1985 pres.

41 Short-term (< 2020), reactors II III generations. (Russian approach. In: Internationalization of the NFC. 2008). Th - SNF of fast reactor contains ppm 232 U.

42 Medium term period (>2020). IV-generation reactors.

43 Characteristics of different reactors.

44 Very High Temperature Reactor (VHTR): The chief attraction of the VHTR concept is its ability to produce the higher temperatures (up to 1000 o C) needed for hydrogen production and some process heat applications. However, VHTRs would not permit use of a closed fuel cycle. Reference designs are for around 250 MW of electricity, or 600 MW of heat, with a helium coolant and a graphite-moderated thermal neutron spectrum. Fuel would be in the form of coated particles, formed either into blocks or pebbles according to the core design adopted. VHTR designs are based on prototype high-temperature gas-cooled reactors built in the United States and Germany, and much R&D has been completed. Challenges: developing improved temperature-resistant materials, fuel design + manufacture. No metal in active zone very high NF burn up.

45 Linear heat rate and burn-up of nuclear fuel for light water (LWR), fast (FR), and high temperature reactors (HTR); oxide fuel is the reference for LWR and HTR. In: NUCLEAR FUELS. CHAPTER 34. Konings, et al., Р

46 Examples of operated H T gas reactors.

47 ORNL/TM-2004/104. Status of Preconceptual Design of the Advanced High-Temperature Reactor (AHTR), May High fuel fabrication cost, but since 1960-s it is reduced > times to 6000$/kg (U-Pu MOX: $).

48 TRISO before and after irradiation Direct disposal of SNF with very high burn up. Fuel block with mass ~80 kg (including 4 kg of U or Th) contains 13 millions of TRISO particles.

49 In Th H-TR much more Ра, more Np, less Pu, Am, and Cm are formed comparatively with U cycle.

50 Advantage of usage HT and VHT gas reactors.

51 Molten Salt Reactor (MSR): In MSR, the fuel materials are dissolved in a circulating molten fluoride salt coolant. The liquid fuel avoids the need for fuel fabrication and allows continuous adjustment of the fuel mixture. The current concept is for a MW fast neutron reactor with a closed fuel cycle. This could be used for breeding with fertile thorium or for burning plutonium and other actinides. Molten salt chemistry, handling and corrosion resistance, as well as materials and the fuel cycle, are the most actual current R&D challenges. Fuel = coolant: LiF NaF BeF 2 ThF UF 4. Safety & simple management of high level waste.

52 Salt reprocessing scheme. Black / blue arrows salt route, orange arrows point out transfers through lead-bismuth bath and broad blue / violet arrows transfers through gas (SNETP, 2002). Fe-Ni-alloy Ceramic Different matrices for different waste stream

53 CONCLUSIONS: Approach to Management of Waste of Th cycle: 1) Open cycle. Waste is SNF itself (for LWR and VHTGR with very high burn up, > 100 GWt d / t). 2) Closed cycle with the SNF reprocessing by water-extraction (THOREX) or dry technologies. Main goal is extraction of rest or new formed fissile radionuclides ( 233,235 U; 239,241 Pu) for their usage for fuel fabrication (LWR, AHWR and FR with the lowest 232 U content). Waste forms are similar with the matrices developed for U cycle: glasses or glass-ceramics for fission products, ceramics for long-lived actinides, alloys for 99 Tc.

54 References. 1. Uranium-2007: Resources, production and demand. NEA-OECD. Report Management of recyclable fissile and fertile materials. NEA-OECD. Report Lung M.L., Gremm O. // Nuclear Engineering and Design Vol.180. P Kazimi M. // American Scientist Vol.91. N5. P Thorium fuel utilization: Options and trends. IAEA-TECDOC Jerden J.L., Cunnane J.C. Mat. Res. Soc. Symp. Proc Vol.757. II9-3.pdf. 7. Thorium fuel cycle Potential benefits and challenges. IAEA-TECDOC Internationalization of the nuclear fuel cycle: goals, strategies, and challenges. NAP GEN-IV International forum. Annual report The future of the nuclear fuel cycle. MIT Report Blue Ribbon Commission Updated Report. January Kopyrin A.A., Karelin A.I., Karelin V.V. Technology of production and radiochemical reprocessing of nuclear fuel. Atomenergoizdat (In Russian). 13. Laverov N.P., Yudintsev S.V., Livshits T.S. et al. // Geoch. Intern Vol.48. N1. P The Chemistry of the Actinide and Transactinide Elements. Eds.: Morss L.R., Edelstein N.M., Fuger J. Springer Vol. 6.

Ciclo combustibile, scorie, accelerator driven system

Ciclo combustibile, scorie, accelerator driven system Ciclo combustibile, scorie, accelerator driven system M. Carta, C. Artioli ENEA Fusione e Fissione Nucleare: stato e prospettive sulle fonti energetiche nucleari per il futuro Layout of the presentation!

More information

Sustainable Nuclear Energy What are the scientific and technological challenges of safe, clean and abundant nuclear energy?

Sustainable Nuclear Energy What are the scientific and technological challenges of safe, clean and abundant nuclear energy? Sustainable Nuclear Energy What are the scientific and technological challenges of safe, clean and abundant nuclear energy? Tim van der Hagen vision from 1939 NNV Section Subatomic Physics; November 5,

More information

MA/LLFP Transmutation Experiment Options in the Future Monju Core

MA/LLFP Transmutation Experiment Options in the Future Monju Core MA/LLFP Transmutation Experiment Options in the Future Monju Core Akihiro KITANO 1, Hiroshi NISHI 1*, Junichi ISHIBASHI 1 and Mitsuaki YAMAOKA 2 1 International Cooperation and Technology Development Center,

More information

Sequestration of Radioactive Wastes: The Oklo Experiment (Gabon)

Sequestration of Radioactive Wastes: The Oklo Experiment (Gabon) Sequestration of Radioactive Wastes: The Oklo Experiment (Gabon) Advantages of Nuclear Power At the site of generation, the only major environmental impact is waste heat. Given the high energy content

More information

THE INTEGRATION OF FAST REACTOR TO THE FUEL CYCLE IN SLOVAKIA

THE INTEGRATION OF FAST REACTOR TO THE FUEL CYCLE IN SLOVAKIA THE INTEGRATION OF FAST REACTOR TO THE FUEL CYCLE IN SLOVAKIA Radoslav ZAJAC, Petr DARILEK VUJE, Inc. Okruzna 5, SK-91864 Trnava, Slovakia Tel: +421 33 599 1316, Fax: +421 33 599 1191, Email: zajacr@vuje.sk,

More information

Question to the class: What are the pros, cons, and uncertainties of using nuclear power?

Question to the class: What are the pros, cons, and uncertainties of using nuclear power? Energy and Society Week 11 Section Handout Section Outline: 1. Rough sketch of nuclear power (15 minutes) 2. Radioactive decay (10 minutes) 3. Nuclear practice problems or a discussion of the appropriate

More information

Proliferation-Proof Uranium/Plutonium Fuel Cycles Safeguards and Non-Proliferation

Proliferation-Proof Uranium/Plutonium Fuel Cycles Safeguards and Non-Proliferation Proliferation-Proof Uranium/Plutonium Fuel Cycles Safeguards and Non-Proliferation SUB Hamburg by Gunther KeBler A 2012/7138 Scientific Publishing id- Contents 1 Nuclear Proliferation and IAEA-Safeguards

More information

Activation Calculation for a Fusion-driven Sub-critical Experimental Breeder, FDEB

Activation Calculation for a Fusion-driven Sub-critical Experimental Breeder, FDEB Activation Calculation for a Fusion-driven Sub-critical Experimental Breeder, FDEB K. M. Feng (Southwestern Institute of Physics, China) Presented at 8th IAEA Technical Meeting on Fusion Power Plant Safety

More information

Thorium as a Nuclear Fuel

Thorium as a Nuclear Fuel Thorium as a Nuclear Fuel Course 22.251 Fall 2005 Massachusetts Institute of Technology Department of Nuclear Engineering 22.351 Thorium 1 Earth Energy Resources Commercial Energy Resources in India Electricity

More information

MSR concepts. Jan Leen Kloosterman, TU Delft. Molten Salt Reactor Experiment https://en.wikipedia.org/wiki/molten Salt_Reactor_Experiment

MSR concepts. Jan Leen Kloosterman, TU Delft. Molten Salt Reactor Experiment https://en.wikipedia.org/wiki/molten Salt_Reactor_Experiment MSR concepts Jan Leen Kloosterman, TU Delft 2 Molten Salt Reactor Experiment 1965-1969 https://en.wikipedia.org/wiki/molten Salt_Reactor_Experiment See movie: http://energyfromthorium.com/2016/10/16/ornl

More information

Cambridge University Press An Introduction to the Engineering of Fast Nuclear Reactors Anthony M. Judd Excerpt More information

Cambridge University Press An Introduction to the Engineering of Fast Nuclear Reactors Anthony M. Judd Excerpt More information INTRODUCTION WHAT FAST REACTORS CAN DO Chain Reactions Early in 1939 Meitner and Frisch suggested that the correct interpretation of the results observed when uranium is bombarded with neutrons is that

More information

Why the nuclear era needs NERA

Why the nuclear era needs NERA Why the nuclear era needs NERA 11-2-2015 Jan Leen Kloosterman TU-Delft Delft University of Technology Challenge the future Meet & Greet Scientific staff members Secretary and technicians 2 1 Chemistry

More information

Reduction of Radioactive Waste by Accelerators

Reduction of Radioactive Waste by Accelerators October 9-10, 2014 International Symposium on Present Status and Future Perspective for Reducing Radioactive Waste - Aiming for Zero-Release - Reduction of Radioactive Waste by Accelerators Hiroyuki Oigawa

More information

Neutronic Analysis and Transmutation Performance of Th-based Molten Salt Fuels

Neutronic Analysis and Transmutation Performance of Th-based Molten Salt Fuels Neutronic Analysis and Transmutation Performance of Th-based Molten Salt Fuels Sang-In Bak Yacine KADI, Jesús Pérez CURBELO, Claudio TENREIRO, Jong-Seo CHAI, Seung-Woo HONG Sungkyunkwan University Motivation

More information

BURNING OF MINOR ACTINIDES IN FUEL CYCLE OF THE FAST REACTOR: DOVITA PROGRAMME RESULTS OF THE 10 YEAR ACTIVITIES

BURNING OF MINOR ACTINIDES IN FUEL CYCLE OF THE FAST REACTOR: DOVITA PROGRAMME RESULTS OF THE 10 YEAR ACTIVITIES BURNING OF MINOR ACTINIDES IN FUEL CYCLE OF THE FAST REACTOR: DOVITA PROGRAMME RESULTS OF THE 10 YEAR ACTIVITIES A.V. Bychkov, O.V. Skiba, A.A. Mayorshin, M.V. Kormilitsyn, O.V. Shishalov, I.Yu. Zhemkov,

More information

Tritium Transport and Corrosion Modeling in the Fluoride Salt-Cooled High-Temperature Reactor

Tritium Transport and Corrosion Modeling in the Fluoride Salt-Cooled High-Temperature Reactor Tritium Transport and Corrosion Modeling in the Fluoride Salt-Cooled High-Temperature Reactor John D. Stempien, PhD Content Based on Doctoral Thesis Defense Workshop on Tritium Control Salt Lake City,

More information

Comparison of U-Pu and Th-U cycles in MSR

Comparison of U-Pu and Th-U cycles in MSR WIR SCHAFFEN WISSEN HEUTE FÜR MORGEN Jiri Krepel :: Advanced Nuclear System Group :: Paul Scherrer Institut Comparison of U-Pu and Th-U cycles in MSR ThEC 2018 conference 29-31. October 2018, Brussels,

More information

Advanced Heavy Water Reactor. Amit Thakur Reactor Physics Design Division Bhabha Atomic Research Centre, INDIA

Advanced Heavy Water Reactor. Amit Thakur Reactor Physics Design Division Bhabha Atomic Research Centre, INDIA Advanced Heavy Water Reactor Amit Thakur Reactor Physics Design Division Bhabha Atomic Research Centre, INDIA Design objectives of AHWR The Advanced Heavy Water Reactor (AHWR) is a unique reactor designed

More information

Research and Development to Reduce Radioactive Waste by Accelerator

Research and Development to Reduce Radioactive Waste by Accelerator Research and Development to Reduce Radioactive Waste by Accelerator Current Status and Prospects for Partitioning and Transmutation Technology Japan Atomic Energy Agency Introduction We humans need to

More information

IAEA-TECDOC Nuclear Fuel Cycle Simulation System (VISTA)

IAEA-TECDOC Nuclear Fuel Cycle Simulation System (VISTA) IAEA-TECDOC-1535 Nuclear Fuel Cycle Simulation System (VISTA) February 2007 IAEA-TECDOC-1535 Nuclear Fuel Cycle Simulation System (VISTA) February 2007 The originating Section of this publication in the

More information

CH0204 Organic Chemical Technology

CH0204 Organic Chemical Technology CH0204 Organic Chemical Technology Lecture 15 Chapter 5 Nuclear Industries Assistant Professor (OG) Department of Chemical Engineering 1 Overview of topics Chapter 5 Nuclear Industries 1 2 3 4 Nuclear

More information

Nuclear Data for Reactor Physics: Cross Sections and Level Densities in in the Actinide Region. J.N. Wilson Institut de Physique Nucléaire, Orsay

Nuclear Data for Reactor Physics: Cross Sections and Level Densities in in the Actinide Region. J.N. Wilson Institut de Physique Nucléaire, Orsay Nuclear Data for Reactor Physics: Cross Sections and Level Densities in in the Actinide Region J.N. Wilson Institut de Physique Nucléaire, Orsay Talk Plan Talk Plan The importance of innovative nuclear

More information

TRANSMUTATION PERFORMANCE OF MOLTEN SALT VERSUS SOLID FUEL REACTORS (DRAFT)

TRANSMUTATION PERFORMANCE OF MOLTEN SALT VERSUS SOLID FUEL REACTORS (DRAFT) 15 th International Conference on Nuclear Engineering Nagoya, Japan, April 22-26, 2007 ICONE15-10515 TRANSMUTATION PERFORMANCE OF MOLTEN SALT VERSUS SOLID FUEL REACTORS (DRAFT) Björn Becker University

More information

Nuclear Fuel Cycle and WebKOrigen

Nuclear Fuel Cycle and WebKOrigen 10th Nuclear Science Training Course with NUCLEONICA Institute of Nuclear Science of Ege University, Cesme, Izmir, Turkey, 8th-10th October 2008 Nuclear Fuel Cycle and WebKOrigen Jean Galy European Commission

More information

TRANSMUTATION OF LONG-LIVED NUCLIDES IN THE FUEL CYCLE OF BREST-TYPE REACTORS. A.V. Lopatkin, V.V. Orlov, A.I. Filin (RDIPE, Moscow, Russia)

TRANSMUTATION OF LONG-LIVED NUCLIDES IN THE FUEL CYCLE OF BREST-TYPE REACTORS. A.V. Lopatkin, V.V. Orlov, A.I. Filin (RDIPE, Moscow, Russia) TRANSMUTATION OF LONG-LIVE NUCLIES IN THE FUEL CYCLE OF BREST-TYPE REACTORS A.V. Lopatkin, V.V. Orlov, A.I. Filin RIPE, Moscow, Russia) 947 1. Background Radiation background is an integral part of nature

More information

IAEA-TECDOC-1349 Potential of thorium based fuel cycles to constrain plutonium and reduce long lived waste toxicity

IAEA-TECDOC-1349 Potential of thorium based fuel cycles to constrain plutonium and reduce long lived waste toxicity IAEA-TECDOC-1349 Potential of thorium based fuel cycles to constrain plutonium and reduce long lived waste toxicity Final report of a co-ordinated research project 1995 2001 April 2003 The originating

More information

Production. David Nusbaum Project on Managing the Atom, Belfer Center October 4, 2011

Production. David Nusbaum Project on Managing the Atom, Belfer Center October 4, 2011 Production David Nusbaum Project on Managing the Atom, Belfer Center October 4, 2011 Where are we? Nuclear Fuel Cycle Background Pu- Radioactive, chemical element, of the actinoid series of the periodic

More information

The Impact of Nuclear Science on Life Science

The Impact of Nuclear Science on Life Science The Impact of Nuclear Science on Life Science Introduction to ADS For Waste Incineration and Energy Production H. Condé, Dept. of Neutron Research, Uppsala University, Box 525, SE-751 20 Uppsala, Sweden

More information

ASSESSMENT OF THE EQUILIBRIUM STATE IN REACTOR-BASED PLUTONIUM OR TRANSURANICS MULTI-RECYCLING

ASSESSMENT OF THE EQUILIBRIUM STATE IN REACTOR-BASED PLUTONIUM OR TRANSURANICS MULTI-RECYCLING ASSESSMENT OF THE EQUILIBRIUM STATE IN REACTOR-BASED PLUTONIUM OR TRANSURANICS MULTI-RECYCLING T.K. Kim, T.A. Taiwo, J.A. Stillman, R.N. Hill and P.J. Finck Argonne National Laboratory, U.S. Abstract An

More information

Partitioning & Transmutation

Partitioning & Transmutation Partitioning & Transmutation Solution for nuclear waste? C. Pistner, M. Englert, G. Schmidt, G. Kirchner 1st NURIS Conference Vienna, 16.-17. April 2015 Content 1. Introduction 2. Final disposal in Germany

More information

WM2015 Conference, March 15 19, 2015, Phoenix, Arizona, USA

WM2015 Conference, March 15 19, 2015, Phoenix, Arizona, USA On the Influence of the Power Plant Operational History on the Inventory and the Uncertainties of Radionuclides Relevant for the Final Disposal of PWR Spent Fuel 15149 ABSTRACT Ivan Fast *, Holger Tietze-Jaensch

More information

TRANSMUTATION OF AMERICIUM AND CURIUM: REVIEW OF SOLUTIONS AND IMPACTS. Abstract

TRANSMUTATION OF AMERICIUM AND CURIUM: REVIEW OF SOLUTIONS AND IMPACTS. Abstract TRANSMUTATION OF AMERICIUM AND CURIUM: REVIEW OF SOLUTIONS AND IMPACTS M. Delpech, J. Tommasi, A. Zaetta DER/SPRC, CEA M. Salvatores DRN/PP, CEA H. Mouney EDF/DE G. Vambenepe EDF/SEPTEN Abstract Several

More information

PEBBLE BED REACTORS FOR ONCE THROUGH NUCLEAR TRANSMUTATION.

PEBBLE BED REACTORS FOR ONCE THROUGH NUCLEAR TRANSMUTATION. PEBBLE BED REACTORS FOR ONCE THROUGH NUCLEAR TRANSMUTATION. Pablo León, José Martínez-Val, Alberto Abánades and David Saphier. Universidad Politécnica de Madrid, Spain. C/ J. Gutierrez Abascal Nº2, 28006

More information

Master Thesis Report. Frederik de Vogel PNR May 18, 2011

Master Thesis Report. Frederik de Vogel PNR May 18, 2011 Parametric Studies on the Moderation Ratio of a 2-zone 1-fluid Molten Salt Reactor Finding high power density within safety and sustainability constraints Master Thesis Report by PNR-131-2011-006 May 18,

More information

English text only NUCLEAR ENERGY AGENCY NUCLEAR SCIENCE COMMITTEE

English text only NUCLEAR ENERGY AGENCY NUCLEAR SCIENCE COMMITTEE Unclassified NEA/NSC/DOC(2007)9 NEA/NSC/DOC(2007)9 Unclassified Organisation de Coopération et de Développement Economiques Organisation for Economic Co-operation and Development 14-Dec-2007 English text

More information

The outermost container into which vitrified high level waste or spent fuel rods are to be placed. Made of stainless steel or inert alloy.

The outermost container into which vitrified high level waste or spent fuel rods are to be placed. Made of stainless steel or inert alloy. Glossary of Nuclear Waste Terms Atom The basic component of all matter; it is the smallest part of an element having all the chemical properties of that element. Atoms are made up of protons and neutrons

More information

The European Commission s science and knowledge service

The European Commission s science and knowledge service The European Commission s science and knowledge service Joint Research Centre EU activities in the MSR project O. Beneš JRC Karlsruhe ITU One of the 7 research institutes of the European Commission s Joint

More information

State of the Art for Fuel-Coolant Interactions Research for LFRs. Teodora Retegan, Christian Ekberg, Gunnar Skarnemark

State of the Art for Fuel-Coolant Interactions Research for LFRs. Teodora Retegan, Christian Ekberg, Gunnar Skarnemark State of the Art for Fuel-Coolant Interactions Research for LFRs Teodora Retegan, Christian Ekberg, Gunnar Skarnemark tretgan@chalmers.se Outline Chalmers Lead Cooled (Fast) Reactors Physical bariers and

More information

Kr-85m activity as burnup measurement indicator in a pebble bed reactor based on ORIGEN2.1 Computer Simulation

Kr-85m activity as burnup measurement indicator in a pebble bed reactor based on ORIGEN2.1 Computer Simulation Journal of Physics: Conference Series PAPER OPEN ACCESS Kr-85m activity as burnup measurement indicator in a pebble bed reactor based on ORIGEN2.1 Computer Simulation To cite this article: I Husnayani

More information

2017 Water Reactor Fuel Performance Meeting September 10 (Sun) ~ 14 (Thu), 2017 Ramada Plaza Jeju Jeju Island, Korea

2017 Water Reactor Fuel Performance Meeting September 10 (Sun) ~ 14 (Thu), 2017 Ramada Plaza Jeju Jeju Island, Korea Neutronic evaluation of thorium-uranium fuel in heavy water research reactor HADI SHAMORADIFAR 1,*, BEHZAD TEIMURI 2, PARVIZ PARVARESH 1, SAEED MOHAMMADI 1 1 Department of Nuclear physics, Payame Noor

More information

THORIUM SELF-SUFFICIENT FUEL CYCLE OF CANDU POWER REACTOR

THORIUM SELF-SUFFICIENT FUEL CYCLE OF CANDU POWER REACTOR International Conference Nuclear Energy for New Europe 2005 Bled, Slovenia, September 5-8, 2005 ABSTRACT THORIUM SELF-SUFFICIENT FUEL CYCLE OF CANDU POWER REACTOR Boris Bergelson, Alexander Gerasimov Institute

More information

Science and Technology. Solutions, Separation Techniques, and the PUREX Process for Reprocessing Nuclear Waste

Science and Technology. Solutions, Separation Techniques, and the PUREX Process for Reprocessing Nuclear Waste Science and Technology Solutions, Separation Techniques, and the PUREX Process for Reprocessing Nuclear Waste Spent Fuel Rods General Accounting Office Fission products that emit beta and gamma radiation

More information

GASEOUS AND VOLATILE FISSION PRODUCT RELEASE FROM MOLTEN SALT NUCLEAR FUEL

GASEOUS AND VOLATILE FISSION PRODUCT RELEASE FROM MOLTEN SALT NUCLEAR FUEL GASEOUS AND VOLATILE FISSION PRODUCT RELEASE FROM MOLTEN SALT NUCLEAR FUEL Ian Scott Moltex Energy LLP, 6 th Floor Remo House, 310-312 Regent St., London Q1B 3BS, UK * Email of corresponding author: ianscott@moltexenergy.com

More information

Transmutation: reducing the storage time of spent fuel

Transmutation: reducing the storage time of spent fuel Open Access Journal Journal of Power Technologies 94 (Nuclear Issue) (2014) 27 34 journal homepage:papers.itc.pw.edu.pl Transmutation: reducing the storage time of spent fuel Piotr Mazgaj, Piotr Darnowski

More information

Wir schaffen Wissen heute für morgen Paul Scherrer Institut Recent Highlights from the Nuclear Engineering R&D at PSI

Wir schaffen Wissen heute für morgen Paul Scherrer Institut Recent Highlights from the Nuclear Engineering R&D at PSI Wir schaffen Wissen heute für morgen Paul Scherrer Institut Martin A. Zimmermann Recent Highlights from the Nuclear Engineering R&D at PSI NES Strategy for PAB 28. 2. 2013 Energy Strategy 2050 In 2011,

More information

HARMONIZED CONNECTION OF WASTE DISPOSAL AND PARTITIONING & TRANSMUTATION

HARMONIZED CONNECTION OF WASTE DISPOSAL AND PARTITIONING & TRANSMUTATION HARMONIZED CONNECTION OF WASTE DISPOSAL AND PARTITIONING & TRANSMUTATION Toshiaki Ohe Department of Nuclear Engineering, Tokai University Japan Ohe@keyaki.cc.u-tokai.ac.jp Abstract High-level radioactive

More information

The Diablo Canyon NPPT produces CO 2 -free electricity at half the state s (CA) average cost

The Diablo Canyon NPPT produces CO 2 -free electricity at half the state s (CA) average cost ECE_Energy for High-Tech Society 1 The Diablo Canyon NPPT produces CO 2 -free electricity at half the state s (CA) average cost Nuclear Energy: Power for a High-Tech Society ECE_Energy for High-Tech Society

More information

Technical Meeting on WP Regional integration of R&D on sustainable nuclear fuel cycles Part 2 Assessment of regional nuclear fuel cycle options

Technical Meeting on WP Regional integration of R&D on sustainable nuclear fuel cycles Part 2 Assessment of regional nuclear fuel cycle options Technical Meeting on WP2 2.2. Regional integration of R&D on sustainable nuclear fuel cycles Part 2 Assessment of regional nuclear fuel cycle options Rita Plukienė CENTER FOR PHYSICAL SCIENCES AND TECHNOLOGY

More information

SPentfuel characterisation Program for the Implementation of Repositories

SPentfuel characterisation Program for the Implementation of Repositories SPentfuel characterisation Program for the Implementation of Repositories WP2 & WP4 Development of measurement methods and techniques to characterise spent nuclear fuel Henrik Widestrand and Peter Schillebeeckx

More information

Modelling of a once-through MSR without online fuel processing

Modelling of a once-through MSR without online fuel processing Modelling of a once-through MSR without online fuel processing Kien Trinh University of Cambridge The 4 th Annual Serpent Users Group Meetings 19 th September 2014 OUTLINE 1 Background & motivation 2 The

More information

Assessment of Radioactivity Inventory a key parameter in the clearance for recycling process

Assessment of Radioactivity Inventory a key parameter in the clearance for recycling process Assessment of Radioactivity Inventory a key parameter in the clearance for recycling process MR2014 Symposium, April 8-10, 2014, Studsvik, Nyköping, Sweden Klas Lundgren Arne Larsson Background Studsvik

More information

Troitsk ADS project S.Sidorkin, E.Koptelov, L.Kravchuk, A.Rogov

Troitsk ADS project S.Sidorkin, E.Koptelov, L.Kravchuk, A.Rogov Troitsk ADS project S.Sidorkin, E.Koptelov, L.Kravchuk, A.Rogov Institute for Nuclear Research RAS, Moscow, Russia Outline Linac and experimental complex Pulse neutron sources and its infrastructure Development

More information

New Developments in Actinides Burning with Symbiotic LWR- HTR-GCFR Fuel Cycles

New Developments in Actinides Burning with Symbiotic LWR- HTR-GCFR Fuel Cycles IYNC 2008 Interlaken, Switzerland, 20 26 September 2008 Paper No. XYZ New Developments in Actinides Burning with Symbiotic LWR- HTR-GCFR Fuel Cycles Eleonora Bomboni 1 1 Department of Mechanical, Nuclear

More information

Fuel cycle studies on minor actinide transmutation in Generation IV fast reactors

Fuel cycle studies on minor actinide transmutation in Generation IV fast reactors Fuel cycle studies on minor actinide transmutation in Generation IV fast reactors M. Halász, M. Szieberth, S. Fehér Budapest University of Technology and Economics, Institute of Nuclear Techniques Contents

More information

Available online at ScienceDirect. Energy Procedia 71 (2015 )

Available online at   ScienceDirect. Energy Procedia 71 (2015 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 71 (2015 ) 97 105 The Fourth International Symposium on Innovative Nuclear Energy Systems, INES-4 High-Safety Fast Reactor Core Concepts

More information

Национальный исследовательский Томский политехнический университет

Национальный исследовательский Томский политехнический университет ЯДЕРНО ТОПЛИВНЫЙ ЦИКЛ Зяблова Н.Н, Карпова Н.Д. Национальный исследовательский Томский политехнический университет Томск, Россия Данная статья раскрывает понятие ядерно топливного цикла. Объясняет его

More information

Utilization of Thorium in Generation IV Reactors

Utilization of Thorium in Generation IV Reactors Utilization of Thorium in Generation IV Reactors PhD Thesis Hunor Sándor György Supervisor: Szabolcs Czifrus Budapest University of Technology and Economics Institute of Nuclear Techniques Budapest 2017

More information

Radioactive Inventory at the Fukushima NPP

Radioactive Inventory at the Fukushima NPP Radioactive Inventory at the Fukushima NPP G. Pretzsch, V. Hannstein, M. Wehrfritz (GRS) Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbh Schwertnergasse 1, 50667 Köln, Germany Abstract: The paper

More information

Radiochemistry in reactor

Radiochemistry in reactor Radiochemistry in reactor Readings: Radiochemistry in Light Water Reactors, Chapter 3 Speciation in irradiated fuel Utilization of resulting isotopics Fission Product Chemistry Fuel confined in reactor

More information

Development of depletion models for radionuclide inventory, decay heat and source term estimation in discharged fuel

Development of depletion models for radionuclide inventory, decay heat and source term estimation in discharged fuel Development of depletion models for radionuclide inventory, decay heat and source term estimation in discharged fuel S. Caruso, A. Shama, M. M. Gutierrez National Cooperative for the Disposal of Radioactive

More information

Decay heat calculations. A study of their validation and accuracy.

Decay heat calculations. A study of their validation and accuracy. Decay heat calculations A study of their validation and accuracy. Presented by : Dr. Robert W. Mills, UK National Nuclear Laboratory. Date: 01/10/09 The UK National Nuclear Laboratory The NNL (www.nnl.co.uk)

More information

Analysis of Multi-recycle Thorium Fuel Cycles in Comparison with Oncethrough

Analysis of Multi-recycle Thorium Fuel Cycles in Comparison with Oncethrough Analysis of Multi-recycle Thorium Fuel Cycles in Comparison with Oncethrough Fuel Cycles A Thesis Presented to The Academic Faculty by Lloyd Michael Huang In Partial Fulfillment of the Requirements for

More information

Neutronic Comparison Study Between Pb(208)-Bi and Pb(208) as a Coolant In The Fast Reactor With Modified CANDLE Burn up Scheme.

Neutronic Comparison Study Between Pb(208)-Bi and Pb(208) as a Coolant In The Fast Reactor With Modified CANDLE Burn up Scheme. Journal of Physics: Conference Series PAPER OPEN ACCESS Neutronic Comparison Study Between Pb(208)-Bi and Pb(208) as a Coolant In The Fast Reactor With Modified CANDLE Burn up Scheme. To cite this article:

More information

BN-800 HISTORY AND PERSPECTIVE

BN-800 HISTORY AND PERSPECTIVE BN-800 HISTORY AND PERSPECTIVE I. Yu. Krivitski Institute for Physics and Power Engineering, Russia, e-mail:stogov@ippe.obninsk.ru ABSTRACT The sodium cooled fast reactors are one of the most developed

More information

Actinide Chemistry. Associate Professor Susanna Wold

Actinide Chemistry. Associate Professor Susanna Wold Actinide Chemistry Associate Professor Susanna Wold Understanding fundamental chemistry and the nature of the periodic system Electronic configuration Oxidation states The metallic states Crystal structure

More information

Study of Burnup Reactivity and Isotopic Inventories in REBUS Program

Study of Burnup Reactivity and Isotopic Inventories in REBUS Program Study of Burnup Reactivity and Isotopic Inventories in REBUS Program T. Yamamoto 1, Y. Ando 1, K. Sakurada 2, Y. Hayashi 2, and K. Azekura 3 1 Japan Nuclear Energy Safety Organization (JNES) 2 Toshiba

More information

Profile SFR-64 BFS-2. RUSSIA

Profile SFR-64 BFS-2. RUSSIA Profile SFR-64 BFS-2 RUSSIA GENERAL INFORMATION NAME OF THE A full-scale physical model of a high-power BN-type reactor the «BFS-2» critical facility. FACILITY SHORT NAME BFS-2. SIMULATED Na, Pb, Pb-Bi,

More information

Sorption of Uranium (VI) to Graphite under Potential Repository Conditions

Sorption of Uranium (VI) to Graphite under Potential Repository Conditions Sorption of Uranium (VI) to Graphite under Potential Repository Conditions Gary Cerefice, Gregory Schmidt, and Cory Keith University of Nevada, Las Vegas GSA Annual Meeting 11/5/12 This work was supported

More information

more ?Learning about plutonium

more ?Learning about plutonium ?Learning about plutonium more What is plutonium? Plutonium (PU) is a hard white metal that looks like iron. It melts at 640 Celsius, turns into plutonium oxide when exposed to air and can catch fire.

More information

ORIENT-CYCLE EVOLUTIONAL RECYCLE CONCEPT WITH FAST REACTOR FOR MINIMISING HIGH-LEVEL WASTE

ORIENT-CYCLE EVOLUTIONAL RECYCLE CONCEPT WITH FAST REACTOR FOR MINIMISING HIGH-LEVEL WASTE ORIENT-CYCLE EVOLUTIONAL RECYCLE CONCEPT WITH FAST REACTOR FOR MINIMISING HIGH-LEVEL WASTE Naoyuki Takaki, Yoshihiko Shinoda, Masayuki Watanabe and Kazuo Yoshida 1 Japan Nuclear Cycle Development Institute

More information

Adaptation of Pb-Bi Cooled, Metal Fuel Subcritical Reactor for Use with a Tokamak Fusion Neutron Source

Adaptation of Pb-Bi Cooled, Metal Fuel Subcritical Reactor for Use with a Tokamak Fusion Neutron Source Adaptation of Pb-Bi Cooled, Metal Fuel Subcritical Reactor for Use with a Tokamak Fusion Neutron Source E. Hoffman, W. Stacey, G. Kessler, D. Ulevich, J. Mandrekas, A. Mauer, C. Kirby, D. Stopp, J. Noble

More information

IAEA-TECDOC-447 RADIOACTIVE WASTE MANAGEMENT GLOSSARY. Second Edition

IAEA-TECDOC-447 RADIOACTIVE WASTE MANAGEMENT GLOSSARY. Second Edition IAEA-TECDOC-447 RADIOACTIVE WASTE MANAGEMENT GLOSSARY Second Edition A TECHNICAL DOCUMENT ISSUED BY THE INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1988 RADIOACTIVE WASTE MANAGEMENT GLOSSARY, SECOND EDITION

More information

IAEA-TECDOC-948. Status report

IAEA-TECDOC-948. Status report IAEA-TECDOC-948 Status report The IAEA does not normally maintain stocks of reports in this series However, microfiche copies FOREWORD EDITORIAL NOTE In preparing this publication for press, staff of

More information

Experiments using transmutation set-ups. Speaker : Wolfram Westmeier for

Experiments using transmutation set-ups. Speaker : Wolfram Westmeier for Novi Sad, ad hoc Experiments using transmutation set-ups Speaker : Wolfram Westmeier for Participants of collaboration are JINR members or they have Agreements : Russia, Germany, Armenia, Australia, Belarus,

More information

Evaluation of Radiation Characteristics of Spent RBMK-1500 Nuclear Fuel Storage Casks during Very Long Term Storage

Evaluation of Radiation Characteristics of Spent RBMK-1500 Nuclear Fuel Storage Casks during Very Long Term Storage SESSION 7: Research and Development Required to Deliver an Integrated Approach Evaluation of Radiation Characteristics of Spent RBMK-1500 Nuclear Fuel Storage Casks during Very Long Term Storage A. Šmaižys,

More information

Radiotoxicity Characterization of Multi-Recycled Thorium Fuel

Radiotoxicity Characterization of Multi-Recycled Thorium Fuel Radiotoxicity Characterization of Multi-Recycled Thorium Fuel - 12394 F. Franceschini 1, C. Fiorina 2,4, M. Huang 3, B. Petrovic 3, M. Wenner 1, J. Krepel 4 1 Westinghouse Electric Company, Cranberry Township,

More information

Burn-up calculation of different thorium-based fuel matrixes in a thermal research reactor using MCNPX 2.6 code

Burn-up calculation of different thorium-based fuel matrixes in a thermal research reactor using MCNPX 2.6 code NUKLEONIKA 2014;59(4):129136 doi: 10.2478/nuka-2014-0017 ORIGINAL PAPER Burn-up calculation of different thorium-based fuel matrixes in a thermal research reactor using MCNPX 2.6 code Zohreh Gholamzadeh,

More information

Radioactive Wastes and Disposal Options

Radioactive Wastes and Disposal Options Radioactive Wastes and Disposal Options Joint EPS-SIF International School on Energy 2017, Varenna, Italy Bernhard Kienzler, Karlsruhe Institute of Technology (KIT), Institute of Nuclear Waste Disposal

More information

Transmutacja Jądrowa w Reaktorach Prędkich i Systemach Podkrytycznych Sterowanych Akceleratorami

Transmutacja Jądrowa w Reaktorach Prędkich i Systemach Podkrytycznych Sterowanych Akceleratorami Transmutacja Jądrowa w Reaktorach Prędkich i Systemach Podkrytycznych Sterowanych Akceleratorami Aleksander Polański Instytut Problemów Jądrowych Świerk-Otwock Contents Introduction Cross sections Models

More information

Lecture 1: RDCH 710 Introduction

Lecture 1: RDCH 710 Introduction Lecture 1: RDCH 710 Introduction Class organization Outcomes Grading Natural actinide species Th U Transuranic synthesis Lecture notes based on LANL radiochemistry course 1-1 Course overview The unique

More information

ASSESSMENT OF NUCLEAR POWER SCENARIOS ALLOWING FOR MATRIX BEHAVIOR IN RADIOLOGICAL IMPACT MODELING OF DISPOSAL SCENARIOS

ASSESSMENT OF NUCLEAR POWER SCENARIOS ALLOWING FOR MATRIX BEHAVIOR IN RADIOLOGICAL IMPACT MODELING OF DISPOSAL SCENARIOS ASSESSMENT OF NUCLEAR POWER SCENARIOS ALLOWING FOR MATRIX BEHAVIOR IN RADIOLOGICAL IMPACT MODELING OF DISPOSAL SCENARIOS Eric TRONCHE*, Hubert BOUSSIER, Jean PAVAGEAU. Commissariat à l Énergie Atomique

More information

AN OVERVIEW OF NUCLEAR ENERGY. Prof. Mushtaq Ahmad, MS, PhD, MIT, USA

AN OVERVIEW OF NUCLEAR ENERGY. Prof. Mushtaq Ahmad, MS, PhD, MIT, USA AN OVERVIEW OF NUCLEAR ENERGY Prof. Mushtaq Ahmad, MS, PhD, MIT, USA Outline of the Seminar 2 Motivation and Importance of Nuclear Energy Future Energy Planning in the Kingdom Current Status of Nuclear

More information

PWR AND WWER MOX BENCHMARK CALCULATION BY HELIOS

PWR AND WWER MOX BENCHMARK CALCULATION BY HELIOS PWR AND WWER MOX BENCHMARK CALCULATION BY HELIOS Radoslav ZAJAC 1,2), Petr DARILEK 1), Vladimir NECAS 2) 1 VUJE, Inc., Okruzna 5, 918 64 Trnava, Slovakia; zajacr@vuje.sk, darilek@vuje.sk 2 Slovak University

More information

STATUS AND ASSESSMENT REPORT ON ACTINIDE AND FISSION PRODUCT PARTITIONING AND TRANSMUTATION. On behalf of the OECD/NEA Working group on P&T

STATUS AND ASSESSMENT REPORT ON ACTINIDE AND FISSION PRODUCT PARTITIONING AND TRANSMUTATION. On behalf of the OECD/NEA Working group on P&T STATUS AND ASSESSMENT REPORT ON ACTINIDE AND FISSION PRODUCT PARTITIONING AND TRANSMUTATION On behalf of the OECD/NEA Working group on P&T L.H. Baetslé SCK CEN, Mol Belgium T. Wakabayashi JNC, Oarai Japan

More information

The Closed Nuclear Fuel Cycle for the Gas Cooled Fast Reactor

The Closed Nuclear Fuel Cycle for the Gas Cooled Fast Reactor The Closed Nuclear Fuel Cycle for the Gas Cooled Fast Reactor David van der Stok Supervisors: dr. ir. J.L. Kloosterman, dr. ir. W.F.G. van Rooijen and G. van Gendt Reactor Physics Department Faculty of

More information

Recent Developments of the

Recent Developments of the emeinschaft der Helmholtz-Ge Mitglied d Recent Developments of the HTR Code Package (HCP) Forschungszentrum Jülich, Germany Technical Meeting on Re-evaluation of Maximum Operating Temperatures g p g p

More information

Title: Assessment of activity inventories in Swedish LWRs at time of decommissioning

Title: Assessment of activity inventories in Swedish LWRs at time of decommissioning Paper presented at the seminar Decommissioning of nuclear facilities, Studsvik, Nyköping, Sweden, 14-16 September 2010. Title: Assessment of activity inventories in Swedish LWRs at time of decommissioning

More information

7) Applications of Nuclear Radiation in Science and Technique (1) Analytical applications (Radiometric titration)

7) Applications of Nuclear Radiation in Science and Technique (1) Analytical applications (Radiometric titration) 7) Applications of Nuclear Radiation in Science and Technique (1) (Radiometric titration) The radioactive material is indicator Precipitation reactions Complex formation reactions Principle of a precipitation

More information

AP1000 European 11. Radioactive Waste Management Design Control Document

AP1000 European 11. Radioactive Waste Management Design Control Document CHAPTER 11 RADIOACTIVE WASTE MANAGEMENT 11.1 Source Terms This section addresses the sources of radioactivity that are treated by the liquid and gaseous radwaste systems. Radioactive materials are generated

More information

Prototypes and fuel cycle options including transmutation

Prototypes and fuel cycle options including transmutation A S T R I D Prototypes and fuel cycle options including transmutation General introduction, GEN IV fast reactors Transmutation demonstration Fuel cycle Conclusions www.cea.fr DEN/CAD/DER/CPA Jean-Paul

More information

Radiometric Dating (tap anywhere)

Radiometric Dating (tap anywhere) Radiometric Dating (tap anywhere) Protons Neutrons Electrons Elements on the periodic table are STABLE Elements can have radioactive versions of itself called ISOTOPES!! Page 1 in your ESRT has your list!

More information

WM 00 Conference, February 27-March 2, 2000, Tucson, AZ

WM 00 Conference, February 27-March 2, 2000, Tucson, AZ COMPARISON OF THE IMMOBILIZING PROPERTIES OF RUSSIAN PHOSPHATE AND BOROSILICATE GLASSES ENSURING THE SAFE OPTIONS FOR LONG TERM UNDERGROUND STORAGE AND FINAL DISPOSAL OF WEAPON PLUTONIUM PRODUCTION WASTE

More information

Current State of Extraction Don t Be Deceived! Sharon F. Webb, Ph.D. Director of Quality Program

Current State of Extraction Don t Be Deceived! Sharon F. Webb, Ph.D. Director of Quality Program Current State of Extraction Don t Be Deceived! Sharon F. Webb, Ph.D. Director of Quality Program Overview Factors Purpose of Dissolution Quality Objectives of Program Effectiveness of Dissolution Technique

More information

NEUTRON PHYSICAL ANALYSIS OF SIX ENERGETIC FAST REACTORS

NEUTRON PHYSICAL ANALYSIS OF SIX ENERGETIC FAST REACTORS NEUTRON PHYSICAL ANALYSIS OF SIX ENERGETIC FAST REACTORS Peter Vertes Hungarian Academy of Sciences, Centre for Energy Research ABSTRACT Numerous fast reactor constructions have been appeared world-wide

More information

NUCLEAR MISSIONS FOR FUSION (TRANSMUTATION, FISSILE BREEDING & Pu DISPOSITION) W. M. Stacey June 18, 2003

NUCLEAR MISSIONS FOR FUSION (TRANSMUTATION, FISSILE BREEDING & Pu DISPOSITION) W. M. Stacey June 18, 2003 NUCLEAR MISSIONS FOR FUSION (TRANSMUTATION, FISSILE BREEDING & Pu DISPOSITION) W. M. Stacey June 18, 2003 SUMMARY There are potential applications of fusion neutron sources to drive sub-critical fission

More information

FIRST-Nuclides: Outcome, Open Questions and Steps Forward

FIRST-Nuclides: Outcome, Open Questions and Steps Forward FIRST-Nuclides: Outcome, Open Questions and Steps Forward IGD-TP Exchange Forum n 5, October 28-30th, 2014, Kalmar, Sweden Bernhard Kienzler, KIT-INE, Germany Institut für Nukleare Entsorgung (INE) Subatech

More information

Neutron Dose near Spent Nuclear Fuel and HAW after the 2007 ICRP Recommendations

Neutron Dose near Spent Nuclear Fuel and HAW after the 2007 ICRP Recommendations Neutron Dose near Spent Nuclear Fuel and HAW after the 2007 ICRP Recommendations Gunter Pretzsch Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbh Radiation and Environmental Protection Division

More information

EXPERIENCE OF TEST OPERATION FOR REMOVAL OF FISSION PRODUCT NUCLIDES IN TRU-LIQUID WASTE AND CONCENTRATED NITRIC ACID USING INORGANIC ION EXCHANGERS

EXPERIENCE OF TEST OPERATION FOR REMOVAL OF FISSION PRODUCT NUCLIDES IN TRU-LIQUID WASTE AND CONCENTRATED NITRIC ACID USING INORGANIC ION EXCHANGERS EXPERIENCE OF TEST OPERATION FOR REMOVAL OF FISSION PRODUCT NUCLIDES IN TRU-LIQUID WASTE AND CONCENTRATED NITRIC ACID USING INORGANIC ION EXCHANGERS ABSTRACT H. Tajiri, T. Mimori, K. Miyajima, T. Uchikoshi

More information

Nuclear transmutation strategies for management of long-lived fission products

Nuclear transmutation strategies for management of long-lived fission products PRAMANA c Indian Academy of Sciences Vol. 85, No. 3 journal of September 2015 physics pp. 517 523 Nuclear transmutation strategies for management of long-lived fission products S KAILAS 1,2,, M HEMALATHA

More information

Carbon Dating. Principles of Radiometric Dating. 03 nuclear decay and the standard model June 05, 2013

Carbon Dating. Principles of Radiometric Dating. 03 nuclear decay and the standard model June 05, 2013 Principles of Radiometric Dating http://facstaff.gpc.edu/~pgore/geology/geo102/radio.htm Naturally occurring radioactive materials break down into other materials at known rates. This is known as radioactive

More information