Comparison of U-Pu and Th-U cycles in MSR

Size: px
Start display at page:

Download "Comparison of U-Pu and Th-U cycles in MSR"

Transcription

1 WIR SCHAFFEN WISSEN HEUTE FÜR MORGEN Jiri Krepel :: Advanced Nuclear System Group :: Paul Scherrer Institut Comparison of U-Pu and Th-U cycles in MSR ThEC 2018 conference October 2018, Brussels, Belgium

2 Aim: objective comparison of the U-Pu & Th-U Purely from neutronic perspective URANUS THOR / Page 2

3 General properties of 238 U and 232 Th More is better Less is better 238 U 232 Th reference Abundance on Earth 2-4 times less Decay half-life 4.5 bn years 14 bn years Known reserves in ,718,400 tonnes 6,355,000 tonnes So far mined 2,797,435 tonnes??? Direct availability enrichment waste 1,188,273 tonnes??? Karlsruhe nuclide card Fissile by thermal neutrons no no Any nuclear data library Minimal neutron energy for fission Share of direct fission Transmutable to Intermediate product decay half-life Fissile brother 1.5MeV 2.1 MeV (up to 10% of all fission) (up to 3% of all fission) 239 Pu via 239 Np fission/critical-energy-threshold-energy-for-fission/ Own calculations 233 U via 233 Pa Karlsruhe nuclide card Karlsruhe nuclide card 2.4 days 27 days 235 U (0.7% of natural U) No, must rely on strangers Page 3

4 General properties of 239 Pu and 233 U More is better Less is better 239 Pu 233 U reference Natural abundance Decay half-life and decay product Annual production Produced until 2017 Separated until years, 235 U years, 228 Th cca 70 tonnes of LWR Pu??? 1,300 tonnes of LWR Pu??? 400 tonnes of LWR Pu (130 tonnes recycled) no no ~2 tonnes Karlsruhe nuclide card Fission probability in fast and (thermal) reactors 83% (62%) 90% Capture probability in thermal and (fast) reactors 38% (17%) 10% Produced neutrons per fission (ν) Excess neutrons ν-2 (-2 for fission and breeding) Own calculations Own calculations Own calculations Own calculations Page 4

5 Comparison of U-Pu & Th-U in MSR MS cooled not really MSR Page 5

6 Two studies & two compared characteristics 1. Comparison of U-Pu and Th-U equilibrium cycle in 16 different reactors at infinite lattice level 2. Comparison of MSR concept options based on 5 salts and 6 moderators and 8 salts in unmoderated core. I. How good is the equilibrium cycle performance. II. How to reach the equilibrium cycle. Page 6

7 Equilibrium cycle = repetitive recycling (EQL0D) When fuel cycle parameters: power, reprocessing scheme, feed composition, etc. are fixed, reactor will converge to equilibrium state / fuel composition. The composition depends on feed type 238 U or 232 Th and on the reactor spectrum. The spectrum is determined by scattering materials. Equilibrium composition and spectrum determine the multiplication factor. Equilibrium is inherent core state. (composition, spectrum, reactivity) [Hombourger et al., EQL0D paper submitted to Ann. Nucl. Energy, 2018] Equilibrium reactivity indicates neutron efficiency of the core and its capability for breeding in closed fuel cycle. Page 7

8 Assumptions: 1) infinite lattice. 2) neglected fission products. 3) design as is, no additional optimization. 4) ENDF/B-VII.0 8 thermal and 8 fast reactors were compared in both U-Pu and Th-U cycles. Equilibrium cycle comparison for 16 reactors Křepel, J., Losa, E., Closed U-Pu and Th-U cycle in sixteen selected reactors: evaluation of major equilibrium features. Submitted to Ann. Nucl. Energy. Page 8

9 Infinite multiplication factor Equilibrium multiplication factor (reactivity) Better performance: Th-U in thermal and U-Pu in fast spectra. Graphite moderated MSR only in Th-U. Fluorides fast MSFR possible in both cycles (equal performance). Chlorides fast MSR max. reactivity in both cycles. B&B possible for U-Pu with react. gain option with react. gain option nominal value Th-U nominal value U-Pu Th-U cycle U-Pu cycle Page 9

10 Additional insight: excess reactivity break-down For better understanding of the equilibrium reactivity excess, it was decomposed this way: 2 R R R Th Th F n,2n 2R 232 total Th F n,2n R R other _ Ac structural C C R 2R 232 total Th F n,2n Available neutrons Bonus from fertile Parasitic captures It was derived from neutron balance equation: k inf R R total P total F 2R R total C total n,2n total Rn,2n total total total Th other _ Ac structural Using four assumptions: 1) RP vrf 2) RC RC RC RC 232 total Th 3) Rn,2 n Rn,2 n (main fertile ~ 90% of all (n,2n) reactions) Th Th total Th 4) R R R R (equilibrium of non-th Ac production and destruction) C n, 2n F F 232 Page 10

11 Isotope-wise break-down of v-bar Isotope-wise break-down of v-bar Available neutrons do not differ between reactors. Available neutrons hypothetical reactivity U Othrer Ac Cm Am Pu 240Pu 239Pu 2 ν = 2.5 in Th-U cycle U-Pu cycle ν = 2.9 in U-Pu cycle Hypothetical reactivity excess: pcm in Th-U pcm in U-Pu cycle (2/3) Th Othrer Ac Pu 237Np U 234U 233U Th-U cycle Page 11

12 232 Th fission and (n,2n) reactions relative to the total fission rate (%) 238 U fission and (n,2n) reactions relative to the total fission rate (%) Bonus from fertile strongly differ between reactors. Bonus from fertile material R R (n,2n) (n,f) 2R Th Th F n,2n 2R 232 total Th F n,2n It is up to 4 % in Th-U cycle 6 3 U238 It is up to 15 % in U-Pu cycle Bonus reactivity 3 in fast spectrum: pcm in Th-U pcm in U-Pu 0 cycle (2/5) (n,2n) (n,f) Th232 Page 12

13 Isotope-wise break-down of parasitic capture rate relative to the total fission rate (%) Isotope-wise break-down of parasitic capture rate relative to the total fission rate (%) Parasitic captures strongly differ between reactors. Parasitic neutron captures by actinides R R other _ Ac C 232 total Th F 2Rn,2n Higher Ac Cm Am Pu 240Pu 239Np 239Pu 20% in fast & up to 40 % in thermal Th-U cycle. 30% in fast & up to 120 % in thermal U-Pu cycle U-Pu cycle Higher Ac all Pu 237Np U 234U 233Pa 233U Reactivity loss in Th-U is much lower (1/3 in thermal, (2/3 in fast case) Th-U cycle Page 13

14 Reactivity (PCM) Reactivity (PCM) Th-U: lower ν and lower parasitic capture of 233 U, breeding also in thermal spectrum. U-Pu: higher ν and higher parasitic capture of 239 Pu, better performance in fast spectra. Th-U high efficiency. U-Pu high economy. Overall excess reactivity R R Th Th F 2Rn,2n 232 total Th F 2Rn,2n R Hypoth. ρ 239Pu 240Pu Pu Am Cm 239Np Other Ac Structural Excess ρ U-Pu cycle Hypoth. ρ 233U 234U U 237Np Pu 233Pa Other Ac Structural Excess ρ Th-U cycle R other _ Ac structural C C 232 total Th RF 2Rn,2n Page 14

15 Ac density in the core (kg/m 3 ) or migration area (cm 2 ) Ac density in the core (kg/m 3 ) or migration area (cm 2 ) Comparable M for both cycles; it differs between reactors. MSFR: small M caused by Li and F scattering and mass. Graphite based MSR higher M caused by low fuel density. MCFR: highest M, absence of scattering resonances, lower density than MSFR. Migration area M (determines with k inf the core size) Ac density 239Pu density Migration area Ac density 233U density Migration area Pu density in the core (kg/m 3 ) U-Pu cycle 233 U density in the core (kg/m 3 ) Th-U cycle Page 15

16 Other salts and moderators? 5 fluoride salts were analyzed with 6 selected moderators. Equilibrium k inf is presented as a function of salt share and channel radius. FLi salt is neutronically the best. Good results for Be, BeO, and D2O; however, they are not compatible with the salt without cladding (SiC..?). Hydrogen based moderators ZrH and H 2 O not applicable for closed cycle. Graphite is not the best moderator, but the only one directly compatible with salt. [Hombourger, B.A., Ph.D. Thesis. EPFL Lausanne, Switzerland.] Page 16

17 Neutronics impact of cladding LiF salt combined with Be and D 2 O moderators was selected to analyze the impact of cladding: Hastelloy, SS316, and SiC. LiF-ThF 4 Only SiC seems to have acceptable low parasitic neutron capture. From purely neutronics perspective we can design Heavy Water Boiling Thermal Thorium MSR HWB-TT-MSR Page 17

18 Reactivity (PCM) Other salts without moderator? 8 salts were evaluated: FLi, FLiBe, FLiNa, FNaBe, FNaK, NaCl (nat), Na 37 Cl, Ac 37 Cl. 32% AcCl 3 32% AcCl 3 100% AcCl 3 4 options in Th-U (reasonable melting point and reactivity): FLi, FLiNa, FNaK, Na 37 Cl. Na 37 Cl provides the highest excess in Th-U of pcm. FLi is best fluoride salt with 6000 pcm Hyp. rho 233U 234U 235-9U 237Np Pu 233Pa Other Ac FPs Salt Excess ρ Th-U cycle Page 18

19 Reactivity (PCM) Other salts without moderator? 8 salts were evaluated: FLi, FLiBe, FLiNa, FNaBe, FNaK, NaCl (nat), Na 37 Cl, Ac 37 Cl. 32% AcCl 3 32% AcCl 3 100% AcCl 3 5 options in U-Pu (reasonable melting point and reactivity): Fli, FLiNa, FNaK, NaCl (nat), Na 37 Cl. Na 37 Cl provides the highest overall excess of pcm. FLi, FLiNa, FNaK have similar performance of ~6000pcm, PuF 3 solubility is the PuF 3 solubility? Hyp. rho 239Pu 240Pu 241-2Pu Cm Am 239Np Other Ac FPs Salt Excess ρ U-Pu cycle major limiting issue. Page 19

20 Relative fuel radiotoxicity of Th-U and U-Pu cycles Th-U closed cycle provides in general lower radiotoxicity. Nonetheless, Th-U has secondary radiotoxicity peak but U-Pu not. It is predominantly caused by 238 Pu decay chain. 238 Pu-> 234 U-> 230 Th-> This result is exclusively valid for cores with equal salt volume, burnup and treatment! Th-U better U-Pu better Page 20

21 Using 1m hastelloy reflector core size was estimated for single-fluid designs. It was compared with classical fast reactors Minimal core size estimate in equilibrium cycle and MSBR (ORNL design, 13% salt). MSFR in Th-U (4) is compact. MSFR in U-Pu (5) is slightly bigger. MCFR in U-Pu (6) is comparable to MSFR in U-Pu (5). MCFR in Th-U (7) is quite big. Page 21

22 Breed and Burn cycle B&B cycle is possible only with 37 Cl salts (high reactivity excess according to ENDF/B VII.0). Fresh Fuel Solid fuel reactor Spent Fuel The B&B cycle in liquid fuel reactor substantially differs from solid fuel. Fresh Fuel Liquid fuel reactor Spent Fuel Single-fluid layout of the core may be bulky (transparent cores). Illustration of burnup distribution. The fuel is in reality mixed. Multi-fluid layout can possibly reduce the size and increase the final burnup. Fresh Fuel Mulit-Liquid fuel reactor Spent Fuel Hombourger, B., Křepel, J., Mikityuk, K., Pautz, A., On the Feasibility of Breed-and-Burn Fuel Cycles in Molten Salt Reactors, in: Proceedings of FR17. Yekaterinburg, Russian Federation. Page 22

23 Hombourger, B. et al., Fuel Cycle Analysis of a Molten Salt Reactor for Breed-and-Burn Mode. ICAPP France. Breed and Burn cycle Th-U versus U-Pu B&B is practically not possible in Th-U cycle. It is only possible in mixed U-Pu & Th-U cycle. The performance increases in U-Pu cycle with growing UCl 3 share in the core. [FPs % share in the salt] Page 23

24 Transition to equilibrium cycle 5 major existing fissile materials to start the cycle Material RG_Pu LEU HEU U233 WG_Pu Fissile isotope(s) Fissile isotope share Availability 239 Pu, 241 Pu ~60% medium 235 U 1-20% high 235 U 21-95% high 233 U % low 239 Pu >93% medium Proliferation risk medium medium high high high Page 24

25 RG_Pu and LEU as initial fuel load Both RG_Pu and LEU are very natural option to start the U-Pu cycle. Fuel composition - initial cycles (10% 235 U equivalent) U-Pu 235 U 238 U 10% 235 U enriched U U-Pu LWR Pu vector 238 U MOX fuel (+MA) Starting Th-U cycle with LEU induces 238 U presence in the core. Th-U 235 U 238 U 232 Th Th+20% 235 U enriched U Starting Th-U cycle with RG_Pu, LEU or their mixture introduces strong perturbation. Pu and 235 & 238 U are not presented in the salt at equilibrium Th-U cycle. Th-U LWR Pu vector 232 Th Th+Pu (+MA) Page 25

26 Transition to Th-U cycle in MSFR and U-Pu MCFR Equilibrium: MSFR Th-U MCFR U-Pu MCFR Th-U (PuCl 3 ) (ThCl 4 ) (UCl 3 ) Page 26

27 Summary of neutronics comparison U-Pu cycle Th-U cycle Reserves of 238 U and 232 Th: no argument for preference, we are lucky to have both. Features of 238 U and 232 Th: slightly better (direct fission, etc.) Features of 239 Pu and 233 U: higher ν, higher capture lower ν, lower capture Thermal spectrum capability: no yes Fast spectrum capability: yes yes Breed and burn capability: yes no Radiotoxicity at equal conditions: initially higher lower Core size in chlorides (MCFR): smaller substantially bigger Core size in fluorides (MSFR): slightly bigger smaller Transition to eql. In MSFR: smooth (if possible) challenging Transition to eql. In MCFR: smooth smooth Page 27

28 Wir schaffen Wissen heute für morgen Thank you for your attention. Page 28

Modelling of a once-through MSR without online fuel processing

Modelling of a once-through MSR without online fuel processing Modelling of a once-through MSR without online fuel processing Kien Trinh University of Cambridge The 4 th Annual Serpent Users Group Meetings 19 th September 2014 OUTLINE 1 Background & motivation 2 The

More information

Fuel cycle studies on minor actinide transmutation in Generation IV fast reactors

Fuel cycle studies on minor actinide transmutation in Generation IV fast reactors Fuel cycle studies on minor actinide transmutation in Generation IV fast reactors M. Halász, M. Szieberth, S. Fehér Budapest University of Technology and Economics, Institute of Nuclear Techniques Contents

More information

MSR concepts. Jan Leen Kloosterman, TU Delft. Molten Salt Reactor Experiment https://en.wikipedia.org/wiki/molten Salt_Reactor_Experiment

MSR concepts. Jan Leen Kloosterman, TU Delft. Molten Salt Reactor Experiment https://en.wikipedia.org/wiki/molten Salt_Reactor_Experiment MSR concepts Jan Leen Kloosterman, TU Delft 2 Molten Salt Reactor Experiment 1965-1969 https://en.wikipedia.org/wiki/molten Salt_Reactor_Experiment See movie: http://energyfromthorium.com/2016/10/16/ornl

More information

Molten Salt Reactor related research in Switzerland

Molten Salt Reactor related research in Switzerland Wir schaffen Wissen heute für morgen Molten Salt Reactor related research in Switzerland Jiri Krepel, Boris Hombourger, Carlo Fiorina, Sergii Nichenko, Jarmo Kalilainen, Arnoldo Badillo, Peter Burgherr,

More information

Nuclear Data for Reactor Physics: Cross Sections and Level Densities in in the Actinide Region. J.N. Wilson Institut de Physique Nucléaire, Orsay

Nuclear Data for Reactor Physics: Cross Sections and Level Densities in in the Actinide Region. J.N. Wilson Institut de Physique Nucléaire, Orsay Nuclear Data for Reactor Physics: Cross Sections and Level Densities in in the Actinide Region J.N. Wilson Institut de Physique Nucléaire, Orsay Talk Plan Talk Plan The importance of innovative nuclear

More information

Advanced Heavy Water Reactor. Amit Thakur Reactor Physics Design Division Bhabha Atomic Research Centre, INDIA

Advanced Heavy Water Reactor. Amit Thakur Reactor Physics Design Division Bhabha Atomic Research Centre, INDIA Advanced Heavy Water Reactor Amit Thakur Reactor Physics Design Division Bhabha Atomic Research Centre, INDIA Design objectives of AHWR The Advanced Heavy Water Reactor (AHWR) is a unique reactor designed

More information

Nuclear Fission. 1/v Fast neutrons. U thermal cross sections σ fission 584 b. σ scattering 9 b. σ radiative capture 97 b.

Nuclear Fission. 1/v Fast neutrons. U thermal cross sections σ fission 584 b. σ scattering 9 b. σ radiative capture 97 b. Nuclear Fission 1/v Fast neutrons should be moderated. 235 U thermal cross sections σ fission 584 b. σ scattering 9 b. σ radiative capture 97 b. Fission Barriers 1 Nuclear Fission Q for 235 U + n 236 U

More information

Study on SiC Components to Improve the Neutron Economy in HTGR

Study on SiC Components to Improve the Neutron Economy in HTGR Study on SiC Components to Improve the Neutron Economy in HTGR Piyatida TRINURUK and Assoc.Prof.Dr. Toru OBARA Department of Nuclear Engineering Research Laboratory for Nuclear Reactors Tokyo Institute

More information

REACTOR PHYSICS ASPECTS OF PLUTONIUM RECYCLING IN PWRs

REACTOR PHYSICS ASPECTS OF PLUTONIUM RECYCLING IN PWRs REACTOR PHYSICS ASPECTS OF PLUTONIUM RECYCLING IN s Present address: J.L. Kloosterman Interfaculty Reactor Institute Delft University of Technology Mekelweg 15, NL-2629 JB Delft, the Netherlands Fax: ++31

More information

TRANSMUTATION PERFORMANCE OF MOLTEN SALT VERSUS SOLID FUEL REACTORS (DRAFT)

TRANSMUTATION PERFORMANCE OF MOLTEN SALT VERSUS SOLID FUEL REACTORS (DRAFT) 15 th International Conference on Nuclear Engineering Nagoya, Japan, April 22-26, 2007 ICONE15-10515 TRANSMUTATION PERFORMANCE OF MOLTEN SALT VERSUS SOLID FUEL REACTORS (DRAFT) Björn Becker University

More information

The discovery of nuclear reactions need not bring about the destruction of mankind any more than the discovery of matches - Albert Einstein

The discovery of nuclear reactions need not bring about the destruction of mankind any more than the discovery of matches - Albert Einstein The world has achieved brilliance without wisdom, power without conscience. Ours is a world of nuclear giants and ethical infants. - Omar Bradley (US general) The discovery of nuclear reactions need not

More information

Lesson 14: Reactivity Variations and Control

Lesson 14: Reactivity Variations and Control Lesson 14: Reactivity Variations and Control Reactivity Variations External, Internal Short-term Variations Reactivity Feedbacks Reactivity Coefficients and Safety Medium-term Variations Xe 135 Poisoning

More information

Nuclear Theory - Course 127 EFFECTS OF FUEL BURNUP

Nuclear Theory - Course 127 EFFECTS OF FUEL BURNUP Nuclear Theory - Course 127 EFFECTS OF FUEL BURNUP The effect of fuel burnup wa~ considered, to some extent, in a previous lesson. During fuel burnup, U-235 is used up and plutonium is produced and later

More information

Ciclo combustibile, scorie, accelerator driven system

Ciclo combustibile, scorie, accelerator driven system Ciclo combustibile, scorie, accelerator driven system M. Carta, C. Artioli ENEA Fusione e Fissione Nucleare: stato e prospettive sulle fonti energetiche nucleari per il futuro Layout of the presentation!

More information

THORIUM SELF-SUFFICIENT FUEL CYCLE OF CANDU POWER REACTOR

THORIUM SELF-SUFFICIENT FUEL CYCLE OF CANDU POWER REACTOR International Conference Nuclear Energy for New Europe 2005 Bled, Slovenia, September 5-8, 2005 ABSTRACT THORIUM SELF-SUFFICIENT FUEL CYCLE OF CANDU POWER REACTOR Boris Bergelson, Alexander Gerasimov Institute

More information

TRANSMUTATION OF CESIUM-135 WITH FAST REACTORS

TRANSMUTATION OF CESIUM-135 WITH FAST REACTORS TRANSMUTATION OF CESIUM-3 WITH FAST REACTORS Shigeo Ohki and Naoyuki Takaki O-arai Engineering Center Japan Nuclear Cycle Development Institute (JNC) 42, Narita-cho, O-arai-machi, Higashi-Ibaraki-gun,

More information

Potential of thorium molten salt reactors : detailed calculations and concept evolution with a view to large scale energy production

Potential of thorium molten salt reactors : detailed calculations and concept evolution with a view to large scale energy production Potential of thorium molten salt reactors : detailed calculations and concept evolution with a view to large scale energy production A. Nuttin, D. Heuer, A. Billebaud, R. Brissot, C. Le Brun, E. Liatard,

More information

Neutronic Analysis and Transmutation Performance of Th-based Molten Salt Fuels

Neutronic Analysis and Transmutation Performance of Th-based Molten Salt Fuels Neutronic Analysis and Transmutation Performance of Th-based Molten Salt Fuels Sang-In Bak Yacine KADI, Jesús Pérez CURBELO, Claudio TENREIRO, Jong-Seo CHAI, Seung-Woo HONG Sungkyunkwan University Motivation

More information

Wir schaffen Wissen heute für morgen Paul Scherrer Institut Recent Highlights from the Nuclear Engineering R&D at PSI

Wir schaffen Wissen heute für morgen Paul Scherrer Institut Recent Highlights from the Nuclear Engineering R&D at PSI Wir schaffen Wissen heute für morgen Paul Scherrer Institut Martin A. Zimmermann Recent Highlights from the Nuclear Engineering R&D at PSI NES Strategy for PAB 28. 2. 2013 Energy Strategy 2050 In 2011,

More information

Master Thesis Report. Frederik de Vogel PNR May 18, 2011

Master Thesis Report. Frederik de Vogel PNR May 18, 2011 Parametric Studies on the Moderation Ratio of a 2-zone 1-fluid Molten Salt Reactor Finding high power density within safety and sustainability constraints Master Thesis Report by PNR-131-2011-006 May 18,

More information

ASSESSMENT OF THE EQUILIBRIUM STATE IN REACTOR-BASED PLUTONIUM OR TRANSURANICS MULTI-RECYCLING

ASSESSMENT OF THE EQUILIBRIUM STATE IN REACTOR-BASED PLUTONIUM OR TRANSURANICS MULTI-RECYCLING ASSESSMENT OF THE EQUILIBRIUM STATE IN REACTOR-BASED PLUTONIUM OR TRANSURANICS MULTI-RECYCLING T.K. Kim, T.A. Taiwo, J.A. Stillman, R.N. Hill and P.J. Finck Argonne National Laboratory, U.S. Abstract An

More information

2017 Water Reactor Fuel Performance Meeting September 10 (Sun) ~ 14 (Thu), 2017 Ramada Plaza Jeju Jeju Island, Korea

2017 Water Reactor Fuel Performance Meeting September 10 (Sun) ~ 14 (Thu), 2017 Ramada Plaza Jeju Jeju Island, Korea Neutronic evaluation of thorium-uranium fuel in heavy water research reactor HADI SHAMORADIFAR 1,*, BEHZAD TEIMURI 2, PARVIZ PARVARESH 1, SAEED MOHAMMADI 1 1 Department of Nuclear physics, Payame Noor

More information

Nuclear Fuel Cycle and WebKOrigen

Nuclear Fuel Cycle and WebKOrigen 10th Nuclear Science Training Course with NUCLEONICA Institute of Nuclear Science of Ege University, Cesme, Izmir, Turkey, 8th-10th October 2008 Nuclear Fuel Cycle and WebKOrigen Jean Galy European Commission

More information

The Effect of Burnup on Reactivity for VVER-1000 with MOXGD and UGD Fuel Assemblies Using MCNPX Code

The Effect of Burnup on Reactivity for VVER-1000 with MOXGD and UGD Fuel Assemblies Using MCNPX Code Journal of Nuclear and Particle Physics 2016, 6(3): 61-71 DOI: 10.5923/j.jnpp.20160603.03 The Effect of Burnup on Reactivity for VVER-1000 with MOXGD and UGD Fuel Assemblies Using MCNPX Code Heba K. Louis

More information

Error Estimation for ADS Nuclear Properties by using Nuclear Data Covariances

Error Estimation for ADS Nuclear Properties by using Nuclear Data Covariances Error Estimation for ADS Nuclear Properties by using Nuclear Data Covariances Kasufumi TSUJIMOTO Center for Proton Accelerator Facilities, Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken

More information

Neutronic Comparison Study Between Pb(208)-Bi and Pb(208) as a Coolant In The Fast Reactor With Modified CANDLE Burn up Scheme.

Neutronic Comparison Study Between Pb(208)-Bi and Pb(208) as a Coolant In The Fast Reactor With Modified CANDLE Burn up Scheme. Journal of Physics: Conference Series PAPER OPEN ACCESS Neutronic Comparison Study Between Pb(208)-Bi and Pb(208) as a Coolant In The Fast Reactor With Modified CANDLE Burn up Scheme. To cite this article:

More information

Neutronic analysis of SFR lattices: Serpent vs. HELIOS-2

Neutronic analysis of SFR lattices: Serpent vs. HELIOS-2 Neutronic analysis of SFR lattices: Serpent vs. HELIOS-2 E. Fridman 1, R. Rachamin 1, C. Wemple 2 1 Helmholtz Zentrum Dresden Rossendorf 2 Studsvik Scandpower Inc. Text optional: Institutsname Prof. Dr.

More information

Cambridge University Press An Introduction to the Engineering of Fast Nuclear Reactors Anthony M. Judd Excerpt More information

Cambridge University Press An Introduction to the Engineering of Fast Nuclear Reactors Anthony M. Judd Excerpt More information INTRODUCTION WHAT FAST REACTORS CAN DO Chain Reactions Early in 1939 Meitner and Frisch suggested that the correct interpretation of the results observed when uranium is bombarded with neutrons is that

More information

Transmutation of Minor Actinides in a Spherical

Transmutation of Minor Actinides in a Spherical 1 Transmutation of Minor Actinides in a Spherical Torus Tokamak Fusion Reactor Feng Kaiming Zhang Guoshu Fusion energy will be a long-term energy source. Great efforts have been devoted to fusion research

More information

Core Physics Second Part How We Calculate LWRs

Core Physics Second Part How We Calculate LWRs Core Physics Second Part How We Calculate LWRs Dr. E. E. Pilat MIT NSED CANES Center for Advanced Nuclear Energy Systems Method of Attack Important nuclides Course of calc Point calc(pd + N) ϕ dn/dt N

More information

External neutrons sources for fissionbased

External neutrons sources for fissionbased External neutrons sources for fissionbased reactors S. David, CNRS/IN2P3/IPN Orsay sdavid@ipno.in2p3.fr S. David,external neutron source for fission-based reactors, IZEST, Orsay, Nov 2017 1 World Energy

More information

Recycling Spent Nuclear Fuel Option for Nuclear Sustainability and more proliferation resistance In FBR

Recycling Spent Nuclear Fuel Option for Nuclear Sustainability and more proliferation resistance In FBR Recycling Spent Nuclear Fuel Option for Nuclear Sustainability and more proliferation resistance In FBR SIDIK PERMANA a, DWI IRWANTO a, MITSUTOSHI SUZUKI b, MASAKI SAITO c, ZAKI SUUD a a Nuclear Physics

More information

MA/LLFP Transmutation Experiment Options in the Future Monju Core

MA/LLFP Transmutation Experiment Options in the Future Monju Core MA/LLFP Transmutation Experiment Options in the Future Monju Core Akihiro KITANO 1, Hiroshi NISHI 1*, Junichi ISHIBASHI 1 and Mitsuaki YAMAOKA 2 1 International Cooperation and Technology Development Center,

More information

Impact of the MSBR concept technology on long-lived radio-toxicity and proliferation resistance

Impact of the MSBR concept technology on long-lived radio-toxicity and proliferation resistance Impact of the MSBR concept technology on long-lived radio-toxicity and proliferation resistance C. Le Brun, L. Mathieu, D. Heuer, A. Nuttin To cite this version: C. Le Brun, L. Mathieu, D. Heuer, A. Nuttin.

More information

Energy. on this world and elsewhere. Visiting today: Prof. Paschke

Energy. on this world and elsewhere. Visiting today: Prof. Paschke Energy on this world and elsewhere Visiting today: Prof. Paschke Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) 924-4792 email: cates@virginia.edu Course web site available at www.phys.virginia.edu,

More information

Study of Burnup Reactivity and Isotopic Inventories in REBUS Program

Study of Burnup Reactivity and Isotopic Inventories in REBUS Program Study of Burnup Reactivity and Isotopic Inventories in REBUS Program T. Yamamoto 1, Y. Ando 1, K. Sakurada 2, Y. Hayashi 2, and K. Azekura 3 1 Japan Nuclear Energy Safety Organization (JNES) 2 Toshiba

More information

Activation Calculation for a Fusion-driven Sub-critical Experimental Breeder, FDEB

Activation Calculation for a Fusion-driven Sub-critical Experimental Breeder, FDEB Activation Calculation for a Fusion-driven Sub-critical Experimental Breeder, FDEB K. M. Feng (Southwestern Institute of Physics, China) Presented at 8th IAEA Technical Meeting on Fusion Power Plant Safety

More information

(CE~RN, G!E21ZZMA?ZOEWSPRC)

(CE~RN, G!E21ZZMA?ZOEWSPRC) DRN PROGRAM ON LONG-LIVED WASTE TRANSMUTATION STUDIES : TRANSMUTATION POTENTIAL OF CURRENT AND INNOVATIVE SYSTEMS M. Salvatores, A. Zaetta, C. Girard, M. Delpech, I. Slessarev, J. Tommasi (CE~RN, G!E21ZZMA?ZOEWSPRC)

More information

Proliferation-Proof Uranium/Plutonium Fuel Cycles Safeguards and Non-Proliferation

Proliferation-Proof Uranium/Plutonium Fuel Cycles Safeguards and Non-Proliferation Proliferation-Proof Uranium/Plutonium Fuel Cycles Safeguards and Non-Proliferation SUB Hamburg by Gunther KeBler A 2012/7138 Scientific Publishing id- Contents 1 Nuclear Proliferation and IAEA-Safeguards

More information

Available online at ScienceDirect. Energy Procedia 71 (2015 )

Available online at   ScienceDirect. Energy Procedia 71 (2015 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 71 (2015 ) 97 105 The Fourth International Symposium on Innovative Nuclear Energy Systems, INES-4 High-Safety Fast Reactor Core Concepts

More information

Fundamentals of Nuclear Reactor Physics

Fundamentals of Nuclear Reactor Physics Fundamentals of Nuclear Reactor Physics E. E. Lewis Professor of Mechanical Engineering McCormick School of Engineering and Applied Science Northwestern University AMSTERDAM BOSTON HEIDELBERG LONDON NEW

More information

Adaptation of Pb-Bi Cooled, Metal Fuel Subcritical Reactor for Use with a Tokamak Fusion Neutron Source

Adaptation of Pb-Bi Cooled, Metal Fuel Subcritical Reactor for Use with a Tokamak Fusion Neutron Source Adaptation of Pb-Bi Cooled, Metal Fuel Subcritical Reactor for Use with a Tokamak Fusion Neutron Source E. Hoffman, W. Stacey, G. Kessler, D. Ulevich, J. Mandrekas, A. Mauer, C. Kirby, D. Stopp, J. Noble

More information

Study on Nuclear Transmutation of Nuclear Waste by 14 MeV Neutrons )

Study on Nuclear Transmutation of Nuclear Waste by 14 MeV Neutrons ) Study on Nuclear Transmutation of Nuclear Waste by 14 MeV Neutrons ) Takanori KITADA, Atsuki UMEMURA and Kohei TAKAHASHI Osaka University, Graduate School of Engineering, Division of Sustainable Energy

More information

DETERMINATION OF THE EQUILIBRIUM COMPOSITION OF CORES WITH CONTINUOUS FUEL FEED AND REMOVAL USING MOCUP

DETERMINATION OF THE EQUILIBRIUM COMPOSITION OF CORES WITH CONTINUOUS FUEL FEED AND REMOVAL USING MOCUP Supercomputing in Nuclear Applications (M&C + SNA 2007) Monterey, California, April 15-19, 2007, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2007) DETERMINATION OF THE EQUILIBRIUM COMPOSITION

More information

Analysis of Multi-recycle Thorium Fuel Cycles in Comparison with Oncethrough

Analysis of Multi-recycle Thorium Fuel Cycles in Comparison with Oncethrough Analysis of Multi-recycle Thorium Fuel Cycles in Comparison with Oncethrough Fuel Cycles A Thesis Presented to The Academic Faculty by Lloyd Michael Huang In Partial Fulfillment of the Requirements for

More information

The European Commission s science and knowledge service

The European Commission s science and knowledge service The European Commission s science and knowledge service Joint Research Centre EU activities in the MSR project O. Beneš JRC Karlsruhe ITU One of the 7 research institutes of the European Commission s Joint

More information

GASEOUS AND VOLATILE FISSION PRODUCT RELEASE FROM MOLTEN SALT NUCLEAR FUEL

GASEOUS AND VOLATILE FISSION PRODUCT RELEASE FROM MOLTEN SALT NUCLEAR FUEL GASEOUS AND VOLATILE FISSION PRODUCT RELEASE FROM MOLTEN SALT NUCLEAR FUEL Ian Scott Moltex Energy LLP, 6 th Floor Remo House, 310-312 Regent St., London Q1B 3BS, UK * Email of corresponding author: ianscott@moltexenergy.com

More information

Chain Reactions. Table of Contents. List of Figures

Chain Reactions. Table of Contents. List of Figures Chain Reactions 1 Chain Reactions prepared by Wm. J. Garland, Professor, Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada More about this document Summary: In the chapter

More information

TRANSMUTATION OF AMERICIUM AND CURIUM: REVIEW OF SOLUTIONS AND IMPACTS. Abstract

TRANSMUTATION OF AMERICIUM AND CURIUM: REVIEW OF SOLUTIONS AND IMPACTS. Abstract TRANSMUTATION OF AMERICIUM AND CURIUM: REVIEW OF SOLUTIONS AND IMPACTS M. Delpech, J. Tommasi, A. Zaetta DER/SPRC, CEA M. Salvatores DRN/PP, CEA H. Mouney EDF/DE G. Vambenepe EDF/SEPTEN Abstract Several

More information

Control of the fission chain reaction

Control of the fission chain reaction Control of the fission chain reaction Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 April 8, 2011 NUCS 342 (Lecture 30) April 8, 2011 1 / 29 Outline 1 Fission chain reaction

More information

Nuclear data sensitivity and uncertainty assessment of sodium voiding reactivity coefficients of an ASTRID-like Sodium Fast Reactor

Nuclear data sensitivity and uncertainty assessment of sodium voiding reactivity coefficients of an ASTRID-like Sodium Fast Reactor Nuclear data sensitivity and uncertainty assessment of sodium voiding reactivity coefficients of an ASTRID-like Sodium Fast Reactor García-Herranz Nuria 1,*, Panadero Anne-Laurène 2, Martinez Ana 1, Pelloni

More information

THE INTEGRATION OF FAST REACTOR TO THE FUEL CYCLE IN SLOVAKIA

THE INTEGRATION OF FAST REACTOR TO THE FUEL CYCLE IN SLOVAKIA THE INTEGRATION OF FAST REACTOR TO THE FUEL CYCLE IN SLOVAKIA Radoslav ZAJAC, Petr DARILEK VUJE, Inc. Okruzna 5, SK-91864 Trnava, Slovakia Tel: +421 33 599 1316, Fax: +421 33 599 1191, Email: zajacr@vuje.sk,

More information

Working Party on Pu-MOX fuel physics and innovative fuel cycles (WPPR)

Working Party on Pu-MOX fuel physics and innovative fuel cycles (WPPR) R&D Needs in Nuclear Science 6-8th November, 2002 OECD/NEA, Paris Working Party on Pu-MOX fuel physics and innovative fuel cycles (WPPR) Hideki Takano Japan Atomic Energy Research Institute, Japan Introduction(1)

More information

Radiotoxicity Characterization of Multi-Recycled Thorium Fuel

Radiotoxicity Characterization of Multi-Recycled Thorium Fuel Radiotoxicity Characterization of Multi-Recycled Thorium Fuel - 12394 F. Franceschini 1, C. Fiorina 2,4, M. Huang 3, B. Petrovic 3, M. Wenner 1, J. Krepel 4 1 Westinghouse Electric Company, Cranberry Township,

More information

Target accuracy of MA nuclear data and progress in validation by post irradiation experiments with the fast reactor JOYO

Target accuracy of MA nuclear data and progress in validation by post irradiation experiments with the fast reactor JOYO Target accuracy of MA nuclear data and progress in validation by post irradiation experiments with the fast reactor JOYO Shigeo OHKI, Kenji YOKOYAMA, Kazuyuki NUMATA *, and Tomoyuki JIN * Oarai Engineering

More information

Closing the nuclear fuel cycle

Closing the nuclear fuel cycle Closing the nuclear fuel cycle Potential of the Gas Cooled Fast Reactor (GCFR) Godart van Gendt Physics of Nuclear Reactors (PNR) Department of R3 Faculty TNW TU Delft Supervisors: Dr. ir. W.F.G. van Rooijen

More information

THE MULTIREGION MOLTEN-SALT REACTOR CONCEPT

THE MULTIREGION MOLTEN-SALT REACTOR CONCEPT THE MULTIREGION MOLTEN-SALT REACTOR CONCEPT Gyula Csom, Sándor Fehér, Máté Szieberth and Szabolcs Czifrus Budapest University of Technology and Economics, Hungary Abstract The molten-salt reactor MSR)

More information

Nuclear Fission. Q for 238 U + n 239 U is 4.??? MeV. E A for 239 U 6.6 MeV MeV neutrons are needed.

Nuclear Fission. Q for 238 U + n 239 U is 4.??? MeV. E A for 239 U 6.6 MeV MeV neutrons are needed. Q for 235 U + n 236 U is 6.54478 MeV. Table 13.11 in Krane: Activation energy E A for 236 U 6.2 MeV (Liquid drop + shell) 235 U can be fissioned with zero-energy neutrons. Q for 238 U + n 239 U is 4.???

More information

Invited. ENDF/B-VII data testing with ICSBEP benchmarks. 1 Introduction. 2 Discussion

Invited. ENDF/B-VII data testing with ICSBEP benchmarks. 1 Introduction. 2 Discussion International Conference on Nuclear Data for Science and Technology 2007 DOI: 10.1051/ndata:07285 Invited ENDF/B-VII data testing with ICSBEP benchmarks A.C. Kahler and R.E. MacFarlane Los Alamos National

More information

Sensitivity and Uncertainty Analysis Methodologies for Fast Reactor Physics and Design at JAEA

Sensitivity and Uncertainty Analysis Methodologies for Fast Reactor Physics and Design at JAEA Sensitivity and Uncertainty Analysis Methodologies for Fast Reactor Physics and Design at JAEA Kick off meeting of NEA Expert Group on Uncertainty Analysis for Criticality Safety Assessment IRSN, France

More information

PWR AND WWER MOX BENCHMARK CALCULATION BY HELIOS

PWR AND WWER MOX BENCHMARK CALCULATION BY HELIOS PWR AND WWER MOX BENCHMARK CALCULATION BY HELIOS Radoslav ZAJAC 1,2), Petr DARILEK 1), Vladimir NECAS 2) 1 VUJE, Inc., Okruzna 5, 918 64 Trnava, Slovakia; zajacr@vuje.sk, darilek@vuje.sk 2 Slovak University

More information

Potential Use of beta-eff and other Benchmarks for Adjustment

Potential Use of beta-eff and other Benchmarks for Adjustment Potential Use of beta-eff and other Benchmarks for Adjustment Ivo Kodeli SG39 Meeting, NEA, May 19, 2015 Analysed benchmarks from ICSBEP and IRPhE SNEAK-7A & -7B: MOX fuel reflected by metallic depleted

More information

Production. David Nusbaum Project on Managing the Atom, Belfer Center October 4, 2011

Production. David Nusbaum Project on Managing the Atom, Belfer Center October 4, 2011 Production David Nusbaum Project on Managing the Atom, Belfer Center October 4, 2011 Where are we? Nuclear Fuel Cycle Background Pu- Radioactive, chemical element, of the actinoid series of the periodic

More information

Technical workshop : Dynamic nuclear fuel cycle

Technical workshop : Dynamic nuclear fuel cycle Technical workshop : Dynamic nuclear fuel cycle Reactor description in CLASS Baptiste LENIAU* Institut d Astrophysique de Paris 6-8 July, 2016 Introduction Summary Summary The CLASS package : a brief overview

More information

Study of Control rod worth in the TMSR

Study of Control rod worth in the TMSR Nuclear Science and Techniques 24 (2013) 010601 Study of Control rod worth in the TMSR ZHOU Xuemei * LIU Guimin 1 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China

More information

Thorium as a Nuclear Fuel

Thorium as a Nuclear Fuel Thorium as a Nuclear Fuel Course 22.251 Fall 2005 Massachusetts Institute of Technology Department of Nuclear Engineering 22.351 Thorium 1 Earth Energy Resources Commercial Energy Resources in India Electricity

More information

Low-Grade Nuclear Materials as Possible Threats to the Nonproliferation Regime. (Report under CRDF Project RX0-1333)

Low-Grade Nuclear Materials as Possible Threats to the Nonproliferation Regime. (Report under CRDF Project RX0-1333) Low-Grade Nuclear Materials as Possible Threats to the Nonproliferation Regime (Report under CRDF Project RX0-1333) 2 Abstract This study addresses a number of issues related to low-grade fissile materials

More information

3.12 Development of Burn-up Calculation System for Fusion-Fission Hybrid Reactor

3.12 Development of Burn-up Calculation System for Fusion-Fission Hybrid Reactor 3.12 Development of Burn-up Calculation System for Fusion-Fission Hybrid Reactor M. Matsunaka, S. Shido, K. Kondo, H. Miyamaru, I. Murata Division of Electrical, Electronic and Information Engineering,

More information

Why the nuclear era needs NERA

Why the nuclear era needs NERA Why the nuclear era needs NERA 11-2-2015 Jan Leen Kloosterman TU-Delft Delft University of Technology Challenge the future Meet & Greet Scientific staff members Secretary and technicians 2 1 Chemistry

More information

Fusion/transmutation reactor studies based on the spherical torus concept

Fusion/transmutation reactor studies based on the spherical torus concept FT/P1-7, FEC 2004 Fusion/transmutation reactor studies based on the spherical torus concept K.M. Feng, J.H. Huang, B.Q. Deng, G.S. Zhang, G. Hu, Z.X. Li, X.Y. Wang, T. Yuan, Z. Chen Southwestern Institute

More information

Sodium void coefficient map by Serpent

Sodium void coefficient map by Serpent Wir schaffen Wissen heute für morgen Paul Scheer Institut 4th Annual Serpent Users Group Meeting (Cambridge Sept 17-19, 2014): Sandro Pelloni Sodium void coefficient map by Serpent PSI, 8. September 2014

More information

Analytical Validation of Uncertainty in Reactor Physics Parameters for Nuclear Transmutation Systems

Analytical Validation of Uncertainty in Reactor Physics Parameters for Nuclear Transmutation Systems Journal of Nuclear Science and Technology ISSN: 22-3131 (Print) 1881-1248 (Online) Journal homepage: http://www.tandfonline.com/loi/tnst2 Analytical Validation of Uncertainty in Reactor Physics Parameters

More information

Tritium Transport and Corrosion Modeling in the Fluoride Salt-Cooled High-Temperature Reactor

Tritium Transport and Corrosion Modeling in the Fluoride Salt-Cooled High-Temperature Reactor Tritium Transport and Corrosion Modeling in the Fluoride Salt-Cooled High-Temperature Reactor John D. Stempien, PhD Content Based on Doctoral Thesis Defense Workshop on Tritium Control Salt Lake City,

More information

The analysis of particles of nuclear material finding the proverbial needle in a hay stack

The analysis of particles of nuclear material finding the proverbial needle in a hay stack San Diego, 18-22 February 2010 AAAS Annual Meeting 1 The analysis of particles of nuclear material finding the proverbial needle in a hay stack AAAS Annual Meeting San Diego, February 19, 2010 Klaus Luetzenkirchen

More information

Experiments using transmutation set-ups. Speaker : Wolfram Westmeier for

Experiments using transmutation set-ups. Speaker : Wolfram Westmeier for Novi Sad, ad hoc Experiments using transmutation set-ups Speaker : Wolfram Westmeier for Participants of collaboration are JINR members or they have Agreements : Russia, Germany, Armenia, Australia, Belarus,

More information

Conceptual design of a thorium supplied thermal molten salt wasteburner

Conceptual design of a thorium supplied thermal molten salt wasteburner Downloaded from orbit.dtu.dk on: Dec 20, 2017 Conceptual design of a thorium supplied thermal molten salt wasteburner Schönfeldt, Troels; Klinkby, Esben Bryndt; Klenø, K.H.; Boje, Peter; Eakes, C.; Pettersen,

More information

Fuel Element Burnup Determination in HEU - LEU Mixed TRIGA Research Reactor Core

Fuel Element Burnup Determination in HEU - LEU Mixed TRIGA Research Reactor Core Fuel Element Burnup Determination in HEU - LEU Mixed TRIGA Research Reactor Core Tomaž Žagar, Matjaž Ravnik Institute "Jožef Stefan", Jamova 39, Ljubljana, Slovenia Tomaz.Zagar@ijs.si Abstract This paper

More information

Power Installations based on Activated Nuclear Reactions of Fission and Synthesis

Power Installations based on Activated Nuclear Reactions of Fission and Synthesis Yu.V. Grigoriev 1,2, A.V. Novikov-Borodin 1 1 Institute for Nuclear Research RAS, Moscow, Russia 2 Joint Institute for Nuclear Research, Dubna, Russia Power Installations based on Activated Nuclear Reactions

More information

Fundamentals of Nuclear Power. Original slides provided by Dr. Daniel Holland

Fundamentals of Nuclear Power. Original slides provided by Dr. Daniel Holland Fundamentals of Nuclear Power Original slides provided by Dr. Daniel Holland Nuclear Fission We convert mass into energy by breaking large atoms (usually Uranium) into smaller atoms. Note the increases

More information

USA HTR NEUTRONIC CHARACTERIZATION OF THE SAFARI-1 MATERIAL TESTING REACTOR

USA HTR NEUTRONIC CHARACTERIZATION OF THE SAFARI-1 MATERIAL TESTING REACTOR Proceedings of HTR2008 4 th International Topical Meeting on High Temperature Reactors September 28-October 1, 2008, Washington, D.C, USA HTR2008-58155 NEUTRONIC CHARACTERIZATION OF THE SAFARI-1 MATERIAL

More information

MODELLING OF HTRs WITH MONTE CARLO: FROM A HOMOGENEOUS TO AN EXACT HETEROGENEOUS CORE WITH MICROPARTICLES

MODELLING OF HTRs WITH MONTE CARLO: FROM A HOMOGENEOUS TO AN EXACT HETEROGENEOUS CORE WITH MICROPARTICLES MODELLING OF HTRs WITH MONTE CARLO: FROM A HOMOGENEOUS TO AN EXACT HETEROGENEOUS CORE WITH MICROPARTICLES Rita PLUKIENE a,b and Danas RIDIKAS a 1 a) DSM/DAPNIA/SPhN, CEA Saclay, F-91191 Gif-sur-Yvette,

More information

Status of J-PARC Transmutation Experimental Facility

Status of J-PARC Transmutation Experimental Facility Status of J-PARC Transmutation Experimental Facility 10 th OECD/NEA Information Exchange Meeting for Actinide and Fission Product Partitioning and Transmutation 2008.10.9 Japan Atomic Energy Agency Toshinobu

More information

English text only NUCLEAR ENERGY AGENCY NUCLEAR SCIENCE COMMITTEE

English text only NUCLEAR ENERGY AGENCY NUCLEAR SCIENCE COMMITTEE Unclassified NEA/NSC/DOC(2007)9 NEA/NSC/DOC(2007)9 Unclassified Organisation de Coopération et de Développement Economiques Organisation for Economic Co-operation and Development 14-Dec-2007 English text

More information

Breeding K.S. Rajan Professor, School of Chemical & Biotechnology SASTRA University

Breeding K.S. Rajan Professor, School of Chemical & Biotechnology SASTRA University Breeding K.S. Rajan Professor, School of Chemical & Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 7 Table of Contents 1 NEED FOR BREEDING... 3 1.1 COMPARISON

More information

IAEA-TECDOC-1349 Potential of thorium based fuel cycles to constrain plutonium and reduce long lived waste toxicity

IAEA-TECDOC-1349 Potential of thorium based fuel cycles to constrain plutonium and reduce long lived waste toxicity IAEA-TECDOC-1349 Potential of thorium based fuel cycles to constrain plutonium and reduce long lived waste toxicity Final report of a co-ordinated research project 1995 2001 April 2003 The originating

More information

Lecture 13. Applications of Nuclear Physics Fission Reactors and Bombs Overview

Lecture 13. Applications of Nuclear Physics Fission Reactors and Bombs Overview Lecture 13 Applications of Nuclear Physics Fission Reactors and Bombs Dec 2006, Lecture 13 Nuclear Physics Lectures, Dr. Armin Reichold 1 12.1 Overview 12.1 Induced fission Fissile nuclei Time scales of

More information

IAEA-TECDOC Nuclear Fuel Cycle Simulation System (VISTA)

IAEA-TECDOC Nuclear Fuel Cycle Simulation System (VISTA) IAEA-TECDOC-1535 Nuclear Fuel Cycle Simulation System (VISTA) February 2007 IAEA-TECDOC-1535 Nuclear Fuel Cycle Simulation System (VISTA) February 2007 The originating Section of this publication in the

More information

Criticality analysis of ALLEGRO Fuel Assemblies Configurations

Criticality analysis of ALLEGRO Fuel Assemblies Configurations Criticality analysis of ALLEGRO Fuel Assemblies Configurations Radoslav ZAJAC Vladimír CHRAPČIAK 13-16 October 2015 5th International Serpent User Group Meeting at Knoxville, Tennessee ALLEGRO Core - Fuel

More information

Neutronic Calculations of Ghana Research Reactor-1 LEU Core

Neutronic Calculations of Ghana Research Reactor-1 LEU Core Neutronic Calculations of Ghana Research Reactor-1 LEU Core Manowogbor VC*, Odoi HC and Abrefah RG Department of Nuclear Engineering, School of Nuclear Allied Sciences, University of Ghana Commentary Received

More information

REACTOR PHYSICS CALCULATIONS ON MOX FUEL IN BOILING WATER REACTORS (BWRs)

REACTOR PHYSICS CALCULATIONS ON MOX FUEL IN BOILING WATER REACTORS (BWRs) REACTOR PHYSICS CALCULATIONS ON MOX FUEL IN BOILING ATER REACTORS (BRs) Christophe Demazière Chalmers University of Technology Department of Reactor Physics SE-42 96 Gothenburg Sweden Abstract The loading

More information

Troitsk ADS project S.Sidorkin, E.Koptelov, L.Kravchuk, A.Rogov

Troitsk ADS project S.Sidorkin, E.Koptelov, L.Kravchuk, A.Rogov Troitsk ADS project S.Sidorkin, E.Koptelov, L.Kravchuk, A.Rogov Institute for Nuclear Research RAS, Moscow, Russia Outline Linac and experimental complex Pulse neutron sources and its infrastructure Development

More information

Reactivity Coefficients

Reactivity Coefficients Reactivity Coefficients B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec. 2015 September 1 Reactivity Changes In studying kinetics, we have seen

More information

The Closed Nuclear Fuel Cycle for the Gas Cooled Fast Reactor

The Closed Nuclear Fuel Cycle for the Gas Cooled Fast Reactor The Closed Nuclear Fuel Cycle for the Gas Cooled Fast Reactor David van der Stok Supervisors: dr. ir. J.L. Kloosterman, dr. ir. W.F.G. van Rooijen and G. van Gendt Reactor Physics Department Faculty of

More information

CH0204 Organic Chemical Technology

CH0204 Organic Chemical Technology CH0204 Organic Chemical Technology Lecture 15 Chapter 5 Nuclear Industries Assistant Professor (OG) Department of Chemical Engineering 1 Overview of topics Chapter 5 Nuclear Industries 1 2 3 4 Nuclear

More information

Национальный исследовательский Томский политехнический университет

Национальный исследовательский Томский политехнический университет ЯДЕРНО ТОПЛИВНЫЙ ЦИКЛ Зяблова Н.Н, Карпова Н.Д. Национальный исследовательский Томский политехнический университет Томск, Россия Данная статья раскрывает понятие ядерно топливного цикла. Объясняет его

More information

Analysis of the Neutronic Characteristics of GFR-2400 Fast Reactor Using MCNPX Transport Code

Analysis of the Neutronic Characteristics of GFR-2400 Fast Reactor Using MCNPX Transport Code Amr Ibrahim, et al. Arab J. Nucl. Sci. Appl, Vol 51, 1, 177-188 The Egyptian Arab Journal of Nuclear Sciences and Applications (2018) Society of Nuclear Vol 51, 1, (177-188) 2018 Sciences and Applications

More information

Evaluation of Neutron Physics Parameters and Reactivity Coefficients for Sodium Cooled Fast Reactors

Evaluation of Neutron Physics Parameters and Reactivity Coefficients for Sodium Cooled Fast Reactors Evaluation of Neutron Physics Parameters and Reactivity Coefficients for Sodium Cooled Fast Reactors A. Ponomarev, C.H.M. Broeders, R. Dagan, M. Becker Institute for Neutron Physics and Reactor Technology,

More information

HIGH TEMPERATURE THERMAL HYDRAULICS MODELING

HIGH TEMPERATURE THERMAL HYDRAULICS MODELING HIGH TEMPERATURE THERMAL HYDRAULICS MODELING OF A MOLTEN SALT: APPLICATION TO A MOLTEN SALT FAST REACTOR (MSFR) P. R. Rubiolo, V. Ghetta, J. Giraud, M. Tano Retamales CNRS/IN2P3/LPSC - Grenoble Workshop

More information

Neutron Dose near Spent Nuclear Fuel and HAW after the 2007 ICRP Recommendations

Neutron Dose near Spent Nuclear Fuel and HAW after the 2007 ICRP Recommendations Neutron Dose near Spent Nuclear Fuel and HAW after the 2007 ICRP Recommendations Gunter Pretzsch Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbh Radiation and Environmental Protection Division

More information

Transmutacja Jądrowa w Reaktorach Prędkich i Systemach Podkrytycznych Sterowanych Akceleratorami

Transmutacja Jądrowa w Reaktorach Prędkich i Systemach Podkrytycznych Sterowanych Akceleratorami Transmutacja Jądrowa w Reaktorach Prędkich i Systemach Podkrytycznych Sterowanych Akceleratorami Aleksander Polański Instytut Problemów Jądrowych Świerk-Otwock Contents Introduction Cross sections Models

More information