High Resolution Laser Microscopy: a fascinating method to explore the molecular world

Size: px
Start display at page:

Download "High Resolution Laser Microscopy: a fascinating method to explore the molecular world"

Transcription

1 High Resolution Laser Microscopy: a fascinating method to explore the molecular world Alfred J. Meixner Physical and Theoretical Chemistry Laboratory University of Siegen

2 Single-molecule spectroscopy and nano-optics

3 Outline Confocal microscopy optical single-microscopy Fluorescence spectroscopy of single molecules SERRS spectroscopy of single molecules Single-molecule spectroscopy at 1.8 K Highly confined optical fields Lab. tour

4 Confocal Fluorescence Microscopy fluorescence excitation energy level diagram from computer x z y sample molecule S 1 from laser dichroic mirror T 1 notch filter I exc I fluo source pinhole image pinhole S 0 photon counter to computer

5 diffraction limited imaging: Single Molecule Confocal Microscopy and Resolution Limit spatial resolution:?? 2 x i? 1.22 NA confocal imaging:? x i?? x o M

6 Single Molecule Fluorescence Excitation Microscopy laser x z y sample molecule image pinhole spectrometer polarizing beam splitter x-pol.detector y-pol.detector

7 Polarization images of individual R630 - molecules Counts/5ms Counts/5ms 0 x-polarization 6 µm y-polarization 0

8 Dynamics: molecules in motion

9 Dynamics: orientation jumps?? R f? DE? D? E 2 y-polarization x-polarization

10 Dynamics: intensity fluctuations

11 Spectroscopy: distinguishing conformers 9-amino-N-(2,6-diisopropylphenyl) perylen-3,4-dicarboximid N,N-di(tert-butoxycarbonyl)-API Sample preparation: spin coated film of 20g/l polystyrene (MW=250,000) in toluene dye content M Blum, Stracke, Becker, Müllen, Meixner, J. Phys. Chem. A 105 (2001)

12 Single molecule spectra of API and DAPI DAPI O N O Characteristic sequences of single molecule fluorescence spectra; ensemble spectra in the back planes of the graphs 10 O O tbut API N O O tbut ? / nm 20 off-resonance conformer in-resonance conformer O N O NH ? / nm ? / nm 20

13 Conformation jumps of single API molecules in- to offresonance transition ? / nm ? / nm off- to inresonance transition ? / nm ? / nm Blum, Stracke, Becker, Müllen, Meixner, Chem. Phys. Lett. 325 (2000)

14 Spectroscopy: amino-chromophore-resonance H H N H H N API + H(TFA) H(API) + + TFA - O. D Fluorescence / (a. u.) [TFA] = 51,9 mm [TFA] = 6,5 mm [TFA] = 13,0 mm [TFA] = 26,0 mm [TFA] = 0,0 mm ? / nm ? / nm Extinction spectra of API in Acetonitrile with increasing TFA concentration Fluorescence spectra of API in Acetonitrile with increasing TFA concentration

15 Surface enhanced resonance Raman scattering vs. fluorescence emission? Raman ~ cm 2 =>? SERRS ~ cm 2 Er(t)??tot wavelength [nm] Es(t)

16 Absorption and Fluorescence v Resonance Raman Scattering v S 1 I L (? L ) I F (? F ) S 1 I L (? L ) I fi (??) i f S 0 i f S 0

17 Rhodamine 6G SERRS spectrum 1s/spectrum 618 C-C-C ring i.p. bend 776 C-H o.p. bend 1137 C-H i.p. bend 1270 C-O-C str arom. C-C str arom. C-C str arom. C-C str arom. C-C str combinations

18 Sample preparation Lee and Meisel, JPC 86 (1982) 3391 Colloidal solution: Ag-particles ~ M dye: Rhodamine 6G ~ 10-9 M ~ M ~ M incubation: ~ 12 h 500 nm

19 Towards the single-molecule limit 10-9 M dye concentration scattered excitation light? = nm scattered light at? > nm ) 2) 3) Meixner, Vosgröne, Sackrow, J. Lumin (2001)

20 Single-molecule SERRS spectra - inhomogeneous spectral behavior - intensity fluctuations, blinking - splitting of spectral lines - spectral diffusion - inhomogeneous line broadening - towards the homogeneous linewidth

21 Towards homogeneous line broadening spectrometer resolution???? 4 cm -1 narrowest linewidth???? 7.5 cm -1 estimate for minimum coherence time?t = 750 fs

22 Single-molecule rhodamine 6G SERRS spectra 1s/spectrum, M,? exc = nm time/sec wavenumbers / cm-1

23 Confocal Microscope for Cryogenic Temperature Features: immersed in liq. He (1.8K) confocal/near-field parabolic mirror objective confocal resolution: diffraction limited nfo-resolution: physics will show shear-force topography

24 Heart of the parabolic mirror microscope

25 scanner Parabolic mirror

26 Single Terrylene molecules in Octadecane at 1.8K confocal fluorescence excitation spectra four molecules wide field confocal two molecules Drechsler, Lieb, Debus, Meixner Opt. Express 9 (2001)

27 Fluorescence spectrum of a single Terrylene molecule at 1.8K Drechsler, Lieb, Debus, Meixner,Opt. Express 9 (2001)

28 Focusing with linear polarized light z f 0 y x k Lieb, Meixner, Opt. Express 8 (2001)

29 Focusing with radially polarized light z f 0 y y x x kk E Lieb, Meixner, Opt. Express 8 (2001)

30 Field enhancement by an optical half-wave antenna (field enhancement calculated by L. Novotny, Rochester) f 0 y x x calculation:? = 800 nm tip radius = 10 nm dielectric sample enhancement 10 4 kk E bar = 10?m bar = 100 nm

31 Femtosecond microscopy lab.

32 Femtosecond laser with microscope

33 Confocal / near-field microscope

34 Acknowledgment co-workers: P. Anger Ch. Blum J. Bonse Ch. Debus A. Drechsler R. Gallacchi H. Kneppe A. Lieb R. Neidhardt M. Sackrow F. Schleifenbaum G. Schulte F. Stracke former co-workers: M. A. Bopp (Basel) G. Tarrach (Basel) M. Weber (Siegen, Dresden) Dye molecules: K. Müllen, S. Becker (Mainz) K. H. Drexhage (Siegen) Zeolites G. Calzaferri (Bern) S. Megelski (Bern) Ag nano-particles: W. Plieth(Dresden) G. Sandman (Dresden) P. Moyer (Charlotte) Funding University of Siegen NRW DFG VW-Stiftung Swiss Nat. Sci. Fund. ETH

Near-field imaging and spectroscopy of electronic states in single-walled carbon nanotubes

Near-field imaging and spectroscopy of electronic states in single-walled carbon nanotubes Early View publication on www.interscience.wiley.com (issue and page numbers not yet assigned; citable using Digital Object Identifier DOI) Original phys. stat. sol. (b), 1 5 (2006) / DOI 10.1002/pssb.200669179

More information

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

Single Emitter Detection with Fluorescence and Extinction Spectroscopy Single Emitter Detection with Fluorescence and Extinction Spectroscopy Michael Krall Elements of Nanophotonics Associated Seminar Recent Progress in Nanooptics & Photonics May 07, 2009 Outline Single molecule

More information

Anti-Bunching from a Quantum Dot

Anti-Bunching from a Quantum Dot Anti-Bunching from a Quantum Dot Gerardo I. Viza 1, 1 Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 We study the nature of non-classical single emitter light experimentally

More information

1. Transition dipole moment

1. Transition dipole moment 1. Transition dipole moment You have measured absorption spectra of aqueous (n=1.33) solutions of two different chromophores (A and B). The concentrations of the solutions were the same. The absorption

More information

Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching

Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching Jonathan Papa 1, * 1 Institute of Optics University of Rochester, Rochester,

More information

Fundamentals of nanoscience

Fundamentals of nanoscience Fundamentals of nanoscience Spectroscopy of nano-objects Mika Pettersson 1. Non-spatially resolved spectroscopy Traditionally, in spectroscopy, one is interested in obtaining information on the energy

More information

Optics and Spectroscopy

Optics and Spectroscopy Introduction to Optics and Spectroscopy beyond the diffraction limit Chi Chen 陳祺 Research Center for Applied Science, Academia Sinica 2015Apr09 1 Light and Optics 2 Light as Wave Application 3 Electromagnetic

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.2013.97 Supplementary Information Far-field Imaging of Non-fluorescent Species with Sub-diffraction Resolution Pu Wang et al. 1. Theory of saturated transient absorption microscopy

More information

Laboratory 3&4: Confocal Microscopy Imaging of Single-Emitter Fluorescence and Hanbury Brown and Twiss setup for Photon Antibunching

Laboratory 3&4: Confocal Microscopy Imaging of Single-Emitter Fluorescence and Hanbury Brown and Twiss setup for Photon Antibunching Laboratory 3&4: Confocal Microscopy Imaging of Single-Emitter Fluorescence and Hanbury Brown and Twiss setup for Photon Antibunching Jose Alejandro Graniel Institute of Optics University of Rochester,

More information

Applications of field-enhanced near-field optical microscopy

Applications of field-enhanced near-field optical microscopy Applications of field-enhanced near-field optical microscopy A. Bouhelier, M. R. Beversluis, and L. Novotny The Institute of Optics, University of Rochester, Rochester, NY 14627, U.S.A Abstract Metal nanostructures

More information

12. Spectral diffusion

12. Spectral diffusion 1. Spectral diffusion 1.1. Spectral diffusion, Two-Level Systems Until now, we have supposed that the optical transition frequency of each single molecule is a constant (except when we considered its variation

More information

1+2 on GHD (5 µl) Volume 1+2 (µl) 1 on GHD 1+2 on GHD

1+2 on GHD (5 µl) Volume 1+2 (µl) 1 on GHD 1+2 on GHD 1+2 on GHD (20 µl) 1+2 on GHD (15 µl) 1+2 on GHD (10 µl) 1+2 on GHD (5 µl) Volume 1+2 (µl) 1 on GHD 1+2 on GHD Supplementary Figure 1 UV-Vis measurements a. UV-Vis spectroscopy of drop-casted volume of

More information

ECE280: Nano-Plasmonics and Its Applications. Week8

ECE280: Nano-Plasmonics and Its Applications. Week8 ECE280: Nano-Plasmonics and Its Applications Week8 Surface Enhanced Raman Scattering (SERS) and Surface Plasmon Amplification by Stimulated Emission of Radiation (SPASER) Raman Scattering Chandrasekhara

More information

Supplementary Information for. Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings

Supplementary Information for. Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings Supplementary Information for Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings Supplementary Figure 1. Simulated from pristine graphene gratings at different Fermi energy

More information

Nanosphere Lithography

Nanosphere Lithography Nanosphere Lithography Derec Ciafre 1, Lingyun Miao 2, and Keita Oka 1 1 Institute of Optics / 2 ECE Dept. University of Rochester Abstract Nanosphere Lithography is quickly emerging as an efficient, low

More information

Bringing optics into the nanoscale a double-scanner AFM brings advanced optical experiments within reach

Bringing optics into the nanoscale a double-scanner AFM brings advanced optical experiments within reach Bringing optics into the nanoscale a double-scanner AFM brings advanced optical experiments within reach Beyond the diffraction limit The resolution of optical microscopy is generally limited by the diffraction

More information

Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup

Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup 1 Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup Abstract Jacob Begis The purpose of this lab was to prove that a source of light can be

More information

Aluminum for nonlinear plasmonics: Methods Section

Aluminum for nonlinear plasmonics: Methods Section Aluminum for nonlinear plasmonics: Methods Section Marta Castro-Lopez, Daan Brinks, Riccardo Sapienza, and Niek F. van Hulst, ICFO - Institut de Ciencies Fotoniques, and ICREA - Institució Catalana de

More information

Enhancement of Exciton Transport in Porphyrin. Aggregate Nanostructures by Controlling. Hierarchical Self-Assembly

Enhancement of Exciton Transport in Porphyrin. Aggregate Nanostructures by Controlling. Hierarchical Self-Assembly Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 Supporting Information for Enhancement of Exciton Transport in Porphyrin Aggregate Nanostructures

More information

Survey on Laser Spectroscopic Techniques for Condensed Matter

Survey on Laser Spectroscopic Techniques for Condensed Matter Survey on Laser Spectroscopic Techniques for Condensed Matter Coherent Radiation Sources for Small Laboratories CW: Tunability: IR Visible Linewidth: 1 Hz Power: μw 10W Pulsed: Tunabality: THz Soft X-ray

More information

Increasing your confidence Proving that data is single molecule. Chem 184 Lecture David Altman 5/27/08

Increasing your confidence Proving that data is single molecule. Chem 184 Lecture David Altman 5/27/08 Increasing your confidence Proving that data is single molecule Chem 184 Lecture David Altman 5/27/08 Brief discussion/review of single molecule fluorescence Statistical analysis of your fluorescence data

More information

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009 Fundamentals of Spectroscopy for Optical Remote Sensing Course Outline 2009 Part I. Fundamentals of Quantum Mechanics Chapter 1. Concepts of Quantum and Experimental Facts 1.1. Blackbody Radiation and

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure. X-ray diffraction pattern of CH 3 NH 3 PbI 3 film. Strong reflections of the () family of planes is characteristics of the preferred orientation of the perovskite

More information

Surface Plasmon Amplification by Stimulated Emission of Radiation. By: Jonathan Massey-Allard Graham Zell Justin Lau

Surface Plasmon Amplification by Stimulated Emission of Radiation. By: Jonathan Massey-Allard Graham Zell Justin Lau Surface Plasmon Amplification by Stimulated Emission of Radiation By: Jonathan Massey-Allard Graham Zell Justin Lau Surface Plasmons (SPs) Quanta of electron oscillations in a plasma. o Electron gas in

More information

Combining High Resolution Optical and Scanning Probe Microscopy

Combining High Resolution Optical and Scanning Probe Microscopy Combining High Resolution Optical and Scanning Probe Microscopy Fernando Vargas WITec, Ulm, Germany www.witec.de Company Background Foundation 1997 by O. Hollricher, J. Koenen, K. Weishaupt WITec = Wissenschaftliche

More information

Nanoscale Chemical Imaging with Photo-induced Force Microscopy

Nanoscale Chemical Imaging with Photo-induced Force Microscopy OG2 BCP39nm_0062 PiFM (LIA1R)Fwd 500 279.1 µv 375 250 nm 500 375 250 125 0 nm 125 219.0 µv Nanoscale Chemical Imaging with Photo-induced Force Microscopy 0 Thomas R. Albrecht, Derek Nowak, Will Morrison,

More information

Femtosecond laser microfabrication in. Prof. Dr. Cleber R. Mendonca

Femtosecond laser microfabrication in. Prof. Dr. Cleber R. Mendonca Femtosecond laser microfabrication in polymers Prof. Dr. Cleber R. Mendonca laser microfabrication focus laser beam on material s surface laser microfabrication laser microfabrication laser microfabrication

More information

Multiphoton Imaging and Spectroscopy in Cell and Tissue Biophysics. J Moger and C P Winlove

Multiphoton Imaging and Spectroscopy in Cell and Tissue Biophysics. J Moger and C P Winlove Multiphoton Imaging and Spectroscopy in Cell and Tissue Biophysics J Moger and C P Winlove Relating Structure to Function Biochemistry Raman microspectrometry Surface enhanced Raman spectrometry (SERS)

More information

Morphology-dependent resonance induced by two-photon excitation in a micro-sphere trapped by a femtosecond pulsed laser

Morphology-dependent resonance induced by two-photon excitation in a micro-sphere trapped by a femtosecond pulsed laser Morphology-dependent resonance induced by two-photon excitation in a micro-sphere trapped by a femtosecond pulsed laser Dru Morrish, Xiaosong Gan and Min Gu Centre for Micro-Photonics, School of Biophysical

More information

LAB 3: Confocal Microscope Imaging of single-emitter fluorescence. LAB 4: Hanbury Brown and Twiss setup. Photon antibunching. Roshita Ramkhalawon

LAB 3: Confocal Microscope Imaging of single-emitter fluorescence. LAB 4: Hanbury Brown and Twiss setup. Photon antibunching. Roshita Ramkhalawon LAB 3: Confocal Microscope Imaging of single-emitter fluorescence LAB 4: Hanbury Brown and Twiss setup. Photon antibunching Roshita Ramkhalawon PHY 434 Department of Physics & Astronomy University of Rochester

More information

Administrative details:

Administrative details: Administrative details: Anything from your side? www.photonics.ethz.ch 1 Where do we stand? Optical imaging: Focusing by a lens Angular spectrum Paraxial approximation Gaussian beams Method of stationary

More information

Collective effects in second-harmonic generation from plasmonic oligomers

Collective effects in second-harmonic generation from plasmonic oligomers Supporting Information Collective effects in second-harmonic generation from plasmonic oligomers Godofredo Bautista,, *, Christoph Dreser,,, Xiaorun Zang, Dieter P. Kern,, Martti Kauranen, and Monika Fleischer,,*

More information

Near-field Raman spectroscopy using a sharp metal tip

Near-field Raman spectroscopy using a sharp metal tip Journal of Microscopy, Vol. 210, Pt 3 June 2003, pp. 234 240 Received 10 August 2002; accepted 25 October 2002 Near-field Raman spectroscopy using a sharp metal tip Blackwell Publishing Ltd. A. HARTSCHUH,

More information

Multi-Dimensional IR Spectroscopy of Acetic Acid Dimers and Liquid Water

Multi-Dimensional IR Spectroscopy of Acetic Acid Dimers and Liquid Water Multi-Dimensional IR Spectroscopy of Acetic Acid Dimers and Liquid Water N. Huse 1, J. Dreyer 1, E.T.J.Nibbering 1, T. Elsaesser 1 B.D. Bruner 2, M.L. Cowan 2, J.R. Dwyer 2, B. Chugh 2, R.J.D. Miller 2

More information

Lecture 10. Lidar Effective Cross-Section vs. Convolution

Lecture 10. Lidar Effective Cross-Section vs. Convolution Lecture 10. Lidar Effective Cross-Section vs. Convolution q Introduction q Convolution in Lineshape Determination -- Voigt Lineshape (Lorentzian Gaussian) q Effective Cross Section for Single Isotope --

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Polymorphism and microcrystal shape

More information

Detection of Single Photon Emission by Hanbury-Brown Twiss Interferometry

Detection of Single Photon Emission by Hanbury-Brown Twiss Interferometry Detection of Single Photon Emission by Hanbury-Brown Twiss Interferometry Greg Howland and Steven Bloch May 11, 009 Abstract We prepare a solution of nano-diamond particles on a glass microscope slide

More information

Femtosecond laser applied to biophotonics. Prof. Cleber R. Mendonca

Femtosecond laser applied to biophotonics. Prof. Cleber R. Mendonca Femtosecond laser applied to biophotonics Prof. Cleber R. Mendonca introduction short pulse duration ö high intensity (even at low energy) introduction how short is a femtosecond pulse? 1fs= 10-15 s introduction

More information

Quantum Optics and Quantum Information Laboratory

Quantum Optics and Quantum Information Laboratory Quantum Optics and Quantum Information Laboratory OPT 253, Fall 2011 Institute of Optics University of Rochester Instructor: Dr. Lukishova Jonathan Papa Contents Lab 1: Entanglement and Bell s Inequalities

More information

Optics of complex micro structures

Optics of complex micro structures Optics of complex micro structures dielectric materials λ L disordered partially ordered ordered random multiple scattering liquid crystals quasi crystals (Fibonacci) photonic crystals Assembly of photonic

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information Speckle-free laser imaging using random laser illumination Brandon Redding 1*, Michael A. Choma 2,3*, Hui Cao 1,4* 1 Department of Applied Physics, Yale University, New Haven,

More information

Joshua S. Geller. Department of Physics and Astronomy, University of Rochester, Rochester NY, 14627

Joshua S. Geller. Department of Physics and Astronomy, University of Rochester, Rochester NY, 14627 LAB 3-4, PHY434. Single Photon Source: Confocal Microscope Imaging of Single-Emitter Fluorescence and Hanbury Brown and Twiss setup for Photon Antibunching Measurements Joshua S. Geller Department of Physics

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DETECTION LIMITS IN PHOTOTHERMAL MICROSCOPY Alexander Gaiduk, Paul V. Ruijgrok, Mustafa Yorulmaz, Michel Orrit Institute of Physics, Leiden University, P.O. Box 9504, 300 RA Leiden, The Netherlands SUPPLEMENTARY

More information

Two-photon single-beam particle trapping of active micro-spheres

Two-photon single-beam particle trapping of active micro-spheres Two-photon single-beam particle trapping of active micro-spheres Dru Morrish, Xiaosong Gan and Min Gu * Centre for Mirco-Photonics, School of Biophysical Sciences and Electrical Engineering, Swinburne

More information

Supporting Information

Supporting Information Supporting Information Temperature Dependence of Emission Linewidths from Semiconductor Nanocrystals Reveals Vibronic Contributions to Line Broadening Processes Timothy G. Mack, Lakshay Jethi, Patanjali

More information

Energy transport in metal nanoparticle plasmon waveguides

Energy transport in metal nanoparticle plasmon waveguides Energy transport in metal nanoparticle plasmon waveguides Stefan A. Maier, Pieter G. Kik, and Harry A. Atwater California Institute of Technology Thomas J. Watson Laboratory of Applied Physics, Pasadena,

More information

Understanding Nanoplasmonics. Greg Sun University of Massachusetts Boston

Understanding Nanoplasmonics. Greg Sun University of Massachusetts Boston Understanding Nanoplasmonics Greg Sun University of Massachusetts Boston Nanoplasmonics Space 100pm 1nm 10nm 100nm 1μm 10μm 100μm 1ns 100ps 10ps Photonics 1ps 100fs 10fs 1fs Time Surface Plasmons Surface

More information

Einführung in die Photonik II

Einführung in die Photonik II Einführung in die Photonik II ab 16.April 2012, Mo 11:00-12:30 Uhr SR 218 Lectures Monday, 11:00 Uhr, room 224 Frank Cichos Molecular Nanophotonics Room 322 Tel.: 97 32571 cichos@physik.uni-leipzig.de

More information

Supplementary Information. depending on the atomic thickness of intrinsic and chemically doped. MoS 2

Supplementary Information. depending on the atomic thickness of intrinsic and chemically doped. MoS 2 Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supplementary Information Confocal absorption spectral imaging of MoS 2 : Optical transitions

More information

Laser Detection Techniques

Laser Detection Techniques Laser Detection Techniques K.-H. Gericke Institute for Physical Chemistry University Braunschweig E 2 E 1 = hn, λ = c /n Lambert-Beer Law Transmittance of the sample:: T = I / I 0 T = e -snl = e -α, where

More information

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter CHEM6416 Theory of Molecular Spectroscopy 2013Jan22 1 1. Spectroscopy frequency dependence of the interaction of light with matter 1.1. Absorption (excitation), emission, diffraction, scattering, refraction

More information

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in quantum wells Atomic wavefunction of carriers in

More information

Improvement of Spatial Resolution for Nonlinear Raman Microscopy by Spatial Light Modulation

Improvement of Spatial Resolution for Nonlinear Raman Microscopy by Spatial Light Modulation ANALYTICAL SCIENCES JANUARY 2017, VOL. 33 69 2017 The Japan Society for Analytical Chemistry Improvement of Spatial Resolution for Nonlinear Raman Microscopy by Spatial Light Modulation Motohiro BANNO,

More information

Optical Properties of CdSe Colloidal Quantum Dots and NV-Nanodiamonds

Optical Properties of CdSe Colloidal Quantum Dots and NV-Nanodiamonds Optical Properties of CdSe Colloidal Quantum Dots and NV-Nanodiamonds James MacNeil and Madhu Ashok University of Rochester The Institute of Optics Submitted to Dr. Svetlana Lukishova on 11/20/2013 Abstract:

More information

Vibrational imaging and microspectroscopies based on coherent anti-stokes Raman scattering (CARS)

Vibrational imaging and microspectroscopies based on coherent anti-stokes Raman scattering (CARS) Vibrational imaging and microspectroscopies based on coherent anti-stokes Raman scattering (CARS) by Andreas Volkmer Universität Stuttgart 3 rd Institute of Physics, University of Stuttgart, Pfaffenwaldring

More information

What is spectroscopy?

What is spectroscopy? Absorption Spectrum What is spectroscopy? Studying the properties of matter through its interaction with different frequency components of the electromagnetic spectrum. With light, you aren t looking directly

More information

Supplementary Figure 1: Power dependence of hot-electrons reduction of 4-NTP to 4-ATP. a) SERS spectra of the hot-electron reduction reaction using

Supplementary Figure 1: Power dependence of hot-electrons reduction of 4-NTP to 4-ATP. a) SERS spectra of the hot-electron reduction reaction using Supplementary Figure 1: Power dependence of hot-electrons reduction of 4-NTP to 4-ATP. a) SERS spectra of the hot-electron reduction reaction using 633 nm laser excitation at different powers and b) the

More information

Microfabricação em materiais poliméricos usando laser de femtossegundos

Microfabricação em materiais poliméricos usando laser de femtossegundos Microfabricação em materiais poliméricos usando laser de femtossegundos Prof. Cleber R. Mendonça http://www.fotonica.ifsc.usp.br University of Sao Paulo - Brazil students 77.000 52.000 undergrad. 25.000

More information

HYPER-RAYLEIGH SCATTERING AND SURFACE-ENHANCED RAMAN SCATTERING STUDIES OF PLATINUM NANOPARTICLE SUSPENSIONS

HYPER-RAYLEIGH SCATTERING AND SURFACE-ENHANCED RAMAN SCATTERING STUDIES OF PLATINUM NANOPARTICLE SUSPENSIONS www.arpapress.com/volumes/vol19issue1/ijrras_19_1_06.pdf HYPER-RAYLEIGH SCATTERING AND SURFACE-ENHANCED RAMAN SCATTERING STUDIES OF PLATINUM NANOPARTICLE SUSPENSIONS M. Eslamifar Physics Department, BehbahanKhatamAl-Anbia

More information

Optical Spectroscopy of Advanced Materials

Optical Spectroscopy of Advanced Materials Phys 590B Condensed Matter Physics: Experimental Methods Optical Spectroscopy of Advanced Materials Basic optics, nonlinear and ultrafast optics Jigang Wang Department of Physics, Iowa State University

More information

Third-harmonic generation

Third-harmonic generation 2 Third-harmonic generation 2.1 Introduction Optical signals from single nano-objects open new windows for studies at nanometer scales in fields as diverse as material science and cell biology. Cleared

More information

bio-molecular studies Physical methods in Semmelweis University Osváth Szabolcs

bio-molecular studies Physical methods in Semmelweis University Osváth Szabolcs Physical methods in bio-molecular studies Osváth Szabolcs Semmelweis University szabolcs.osvath@eok.sote.hu Light emission and absorption spectra Stokes shift is the difference (in wavelength or frequency

More information

Optical Frequency Comb Fourier Transform Spectroscopy with Resolution beyond the Path Difference Limit

Optical Frequency Comb Fourier Transform Spectroscopy with Resolution beyond the Path Difference Limit Optical Frequency Comb Fourier Transform Spectroscopy with Resolution beyond the Path Difference Limit Aleksandra Foltynowicz, Alexandra C. Johansson, Amir Khodabakhsh, Lucile Rutkowski Department of Physics,

More information

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Presented at ISCS21 June 4, 21 Session # FrP3 Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Hideo

More information

Supporting Information. Plasmon Ruler for Measuring Dielectric Thin Films

Supporting Information. Plasmon Ruler for Measuring Dielectric Thin Films Supporting Information Single Nanoparticle Based Hetero-Nanojunction as a Plasmon Ruler for Measuring Dielectric Thin Films Li Li, *a,b Tanya Hutter, c Wenwu Li d and Sumeet Mahajan *b a School of Chemistry

More information

Lab 3-4 : Confocal Microscope Imaging of Single-Emitter Fluorescence and Hanbury-Brown and Twiss Set Up, Photon Antibunching

Lab 3-4 : Confocal Microscope Imaging of Single-Emitter Fluorescence and Hanbury-Brown and Twiss Set Up, Photon Antibunching Lab 3-4 : Confocal Microscope Imaging of Single-Emitter Fluorescence and Hanbury-Brown and Twiss Set Up, Photon Antibunching Mongkol Moongweluwan 1 1 Department of Physics and Astronomy, University of

More information

PC Laboratory Raman Spectroscopy

PC Laboratory Raman Spectroscopy PC Laboratory Raman Spectroscopy Schedule: Week of September 5-9: Student presentations Week of September 19-23:Student experiments Learning goals: (1) Hands-on experience with setting up a spectrometer.

More information

This document contains the following supporting information: 1. Wide field scanning electron microscope image

This document contains the following supporting information: 1. Wide field scanning electron microscope image Supporting information for Self-assembled nanoparticle dimer antennas for plasmonic-enhanced single-molecule fluorescence detection at micromolar concentrations Deep Punj, Raju Regmi, Alexis Devilez, Robin

More information

Wolfgang Demtroder. Laser Spectroscopy. Basic Concepts and Instrumentation. Second Enlarged Edition With 644 Figures and 91 Problems.

Wolfgang Demtroder. Laser Spectroscopy. Basic Concepts and Instrumentation. Second Enlarged Edition With 644 Figures and 91 Problems. Wolfgang Demtroder Laser Spectroscopy Basic Concepts and Instrumentation Second Enlarged Edition With 644 Figures and 91 Problems Springer Contents 1. Introduction 1 2. Absorption and Emission of Light

More information

Dual-Wavelength Lasing from Organic Dye Encapsulated Metal-Organic Framework Microcrystals

Dual-Wavelength Lasing from Organic Dye Encapsulated Metal-Organic Framework Microcrystals Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2019 Electronic Supplementary Information Dual-Wavelength Lasing from Organic Dye Encapsulated Metal-Organic

More information

One-pot synthesis of micron partly hollow anisotropic dumbbell shaped silica core-shell particles

One-pot synthesis of micron partly hollow anisotropic dumbbell shaped silica core-shell particles Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Supporting Information One-pot synthesis of micron partly hollow anisotropic dumbbell shaped silica

More information

Supporting Information

Supporting Information Supporting Information Study of Diffusion Assisted Bimolecular Electron Transfer Reactions: CdSe/ZnS Core Shell Quantum Dot acts as an Efficient Electron Donor as well as Acceptor. Somnath Koley, Manas

More information

Winter College on Optics and Energy February Optical nonlinearities in organic materials

Winter College on Optics and Energy February Optical nonlinearities in organic materials 2132-41 Winter College on Optics and Energy 8-19 February 2010 Optical nonlinearities in organic materials C.R. Mendonca University of Sao Paulo Brazil Optical nonlinearities in organic materials Prof.

More information

Molecular spectroscopy

Molecular spectroscopy Molecular spectroscopy Origin of spectral lines = absorption, emission and scattering of a photon when the energy of a molecule changes: rad( ) M M * rad( ' ) ' v' 0 0 absorption( ) emission ( ) scattering

More information

Optical properties of spherical and anisotropic gold shell colloids

Optical properties of spherical and anisotropic gold shell colloids 8 Optical properties of spherical and anisotropic gold shell colloids Core/shell colloids consisting of a metal shell and a dielectric core are known for their special optical properties. The surface plasmon

More information

Conformation-dependent Photostability among and within Single Conjugated Polymers. Supporting Information

Conformation-dependent Photostability among and within Single Conjugated Polymers. Supporting Information Conformation-dependent Photostability among and within Single Conjugated Polymers Heungman Park, Dat Tien Hoang, Keewook Paeng, Jaesung Yang, Laura J. Kaufman * Department of Chemistry, Columbia University,

More information

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept.

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept. Spectrum of Electromagnetic Radiation Electromagnetic radiation is light. Different energy light interacts with different motions in molecules. CHEM*344 Chemical Instrumentation Topic 7 Spectrometry Radiofrequency

More information

Ultrafast Dynamics and Single Particle Spectroscopy of Au-CdSe Nanorods

Ultrafast Dynamics and Single Particle Spectroscopy of Au-CdSe Nanorods Supporting Information Ultrafast Dynamics and Single Particle Spectroscopy of Au-CdSe Nanorods G. Sagarzazu a, K. Inoue b, M. Saruyama b, M. Sakamoto b, T. Teranishi b, S. Masuo a and N. Tamai a a Department

More information

Lab 3 and 4: Single Photon Source

Lab 3 and 4: Single Photon Source Lab 3 and 4: Single Photon Source By: Justin Deuro, December 10 th, 2009 Abstract We study methods of single photon emission by exciting single colloidal quantum dot (QD) samples. We prepare the single

More information

Bi-Axial Growth Mode of Au-TTF Nanowires. Induced by Tilted Molecular Column Stacking

Bi-Axial Growth Mode of Au-TTF Nanowires. Induced by Tilted Molecular Column Stacking Supporting Information Bi-Axial Growth Mode of Au-TTF Nanowires Induced by Tilted Molecular Column Stacking Yanlong Xing Eugen Speiser * Dheeraj K. Singh Petra S. Dittrich and Norbert Esser Leibniz-Institut

More information

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA Richard Miles and Arthur Dogariu Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA Workshop on Oxygen Plasma Kinetics Sept 20, 2016 Financial support: ONR and MetroLaser

More information

Lecture 06. Fundamentals of Lidar Remote Sensing (4) Physical Processes in Lidar

Lecture 06. Fundamentals of Lidar Remote Sensing (4) Physical Processes in Lidar Lecture 06. Fundamentals of Lidar Remote Sensing (4) Physical Processes in Lidar Physical processes in lidar (continued) Doppler effect (Doppler shift and broadening) Boltzmann distribution Reflection

More information

Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source

Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source C. Blome, K. Sokolowski-Tinten *, C. Dietrich, A. Tarasevitch, D. von der Linde Inst. for Laser- and

More information

Photothermal Spectroscopy Lecture 2 - Applications

Photothermal Spectroscopy Lecture 2 - Applications Photothermal Spectroscopy Lecture 2 - Applications Aristides Marcano Olaizola (PhD) Research Professor Department of Physics and Engineering Delaware State University, US 1 Outlook 1. Optical characterization

More information

Radiation-matter interaction.

Radiation-matter interaction. Radiation-matter interaction Radiation-matter interaction Classical dipoles Dipole radiation Power radiated by a classical dipole in an inhomogeneous environment The local density of optical states (LDOS)

More information

Spectroscopies for Unoccupied States = Electrons

Spectroscopies for Unoccupied States = Electrons Spectroscopies for Unoccupied States = Electrons Photoemission 1 Hole Inverse Photoemission 1 Electron Tunneling Spectroscopy 1 Electron/Hole Emission 1 Hole Absorption Will be discussed with core levels

More information

BY TEMPORALLY TWO-DIMENSIONAL

BY TEMPORALLY TWO-DIMENSIONAL Laser Chem., 1999, Vol. 19, pp. 35-40 Reprints available directly from the publisher Photocopying permitted by license only (C) 1999 OPA (Overseas Publishers Association) N.V. Published by license under

More information

Initial Hydrogen-Bonding Dynamics of. Photoexcited Coumarin in Solution with. Femtosecond Stimulated Raman Spectroscopy

Initial Hydrogen-Bonding Dynamics of. Photoexcited Coumarin in Solution with. Femtosecond Stimulated Raman Spectroscopy Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information (ESI) for: Initial Hydrogen-Bonding

More information

Granular metal films on the surfaces of transparent dielectric materials studied and modified via optical means

Granular metal films on the surfaces of transparent dielectric materials studied and modified via optical means Invited Paper Granular metal films on the surfaces of transparent dielectric materials studied and modified via optical means Tigran A. Vartanyan*, Nikita B. Leonov, Valerii V. Khromov, Sergey G. Przhibelskii,

More information

χ (3) Microscopic Techniques

χ (3) Microscopic Techniques χ (3) Microscopic Techniques Quan Wang Optical Science and Engineering University of New Mexico Albuquerque, NM 87131 Microscopic techniques that utilize the third order non-linearality (χ (3) ) of the

More information

Manipulating and Probing Enzymatic Conformational Fluctuations and Enzyme-Substrate Interactions by Single-Molecule FRET- Magnetic Tweezers Microscopy

Manipulating and Probing Enzymatic Conformational Fluctuations and Enzyme-Substrate Interactions by Single-Molecule FRET- Magnetic Tweezers Microscopy Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Supporting Information (SI) Manipulating and Probing Enzymatic Conformational Fluctuations

More information

Abstract... I. Acknowledgements... III. Table of Content... V. List of Tables... VIII. List of Figures... IX

Abstract... I. Acknowledgements... III. Table of Content... V. List of Tables... VIII. List of Figures... IX Abstract... I Acknowledgements... III Table of Content... V List of Tables... VIII List of Figures... IX Chapter One IR-VUV Photoionization Spectroscopy 1.1 Introduction... 1 1.2 Vacuum-Ultraviolet-Ionization

More information

Infrared Spectroscopy: Identification of Unknown Substances

Infrared Spectroscopy: Identification of Unknown Substances Infrared Spectroscopy: Identification of Unknown Substances Suppose a white powder is one of the four following molecules. How can they be differentiated? H N N H H H H Na H H H H H A technique that is

More information

Femtosecond nonlinear coherence spectroscopy of carrier dynamics in porous silicon

Femtosecond nonlinear coherence spectroscopy of carrier dynamics in porous silicon JOURNAL OF APPLIED PHYSICS 98, 083508 2005 Femtosecond nonlinear coherence spectroscopy of carrier dynamics in porous silicon Lap Van Dao a and Peter Hannaford Centre for Atom Optics and Ultrafast Spectroscopy,

More information

Advanced techniques Local probes, SNOM

Advanced techniques Local probes, SNOM Advanced techniques Local probes, SNOM Principle Probe the near field electromagnetic field with a local probe near field probe propagating field evanescent Advanced techniques Local probes, SNOM Principle

More information

Università degli Studi di Bari "Aldo Moro"

Università degli Studi di Bari Aldo Moro Università degli Studi di Bari "Aldo Moro" Table of contents 1. Introduction to Atomic Force Microscopy; 2. Introduction to Raman Spectroscopy; 3. The need for a hybrid technique Raman AFM microscopy;

More information

Novel Nanoparticles for Ultrasensitive Detection and Spectroscopy

Novel Nanoparticles for Ultrasensitive Detection and Spectroscopy Final Technical Report (DOE-FG02-98ER14873) Project Officer: Dr. Richard Gordon / Dr. John Miller Novel Nanoparticles for Ultrasensitive Detection and Spectroscopy Shuming Nie Indiana University P. 0.

More information

Nanostructured substrate with nanoparticles fabricated by femtosecond laser for surface-enhanced Raman scattering

Nanostructured substrate with nanoparticles fabricated by femtosecond laser for surface-enhanced Raman scattering Nanostructured substrate with nanoparticles fabricated by femtosecond laser for surface-enhanced Raman scattering Yukun Han, 1 Hai Xiao, 2 and Hai-Lung Tsai 1, * 1 Department of Mechanical and Aerospace

More information

DIODE- AND DIFFERENCE-FREQUENCY LASER STUDIES OF ATMOSPHERIC MOLECULES IN THE NEAR- AND MID-INFRARED: H2O, NH3, and NO2

DIODE- AND DIFFERENCE-FREQUENCY LASER STUDIES OF ATMOSPHERIC MOLECULES IN THE NEAR- AND MID-INFRARED: H2O, NH3, and NO2 DIODE- AND DIFFERENCE-FREQUENCY LASER STUDIES OF ATMOSPHERIC MOLECULES IN THE NEAR- AND MID-INFRARED: H2O, NH3, and NO2 Johannes ORPHAL, Pascale CHELIN, Nofal IBRAHIM, and Pierre-Marie FLAUD Laboratoire

More information

Spectroscopy in Transmission

Spectroscopy in Transmission Spectroscopy in Transmission + Reflectance UV/VIS - NIR Absorption spectra of solids and liquids can be measured with the desktop spectrograph Lambda 9. Extinctions up to in a wavelength range from UV

More information