c. Using your values from a&b, calculate the molarity of the saline solution

Size: px
Start display at page:

Download "c. Using your values from a&b, calculate the molarity of the saline solution"

Transcription

1 HMSA Chemistry Ms. Ye Name Date Block I.V. fluids and Molarity 1. Normal saline solutions used for I.V. drips contain 0.9 grams of NaCl per 100 ml of solution. a. Convert the grams of Nacl in the saline solution to moles of NaCl b. Convert the milliliters of saline solution into liters of solution. c. Using your values from a&b, calculate the molarity of the saline solution d. Using the Molarity you calculated from c, calculate the number of moles of NaCl you would need to make 1000 ml of saline solution. e. Using your answer from d, how many grams of NaCl would you need to make 1000 ml of the saline solution? f. Why do you think an I.V. drip is made up of a solution of 0.9 grams of NaCl/100 ml of solution? Why can t we hook a patient up to an I.V. of pure water?

2 2. When diabetic patients experience low blood sugar, a dextrose solution (D5W) may be administered. Dextrose is a form of glucose (C6H12O6) and is utilized by the body cells for basic metabolic needs (cell respiration). The dextrose solution contains 5 grams of dextrose per 100 ml of solution a. Calculate the molarity of the dextrose solution (you ll need to convert both grams & ml) b. How many grams of dextrose would you need to make a 2500 ml dextrose solution of the same concentration as the one in part a?

3 Dilutions Activity Assume your beaker contains a 3.0 M solution (your stock solution ) 1. Based on the given molarity above and the volume (estimate from the beaker) of the solution, how many moles of solute are in your solution? Show work. 2. Pour ~50 ml of your stock solution into a separate container. Does this 50 ml solution have the same molarity as the stock solution? If not, how would the molarity be different? 3. Add ~50 ml of water to your 50 ml solution (from #2). Does this new ~100 ml solution have the same molarity as your stock solution? If not, how would the molarity be different? 4. What you just did in step 3 is known as a dilution. Explain what you think it means to dilute a solution

4 Use the Model below to set up your dilution Making Dilutions: M = Molarity of Solution V = volume of solution = *since volume (V) is on both sides of the equation, you need to make sure they are both in the same units! They can both be in L or both in ml just as long as V1 and V2 are in the same unit! Sample Problem: What volume of concentrated (12 M) HCl is needed to make 500 ml of 2 M HCl? = (12 ) = (2 ) (500 ) =. This means that you need to pour 83.3 ml of the concentrated 12 M solution into a separate container, then add enough water so you have 500 ml of solution. This is how you would dilute your solution to a concentration of 2 M. Consider your stock solution from the first part of your lab (concentration of 3.0 M). You need to take your stock solution and dilute it to make ml of a 1.2 M solution. 1. Using the dilution formula above, calculate the volume of your stock solution that you would need to make the diluted solution. 2. Measure out the volume of stock solution needed to make your diluted solution and pour it into the ml volumetric flask. 3. Do you have 50 ml of solution? About how much more water do you need to add to make a 50 ml solution?

5 DILUTIONS PRACTICE PROBLEMS M = Molarity of Solution V = volume of solution = *since volume (V) is on both sides of the equation, you need to make sure they are both in the same units! They can both be in L or both in ml just as long as V1 and V2 are in the same unit! 1. What volume of concentrated hydrochloric acid (12.0 M) is needed to make 3.0 L of 1.0 M HCl? 2. What volume of concentrated ammonium hydroxide (14.5 M) is needed to make 250 ml of 0.5 M NH4OH? 3. If I have 340 ml of a 0.50 M NaBr solution, what will the concentration be if I made a new solution with the total volume is 560 ml? 4. If I dilute 250 ml of 0.10 M lithium acetate solution to a volume of 750 ml, what will the concentration of this solution be? 5. Using 52.5mL, a M solution was diluted to ml. What is the new concentration of this solution? 6. A stock solution of 10.0 M NaOH is prepared. From this solution, you need to make ml of M solution. How many ml will be required?

6 Homework: Molarity Practice (Molarity = moles of solute/liters of solution) Assume you placed a sample of a potato in 3 different solutions. Assume your potato sample has 1.3 grams of NaCl and the liquid volume of your potato is 350 ml. 1. Calculate the molarity of NaCl in the potato. 2. Calculate the molarity of the following salt solutions: a. 0.1 grams of NaCl in 100 ml of solution b grams of NaCl in 100 ml of solution c. 2 grams of NaCl in 100 ml of solution 3. Compare the molarities of the salt solutions to the molarity of the NaCl in the potato. If you placed a potato in all 3 solutions, which solution will be a. Hypertonic relative to the potato? How will the size of the potato change? b. Hypotonic? How will the size of the potato change? c. Isotonic? How will the size of the potato change?

7 Dilutions Practice (M1V1=M2V2) 4. A stock solution of 1.00 M NaCl is available. How many milliliters are needed to make ml of M solution? 5. What volume of M KCl is needed to make ml of M solution? 6. Concentrated H2SO4 is 18.0 M. What volume is needed to make 2.00 L of 1.00 M solution? 7. Concentrated HCl is 12.0 M. What volume is needed to make 500. ml of 1.50 M solution? L of M NaNO3 must be prepared from a solution known to be 1.50 M in concentration. How many ml of stock solution are required?

e. Using your answer from d, how many grams of NaCl would you need to make 1000 ml of the saline solution?

e. Using your answer from d, how many grams of NaCl would you need to make 1000 ml of the saline solution? I.V. fluids and Molarity 1. Normal saline solutions used for I.V. drips contain 0.9 grams of NaCl per 100 ml of solution. a. Calculate the number of moles of NaCl in the saline solution b. Calculate the

More information

Solution Concentrations CHAPTER OUTLINE

Solution Concentrations CHAPTER OUTLINE Chapter 8B Solution Concentrations CHAPTER OUTLINE Concentration Units Mass Percent Using Percent Concentration Molarity Using Molarity Dilution Osmolarity Tonicity of Solutions 2 CONCENTRATION UNITS The

More information

Types of Concentration Expressions

Types of Concentration Expressions Chapter 12 Lecture Chapter 12 Solutions 12.4 Concentrations of Solutions Learning Goal Calculate the concentration of a solute in a solution; use concentration as a conversion factor to calculate the amount

More information

Example: How would we prepare 500. ml of M sodium sulfate in water?

Example: How would we prepare 500. ml of M sodium sulfate in water? 95 Example: How would we prepare 500. ml of 0.500 M sodium sulfate in water? Dissolve the appropriate amount of sodium sulfate into enough water to make 500. ml of solution. A VOLUMETRIC FLASK is a flask

More information

Chapter 15. Solutions

Chapter 15. Solutions Chapter 15 Solutions Key Terms for this Chapter Make sure you know the meaning of these: Solution Solute Solvent Aqueous solution Solubility Saturated Unsaturated Supersaturated Concentrated Dilute 15-2

More information

Assume 1 mol hemoglobin: mass Fe 2+ = (6.8x10 4 g mol -1 ) = g

Assume 1 mol hemoglobin: mass Fe 2+ = (6.8x10 4 g mol -1 ) = g 4. Hemoglobin, a protein in red blood cells, carries O 2, from the lungs to the body s cells. Iron (as Fe 2+ ) makes up 0.33 mass % of hemoglobin. If the molar mass of hemoglobin is 6.8x10 4 g/mol, how

More information

Name Date. 9. Which substance shows the least change in solubility (grams of solute) from 0 C to 100 C?

Name Date. 9. Which substance shows the least change in solubility (grams of solute) from 0 C to 100 C? Solubility Curve Practice Problems Directions: Use the graph to answer the questions below. Assume you will be using 100g of water unless otherwise stated. 1. How many grams of potassium chloride (KCl)

More information

*You should work in groups of no more than 3 students. Each individual is responsible for all data and information in their own booklet.

*You should work in groups of no more than 3 students. Each individual is responsible for all data and information in their own booklet. Name Period 1 *You should work in groups of no more than 3 students. Each individual is responsible for all data and information in their own booklet. Pre-Lab Questions: What is the molarity equation?

More information

Preparation of Biological Solutions and Serial Dilutions

Preparation of Biological Solutions and Serial Dilutions Preparation of Biological Solutions and Serial Dilutions - Objective: 1- To learn how to prepare solutions. 2-To get familiar with solution dilutions. - Introduction: - It is very important to understand

More information

A solution is a homogeneous mixture of two or more substances.

A solution is a homogeneous mixture of two or more substances. UNIT (5) SOLUTIONS A solution is a homogeneous mixture of two or more substances. 5.1 Terminology Solute and Solvent A simple solution has two components, a solute, and a solvent. The substance in smaller

More information

Concentration of Solutions

Concentration of Solutions Section 3 10C, 10D Main Ideas Molarity is moles of solute per liter of solution Molality is moles of solute per kilogram of solvent 10C calculate the concentration of solutions in units of molarity; 10D

More information

Chapter. Measuring Concentration. Table of Contents

Chapter. Measuring Concentration. Table of Contents Measuring Concentration Table of Contents Introduction 1. Percent Concentration 2. Molarity 3. Preparation of a with a Desired Concentration Measuring Concentration Warm Up How do you classify solutions

More information

Unit 15 Solutions and Molarity

Unit 15 Solutions and Molarity Unit 15 s and Molarity INTRODUCTION In addition to chemical equations chemists and chemistry students encounter homogeneous mixtures or solutions quite frequently. s are the practical means to deliver

More information

X Unit 14 Solutions & Acids and Bases

X Unit 14 Solutions & Acids and Bases 1 X Unit 14 Solutions & Acids and Bases I. Solutions All solutions are composed of two parts: the and the. o Solute o Solvent A solution may exist as a solid, liquid, or gas depending on the state of the

More information

CP Chapter 15/16 Solutions What Are Solutions?

CP Chapter 15/16 Solutions What Are Solutions? CP Chapter 15/16 Solutions What Are Solutions? What is a solution? A solution is uniform that may contain solids, liquids, or gases. Known as a mixture Solution = + o Solvent The substance in abundance

More information

SOLUTIONS. Solutions - page

SOLUTIONS. Solutions - page SOLUTIONS For gases in a liquid, as the temperature goes up the solubility goes. For gases in a liquid, as the pressure goes up the solubility goes. Example: What is the molarity of a solution with 2.0

More information

Unit V: Solutions. A. Properties of Solutions. B. Concentration Terms of Solutions. C. Mass Percent Calculation. D. Molarity of Solutions

Unit V: Solutions. A. Properties of Solutions. B. Concentration Terms of Solutions. C. Mass Percent Calculation. D. Molarity of Solutions Unit V: Solutions A. Properties of Solutions B. Concentration Terms of Solutions C. Mass Percent Calculation D. Molarity of Solutions E. Solution Stoichiometry F. Dilution Problems 5-A Properties of Solutions

More information

91 PERCENTAGE COMPOSITION

91 PERCENTAGE COMPOSITION 91 PERCENTAGE COMPOSITION - sometimes called "percent composition" or "percent composition by mass" - the percentage of each element in a compound, expressed in terms of mass Example: Find the percentage

More information

Solutions The federal government and state governments set standards limiting the amount of contaminants allowed in drinking water.

Solutions The federal government and state governments set standards limiting the amount of contaminants allowed in drinking water. Solutions The federal government and state governments set standards limiting the amount of contaminants allowed in drinking water. 16.1 Properties of Solutions 16. Concentrations of Solutions 16. Colligative

More information

Announcements. Please come to the front of the classroom and pick up a Solution Problems worksheet before class starts!

Announcements. Please come to the front of the classroom and pick up a Solution Problems worksheet before class starts! Announcements Please come to the front of the classroom and pick up a Solution Problems worksheet before class starts! Announcements 1. Mid-term grades will be posted soon (just used scaled exam 1 score

More information

Molarity. How can the concentration of a solution be expressed quantitatively? Lemonade Solution 1 Lemonade Solution 2

Molarity. How can the concentration of a solution be expressed quantitatively? Lemonade Solution 1 Lemonade Solution 2 Why? Molarity How can the concentration of a solution be expressed quantitatively? When you buy a bottle of a certain brand of lemonade you expect it to taste just as sweet as the last time you bought

More information

Chemistry 143 Experiment #11 Acid Base Titration Dr. Caddell. Titrating Acid

Chemistry 143 Experiment #11 Acid Base Titration Dr. Caddell. Titrating Acid Titrating Acid In this lab you will first determine the concentration of sodium hydroxide in a stock solution that you prepare. You will then use that stock sodium hydroxide solution to titrate a solution

More information

Solutions. Experiment 11. Various Types of Solutions. Solution: A homogenous mixture consisting of ions or molecules

Solutions. Experiment 11. Various Types of Solutions. Solution: A homogenous mixture consisting of ions or molecules Solutions Solution: A homogenous mixture consisting of ions or molecules -Assignment: Ch 15 Questions & Problems : 5, (15b,d), (17a, c), 19, 21, 23, 27, (33b,c), 39, (43c,d),45b, 47, (49b,d), (55a,b),

More information

Solutions- Chapter 12 & 13 Academic Chemistry

Solutions- Chapter 12 & 13 Academic Chemistry Objectives: Solutions- Chapter 12 & 13 Academic Chemistry Describe the unique role of water in chemical and biological systems Develop and use general rules regarding solubility through investigations

More information

X Unit 15 HW Solutions Acids & Bases. Name:

X Unit 15 HW Solutions Acids & Bases. Name: X Unit 15 HW Solutions Acids & Bases Name: Homework #1: Solubility Curve Worksheet Use the solubility chart below to answer the following questions: Graph from U. Va Department of Physics. 1) What is the

More information

Lecture 5. Percent Composition. etc. Professor Hicks General Chemistry II (CHE132) Percent Composition. (aka percent by mass) 100 g.

Lecture 5. Percent Composition. etc. Professor Hicks General Chemistry II (CHE132) Percent Composition. (aka percent by mass) 100 g. Lecture 5 Professor Hicks General Chemistry II (CHE132) Percent Composition (aka percent by mass) % by mass component 1 = mass component 1 mass sample 100% sample component 1 100 g sample component 1 component

More information

Chemistry 51 Chapter 8 TYPES OF SOLUTIONS. Some Examples of Solutions. Type Example Solute Solvent Gas in gas Air Oxygen (gas) Nitrogen (gas)

Chemistry 51 Chapter 8 TYPES OF SOLUTIONS. Some Examples of Solutions. Type Example Solute Solvent Gas in gas Air Oxygen (gas) Nitrogen (gas) TYPES OF SOLUTIONS A solution is a homogeneous mixture of two substances: a solute and a solvent. Solute: substance being dissolved; present in lesser amount. Solvent: substance doing the dissolving; present

More information

Unit VI Stoichiometry. Applying Mole Town to Reactions

Unit VI Stoichiometry. Applying Mole Town to Reactions Unit VI Stoichiometry Applying Mole Town to Reactions Learning Goals I can apply mole town to reactions to determine the amount of product based on the amount of a reactant. I can apply mole town to reaction

More information

WEEK 10: 30 OCT THRU 05 NOV; LECTURES 28-30

WEEK 10: 30 OCT THRU 05 NOV; LECTURES 28-30 Electrolytes WEEK 10: 30 OCT THRU 05 NOV; LECTURES 28-30 Learning Objectives Know the difference between a molecular compound and an ionic compound Know the definition of electrolyte. Know the difference

More information

84 PERCENTAGE COMPOSITION

84 PERCENTAGE COMPOSITION 84 PERCENTAGE COMPOSITION - sometimes called "percent composition" or "percent composition by mass" - the percentage of each element in a compound, expressed in terms of mass Example: Find the percentage

More information

BCH312 [Practical] 1

BCH312 [Practical] 1 BCH312 [Practical] 1 Understanding how to prepare solutions and make dilutions is an essential skill for biochemists which is necessary knowledge needed for doing any experiment. What is SOLUTIONS? A simple

More information

Chemistry 143 Acid Base Titration Dr. Caddell. Titrating Acid

Chemistry 143 Acid Base Titration Dr. Caddell. Titrating Acid Titrating Acid In this lab you will first determine the concentration of sodium hydroxide in a stock solution that you prepare. You will then use that stock sodium hydroxide solution to titrate a solution

More information

Last, First Period, Date

Last, First Period, Date Block 4 Molarity Packet Work List 1. /10 Cover / Vocabulary 2. /10 WCW 3. /10 Notes: Molarity #1-4 4. /10 Molarity: Concentration Solutions #8-23 5. /10 Molarity Worksheet 6. /10 Solution Concentration

More information

Solutions. Solutions Overview

Solutions. Solutions Overview Solutions Chapter 9 Solutions Overview Terminology Units of Concentration Dilutions Colligative Properties 1 Terminology Solution- A homogenous mixture of two or more substances (ions or small molecules)

More information

Solution Concentration

Solution Concentration Agenda Day 66 Concentration Lesson: PPT, Handouts: 1. Concentration& Dilution Handout. 2. Concentration of Solutions Worksheet Text: 1. P. 398-401 - Concentration ( %, ppm) HW: 1. Worksheets, P. 400 #

More information

Unit 10 Solution Chemistry 1. Solutions & Molarity 2. Dissolving 3. Dilution 4. Calculation Ion Concentrations in Solution 5. Precipitation 6.

Unit 10 Solution Chemistry 1. Solutions & Molarity 2. Dissolving 3. Dilution 4. Calculation Ion Concentrations in Solution 5. Precipitation 6. Unit 10 Solution Chemistry 1. Solutions & Molarity 2. Dissolving 3. Dilution 4. Calculation Ion Concentrations in Solution 5. Precipitation 6. Formula, Complete, Net Ionic Equations 7. Qualitative Analysis

More information

Preparation Of Biological Solutions And Serial Dilutions. BCH 312 [Practical]

Preparation Of Biological Solutions And Serial Dilutions. BCH 312 [Practical] Preparation Of Biological Solutions And Serial Dilutions BCH 312 [Practical] Introduction : - It is very important to understand how to prepare solutions and make dilutions and it is an essential skill

More information

Explain freezing-point depression and boiling-point elevation at the molecular level.

Explain freezing-point depression and boiling-point elevation at the molecular level. Solutions 1 UNIT4: SOLUTIONS All important vocabulary is in Italics and bold. Describe and give examples of various types of solutions. Include: suspension, emulsion, colloid, alloy, solute, solvent, soluble,

More information

A1: Chapter 15.2 & 16.1 Aqueous Systems ( ) 1. Distinguish between a solution and an aqueous solution.

A1: Chapter 15.2 & 16.1 Aqueous Systems ( ) 1. Distinguish between a solution and an aqueous solution. A1: Chapter 15.2 & 16.1 Aqueous Systems (494-497) 1. Distinguish between a solution and an aqueous solution. A solution is any substance dissolved into another substance. An aqueous solution is specifically

More information

CHEMICAL CALCULATIONS - RELATING MASS AND ATOMS

CHEMICAL CALCULATIONS - RELATING MASS AND ATOMS 84 CHEMICAL CALCULATIONS - RELATING MASS AND ATOMS Chemical equations are written and balanced in terms of ATOMS and MOLECULES - While chemical equations are written in terms of ATOMS and MOLECULES, that's

More information

9.1 Water. Chapter 9 Solutions. Water. Water in Foods

9.1 Water. Chapter 9 Solutions. Water. Water in Foods Chapter 9 s 9.1 Water 9.1 Properties of Water 9.2 s 9.3 Electrolytes and Nonelectrolytes 9.6 Percent Concentration 9.7 Molarity Water is the most common solvent. The water molecule is polar. Hydrogen bonds

More information

Liquid Mixture-Solutions

Liquid Mixture-Solutions Chapter 3- Liquid Mixture-Solutions CHAPTER OUTLINE: The student will be able to:- Solutions Preparation of Standards units Concentration percentage Formal solution Molar solution Normal solution Solutions:

More information

CHEM1109 Answers to Problem Sheet Isotonic solutions have the same osmotic pressure. The osmotic pressure, Π, is given by:

CHEM1109 Answers to Problem Sheet Isotonic solutions have the same osmotic pressure. The osmotic pressure, Π, is given by: CHEM1109 Answers to Problem Sheet 5 1. Isotonic solutions have the same osmotic pressure. The osmotic pressure, Π, is given by: Π = MRT where M is the molarity of the solution. Hence, M = Π 5 (8.3 10 atm)

More information

These numbers are the masses of each element in a mole of the compound!

These numbers are the masses of each element in a mole of the compound! 91 PERCENTAGE COMPOSITION - sometimes called "percent composition" or "percent composition by mass" - the percentage of each element in a compound, expressed in terms of mass Example: Find the percentage

More information

Question. C Non aqueous

Question. C Non aqueous (hem 108 hapter 7 ) Ques. no. 1 Which is not an example of a? Question 2 dental filling B hicken soup Gasoline Sea water n example of colloids is Milk B Hot coffee Vinegar Gasoline 3 with water, H 2O as

More information

Titrations Worksheet and Lab

Titrations Worksheet and Lab Titrations Worksheet and Lab Vocabulary 1. Buret: a piece of glassware used for dispensing accurate volumes, generally reads to two places of decimal. 2. Titrant: the substance of known concentration added

More information

Test bank for Chemistry An Introduction to General Organic and Biological Chemistry 12th Edition by Timberlake

Test bank for Chemistry An Introduction to General Organic and Biological Chemistry 12th Edition by Timberlake Test bank for Chemistry An Introduction to General Organic and Biological Chemistry 12th Edition by Timberlake Link download full: http://testbankair.com/download/test-bank-for-chemistry-an-introduction-to-general-organic-and-biological-chemistry-12th-edition-by-timberlak

More information

Tuesday, February 3rd, 2015 Learning Target : I can make solutions and dilutions. Homework: n/a

Tuesday, February 3rd, 2015 Learning Target : I can make solutions and dilutions. Homework: n/a Tuesday, February 3rd, 2015 Learning Target : I can make solutions and dilutions. Homework: n/a As you enter... What is the definition and formula for molarity? (hint: check out your brochure) Big Idea:

More information

COEFFICIENTS. - Experimentally, we can usually determine the reactants and products of a reaction

COEFFICIENTS. - Experimentally, we can usually determine the reactants and products of a reaction 81 COEFFICIENTS - Experimentally, we can usually determine the reactants and products of a reaction - We can determine the proper ratios of reactants and products WITHOUT further experiments, using a process

More information

CHEM 1413 Chapter 4 Homework Questions TEXTBOOK HOMEWORK

CHEM 1413 Chapter 4 Homework Questions TEXTBOOK HOMEWORK CHEM 1413 Chapter 4 Homework Questions TEXTBOOK HOMEWORK Chapter 3 3.68 Calculate each of the following quantities: (a) Mass (g) of solute in 185.8 ml of 0.267 M calcium acetate (b) Molarity of 500. ml

More information

Chapter 2 Overview. Chapter 2 Overview

Chapter 2 Overview. Chapter 2 Overview Chapter 2 Overview! all matter, whether liquid, solid, or gas,consists of atoms, which form molecules! the identity of an atom and its chemical behavior is strictly defined by the number of electrons in

More information

Name Date Class PROPERTIES OF SOLUTIONS

Name Date Class PROPERTIES OF SOLUTIONS 16.1 PROPERTIES OF SOLUTIONS Section Review Objectives Identify the factors that determine the rate at which a solute dissolves Identify the units usually used to express the solubility of a solute Calculate

More information

Dilutions 4/8/2013. Steps involved in preparing solutions from pure solids. Steps involved in preparing solutions from pure solids

Dilutions 4/8/2013. Steps involved in preparing solutions from pure solids. Steps involved in preparing solutions from pure solids Steps involved in preparing solutions from pure solids Steps involved in preparing solutions from pure solids Calculate the amount of solid required Weigh out the solid Place in an appropriate volumetric

More information

phet: Molarity Go to: https://phet.colorado.edu/en/ simulation/molarity Click on Run in HTML5

phet: Molarity Go to: https://phet.colorado.edu/en/ simulation/molarity Click on Run in HTML5 phet: Molarity Go to: https://phet.colorado.edu/en/ simulation/molarity Click on Run in HTML5 phet: Molarity 1. Adjust moles of solute while leaving volume constant. What happens to molarity when you increase

More information

Chemistry. Approximate Timeline. Students are expected to keep up with class work when absent.

Chemistry. Approximate Timeline. Students are expected to keep up with class work when absent. Chemistry Name Hour Chemistry Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 15 SOLUTIONS Day Plans for the day Assignment(s) for the day 1 Begin Chapter 15

More information

91 PERCENTAGE COMPOSITION

91 PERCENTAGE COMPOSITION 91 PERCENTAGE COMPOSITION - sometimes called "percent composition" or "percent composition by mass" - the percentage of each element in a compound, expressed in terms of mass Example: Find the percentage

More information

Bio 105 Lab 3: Chemistry: ph and solutions

Bio 105 Lab 3: Chemistry: ph and solutions 1 Bio 105 Lab 3: Chemistry: ph and solutions Part 1. Acid and Base Chemistry A. Introduction BIO 105 Summer 2013 Name One of the most important concepts in biology is acid/base chemistry. We are familiar

More information

A1: Chapter 15.2 & 16.1 Aqueous Systems ( ) 1. Distinguish between a solution and an aqueous solution.

A1: Chapter 15.2 & 16.1 Aqueous Systems ( ) 1. Distinguish between a solution and an aqueous solution. Unit 9 Assignment Packet A1: Chapter 15.2 & 16.1 Aqueous Systems (494-497) 1. Distinguish between a solution and an aqueous solution. Name Period: 2. Define the following: Solute Solvent 3. Identify the

More information

Chapter 4. Aqueous Reactions and Solution Stoichiometry

Chapter 4. Aqueous Reactions and Solution Stoichiometry Sample Exercise 4.1 (p. 127) The diagram below represents an aqueous solution of one of the following compounds: MgCl 2, KCl, or K 2 SO 4. Which solution does it best represent? Practice Exercise 1 (4.1)

More information

Molarity Revised 2011

Molarity Revised 2011 Molarity Revised 2011 Molarity Is the number of moles of solute dissolved in one liter of solution. The unit is moles/l Specifically, moles of solute/liter of solution. Rather than writing out moles per

More information

Spring Final Exam Review

Spring Final Exam Review Directions: Complete all of the following questions. Turn this in on the day of your final and you can earn up to 10 bonus points on your final. You must number and answer every questions on a separate

More information

TYPES OF CHEMICAL REACTIONS

TYPES OF CHEMICAL REACTIONS TYPES OF CHEMICAL REACTIONS Precipitation Reactions Compounds Soluble Ionic Compounds 1. Group 1A cations and NH 4 + 2. Nitrates (NO 3 ) Acetates (CH 3 COO ) Chlorates (ClO 3 ) Perchlorates (ClO 4 ) Solubility

More information

MOLAR CONCENTRATION. - unit: MOLARITY (M): moles of dissolved substance per LITER of solution. molarity

MOLAR CONCENTRATION. - unit: MOLARITY (M): moles of dissolved substance per LITER of solution. molarity 93 MOLAR CONCENTRATION - unit: MOLARITY (M): moles of dissolved substance per LITER of solution dissolved substance moles of SOLUTE molarity L SOLUTION If you have 0.250 L (250 ml) of 6.0 M HCl, how many

More information

Name Class Date. Symbol Meaning How to prepare Percentage % Moles solute per liter of solution. Moles solute per kilogram of solvent

Name Class Date. Symbol Meaning How to prepare Percentage % Moles solute per liter of solution. Moles solute per kilogram of solvent Skills Worksheet Problem Solving Concentration of Solutions There are three principal ways to express solution concentration in chemistry percentage by mass, molarity, and molality. The following table

More information

STUDYING CHEMICAL REACTIONS BY TITRATION ANALYSIS

STUDYING CHEMICAL REACTIONS BY TITRATION ANALYSIS STUDYING CHEMICAL REACTIONS BY TITRATION ANALYSIS OBJECTIVES: Study the relationship of reactants & products in solution phase chemical reactions, Learn how to prepare solutions from solid and liquid stock,

More information

Chapter 2 Overview. Chapter 2 Overview

Chapter 2 Overview. Chapter 2 Overview Chapter 2 Overview! all matter, whether liquid, solid, or gas,consists of atoms, which form molecules! the identity of an atom and its chemical behavior is strictly defined by the number of electrons in

More information

Concentration of Solutions

Concentration of Solutions CHAPTER 4 Concentration of Solutions There are three principal ways to express solution concentration in chemistry percentage by mass, molarity, and molality. The following table compares these three ways

More information

LABORATORY REPORT 1. Name

LABORATORY REPORT 1. Name LABORATORY REPORT 1 Fundamental Physiological Principles Name Date Score/Grade Section Units of Measurement 1. Provide the correct conversion units for the following measurements: 10-km run 6.2 mi 55 mph

More information

During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction:

During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction: Example 4.1 Stoichiometry During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction: Suppose that a particular plant consumes 37.8 g of CO 2

More information

3. Describe why hydrogen bonding is responsible for the high boiling point of water.

3. Describe why hydrogen bonding is responsible for the high boiling point of water. Packet Key 15.1 Water and Its Properties 1. In your own words, explain what a hydrogen bond is. A hydrogen bond is a bond between two molecules that have high polarity due specifically to having assymetrical

More information

Acid Base Homework 1

Acid Base Homework 1 1 Acid Base Homework 1 These questions are designed to help you go over the portion of the course that considered acids and bases. These questions are similar to those you might see on an exam. 1. What

More information

Announcement: Chemistry 6A F2007. Dr. J.A. Mack 11/9/07. Molarity: The ratio of moles of solvent to liters of solute. Moles/Liters and Molarity:

Announcement: Chemistry 6A F2007. Dr. J.A. Mack 11/9/07. Molarity: The ratio of moles of solvent to liters of solute. Moles/Liters and Molarity: Chemistry 6A F007 Dr. J.A. Mack Announcement: This weeks experiment (Atomic Spectra/Flame Test) is due next week, even though there is no lab scheduled for the next two weeks. Monday s Lab must turn in

More information

Toxins 4/27/2010. Acids and Bases Lab. IV-17 to IV-22

Toxins 4/27/2010. Acids and Bases Lab. IV-17 to IV-22 Toxins IV-17 to IV-22 Countless products are advertised on TV with the promise of reducing acid indigestion. a.what is acid indigestion? b.what does acid have to do with your stomach? c.how do you think

More information

Unit 10 Solution Chemistry 1. Solutions & Molarity 2. Dissolving 3. Dilution 4. Calculation Ion Concentrations in Solution 5. Precipitation 6.

Unit 10 Solution Chemistry 1. Solutions & Molarity 2. Dissolving 3. Dilution 4. Calculation Ion Concentrations in Solution 5. Precipitation 6. Unit 10 Solution Chemistry 1. Solutions & Molarity 2. Dissolving 3. Dilution 4. Calculation Ion Concentrations in Solution 5. Precipitation 6. Formula, Complete, Net Ionic Equations 7. Qualitative Analysis

More information

Chapter 4: Types of Chemical reactions and Solution Stoichiometry

Chapter 4: Types of Chemical reactions and Solution Stoichiometry Chapter 4: Types of Chemical reactions and Solution Stoichiometry 4.1 Water, The Common Solvent State why water acts as a common solvent. Draw the structure of water, including partial charge. Write equations

More information

INTRODUCTION TO CONCENTRATION Practice Problems. You must know the differences among the following terms to be successful making solutions.

INTRODUCTION TO CONCENTRATION Practice Problems. You must know the differences among the following terms to be successful making solutions. 1 INTRODUCTION TO CONCENTRATION Practice Problems You must know the differences among the following terms to be successful making solutions. Solution: A solution is a homogeneous mixture in which one or

More information

Isotonic and Buffer Solutions

Isotonic and Buffer Solutions Isotonic and Buffer Solutions It is generally accepted that for ophthalmic and parenteral administration, isotonic solutions are better tolerated by the patient than those at the extremes of hypo- and

More information

Name Solutions and Acids/Bases/Salts

Name Solutions and Acids/Bases/Salts Name Solutions and Acids/Bases/Salts 1. Which compound is insoluble in water? A) calcium bromide B) potassium bromide C) silver bromide D) sodium bromide 2. According to Reference Table F, which of these

More information

1.22 Concentration of Solutions

1.22 Concentration of Solutions 1.22 Concentration of Solutions A solution is a mixture formed when a solute dissolves in a solvent. In chemistry we most commonly use water as the solvent to form aqueous solutions. The solute can be

More information

Chemical calculations in medicine. Josef Fontana

Chemical calculations in medicine. Josef Fontana Chemical calculations in medicine Josef Fontana Chemical calculations Expression of concentration molar concentration percent concentration conversion of units Osmotic pressure, osmolarity Dilution of

More information

Give 6 different types of solutions, with an example of each.

Give 6 different types of solutions, with an example of each. Warm up (Jan 5) Give 6 different types of solutions, with an example of each. 1 Warm Up (Jan 6) 1. Write the reaction showing the dissolving of the following solids (be sure to note whether they are covalent

More information

ph = -log[h+], [H+] = 10-pH ph + poh = 14

ph = -log[h+], [H+] = 10-pH ph + poh = 14 You may remove this page. ph = -log[h+], [H+] = 10-pH McVc = MdVd ph + poh = 14 NA = 6.02 x 1023 mol-1 JBA 2017 Chemistry Exam 3 Name: Score: /100 = /80 Multiple choice questions are worth two points each.

More information

In this laboratory exercise we will determine the percentage Acetic Acid (CH 3 CO 2 H) in Vinegar.

In this laboratory exercise we will determine the percentage Acetic Acid (CH 3 CO 2 H) in Vinegar. The titration of Acetic Acid in Vinegar In this laboratory exercise we will determine the percentage Acetic Acid (CH CO H) in Vinegar. We will do this by Titrating the Acetic Acid present with a Strong

More information

Required math skills:

Required math skills: Quantitative Chemical Analysis Required math skills: ACCURATE ACCURATE NOT Accurate PRECISE NOT precise PRECISE Add Add Subtract Multiply Divide Powers Powers Logarithms Random error systematic error 1

More information

10) On a solubility curve, the points on the curve indicate a solution. 11) Values on the graph a curve represent unsaturated solutions.

10) On a solubility curve, the points on the curve indicate a solution. 11) Values on the graph a curve represent unsaturated solutions. Unit 11 Solutions- Funsheets Part A: Solubility Curves- Answer the following questions using the solubility curve below. Include units! 1) What mass of each solute will dissolve in 100mL of water at the

More information

4. Magnesium has three natural isotopes with the following masses and natural abundances:

4. Magnesium has three natural isotopes with the following masses and natural abundances: Exercise #1. Determination of Weighted Average Mass 1. The average mass of pennies minted after 1982 is 2.50 g and the average mass of pennies minted before 1982 is 3.00 g. Suppose that a bag of pennies

More information

Nanoscale pictures: Figs. 5.1, 5.4, and 5.5

Nanoscale pictures: Figs. 5.1, 5.4, and 5.5 Solutions and concentration Solution: a homogeneous mixture of two or more substances. Example: water, sugar, flavor mixture (Coke). The substances are physically combined, not chemically combined or bonded

More information

UNIT SEVEN PROBLEM SET CHEMISTRY LEE

UNIT SEVEN PROBLEM SET CHEMISTRY LEE CHEMISTRY LEE NAME DATE BLOCK UNIT SEVEN PROBLEM SET Score: Do not cheat by copying the work of another person, or by allowing another person to copy your answers. Cheating results in a 0% grade for both

More information

Name Solutions and Acids/Bases/Salts

Name Solutions and Acids/Bases/Salts Name Solutions and Acids/Bases/Salts 1. Which compound is insoluble in water? A) calcium bromide B) potassium bromide C) silver bromide D) sodium bromide 2. According to Reference Table F, which of these

More information

100 C = 100 X = X = 218 g will fit in this solution. 25 C = 100 X = 3640 X = 36.4 g will fit in this solution.

100 C = 100 X = X = 218 g will fit in this solution. 25 C = 100 X = 3640 X = 36.4 g will fit in this solution. 58 Questions for Solutions - You should be able to do ALL of these problems. Use a calculator, write all formulas, watch SF, and find the answers online at Arbuiso.com on the SOLUTIONS page. This is great

More information

Molarity Of A Solution Definition

Molarity Of A Solution Definition We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with molarity of a solution

More information

1. A solution that is 9% by mass glucose contains 9 g of glucose in every g of solution.

1. A solution that is 9% by mass glucose contains 9 g of glucose in every g of solution. Solutions molarity (Homework) For answers, send email to: admin@tutor-homework.com. Include file name: Chemistry_Worksheet_0144 Price: $3 (c) 2012 www.tutor-homework.com: Tutoring, homework help, help

More information

School of Chemistry UNIVERSITY OF KWAZULU-NATAL, HOWARD COLLEGE JUNE 2008 EXAMINATION CHEM100: SPECIAL SCIENCE CHEMISTRY

School of Chemistry UNIVERSITY OF KWAZULU-NATAL, HOWARD COLLEGE JUNE 2008 EXAMINATION CHEM100: SPECIAL SCIENCE CHEMISTRY School of Chemistry UNIVERSITY OF KWAZULU-NATAL, HOWARD COLLEGE JUNE 2008 EXAMINATION CHEM100: SPECIAL SCIENCE CHEMISTRY DURATION: 2 HOURS TOTAL MARKS: 100 Internal Examiner: Dr KB Brookes External Examiner:

More information

Chemistry 101 Chapter 4 STOICHIOMETRY

Chemistry 101 Chapter 4 STOICHIOMETRY STOICHIOMETRY Stoichiometry is the quantitative relationship between the reactants and products in a balanced chemical equation. Stoichiometry allows chemists to predict how much of a reactant is necessary

More information

Chapter 9. Solutions

Chapter 9. Solutions Chapter 9 Solutions Water Properties Polar O more electronegative, partial negative charge H less electronegative, partial positive charge Bent structure, 2 lone pairs on oxygen Participates in HYDROGEN

More information

Soluble: A solute that dissolves in a specific solvent. Insoluble: A solute that will not dissolve in a specific solvent. "Like Dissolves Like"

Soluble: A solute that dissolves in a specific solvent. Insoluble: A solute that will not dissolve in a specific solvent. Like Dissolves Like Solutions Homogeneous Mixtures Solutions: Mixtures that contain two or more substances called the solute and the solvent where the solute dissolves in the solvent so the solute and solvent are not distinguishable

More information

Name: Period: Date: solution

Name: Period: Date: solution Name: Period: Date: ID: A Solutions Test A Matching Use the choices below to answer the following 5 questions. a. Hydrogen bond d. Electrolyte b. Polar molecule e. Nonelectrolyte c. Nonpolar molecule 1.

More information

Physical Pharmacy. Solutions. Khalid T Maaroof MSc. Pharmaceutical sciences School of pharmacy Pharmaceutics department

Physical Pharmacy. Solutions. Khalid T Maaroof MSc. Pharmaceutical sciences School of pharmacy Pharmaceutics department Physical Pharmacy Solutions Khalid T Maaroof MSc. Pharmaceutical sciences School of pharmacy Pharmaceutics department 10/31/2015 Online access: bit.ly/physicalpharmacy 1 Mixtures a combination of two or

More information

9.1 Mixtures and Solutions

9.1 Mixtures and Solutions 9.1 Mixtures and Solutions Heterogeneous mixture: : A nonuniform mixture that has regions of different composition. Homogeneous mixture: : A uniform mixture that has the same composition throughout. Solution:

More information

THE MOLE CONCEPT III Applying Moles to Chemical Solutions ADEng. Programme Chemistry for Engineers Prepared by M. J. McNeil, MPhil.

THE MOLE CONCEPT III Applying Moles to Chemical Solutions ADEng. Programme Chemistry for Engineers Prepared by M. J. McNeil, MPhil. THE MOLE CONCEPT III Applying Moles to Chemical Solutions ADEng. Programme Chemistry for Engineers Prepared by M. J. McNeil, MPhil. Department of Pure and Applied Sciences Portmore Community College Main

More information