THE MOLE CONCEPT III Applying Moles to Chemical Solutions ADEng. Programme Chemistry for Engineers Prepared by M. J. McNeil, MPhil.

Size: px
Start display at page:

Download "THE MOLE CONCEPT III Applying Moles to Chemical Solutions ADEng. Programme Chemistry for Engineers Prepared by M. J. McNeil, MPhil."

Transcription

1 THE MOLE CONCEPT III Applying Moles to Chemical Solutions ADEng. Programme Chemistry for Engineers Prepared by M. J. McNeil, MPhil. Department of Pure and Applied Sciences Portmore Community College Main Campus

2 LECTURE OBJECTIVES PART THREE Define molarity in terms of its mathematical formula. Calculate moles, liters, or molarity of a given solution. Explain how to make a standard solution. Perform various (volumetric) titrimetric analyses: acid/base and redox types.

3 MOLES AND SOLUTIONS MOLARITY AND TITRATION

4 NATURE OF SOLUTIONS Dilute Small amount of solute for given solvent Concentrated Large amount of solute for given solvent Saturated Maximum amount of solute for given solvent. These terms are qualitative, not quantitative, and are open to interpretation.

5 WHAT IS CONCENTRATION? CONCENTRATE!!!!!! How many stuff you have in a certain amount of space? Stuff = solute Space = volume (solvent) What if you have lots/less of stuff or space? Stuff = A, I, M Concentration is just like sweetness of a solution. Imagine: A sugar solution contains 10.0g of sugar per dm 3 of solution and another contain 2.0 g sugar per dm 3 of solution. The more concentrated one will be sweeter. Chemists need to know the [solution]. N.B cm 3 (ml) = 1 dm 3 = 1 L

6 IMPORTANCE OF CONCENTRATION Water must be tested continually to ensure that the [contaminants] do not exceed established limits. These contaminants include trace metals, pesticides, bacteria, and even the byproducts of water treatment. Food additives must be in correct concentrations. A driver is legally impaired at 0.08 mg/ml blood alcohol content. Prescription drugs in the correct concentration make you better. We may express results in any form of the analyte. E.g.: Water Hardness due to calcium ion is expressed as ppm CaCO 3. [P & D I] Bleach in swimming pools. In an enzyme-catalyzed reaction, the more enzyme added to the experiment increases the reaction rate and viceversa. Chemists control the concentration of chemicals using the concepts we will develop in this unit.

7 CONCENTRATION OF SOLUTIONS Often scientists carry out experiments where the chemicals involved are dissolved in water. A scientist must be able to work out how much of a substance is dissolved in a certain volume of solution. Behavior of solutions depend on compound itself and on how much is present, i.e. on the concentration. Two solutions can contain the same compounds but behave quite different because the proportions of those compounds are different. Concentration of a solution: the more solute in a given volume of solvent, the more concentrated. 1 tsp salt (NaCl)/cup of water vs 3 Tbsp salt/cup water

8 EXPRESSING CONCENTRATION - MOLARITY Need to make solutions with precise concentrations. Most common unit of solution concentration is: Simplified: M=n/v is M=g/mm x L, g meaning grams, mm meaning the molar mass of the solution Molarity (M) or molar concentration, [ ], is the term used to express concentration. It is a measure of the number of moles of solute per litre of solution. Calculating molarity: Units of molarity: moles per litres mol/l or mol/dm 3 or mol dm -3. Be careful not to get molarity and moles mixed up. Moles measures the amount of material. Molarity measures the [concentration]. A liter of solution containing 1 mol of solute is a 1M solution, which is read as a one-molar solution. moles solute molarity = liters solution M moles Liter A liter of solution containing 0.1 mol moles of solute is a 0.1 M solution ml

9 UNITS OF VOLUME One Litre (1L) or 1000 cm 3 (ml) 1 ml or 1 cm 3 1 millitre (ml) = about 20 drops 1 L = qt 1 fluid once (fl oz) = ml A 1.00 molar (1.00 M) solution contains 1.00 mol solute in every 1 liter of solution.

10 MOLARITY - MOLES - VOLUME Molarity (M) = Molarity (M) = moles of solute volume of solution in liters mol Volume (L)

11 CALCULATING MOLARITY What is the molarity of a solution if it contains 2.0 moles of potassium nitrate in 4.0 L of solution? If you re given grams, you have to convert grams to moles. Intravenous(IV) saline solutions are often administered to patients in the hospital. One saline solution contain 0.90 g NaCl in exactly 100 cm3 of solution. What is the molarity of the solution. What is the molarity of a solution if it contains 20 grams of NaOH in 2.0 L of solution? Calculate the molarity of a solution prepared by dissolving 25.6 grams of Al(NO 3 ) 3 in 455 ml of solution. Now that you know how to calculate the molarity of a solution, how would you prepare one in the laboratory?

12 MOLARITY PRACTICE 1. What is the molar NaCl concentration if you have 0.5 mol NaCl in 1.00 L of solution? Come on and wrestle these questions to the ground. You can do it! 2. How many moles of AgNO 3 are present in 25 ml of a 0.75 M solution? g KNO 3 dissolves in a 233 ml solution. What is molarity? g KOH is dissolved in 250. ml of water, calculate the molarity.

13 INTERCONVERSION OF MOLARITY, VOLUME AND MOLES 1. Household laundry bleach is a dilute aqueous solution of sodium hypochlorite (NaClO). How many moles of solute are present in 1.5 L of 0.70 M NaOH? 1. Formalin, HCHO, is used in preserving specimens. How many grams of HCHO must be used to prepare 2.5 L of 12.3 M formalin? 2. How many moles are there in 205. ml of a M solution? 3. How many moles of HCl are present in 2.5 L of 0.10 M HCl? 4. How many grams of NaOH are required to prepare 400. ml of 3.0 M NaOH solution? 2. What volume of a 0.10 M NaOH solution is needed to provide 0.50 mol of NaOH? 3. How many grams of CuSO 4 are needed to prepare ml of 1.00 M CuSO 4?

14 MORE PRACTICE QUESTIONS 1. How many grams of nitric acid are present in 1.0 L of a 1.0 M HNO 3 solution? 2. Calculate the number of grams needed to produce 1.00 L of these solutions: a) 1.00 M KNO 3 b) 1.85 M H 2 SO 4 c) 0.67 M KClO 3 3. Calculate the # of grams needed to produce each: a) 0.20 L of 1.5 M KCl b) L of M HCl c) 0.20 L of 0.09 mol/l AgNO 3 d) 250 ml of 3.1 mol/l BaCl 2 4. Give the molarity of a solution containing 10 g of each solute in 2.5 L of solution: a)h 2 SO 4 b)ca(oh) Describe how 100 ml of a 0.10 mol/l NaOH solution would be made. 63 g 101 g 181 g 22 g 3 g 82 g 1.75 g For more lessons, visit kg mol/l mol/l

15 PREPARING MOLAR SOLUTIONS FROM PURE SOLIDS Standard solutions are reagents of known concentration (mol dm -3 ) If a solution contains 1 mole of a substance in 1 dm 3 of solution, it is usually written as 1 M (1 mol dm -3 ) So, 1 M NaCl means there is 1 mole of NaCl in 1 dm 3 of solution. Weigh out a solid solute and dissolve in a given quantity of solvent. Dilute a concentrated solution to give one that is less concentrated. How would you prepare 1 M NaCl solution? Mass conc ( conc. In gdm -3 ) :Mass (in grams) of a substance dissolved in 1dm -3 of solution. Mathematically, Mass(g) Vol(dm 3 )

16 PREPARING 1.0 MOLAR SOLUTION One liter of a 1.00 M NaCl solution need 1.00 mol of NaCl weigh out 58.5 g NaCl (1.00 mole) and add water to make 1.00 liter (total volume) of solution.

17 STEPS TO PREPARE MOLAR SOLUTIONS FROM PURE SOLIDS STEP 1: Calculate the mass of the solute needed using the molarity definition and accounting for the desired concentration and volume. STEP 2: Weigh out the mass of the solute on an analytical balance. STEP 3: Transfer the solute in an appropriate volumetric flask. STEP 4: Fill flask about half full with distilled water and mix. STEP 5: Fill to calibration mark and invert to mix

18

19 PREPARING 0.10 M NaOH 1. Calculate # of grams required to make 100 ml of a 0.10 M solution of NaOH. 2. Get volumetric flask, plastic bottle, 100 ml beaker, eyedropper. Rinse all with tap water. 3. Fill a beaker with distilled water. 4. Pour ml of H 2 O from beaker into flask. 6. Mix (by swirling) until the NaOH is dissolved. 7. Add distilled H 2 O to just below the colored line. 8. Add distilled H 2 O to the line using eyedropper. 9. Place solution in a bottle. Place label (tape) on bottle (name, date, chemical, molarity). Place bottle at front. Rinse & return equipment. 5. Weigh NaOH. Add it to flask. Do step 5 quickly.

20 To make a 0.5-molar (0.5M) solution, first add 0.5 mol of solute to a 1-L volumetric flask half filled with distilled water. Swirl the flask carefully to dissolve the solute. Fill the flask with water exactly to the 1-L mark.

21 PRACTICE MAKING MOLAR SOLUTIONS Describe how you would prepare ml of a M solution of CoCl 2. How many ml of a stock solution of 4 M KI would be needed to prepare 250 ml of 0.76 M KI? L x moles x g = 2.60 g 1 L 1 mole Weigh 2.60 g of CoCl 2 How would you prepare 0.1 M of sodium carbonate solution in the lab? Dissolve in water Transfer to a 100 ml volumetric flask and fill to the line 13. You need 250 ml of 0.2 M NaCl, but all you have is a 1 M solution. How do you prepare the required solution?

22 HOW WOULD YOU PREPARE MOLAR SOLUTIONS FROM LIQUIDS Solutions of exact concentrations of sulphuric acid for e.g. cannot be made up directly because it absorbs moisture from the atmosphere. Some distilled water can be placed into the desired volumetric flask and the relevant volume of the acid is run into from a burette. Solutions of approximate concentrations are made up and their exact concentrations are then found by titration. How would you prepare approximately 0.1 M H 2 SO 4 solution.

23 VOLUMETRIC PRINCIPLES - STANDARDS PRIMARY (1 o ) STANDARD A highly purified compound used as a reference material in titrimetry. Properties High purity Stable in air Independent of relative humidity Readily available Reasonable solubility Large formula weight React stoichiometrically fast E.g. Potassium Acid Phthalate, KHC 8 H 4 O 4 (FW ), Na 2 CO 3, K 2 Cr 2 O 7 SECONDARY (2 o ) STANDARDS This standard do not meet the properties as a primary standard, but are available in sufficient purity Desirable properties of: Prepared from primary standard Stable Reacts rapidily and completely with analyte Reacts selectively with analyte E.g. NaOH, KOH, Ba(OH) 2, HCl, HNO 3, HClO 4, KMnO 4, Na 2 S 2 O 3

24 PRINCIPLES OF VOLUMETRIC ANALYSIS DIRECT METHOD Dissolve carefully weighed quantity of primary (1 o ) standard; dilute to known volume. INDIRECT METHOD Titrate weighed quantity of primary (1 o ) standard. Titrate weighed quantity of secondary (2 o ) standard. Titrate measured volume of other standard solution..

25 TITRATION Titration is a common laboratory method of quantitative chemical analysis that is used to determine the unknown concentration of a known reactant. Because volume measurements play a key role in titration, it is also known as volumetric analysis. There are several types of titrimetric analysis. Acid-Base Titration HA + B BH + + A - Redox Titration, Red 1 + Ox 2 Ox 1 + Red 2 ph Titration Thermometric Titration Complexometric Titration Conductimetric Titration

26 VOLUMETRIC APPARATUS Conical flask Burette Pipette beaker Indicator for volumetric analysis

27 TITRIMETRY TERMS Titrimetry - determination of analyte by reaction with measured amount of standard reagent. Standard Solution (titrant) - reagent of known concentration. Titrand?? End Point - the occurrence of an observable physical change indicating that the equivalence point is reached. Might differ from eq. pt.! Titration - slow addition of titrant to analyte solution from a volumetric vessel (burette) Equivalence Point - reached when amount of added titrant is chemically equivalent to amount of analyte present in the sample.

28 IMPORTANCE OF TITRATION To determine the concentration of an analyte in a solution. To determine the proticity of an acid. To determine the stoichiometry of a chemical equation. To determine the percentage purity of a mixture. Stoichiometric Calculations: The Workhorse of the Analyst

29 TITRATION

30 MEASURING VOLUMETRIC DILUTION Many laboratory chemicals such as acids are purchased as concentrated solutions (stock solutions). e.g. 12 M HCl 12 M H 2 SO 4 More dilute solutions are prepared by taking a certain quantity of the stock solution and diluting it with water. In a dilution water is added. volume increases. concentration decreases. What about the number of moles?

31 MAKING DILUTIONS What effect does dilution have on the total moles of solute in a solution? Diluting a solution reduces the number of moles of solute per unit volume, but the total number of moles of solute in solution does not change. moles solute = moles solute before dilution after dilution

32 ACID-BASE TITRATIONS Solution Stoichiometry Remember: reactions occur on a mole to mole basis. For pure reactants, we measure reactants using mass 1. How many moles of HCl are present in 2.5 L of 0.10 M HCl? For reactants that are added to a reaction as aqueous solutions, we measure the reactants using volume of solution. 2. How many grams of CuSO 4 are needed to prepare ml of 1.00 M CuSO 4?

33 VOLUMETRIC TITRATION CALCULATIONS Solution stoichiometry practice 1. If 25.0 ml of 2.5 M NaOH are needed to neutralize (i.e. react completely with) a solution of H 3 PO 4, how many moles of H 3 PO 4 were present in the solution? 48.0 ml of Ca(OH) 2 solution was titrated with 19.2 ml of M HNO 3. Determine the molarity of the Ca(OH) 2 solution in mol dm -3 and g dm If ml of 2.5 M NaOH are needed to neutralize 50.0 ml of an H 3 PO 4 solution, what is the concentration (molarity) of the H 3 PO 4 solution?

34 LIMITING/EXCESS REACTANT Potassium superoxide, KO 2, is used in rebreathing gas masks to generate oxygen. 4KO 2 (s) + 2H 2 O(l) 4KOH(s) + 3O 2 (g) a. How many moles of O 2 can be produced from 0.15 mol KO 2 and 0.10 mol H 2 O? b. Determine the limiting reactant. 4KO 2 (s) + 2H 2 O(l) 4KOH(s) + 3O 2 (g) 0.15 mol 0.10 mol? moles Two starting amounts? Where do we start? Hide one 79.1 g of zinc react with 0.90 L of 2.5M HCl. Identify the limiting and excess reactants. How many liters of hydrogen are formed at STP? 34

35 REDOX TITRATION Read up!!!!

36 END OF SHOW With every mole calculations, You must never

Solution Concentration

Solution Concentration Agenda Day 66 Concentration Lesson: PPT, Handouts: 1. Concentration& Dilution Handout. 2. Concentration of Solutions Worksheet Text: 1. P. 398-401 - Concentration ( %, ppm) HW: 1. Worksheets, P. 400 #

More information

CaCO 3(s) + 2HCl (aq) CaCl 2(aq) + H 2 O (l) + CO 2(g) mole mass 100g 2(36.5g) 111g 18g 44g

CaCO 3(s) + 2HCl (aq) CaCl 2(aq) + H 2 O (l) + CO 2(g) mole mass 100g 2(36.5g) 111g 18g 44g STOICHIOMETRY II Stoichiometry in chemical equations means the quantitative relation between the amounts of reactants consumed and product formed in chemical reactions as expressed by the balanced chemical

More information

phet: Molarity Go to: https://phet.colorado.edu/en/ simulation/molarity Click on Run in HTML5

phet: Molarity Go to: https://phet.colorado.edu/en/ simulation/molarity Click on Run in HTML5 phet: Molarity Go to: https://phet.colorado.edu/en/ simulation/molarity Click on Run in HTML5 phet: Molarity 1. Adjust moles of solute while leaving volume constant. What happens to molarity when you increase

More information

1.22 Concentration of Solutions

1.22 Concentration of Solutions 1.22 Concentration of Solutions A solution is a mixture formed when a solute dissolves in a solvent. In chemistry we most commonly use water as the solvent to form aqueous solutions. The solute can be

More information

Dilutions 4/8/2013. Steps involved in preparing solutions from pure solids. Steps involved in preparing solutions from pure solids

Dilutions 4/8/2013. Steps involved in preparing solutions from pure solids. Steps involved in preparing solutions from pure solids Steps involved in preparing solutions from pure solids Steps involved in preparing solutions from pure solids Calculate the amount of solid required Weigh out the solid Place in an appropriate volumetric

More information

Steward Fall 08. Moles of atoms/ions in a substance. Number of atoms/ions in a substance. MgCl 2(aq) + 2 AgNO 3(aq) 2 AgCl (s) + Mg(NO 3 ) 2(aq)

Steward Fall 08. Moles of atoms/ions in a substance. Number of atoms/ions in a substance. MgCl 2(aq) + 2 AgNO 3(aq) 2 AgCl (s) + Mg(NO 3 ) 2(aq) Dealing with chemical stoichiometry Steward Fall 08 of Not including volumetric stoichiometry of Chapter 6.0x10 A 6.0x10 Mol/mol ratio from balanced equation B 6.0x10 6.0x10 s, Equations, and Moles: II

More information

Volumetric Analysis: Acids & Bases OL

Volumetric Analysis: Acids & Bases OL Name: Volumetric Analysis 1. Concentrations of Solutions Objectives -define solution -define concentration -define molarity -express concentration of solutions in mol/l(molarity), g/l and also in % (v/v)

More information

Unit 3 Chemistry - Volumetric Analysis

Unit 3 Chemistry - Volumetric Analysis Unit 3 Chemistry Volumetric Analysis Volumetric analysis is a quantitative chemical analysis used to determine the unknown concentration of one reactant [the analyte] by measuring the volume of another

More information

Volumetric Analysis Acids & Bases HL

Volumetric Analysis Acids & Bases HL Name: Volumetric Analysis 1. Concentrations of Solutions 3. Volumetric Analysis Objectives -define solution -define concentration -define molarity -express concentration of solutions in mol/l(molarity),

More information

Solutions The federal government and state governments set standards limiting the amount of contaminants allowed in drinking water.

Solutions The federal government and state governments set standards limiting the amount of contaminants allowed in drinking water. Solutions The federal government and state governments set standards limiting the amount of contaminants allowed in drinking water. 16.1 Properties of Solutions 16. Concentrations of Solutions 16. Colligative

More information

Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate.

Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate. 1 Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate. You should be able to: Vocabulary of water solubility Differentiate between

More information

EXPERIMENT. Estimate the strength of given sodium carbonate solution by titrating it against HCl solution using methyl orange as indicator.

EXPERIMENT. Estimate the strength of given sodium carbonate solution by titrating it against HCl solution using methyl orange as indicator. EXPERIMENT AIM Estimate the strength of given sodium carbonate solution by titrating it against HCl solution using methyl orange as indicator. Approximately M/40 HCl solution is provided. Prepare your

More information

Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals.

Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals. Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals. Evidence to indicate that a chemical reaction has occurred: Temperature change Different coloured materials

More information

Acids, Bases and Titrations Chapter 4 M. Shozi CHEM110 / 2014

Acids, Bases and Titrations Chapter 4 M. Shozi CHEM110 / 2014 Acids, Bases and Titrations Chapter 4 M. Shozi CHEM110 / 2014 ACID-BASE REACTIONS ACIDS Arrhenius: Compounds that contain an ionisable H and able to ionise in aqueous solution to form H + or H 3 O + Strong

More information

Chapter 4 - Types of Chemical Reactions and Solution Chemistry

Chapter 4 - Types of Chemical Reactions and Solution Chemistry Chapter 4 - Types of Chemical Reactions and Solution Chemistry 4.1 Water, the Common Solvent - the water molecule is bent with and H-O-H angles of approx. 105 º - O-H bonds are covalent - O is slightly

More information

Name Class Date. volume of solution molarity of solution amount of solute in moles

Name Class Date. volume of solution molarity of solution amount of solute in moles Skills Worksheet Problem Solving Titrations Chemists have many methods for determining the quantity of a substance present in a solution or other mixture. One common method is titration, in which a solution

More information

Chapter 6. Types of Chemical Reactions and Solution Stoichiometry

Chapter 6. Types of Chemical Reactions and Solution Stoichiometry Chapter 6 Types of Chemical Reactions and Solution Stoichiometry Chapter 6 Table of Contents (6.1) (6.2) (6.3) (6.4) (6.5) (6.6) (6.7) (6.8) Water, the common solvent The nature of aqueous solutions: Strong

More information

Chapter 4 Solution Stoichiometry. Dr. Sapna Gupta

Chapter 4 Solution Stoichiometry. Dr. Sapna Gupta Chapter 4 Solution Stoichiometry Dr. Sapna Gupta Concentrations of Solutions A solution is solute dissolved in a solvent. To quantify and know exactly how much of a solute is present in a certain amount

More information

4.6 Describing Reactions in Solution

4.6 Describing Reactions in Solution 4.6 Describing Reactions in Solution The overall or formula equation for this reaction: K 2 CrO(aq) Ba(NO 3 ) 2 (aq) BaCrO 4 (s) 2KNO 3 (aq) Although the formula equation shows the reactants and products

More information

Unit V: Solutions. A. Properties of Solutions. B. Concentration Terms of Solutions. C. Mass Percent Calculation. D. Molarity of Solutions

Unit V: Solutions. A. Properties of Solutions. B. Concentration Terms of Solutions. C. Mass Percent Calculation. D. Molarity of Solutions Unit V: Solutions A. Properties of Solutions B. Concentration Terms of Solutions C. Mass Percent Calculation D. Molarity of Solutions E. Solution Stoichiometry F. Dilution Problems 5-A Properties of Solutions

More information

Chapter 4 Chemical Quantities and Aqueous Reactions

Chapter 4 Chemical Quantities and Aqueous Reactions Chapter 4 Chemical Quantities and Aqueous Reactions Reaction Stoichiometry the numerical relationships between chemical amounts in a reaction is called stoichiometry the coefficients in a balanced chemical

More information

Chemistry. Approximate Timeline. Students are expected to keep up with class work when absent.

Chemistry. Approximate Timeline. Students are expected to keep up with class work when absent. Chemistry Name Hour Chemistry Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 15 SOLUTIONS Day Plans for the day Assignment(s) for the day 1 Begin Chapter 15

More information

SOLUTIONS. Solutions - page

SOLUTIONS. Solutions - page SOLUTIONS For gases in a liquid, as the temperature goes up the solubility goes. For gases in a liquid, as the pressure goes up the solubility goes. Example: What is the molarity of a solution with 2.0

More information

STUDYING CHEMICAL REACTIONS BY TITRATION ANALYSIS

STUDYING CHEMICAL REACTIONS BY TITRATION ANALYSIS STUDYING CHEMICAL REACTIONS BY TITRATION ANALYSIS OBJECTIVES: Study the relationship of reactants & products in solution phase chemical reactions, Learn how to prepare solutions from solid and liquid stock,

More information

Class XI Chapter 1 Some Basic Concepts of Chemistry Chemistry

Class XI Chapter 1 Some Basic Concepts of Chemistry Chemistry Question 1.1: Calculate the molecular mass of the following: (i) H 2 O (ii) CO 2 (iii) CH 4 (i) H 2 O: The molecular mass of water, H 2 O = (2 Atomic mass of hydrogen) + (1 Atomic mass of oxygen) = [2(1.0084)

More information

Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals.

Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals. Chemistry 11 Notes on Chemical Reactions Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals. Evidence to indicate that a chemical reaction has occurred:

More information

Concentration Units. Solute CONCENTRATION. Solvent. g L -1. (M, molarity) concentration in. mol / litre of solution. mol L -1. molality. molality.

Concentration Units. Solute CONCENTRATION. Solvent. g L -1. (M, molarity) concentration in. mol / litre of solution. mol L -1. molality. molality. CHAPTER 4 REACTIONS IN AQUEOUS SOLUTION CONCENTRATION Solute Solvent Concentration Units mass NaCl / unit volume of solution g L -1 (M, molarity) concentration in moles per litre of solution c NaCl c B

More information

CH 4 AP. Reactions in Aqueous Solutions

CH 4 AP. Reactions in Aqueous Solutions CH 4 AP Reactions in Aqueous Solutions Water Aqueous means dissolved in H 2 O Moderates the Earth s temperature because of high specific heat H-bonds cause strong cohesive and adhesive properties Polar,

More information

Stoichiometry ( ) ( )

Stoichiometry ( ) ( ) Stoichiometry Outline 1. Molar Calculations 2. Limiting Reactants 3. Empirical and Molecular Formula Calculations Review 1. Molar Calculations ( ) ( ) ( ) 6.02 x 10 23 particles (atoms or molecules) /

More information

TYPES OF CHEMICAL REACTIONS

TYPES OF CHEMICAL REACTIONS TYPES OF CHEMICAL REACTIONS Precipitation Reactions Compounds Soluble Ionic Compounds 1. Group 1A cations and NH 4 + 2. Nitrates (NO 3 ) Acetates (CH 3 COO ) Chlorates (ClO 3 ) Perchlorates (ClO 4 ) Solubility

More information

SOLUTIONS. Definitions. Solvation. Hydration. Energy changes involved in solutions

SOLUTIONS. Definitions. Solvation. Hydration. Energy changes involved in solutions 1 SOLUTIONS Definitions Solvation Hydration Energy changes involved in solutions 2 Solubility Definition Unsaturated Saturated supersaturated Factors affecting solubility Interactions of solute with solvent

More information

Chapter 4 Reactions in Aqueous Solution

Chapter 4 Reactions in Aqueous Solution Chapter 4 Reactions in Aqueous Solution Homework Chapter 4 11, 15, 21, 23, 27, 29, 35, 41, 45, 47, 51, 55, 57, 61, 63, 73, 75, 81, 85 1 2 Chapter Objectives Solution To understand the nature of ionic substances

More information

CHAPTER 4 TYPES OF CHEMICAL EQUATIONS AND SOLUTION STOICHIOMETRY

CHAPTER 4 TYPES OF CHEMICAL EQUATIONS AND SOLUTION STOICHIOMETRY CHAPTER 4 TYPES OF CHEMICAL EQUATIONS AND SOLUTION STOICHIOMETRY Water, the common solvent Solution is a homogeneous mixture Solvent is the substance that does the dissolving Solute is the substance that

More information

Name Solutions and Acids/Bases/Salts

Name Solutions and Acids/Bases/Salts Name Solutions and Acids/Bases/Salts 1. Which compound is insoluble in water? A) calcium bromide B) potassium bromide C) silver bromide D) sodium bromide 2. According to Reference Table F, which of these

More information

Reactions in Aqueous Solutions

Reactions in Aqueous Solutions Reactions in Aqueous Solutions Chapter 4 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. A solution is a homogenous mixture of 2 or more substances. The solute

More information

Solutions. LiCl (s) + H2O (l) LiCl (aq) 3/12/2013. Definitions. Aqueous Solution. Solutions. How Does a Solution Form? Solute Solvent solution

Solutions. LiCl (s) + H2O (l) LiCl (aq) 3/12/2013. Definitions. Aqueous Solution. Solutions. How Does a Solution Form? Solute Solvent solution Solutions Definitions A solution is a homogeneous mixture A solute is dissolved in a solvent. solute is the substance being dissolved solvent is the liquid in which the solute is dissolved an aqueous solution

More information

Chemistry 11. Unit 7 - Stoichiometry

Chemistry 11. Unit 7 - Stoichiometry 1 Chemistry 11 Unit 7 - Stoichiometry 2 1. Coefficients of chemical equations In chapter 6, we have learned how to balance a chemical reaction by considering the laws of conservation of atoms and charges.

More information

Experiment 2: Analysis of Commercial Bleach Solutions

Experiment 2: Analysis of Commercial Bleach Solutions Experiment 2: Analysis of Commercial Bleach Solutions I. Introduction The ability of household bleach to remove stains is related to the amount of oxidizing agent in it. The oxidizing agent in bleach is

More information

Exercise 6: Determination of Hardness of Water

Exercise 6: Determination of Hardness of Water Fundamentals of Analytical Chemistry, CHC014011L Exercise 6: Determination of Hardness of Water Introduction: Hardness in water is generally caused by the presence of dissolved calcium and magnesium carbonates

More information

Chem 115 POGIL Worksheet - Week #6 Oxidation Numbers, Redox Reactions, Solution Concentration, and Titrations

Chem 115 POGIL Worksheet - Week #6 Oxidation Numbers, Redox Reactions, Solution Concentration, and Titrations Chem 115 POGIL Worksheet - Week #6 Oxidation Numbers, Redox Reactions, Solution Concentration, and Titrations Why? In addition to metathetical reactions, electron transfer reactions often occur in solutions.

More information

Name Solutions and Acids/Bases/Salts

Name Solutions and Acids/Bases/Salts Name Solutions and Acids/Bases/Salts 1. Which compound is insoluble in water? A) calcium bromide B) potassium bromide C) silver bromide D) sodium bromide 2. According to Reference Table F, which of these

More information

Unit 13 Acids and Bases

Unit 13 Acids and Bases Unit 13 Acids/Bases Acids can be simply defined as compounds that can produce H + ions and generally have an "H" as the first element in the formula (e.g. HCl, H2SO4, HNO3, etc.). Bases are simply defined

More information

11/3/09. Aqueous Solubility of Compounds. Aqueous Solubility of Ionic Compounds. Aqueous Solubility of Ionic Compounds

11/3/09. Aqueous Solubility of Compounds. Aqueous Solubility of Ionic Compounds. Aqueous Solubility of Ionic Compounds Aqueous Solubility of Compounds Not all compounds dissolve in water. Solubility varies from compound to compound. Chapter 5: Chemical Reactions Soluble ionic compounds dissociate. Ions are solvated Most

More information

Chapter 9. Volumetric Analysis

Chapter 9. Volumetric Analysis Chapter 9 Volumetric Analysis The terms volumetric analysis, titrimetry and titration are used interchangeably to describe a procedure which analyses chemicals in solution by accurate volume measurement.

More information

Chapter 13. Titrations in Analytical Chemistry

Chapter 13. Titrations in Analytical Chemistry Chapter 13 Titrations in Analytical Chemistry Titrations in Analytical Chemistry Titration methods are based on determining the quantity of a reagent of known concentration that is required to react completely

More information

Learn to do quantitative titration reactions. Observe the mole ratios of several simple chemical reactions.

Learn to do quantitative titration reactions. Observe the mole ratios of several simple chemical reactions. CHAPTER 6 Stoichiometry of Reactions in Solution Objectives The objectives of this laboratory are to: Learn to do quantitative titration reactions. Observe the mole ratios of several simple chemical reactions.

More information

Quantitative Chemistry. AQA Chemistry topic 3

Quantitative Chemistry. AQA Chemistry topic 3 Quantitative Chemistry AQA Chemistry topic 3 3.1 Conservation of Mass and Balanced Equations Chemical Reactions A chemical reaction is when atoms are basically rearranged into something different. For

More information

Chapter 4. Types of Chemical Reactions and Solution Stoichiometry

Chapter 4. Types of Chemical Reactions and Solution Stoichiometry Chapter 4 Types of Chemical Reactions and Solution Stoichiometry Chapter 4 Table of Contents 4.1 Water, the Common Solvent 4.2 The Nature of Aqueous Solutions: Strong and Weak Electrolytes 4.3 The Composition

More information

Nanoscale pictures: Figs. 5.1, 5.4, and 5.5

Nanoscale pictures: Figs. 5.1, 5.4, and 5.5 Solutions and concentration Solution: a homogeneous mixture of two or more substances. Example: water, sugar, flavor mixture (Coke). The substances are physically combined, not chemically combined or bonded

More information

Chapter 4 Reactions in Aqueous Solutions. Copyright McGraw-Hill

Chapter 4 Reactions in Aqueous Solutions. Copyright McGraw-Hill Chapter 4 Reactions in Aqueous Solutions Copyright McGraw-Hill 2009 1 4.1 General Properties of Aqueous Solutions Solution - a homogeneous mixture Solute: the component that is dissolved Solvent: the component

More information

TITRATION. Exercise 0. n c (mol dm V. m c (1) MV

TITRATION. Exercise 0. n c (mol dm V. m c (1) MV Exercise 0 TITRATION Theory: In chemistry a solution is a homogeneous mixture composed of two or more substances. In such a mixture:a solute is dissolved in another substance, known as a solvent. An aqueous

More information

Basic Concepts of Chemistry Notes for Students [Chapter 12, page 1] D J Weinkauff - Nerinx Hall High School. Chapter 12 Properties of Solutions

Basic Concepts of Chemistry Notes for Students [Chapter 12, page 1] D J Weinkauff - Nerinx Hall High School. Chapter 12 Properties of Solutions Basic Concepts of Chemistry Notes for Students [Chapter 12, page 1] Chapter 12 Properties of Solutions Section 12 1: The Nature of Aqueous Solutions 1) Sec 12 1.1 Mixtures of Two Liquids When two liquids

More information

During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction:

During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction: Example 4.1 Stoichiometry During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction: Suppose that a particular plant consumes 37.8 g of CO 2

More information

Chapter 4. Reactions in Aqueous Solution

Chapter 4. Reactions in Aqueous Solution Chapter 4 Reactions in Aqueous Solution Topics General properties of aqueous solutions Precipitation reactions Acid base reactions Oxidation reduction reactions Concentration of solutions Aqueous reactions

More information

Name Class Date. Symbol Meaning How to prepare Percentage % Moles solute per liter of solution. Moles solute per kilogram of solvent

Name Class Date. Symbol Meaning How to prepare Percentage % Moles solute per liter of solution. Moles solute per kilogram of solvent Skills Worksheet Problem Solving Concentration of Solutions There are three principal ways to express solution concentration in chemistry percentage by mass, molarity, and molality. The following table

More information

not to be republished NCERT YOU are already aware that a substance is analysed to establish its qualitative TITRIMETRIC ANALYSIS UNIT-6

not to be republished NCERT YOU are already aware that a substance is analysed to establish its qualitative TITRIMETRIC ANALYSIS UNIT-6 UNIT-6 TITRIMETRIC ANALYSIS YOU are already aware that a substance is analysed to establish its qualitative and quantitative chemical composition. Thus, chemical analysis can be categorised as qualitative

More information

The solvent is the dissolving agent -- i.e., the most abundant component of the solution

The solvent is the dissolving agent -- i.e., the most abundant component of the solution SOLUTIONS Definitions A solution is a system in which one or more substances are homogeneously mixed or dissolved in another substance homogeneous mixture -- uniform appearance -- similar properties throughout

More information

Step 2 Calculate the concentration to the correct number of significant figures.

Step 2 Calculate the concentration to the correct number of significant figures. Q1. Calculate the molarity of these solutions: a 1.5 mol of HCl dissolved in 3.0 L of solution b 0.64 g of H 2 SO 4 dissolved in 500 ml of solution c 2.1 g of NaHCO 3 dissolved in 1.00 L of solution A1.

More information

The Mole. Relative Atomic Mass Ar

The Mole. Relative Atomic Mass Ar STOICHIOMETRY The Mole Relative Atomic Mass Ar Relative Molecular Mass Mr Defined as mass of one atom of the element when compared with 1/12 of an atom of carbon-12 Some Ar values are not whole numbers

More information

Experiment 5E BOTTLES WITHOUT LABELS: STUDIES OF CHEMICAL REACTIONS

Experiment 5E BOTTLES WITHOUT LABELS: STUDIES OF CHEMICAL REACTIONS Experiment 5E BOTTLES WITHOUT LABELS: STUDIES OF CHEMICAL REACTIONS FV 1-21-16 MATERIALS: Eight 50 ml beakers, distilled water bottle, two 250 ml beakers, conductivity meter, ph paper (A/B/N), stirring

More information

Molarity of Acetic Acid in Vinegar A Titration Experiment

Molarity of Acetic Acid in Vinegar A Titration Experiment Molarity of Acetic Acid in Vinegar A Titration Experiment Introduction Vinegar is prepared commercially in two steps, both requiring microorganisms. The first step is the production of ethyl alcohol, C

More information

Concentration of Solutions

Concentration of Solutions CHAPTER 4 Concentration of Solutions There are three principal ways to express solution concentration in chemistry percentage by mass, molarity, and molality. The following table compares these three ways

More information

Chemistry 101 Chapter 4 STOICHIOMETRY

Chemistry 101 Chapter 4 STOICHIOMETRY STOICHIOMETRY Stoichiometry is the quantitative relationship between the reactants and products in a balanced chemical equation. Stoichiometry allows chemists to predict how much of a reactant is necessary

More information

TECHNICAL SCIENCE DAS12703 ROZAINITA BT. ROSLEY PUSAT PENGAJIAN DIPLOMA UNVERSITI TUN HUSSEIN ONN MALAYSIA

TECHNICAL SCIENCE DAS12703 ROZAINITA BT. ROSLEY PUSAT PENGAJIAN DIPLOMA UNVERSITI TUN HUSSEIN ONN MALAYSIA TECHNICAL SCIENCE DAS12703 ROZAINITA BT. ROSLEY PUSAT PENGAJIAN DIPLOMA UNVERSITI TUN HUSSEIN ONN MALAYSIA ii TABLE OF CONTENTS TABLE OF CONTENTS... i LIST OF FIGURES... iii Chapter 1... 4 SOLUTIONS...

More information

Chapter 4. Chemical Quantities and Aqueous Reactions

Chapter 4. Chemical Quantities and Aqueous Reactions Lecture Presentation Chapter 4 Chemical Quantities and Aqueous Reactions Reaction Stoichiometry: How Much Carbon Dioxide? The balanced chemical equations for fossilfuel combustion reactions provide the

More information

Chapter 4 Types of Chemical Reaction and Solution Stoichiometry

Chapter 4 Types of Chemical Reaction and Solution Stoichiometry Chapter 4 Types of Chemical Reaction and Solution Stoichiometry Water, the Common Solvent One of the most important substances on Earth. Can dissolve many different substances. A polar molecule because

More information

EXPERIMENT A7: VINEGAR TITRATION. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to:

EXPERIMENT A7: VINEGAR TITRATION. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to: 1 Learning Outcomes EXPERIMENT A7: VINEGAR TITRATION Upon completion of this lab, the student will be able to: 1) Prepare a solution of primary standard 2) Determine the molar concentration of a solution

More information

Mole: base unit for an amount of substance A mole contains Avogadro s number (N A ) of particles (atoms, molecules, ions, formula units )

Mole: base unit for an amount of substance A mole contains Avogadro s number (N A ) of particles (atoms, molecules, ions, formula units ) Mole: base unit for an amount of substance A mole contains Avogadro s number (N A ) of particles (atoms, molecules, ions, formula units ) N A 6.0 10 mol -1 1 mol substance contains N A Molar mass (g/mol)

More information

9.01 Solutions. The Chemistry of Matter in Water. Dr. Fred Omega Garces. Chemistry 100, Miramar College. 1 Solutions. Aug 17

9.01 Solutions. The Chemistry of Matter in Water. Dr. Fred Omega Garces. Chemistry 100, Miramar College. 1 Solutions. Aug 17 9.01 Solutions The Chemistry of Matter in Water Dr. Fred Omega Garces Chemistry 100, Miramar College 1 Solutions 8.01 Solutions How water Dissolves Salts 2 Solutions Components of Solution Homogeneous

More information

Equation Writing for a Neutralization Reaction

Equation Writing for a Neutralization Reaction Equation Writing for a Neutralization Reaction An Acid-Base reaction is also called a Neutralization reaction because the acid (generates H + or H 3 O + ) and base (generates OH ) properties of the reactants

More information

Types of chemical reactions

Types of chemical reactions PowerPoint to accompany Types of chemical reactions Chapters 3 & 16.1 M. Shozi CHEM110 / 2013 General Properties of Aqueous Solutions Solutions are mixtures of two or more pure substances. The solvent

More information

Concentration of Solutions

Concentration of Solutions Section 3 10C, 10D Main Ideas Molarity is moles of solute per liter of solution Molality is moles of solute per kilogram of solvent 10C calculate the concentration of solutions in units of molarity; 10D

More information

Chapter 13. This ratio is the concentration of the solution.

Chapter 13. This ratio is the concentration of the solution. Concentration Calculation Concentration In a solution, the solute is distributed evenly throughout the solvent. This means that any part of a solution has the same ratio of solute to solvent as any other

More information

EXPT. 8 IODOMETRIC DETERMINATION OF AVAILABLE CHLORINE IN A SAMPLE OF BLEACHING POWDER

EXPT. 8 IODOMETRIC DETERMINATION OF AVAILABLE CHLORINE IN A SAMPLE OF BLEACHING POWDER EXPT. 8 IODOMETRIC DETERMINATION OF AVAILABLE CHLORINE IN A SAMPLE OF BLEACHING POWDER Structure 8.1 Introduction Objectives 8. Principle 8.3 Requirements 8.4 Solutions Provided 8.5 Procedure 8.6 Observations

More information

7/16/2012. Chapter Four: Like Dissolve Like. The Water Molecule. Ionic Compounds in Water. General Properties of Aqueous Solutions

7/16/2012. Chapter Four: Like Dissolve Like. The Water Molecule. Ionic Compounds in Water. General Properties of Aqueous Solutions General Properties of Aqueous Solutions Chapter Four: TYPES OF CHEMICAL REACTIONS AND SOLUTION STOICHIOMETRY A solution is a homogeneous mixture of two or more substances. A solution is made when one substance

More information

CHM 130 Acid-Base Titration Molarity of Acetic Acid in Vinegar

CHM 130 Acid-Base Titration Molarity of Acetic Acid in Vinegar CHM 130 Acid-Base Titration Molarity of Acetic Acid in Vinegar INTRODUCTION One of the most important techniques for chemical analysis is titration to an equivalence point. To illustrate this procedure,

More information

Exam #5 May 2, Closed Book Exam - No books or notes allowed. All work must be shown for full credit. You may use a calculator.

Exam #5 May 2, Closed Book Exam - No books or notes allowed. All work must be shown for full credit. You may use a calculator. Chem 110 Name Exam #5 May 2, 2017 Closed Book Exam - No books or notes allowed. All work must be shown for full credit. You may use a calculator. Question Credit TOTAL Multiple Choice 3 ⅓ points each.

More information

Concentration of Solutions

Concentration of Solutions Concentration of Solutions 1 of 27 Boardworks Ltd 2016 Concentration of Solutions 2 of 27 Boardworks Ltd 2016 Measuring concentrations 3 of 27 Boardworks Ltd 2016 It is not enough to say that one concentration

More information

Titrations. Method for Titration. N Goalby chemrevise.org 1. Using the pipette

Titrations. Method for Titration. N Goalby chemrevise.org 1. Using the pipette Titrations Titrations are done often to find out the concentration of one substance by reacting it with another substance of known concentration. They are often done with neutralisation reactions, but

More information

mohd faisol mansor/chemistry form 4/chapter 7 CHAPTER 7 ACIDS AND BASES HCl (g) H 2 O H + (aq) + Cl - (aq) NaOH(s) H 2 O Na + (aq) + OH - (aq)

mohd faisol mansor/chemistry form 4/chapter 7 CHAPTER 7 ACIDS AND BASES HCl (g) H 2 O H + (aq) + Cl - (aq) NaOH(s) H 2 O Na + (aq) + OH - (aq) CHAPTER 7 ACIDS AND BASES Arrhenius Theory An acid is a chemical compound that produces hydrogen ions, H + or hydroxonium ions H3O + when dissolve in water. A base defined as a chemical substance that

More information

Concentration of Solutions

Concentration of Solutions Concentration of Solutions 1 of 27 Boardworks Ltd 2016 Concentration of Solutions 2 of 27 Boardworks Ltd 2016 Measuring concentrations 3 of 27 Boardworks Ltd 2016 It is not enough to say that one concentration

More information

To see how this data can be used, follow the titration of hydrofluoric acid against sodium hydroxide:

To see how this data can be used, follow the titration of hydrofluoric acid against sodium hydroxide: Weak Acid Titration v010516 You are encouraged to carefully read the following sections in Tro (3 rd ed.) to prepare for this experiment: Sec 4.8, pp 168-174 (Acid/Base Titrations), Sec 16.4, pp 769-783

More information

Solutions. Experiment 11. Various Types of Solutions. Solution: A homogenous mixture consisting of ions or molecules

Solutions. Experiment 11. Various Types of Solutions. Solution: A homogenous mixture consisting of ions or molecules Solutions Solution: A homogenous mixture consisting of ions or molecules -Assignment: Ch 15 Questions & Problems : 5, (15b,d), (17a, c), 19, 21, 23, 27, (33b,c), 39, (43c,d),45b, 47, (49b,d), (55a,b),

More information

PHARMACEUTICAL ANALYTICAL CHEMISTRY

PHARMACEUTICAL ANALYTICAL CHEMISTRY 1 PHARMACEUTICAL ANALYTICAL CHEMISTRY 0510113 Dr. Ahmad Najjar Faculty of Pharmacy Department of Pharmaceutical Sciences First Semester, 2017/2018 2 CHAPTER 1 ANALYTICAL OBJECTIVES 3 ANALYTICAL CHEMISTRY

More information

SOLUTIONS. Engr. Yvonne Ligaya F. Musico

SOLUTIONS. Engr. Yvonne Ligaya F. Musico SOLUTIONS SOLUTION A homogeneous mixture of two or more substances, the relative proportion of which may vary within certain limits. COMPONENTS OF SOLUTION SOLUTE component which is in small quantity SOLVENT

More information

In this laboratory exercise we will determine the percentage Acetic Acid (CH 3 CO 2 H) in Vinegar.

In this laboratory exercise we will determine the percentage Acetic Acid (CH 3 CO 2 H) in Vinegar. The titration of Acetic Acid in Vinegar In this laboratory exercise we will determine the percentage Acetic Acid (CH CO H) in Vinegar. We will do this by Titrating the Acetic Acid present with a Strong

More information

AP Chemistry. Chapter 4

AP Chemistry. Chapter 4 AP Chemistry Chapter 4 1 Properties of Aqueous Solution Solutions Definition: Any substance (solid, liquid or gas) EVENLY distributed throughout another substance. Solutions have 2 parts: 1) Solvent the

More information

Announcement: Chemistry 6A F2007. Dr. J.A. Mack 11/9/07. Molarity: The ratio of moles of solvent to liters of solute. Moles/Liters and Molarity:

Announcement: Chemistry 6A F2007. Dr. J.A. Mack 11/9/07. Molarity: The ratio of moles of solvent to liters of solute. Moles/Liters and Molarity: Chemistry 6A F007 Dr. J.A. Mack Announcement: This weeks experiment (Atomic Spectra/Flame Test) is due next week, even though there is no lab scheduled for the next two weeks. Monday s Lab must turn in

More information

Lecture 5. Percent Composition. etc. Professor Hicks General Chemistry II (CHE132) Percent Composition. (aka percent by mass) 100 g.

Lecture 5. Percent Composition. etc. Professor Hicks General Chemistry II (CHE132) Percent Composition. (aka percent by mass) 100 g. Lecture 5 Professor Hicks General Chemistry II (CHE132) Percent Composition (aka percent by mass) % by mass component 1 = mass component 1 mass sample 100% sample component 1 100 g sample component 1 component

More information

Funsheet 9.1 [VSEPR] Gu 2015

Funsheet 9.1 [VSEPR] Gu 2015 Funsheet 9.1 [VSEPR] Gu 2015 Molecule Lewis Structure # Atoms Bonded to Central Atom # Lone Pairs on Central Atom Name of Shape 3D Lewis Structure NI 3 CF 4 OCl 2 C 2 F 2 HOF Funsheet 9.1 [VSEPR] Gu 2015

More information

Chapter 4. Aqueous Reactions and Solution Stoichiometry

Chapter 4. Aqueous Reactions and Solution Stoichiometry Sample Exercise 4.1 (p. 127) The diagram below represents an aqueous solution of one of the following compounds: MgCl 2, KCl, or K 2 SO 4. Which solution does it best represent? Practice Exercise 1 (4.1)

More information

INTRO AND BACKGROUND: Reactions, Moles, Stoichiometry, and Solutions. Chemical Reaction Atoms are REARRANGED to form a different substance

INTRO AND BACKGROUND: Reactions, Moles, Stoichiometry, and Solutions. Chemical Reaction Atoms are REARRANGED to form a different substance INTRO AND BACKGROUND: Reactions, Moles, Stoichiometry, and Solutions Chemical Reaction Atoms are REARRANGED to form a different substance Changes the way atoms are joined together Atoms CANNOT be created

More information

Chapter Background Reactions Involving Mass Measurements A Review HOW TO DO CALCULATIONS FOR CHEMICAL REACTIONS II

Chapter Background Reactions Involving Mass Measurements A Review HOW TO DO CALCULATIONS FOR CHEMICAL REACTIONS II Chapter 14 HOW TO DO CALCULATIONS FOR CHEMICAL REACTIONS II This chapter shows how all the sections on mole calculations can be put together to provide quantitative information about a chemical reaction.

More information

Chapter 3: Solution Chemistry (For best results when printing these notes, use the pdf version of this file)

Chapter 3: Solution Chemistry (For best results when printing these notes, use the pdf version of this file) Chapter 3: Solution Chemistry (For best results when printing these notes, use the pdf version of this file) Section 3.1: Solubility Rules (For Ionic Compounds in Water) Section 3.1.1: Introduction Solubility

More information

Unit 10 Solution Chemistry 1. Solutions & Molarity 2. Dissolving 3. Dilution 4. Calculation Ion Concentrations in Solution 5. Precipitation 6.

Unit 10 Solution Chemistry 1. Solutions & Molarity 2. Dissolving 3. Dilution 4. Calculation Ion Concentrations in Solution 5. Precipitation 6. Unit 10 Solution Chemistry 1. Solutions & Molarity 2. Dissolving 3. Dilution 4. Calculation Ion Concentrations in Solution 5. Precipitation 6. Formula, Complete, Net Ionic Equations 7. Qualitative Analysis

More information

Chapter 4. Reactions in Aqueous Solution

Chapter 4. Reactions in Aqueous Solution Chapter 4. Reactions in Aqueous Solution 4.1 General Properties of Aqueous Solutions A solution is a homogeneous mixture of two or more substances. A solution is made when one substance (the solute) is

More information

Chapter. Measuring Concentration. Table of Contents

Chapter. Measuring Concentration. Table of Contents Measuring Concentration Table of Contents Introduction 1. Percent Concentration 2. Molarity 3. Preparation of a with a Desired Concentration Measuring Concentration Warm Up How do you classify solutions

More information

TOPIC 3 ANSWERS & MARK SCHEMES QUESTIONSHEET 1 MOLAR SOLUTIONS (1)

TOPIC 3 ANSWERS & MARK SCHEMES QUESTIONSHEET 1 MOLAR SOLUTIONS (1) QUESTIONSHEET 1 MOLAR SOLUTIONS a) Molar concentration The number of moles of solute dissolved in 1 dm 3 of solution Molar solution One which contains 1 mol of solute in 1 dm 3 of solution b) (i) (HCl)

More information

Chem II - Wed, 9/14/16

Chem II - Wed, 9/14/16 Chem II - Wed, 9/14/16 Do Now Drop off any study guides you want color coded Pull out stoich HW Homework See board Agenda Stoich Ch 4 Labish thing Chapter 4 Chemical Reactions & Solution Stoich Water Possesses

More information

Section 10.3: Acid Base Stoichiometry

Section 10.3: Acid Base Stoichiometry Section 10.3: Acid Base Stoichiometry Tutorial 1 Questions, page 481 1. It is necessary to keep the volume of indicator used to a minimum because many acid base indicators are weak acids. Some of the base

More information