Chapter 2 Overview. Chapter 2 Overview

Size: px
Start display at page:

Download "Chapter 2 Overview. Chapter 2 Overview"

Transcription

1 Chapter 2 Overview! all matter, whether liquid, solid, or gas,consists of atoms, which form molecules! the identity of an atom and its chemical behavior is strictly defined by the number of electrons in the outer electronic sphere, which equals to the number of protons in the nucleus! the atomic weight is the combined mass of protons and neutrons in the nucleus. Each contributes one unit of mass. The mass of the electrons is negligible Chapter 2 Overview 6 electrons 6 electrons 6 n o 6 p + 7 n o 6 p + 12 C 13 C number of neutrons ISOTOPES OF CARBON N = Mass - Z atomic number number of protons

2 Periodic Table Main Group Elements:Group Number corresponds to ionic charge Chapter 2 Overview Ionic compounds: Simple salts. Charges Balanced NaCl Na + Cl LiI Li + I Cs 2 SO 4 Cs + SO 2 4 Fe 2 (CO 3 ) 3 Fe 3+ CO 2 3 (NH 4 ) 3 PO 4 NH + 4 PO 3 4

3 Chapter 2 Overview Molecular Weight = Sum of Atomic Weights MW(NaCl) = Atomic Mass of Na + At. Mass of Cl Chapter 2 Sample Problem Succinic acid is an important metabolite in biological energy production. Give the molecular formula, empirical formula, and molecular mass of succinic acid. H O H H O C C C C O H H O succinic acid H

4 Chapter 2 Sample Problem Succinic acid is an important metabolite in biological energy production. Give the molecular formula, empirical formula, and molecular mass of succinic acid. mol. formula:count all atoms: C 4 H 6 O 4 H O H H O C C C C O H H O succinic acid H Chapter 2 Sample Problem Succinic acid is an important metabolite in biological energy production. Give the molecular formula, empirical formula, and molecular mass of succinic acid. mol. formula:count all atoms: C 4 H 6 O 4 empirical formula: C 2 H 3 O 2 (whole numbers!) H O H H O C C C C O H H O succinic acid H

5 Chapter 2 Sample Problem Succinic acid is an important metabolite in biological energy production. Give the molecular formula, empirical formula, and molecular mass of succinic acid. mol. formula:count all atoms: C 4 H 6 O 4 empirical formula: C 2 H 3 O 2 (whole numbers!) H O H H O C C C C O H H O succinic acid H MW = 4! ! !16.00 = Chapter 2 Sample Problem How can iodine (Z = 53) have a higher atomic number yet lower atomic weight than tellurium (Z = 52)?

6 Stoichiometry: The Mole describes quantitative aspects of chemical reactions One mole (1 mol) is 6.022!10 23 molecules (ions, atoms, etc.) Avogadro s number M = MW molar weight (g/mol) molecular weight Stoichiometry MW(H 2 ) = 2.02 MW(NaCl) = MW(AgNO 3 ) = M = 2.02 g/mol M = g/mol M = g/mol 1 : 1 ratio of NaCl and AgNO 3 : g of NaCl and g of AgNO 3 or g of NaCl and g of AgNO 3 etc

7 Stoichiometry mass in grams molar weight (g/mol) M (g/mol) = m (g) n (mol) number of mols Stoichiometry mass in grams molar weight (g/mol) M (g/mol) = m (g) n (mol) number of mols n (mol) = m (g) M (g/mol)

8 Stoichiometry mass in grams m (g) = n (mol)! M (g/mol) number of moles (mol) molar weight (g/mol) Sample Problem 3.2 Ammonium carbonate, is a white solid that decomposes with warming. Among its many uses, it is a component of baking powder, fire extinguishers, and smelling salts. How many moles are in 41.6 g of ammonium carbonate?

9 Sample Problem 3.2 Ammonium carbonate, is a white solid that decomposes with warming. Among its many uses, it is a component of baking powder, fire extinguishers, and smelling salts. How many moles are in 41.6 g of ammonium carbonate? divide given mass by mol weight Sample Problem 3.2 Ammonium carbonate, is a white solid that decomposes with warming. Among its many uses, it is a component of baking powder, fire extinguishers, and smelling salts. How many moles are in 41.6 g of ammonium carbonate? divide given mass by mol weight what is ammonium carbonate? n (mol) = m (g) M (g/mol)

10 Sample Problem 3.2 Ammonium carbonate, is a white solid that decomposes with warming. Among its many uses, it is a component of baking powder, fire extinguishers, and smelling salts. How many moles are in 41.6 g of ammonium carbonate? m (g) n (mol) = divide given mass by mol weight M (g/mol) what is ammonium carbonate? NH + 4,CO 2 3 " (NH 4 ) 2 CO 3 what is its mol. weight? Sample Problem 3.2 Ammonium carbonate, is a white solid that decomposes with warming. Among its many uses, it is a component of baking powder, fire extinguishers, and smelling salts. How many moles are in 41.6 g of ammonium carbonate? m (g) n (mol) = divide given mass by mol weight M (g/mol) what is ammonium carbonate? NH + 4,CO 2 3 " (NH 4 ) 2 CO 3 what is its mol. weight? 2! ! !16.00 = g/mol

11 Sample Problem 3.2 Ammonium carbonate, is a white solid that decomposes with warming. Among its many uses, it is a component of baking powder, fire extinguishers, and smelling salts. How many moles are in 41.6 g of ammonium carbonate? n (mol) = divide given mass by mol weight what is ammonium carbonate? NH + 4,CO 2 3 " (NH 4 ) 2 CO 3 what is its mol. weight? 2! ! !16.00 = m (g) M (g/mol) g/mol answer: 41.6 g : g/mol = mol Sample Problem 3.2 Ammonium carbonate, is a white solid that decomposes with warming. Among its many uses, it is a component of baking powder, fire extinguishers, and smelling salts. How many moles are in 41.6 g of ammonium carbonate? n (mol) = divide given mass by mol weight what is ammonium carbonate? NH + 4,CO 2 3 " (NH 4 ) 2 CO 3 what is its mol. weight? 2! ! !16.00 = m (g) M (g/mol) g/mol answer: 41.6 g : g/mol = mol (number of formula units = mol! 6.022!10 23 mol -1 = 2.61!10 23 )

12 Mass Percent from Chemical Formula Glucose (C 6 H 12 O 6 ) is the most important nutrient in the living cell for generating energy. What is the mass percent of each element in glucose? let s focus on carbon first Mass Percent from Chemical Formula Glucose (C 6 H 12 O 6 ) is the most important nutrient in the living cell for generating energy. What is the mass percent of each element in glucose? let s focus on carbon first mass of C in one mole(cule). mass of C 6 H 12 O 6 in one mole(cule)

13 Mass Percent from Chemical Formula Glucose (C 6 H 12 O 6 ) is the most important nutrient in the living cell for generating energy. What is the mass percent of each element in glucose? let s focus on carbon first mass of C in one mole(cule). mass of C 6 H 12 O 6 in one mole(cule) 6! = = = 40.0 mass% 6! ! ! Elemental Analysis and Molecular Formula complete burning, than analysis of oxidation products used to determine empirical formula of an unknown compound (gives an empirical formula only!) used to confirm the structure (mass spectroscopy is a superior modern technique that gives a molecular formula directly)

14 Elemental Analysis and Molecular Formula Sample Problem 3.5: During physical activity, lactic acid (M = g/mol) forms in muscle and is responsible for muscle soreness. Elemental analysis shows that it contains 40.0 mass% C, 6.71 mass% H, and 53.3 mass% O. (a) determine the empirical formula of lactic acid (b) determine the molecular formula of lactic acid Elemental Analysis and Molecular Formula Sample Problem 3.5: During physical activity, lactic acid (M = g/mol) forms in muscle and is responsible for muscle soreness. Elemental analysis shows that it contains 40.0 mass% C, 6.71 mass% H, and 53.3 mass% O. (a) determine the empirical formula of lactic acid (b) determine the molecular formula of lactic acid mass% # arbitrary weight (let s take 100 g) convert grams to moles

15 Elemental Analysis and Molecular Formula Sample Problem 3.5: During physical activity, lactic acid (M = g/mol) forms in muscle and is responsible for muscle soreness. Elemental analysis shows that it contains 40.0 mass% C, 6.71 mass% H, and 53.3 mass% O. (a) determine the empirical formula of lactic acid (b) determine the molecular formula of lactic acid mass% # arbitrary weight (let s take 100 g) convert grams to moles 40.0 g C = g/mol = 3.33 mol H = 6.71 g = 6.66 mol g/mol 53.3 g O = = 3.33 mol g/mol Elemental Analysis and Molecular Formula Sample Problem 3.5: During physical activity, lactic acid (M = g/mol) forms in muscle and is responsible for muscle soreness. Elemental analysis shows that it contains 40.0 mass% C, 6.71 mass% H, and 53.3 mass% O. (a) determine the empirical formula of lactic acid (b) determine the molecular formula of lactic acid mass% # arbitrary weight (let s take 100 g) convert grams to moles 40.0 g C = g/mol = 3.33 mol H = 6.71 g = 6.66 mol g/mol 53.3 g O = g/mol = 3.33 mol CH 2 O

16 Elemental Analysis and Molecular Formula Sample Problem 3.5: During physical activity, lactic acid (M = g/mol) forms in muscle and is responsible for muscle soreness. Elemental analysis shows that it contains 40.0 mass% C, 6.71 mass% H, and 53.3 mass% O. (a) determine the empirical formula of lactic acid (b) determine the molecular formula of lactic acid Empirical formula: CH 2 O " M = g/mol Actual M is 3 (three) times greater, therefore: Molecular formula: C 3 H 6 O 3 Chemical Equations Typical Structure: Starting Material(s) # Products(s) H 2 + Cl 2 # 2HCl H H + = Cl Cl Cl H Cl H

17 Chemical Equations n (mol) = H 2 + Cl 2 # 2HCl m (g) M (g/mol) mol H mol Cl 2 2!0.124 mol HCl mol H mol Cl 2 2!23.12 mol HCl mol H mol Cl 2 Chemical Equations n (mol) = H 2 + Cl 2 # 2HCl m (g) M (g/mol) mol H mol Cl 2 2!0.124 mol HCl mol H mol Cl 2 2!23.12 mol HCl mol H mol Cl 2 2!0.745 mol HCl

18 Chemical Equations n (mol) = H 2 + Cl 2 # 2HCl m (g) M (g/mol) Global Strategy: Input (g, ml, kg, etc) " moles (starting) " moles (final) " Output (g, ml, kg, etc) Balancing Chemical Equations Starting Material(s) # Products(s) space for coefficients! the same number of atoms of each element on both sides

19 Balancing Chemical Equations Unbalanced equation: PF 3 + HCl # PCl 3 + HF Balancing Chemical Equations Unbalanced equation: PF 3 + HCl # PCl 3 + HF PF 3 + HCl # PCl 3 + 3HF

20 Balancing Chemical Equations Unbalanced equation: PF 3 + HCl # PCl 3 + HF PF 3 + HCl # PCl 3 + 3HF PF 3 + 3HCl # PCl 3 + 3HF Balancing Chemical Equations Unbalanced equation: PF 3 + HCl # PCl 3 + HF PF 3 + HCl # PCl 3 + 3HF Balanced equation!: PF 3 + 3HCl # PCl 3 + 3HF Check

21 Balancing Chemical Equations Unbalanced equation: C 8 H 18 + O 2 # CO 2 + H 2 O Balancing Chemical Equations Unbalanced equation: C 8 H 18 + O 2 # CO 2 + H 2 O Balanced equation: C 8 H 18 + O 2 # 8CO 2 + H 2 O C 8 H 18 + O 2 # 8CO 2 + 9H 2 O C 8 H O 2 # 8CO 2 + 9H 2 O 16+9=25 2C 8 H O 2 # 16CO H 2 O Check

22 Stoichiometric Equivalents C 3 H 8 + 5O 2 # 3CO 2 + 4H 2 O (propane) 1 mol of C 3 H 8 is equivalent to 4 mol of H 2 O 3 mol of CO 2 is equivalent to 5 mol of O 2 3 mol of CO 2 is equivalent to 4 mol of H 2 O Stoichiometric Equivalents C 3 H 8 + 5O 2 # 3CO 2 + 4H 2 O In the combustion of propane, how many moles of carbon dioxide are produced along with 10.0 moles of water? 10 4 = !3 = 7.5 " 7.5 moles of CO 2

23 Stoichiometric Equivalents 6CO 2 + 6H 2 O # C 6 H 12 O 6 + 6O 2 glucose Stoichiometric Equivalents 6CO 2 + 6H 2 O # C 6 H 12 O 6 + 6O 2 glucose (MW = ) How many grams of glucose are produced during photosynthesis that generates 25 m 3 of oxygen (at normal conditions, d = 1.34 g/l).

24 Stoichiometric Equivalents 6CO 2 + 6H 2 O # C 6 H 12 O 6 + 6O 2 glucose (MW = ) How many grams of glucose are produced during photosynthesis that generates 25 m 3 of oxygen (at normal conditions, d = 1.34 g/l). Fundamental Strategy: moles (initial) " moles (final) " Input (g, ml, kg, etc) " moles (starting) " moles (final) " Output (g, ml, kg, etc) Stoichiometric Equivalents 6CO 2 + 6H 2 O # C 6 H 12 O 6 + 6O 2 glucose (MW = ) How many grams of glucose are produced during photosynthesis that generates 25 m 3 of oxygen (at normal conditions, d = 1.34 g/l). 1 m 3 = 1000 L, 1kg = 1000 g, d = 1.34 kg/m 3 d = m V

25 Stoichiometric Equivalents 6CO 2 + 6H 2 O # C 6 H 12 O 6 + 6O 2 glucose (MW = ) How many grams of glucose are produced during photosynthesis that generates 25 m 3 of oxygen (at normal conditions, d = 1.34 g/l). 1 m 3 = 1000 L, 1kg = 1000 g, d = 1.34 kg/m 3 d = m V m(o 2 ) = 25 m 3!1.34 kg/m 3 = 33.5 kg = g n = m M n(o 2 ) = g g/mol = 1047 mol Stoichiometric Equivalents 6CO 2 + 6H 2 O # C 6 H 12 O 6 + 6O 2 glucose (MW = ) How many grams of glucose are produced during photosynthesis that generates 25 m 3 of oxygen (at normal conditions, d = 1.34 g/l). n(o 2 ) = 1047 mol n(c 6 H 12 O 6 ) = (1/6)!n(O 2 ) = (1/6)!1047 mol = mol n = m M

26 Stoichiometric Equivalents 6CO 2 + 6H 2 O # C 6 H 12 O 6 + 6O 2 glucose (MW = ) How many grams of glucose are produced during photosynthesis that generates 25 m 3 of oxygen (at normal conditions, d = 1.34 g/l). n(o 2 ) = 1047 mol n(c 6 H 12 O 6 ) = (1/6)!n(O 2 ) = (1/6)!1047 mol = mol n = m M m(c 6 H 12 O 6 ) = mol! g/mol = g Stoichiometric Equivalents 6CO 2 + 6H 2 O # C 6 H 12 O 6 + 6O 2 glucose (MW = ) How many grams of glucose are produced during photosynthesis that generates 25 m 3 of oxygen (at normal conditions, d = 1.34 g/l). n(o 2 ) = 1047 mol n(c 6 H 12 O 6 ) = (1/6)!n(O 2 ) = (1/6)!1047 mol = mol n = m M m(c 6 H 12 O 6 ) = mol! g/mol = g

27 Example 2H 2 + O 2 # 2H 2 O 16.0 g 16.0 g? g n (mol) = m (g) M (g/mol) Example 2H 2 + O 2 # 2H 2 O 16.0 g 16.0 g? g 7.94 mol 0.5 mol n (mol) = m (g) M (g/mol)

28 Example 2H 2 + O 2 # 2H 2 O 16.0 g 16.0 g? g 7.94 mol 0.5 mol 1.0 mol n (mol) = m (g) M (g/mol) Example 2H 2 + O 2 # 2H 2 O 16.0 g 16.0 g? g 7.94 mol 0.5 mol 1.0 mol " g n (mol) = m (g) M (g/mol)

29 Yields: Theoretical, Percent 2A + B # A 2 B + c + d g should give g actually, g was obtained Yield = Y = g g!100% = 84% n (mol) = m (g) M (g/mol) Yields: Theoretical, Percent 2A + B # A 2 B + c + d mol should give mol actually, mol was obtained Yield = Y = mol mol!100% = 84% n (mol) = m (g) M (g/mol)

30 Yields: Overall 90% 75% 85% A # B # C # D Overall Y = 0.90! 0.75! 0.85! 100% = 57% 57% A # D Solutions Solute Solvent concentration: a quantitative description of a solution

31 Solutions Molarity = moles of solute liters of solution M = n solute (mol) Vsolvent (L) 3 M means 3 mol/l Sample Problem 3.14 Isotonic saline is 0.15 M aqueous solution of NaCl that simulates the total concentration of ions found in many cellular fluids. Its uses range from a cleansing rinse for contact lenses to a washing medium for red blood cells. How do you prepare 0.80 L of isotonic saline from 6.0 M stock solution of NaCl? M = n V

32 Sample Problem 3.14 Isotonic saline is 0.15 M aqueous solution of NaCl that simulates the total concentration of ions found in many cellular fluids. Its uses range from a cleansing rinse for contact lenses to a washing medium for red blood cells. How do you prepare 0.80 L of isotonic saline from 6.0 M stock solution of NaCl? We ll need: n(nacl) = 0.15 mol/l! 0.80 L = 0.12 mol M = n V Sample Problem 3.14 Isotonic saline is 0.15 M aqueous solution of NaCl that simulates the total concentration of ions found in many cellular fluids. Its uses range from a cleansing rinse for contact lenses to a washing medium for red blood cells. How do you prepare 0.80 L of isotonic saline from 6.0 M stock solution of NaCl? We ll need: n(nacl) = 0.15 mol/l! 0.80 L = 0.12 mol V(6M_soln) = 0.12 mol 6.0 mol/l = 0.02 L M = n V 0.78 L

33 Example * ml of a solution of NaOH with an unknown concentration reacts with an excess of an acid solution of oxalic acid prepared by dissolving g of oxalic acid dihydrate (H 2 C 2 O 4 2H 2 O) in water. The excess of oxalic acid then reacts completely with 9.65 ml of M of stock NaOH solution. What is the concentration of the unknown NaOH solution. 2NaOH + H 2 C 2 O 4 # Na 2 C 2 O 4 + 2H 2 O M = n V Example * ml of a solution of NaOH with an unknown concentration reacts with an excess of an acid solution of oxalic acid prepared by dissolving g of oxalic acid dihydrate (H 2 C 2 O 4 2H 2 O) in water. The excess of oxalic acid then reacts completely with 9.65 ml of M of stock NaOH solution. What is the concentration of the unknown NaOH solution. MW oad = NaOH + H 2 C 2 O 4 # Na 2 C 2 O 4 + 2H 2 O MW NaOH = M = n V

34 Example * ml of a solution of NaOH with an unknown concentration reacts with an excess of an acid solution of oxalic acid prepared by dissolving g of oxalic acid dihydrate (H 2 C 2 O 4 2H 2 O) in water. The excess of oxalic acid then reacts completely with 9.65 ml of M of stock NaOH solution. What is the concentration of the unknown NaOH solution. MW oad = NaOH + H 2 C 2 O 4 # Na 2 C 2 O 4 + 2H 2 O MW NaOH = n(h 2 C 2 O 4 ) = 0.588g g/mol = 4.66 mmol M = n V Example * ml of a solution of NaOH with an unknown concentration reacts with an excess of an acid solution of oxalic acid prepared by dissolving g of oxalic acid dihydrate (H 2 C 2 O 4 2H 2 O) in water. The excess of oxalic acid then reacts completely with 9.65 ml of M of stock NaOH solution. What is the concentration of the unknown NaOH solution. MW oad = NaOH + H 2 C 2 O 4 # Na 2 C 2 O 4 + 2H 2 O MW NaOH = M = n V n(h 2 C 2 O 4 ) = 0.588g g/mol = 4.66 mmol n(naoh-known) = 9.65 ml! 0.115mol/L = 1.11 mmol

35 Example * ml of a solution of NaOH with an unknown concentration reacts with an excess of an acid solution of oxalic acid prepared by dissolving g of oxalic acid dihydrate (H 2 C 2 O 4 2H 2 O) in water. The excess of oxalic acid then reacts completely with 9.65 ml of M of stock NaOH solution. What is the concentration of the unknown NaOH solution. MW oad = NaOH + H 2 C 2 O 4 # Na 2 C 2 O 4 + 2H 2 O MW NaOH = n(h 2 C 2 O 4 ) = 0.588g g/mol = 4.66 mmol n(naoh-known) = 9.65 ml! 0.115mol/L = 1.11 mmol M = n V n(oxalic-unknown) = /2 = 4.11 mmol Example * ml of a solution of NaOH with an unknown concentration reacts with an excess of an acid solution of oxalic acid prepared by dissolving g of oxalic acid dihydrate (H 2 C 2 O 4 2H 2 O) in water. The excess of oxalic acid then reacts completely with 9.65 ml of M of stock NaOH solution. What is the concentration of the unknown NaOH solution. MW oad = NaOH + H 2 C 2 O 4 # Na 2 C 2 O 4 + 2H 2 O MW NaOH = n(naoh-unknown) = 4.11mmol!2 = 8.22 mmol M = n V M = 8.22 mmol 50 ml = M Look at equation

36 Chapter 3 Overview Stoichiometry The mole: proportional to the number of molecules a convenient measure of amount n(mol) = m(g) / M(g/mol) M = MW Chemical equations: balanced: same number of atoms on both sides show stoichiometric relationships between reactants and products Solutions: concentration M (mol/l) = n(mol) / V(L) Chapter 3 Overview Practice Problems (3.44) Cortisol (M = g/mol), one of the major steroid hormones, is a key factor in the biosynthesis of protein. Cortisol is 69.6% carbon, 8.34% H, 22.1% O by mass. What is its molecular formula?

37 Chapter 3 Overview Practice Problems (3.44) Cortisol (M = g/mol), one of the major steroid hormones, is a key factor in the biosynthesis of protein. Cortisol is 69.6% carbon, 8.34% H, 22.1% O by mass. What is its molecular formula? (1) get molar ratio of C H O " get empirical formula (2) look at molecular weight, empirical formula " get molecular formula Chapter 3 Overview Practice Problems (3.51) Balance the following equations: (a) Cu + S 8 # Cu 2 S

38 Chapter 3 Overview Practice Problems (3.51) Balance the following equations: (a) Cu + S 8 # Cu 2 S 16Cu + S 8 # 8Cu 2 S Chapter 3 Overview Practice Problems (3.51) Balance the following equations: (a) Cu + S 8 # Cu 2 S 16Cu + S 8 # 8Cu 2 S (b) P 4 O 10 + H 2 O # H 3 PO 4

39 Chapter 3 Overview Practice Problems (3.51) Balance the following equations: (a) Cu + S 8 # Cu 2 S 16Cu + S 8 # 8Cu 2 S (b) P 4 O 10 + H 2 O # H 3 PO 4 (3.52) Balance the following equations: (c) CaSiO 3 + HF # SiF 4 + CaF 2 + H 2 O Chapter 3 Overview Practice Problems (3.56) Convert the following into balanced equations: (a) When lead (II) nitrate solution is added to potassium iodide solution, solid lead (II) iodide forms and potassium nitrate solution remains.

40 Chapter 3 Overview Practice Problems (3.56) Convert the following into balanced equations: (a) When lead (II) nitrate solution is added to potassium iodide solution, solid lead (II) iodide forms and potassium nitrate solution remains. Pb(NO 3 ) 2 + 2KI # PbI 2 + 2KNO 3 Chapter 3 Overview Practice Problems ( 3.61) Chlorine gas can be made in the laboratory by the reaction of hydrochloric acid and manganese (IV) dioxide: 4HCl + MnO 2 # MnCl 2 + Cl 2 + 2H 2 O When 1.82 mol of HCl reacts with excess MnO 2, (a) how many mols of Cl 2 form? (b) How many grams of Cl 2 form?

41 Chapter 3 Overview Practice Problems ( 3.61) Chlorine gas can be made in the laboratory by the reaction of hydrochloric acid and manganese (IV) dioxide: 4HCl + MnO 2 # MnCl 2 + Cl 2 + 2H 2 O When 1.82 mol of HCl reacts with excess MnO 2, (a) how many mols of Cl 2 form? (b) How many grams of Cl 2 form? n (mol) = m (g) M (g/mol) Chapter 3 Overview Practice Problems ( 3.74) Calculate the maximum numbers of moles and grams of H 2 S that can form when 158 g of aluminum sulfide reacts with 131 g of water: Al 2 S 3 + H 2 O # Al(OH) 3 + H 2 S [unbalanced] What mass of the excess reactant remains?

42 Chapter 3 Overview Practice Problems: Solutions ( 3.93) Calculate each of the following quantities: (a) Volume in liters of 2.26 M potassium hydroxide that contains 8.42 g of solute. (c) molarity of 275 ml solution containing 135 mmol of glucose. Chapter 3 Overview Practice Problems: Solutions ( 3.103) How many moles of which reactant are in excess when ml of M sulfuric acid reacts with L of M sodium hydroxide to form water and aqueous sodium sulfate.

43 Chapter 3 Overview Practice Problems:Comprehensive ( 3.133) To 1.20 L of M HCl, you add 3.37 L of a second HCl solution of unknown concentration. The resulting solution is M HCl. Assuming the volumes are additive, calculate the molarity of the second HCl solution. Chapter 3 Overview Practice Problems:Comprehensive ( *3.141) In the chemical analysis of unknown, chemsits often add an excess of a reactant, determine the amount of that reactant remaining after the reaction with the unknown, and use those amounts to calculate the amount of the unknown. For analysis of an unknown NaOH solution, you add 50.0 ml of the solution to L of an acid solution prepared by dissolving g of solid oxalic acid dihydrate (H 2 C 2 O 4 2H 2 O, MW = ) in water: 2NaOH + H 2 C 2 O 4 # Na 2 C 2 O 4 + 2H 2 O The unreacted NaOH then reacts completely with 9.65 ml of M HCl: NaOH + HCl # NaCl + H 2 O What is the molarity of the original NaOH solution?

Chapter 2 Overview. Chapter 2 Overview

Chapter 2 Overview. Chapter 2 Overview Chapter 2 Overview! all matter, whether liquid, solid, or gas,consists of atoms, which form molecules! the identity of an atom and its chemical behavior is strictly defined by the number of electrons in

More information

Chapter 2 Overview. ! all matter, whether liquid, solid, or gas,consists of atoms, which form molecules

Chapter 2 Overview. ! all matter, whether liquid, solid, or gas,consists of atoms, which form molecules Chapter 2 Overview! all matter, whether liquid, solid, or gas,consists of atoms, which form molecules! the identity of an atom and its chemical behavior is strictly defined by the number of electrons in

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 3. Stoichiometry of Formulas and Equations 3-1

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 3. Stoichiometry of Formulas and Equations 3-1 3-1 Chapter 3 Stoichiometry of Formulas and Equations 3-2 Mole - Mass Relationships in Chemical Systems 3.1 The Mole 3.2 Determining the Formula of an Unknown Compound 3.3 Writing and Balancing Chemical

More information

Assume 1 mol hemoglobin: mass Fe 2+ = (6.8x10 4 g mol -1 ) = g

Assume 1 mol hemoglobin: mass Fe 2+ = (6.8x10 4 g mol -1 ) = g 4. Hemoglobin, a protein in red blood cells, carries O 2, from the lungs to the body s cells. Iron (as Fe 2+ ) makes up 0.33 mass % of hemoglobin. If the molar mass of hemoglobin is 6.8x10 4 g/mol, how

More information

Stoichiometry of Formulas and Equations. Chapter 3 Outline: Mole - Mass Relationships in Chemical Systems

Stoichiometry of Formulas and Equations. Chapter 3 Outline: Mole - Mass Relationships in Chemical Systems Chapter 3 Stoichiometry of Formulas and Equations Chapter 3 Outline: Mole - Mass Relationships in Chemical Systems 3.1 The Mole 3.2 Determining the Formula of an Unknown Compound 3.3 Writing and Balancing

More information

UNIT 1 Chemical Reactions Part II Workbook. Name:

UNIT 1 Chemical Reactions Part II Workbook. Name: UNIT 1 Chemical Reactions Part II Workbook Name: 1 Molar Volume 1. How many moles of a gas will occupy 2.50 L at STP? 2. Calculate the volume that 0.881 mol of gas at STP will occupy. 3. Determine the

More information

Chem 1A Dr. White Fall Handout 4

Chem 1A Dr. White Fall Handout 4 Chem 1A Dr. White Fall 2014 1 Handout 4 4.4 Types of Chemical Reactions (Overview) A. Non-Redox Rxns B. Oxidation-Reduction (Redox) reactions 4.6. Describing Chemical Reactions in Solution A. Molecular

More information

TYPES OF CHEMICAL REACTIONS

TYPES OF CHEMICAL REACTIONS TYPES OF CHEMICAL REACTIONS Precipitation Reactions Compounds Soluble Ionic Compounds 1. Group 1A cations and NH 4 + 2. Nitrates (NO 3 ) Acetates (CH 3 COO ) Chlorates (ClO 3 ) Perchlorates (ClO 4 ) Solubility

More information

General Chemistry 1 CHM201 Unit 2 Practice Test

General Chemistry 1 CHM201 Unit 2 Practice Test General Chemistry 1 CHM201 Unit 2 Practice Test 1. Which statement about the combustion of propane (C 3H 8) is not correct? C 3H 8 5O 2 3CO 2 4H 2O a. For every propane molecule consumed, three molecules

More information

Example Exercise 10.1 Interpreting Chemical Equation Calculations

Example Exercise 10.1 Interpreting Chemical Equation Calculations Example Exercise 10.1 Interpreting Chemical Equation Calculations Given the chemical equation for the combustion of methane, CH 4, balance the equation and interpret the coefficients in terms of (a) moles

More information

2H 2 (g) + O 2 (g) 2H 2 O (g)

2H 2 (g) + O 2 (g) 2H 2 O (g) Mass A AP Chemistry Stoichiometry Review Pages Mass to Mass Stoichiometry Problem (Review) Moles A Moles B Mass B Mass of given Amount of given Amount of unknown Mass of unknown in grams in Moles in moles

More information

Unit Two Worksheet WS DC U2

Unit Two Worksheet WS DC U2 Unit Two Worksheet WS DC U2 Name Period Short Answer [Writing]. Write skeleton equations representing the following reactions and then balance them. Then identify the reaction type. Include all needed

More information

Name: Unit 9- Stoichiometry Day Page # Description IC/HW

Name: Unit 9- Stoichiometry Day Page # Description IC/HW Name: Unit 9- Stoichiometry Day Page # Description IC/HW Due Date Completed ALL 2 Warm-up IC 1 3 Stoichiometry Notes IC 1 4 Mole Map IC X 1 5 Mole to Mole Practice IC 1 6 Mass to Mole Practice IC 1/2 X

More information

Mole: base unit for an amount of substance A mole contains Avogadro s number (N A ) of particles (atoms, molecules, ions, formula units )

Mole: base unit for an amount of substance A mole contains Avogadro s number (N A ) of particles (atoms, molecules, ions, formula units ) Mole: base unit for an amount of substance A mole contains Avogadro s number (N A ) of particles (atoms, molecules, ions, formula units ) N A 6.0 10 mol -1 1 mol substance contains N A Molar mass (g/mol)

More information

During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction:

During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction: Example 4.1 Stoichiometry During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction: Suppose that a particular plant consumes 37.8 g of CO 2

More information

Announcements. due tomorrow at start of discussion. 10/22 and (Type II) due Wednesday 10/24 by 7:00pm. Thurs. Must be present to get grade!

Announcements. due tomorrow at start of discussion. 10/22 and (Type II) due Wednesday 10/24 by 7:00pm. Thurs. Must be present to get grade! Announcements 1. Limiting Reactants lab write-up due tomorrow at start of discussion. 2. Online HW 5 (Type I) due Monday 10/22 and (Type II) due Wednesday 10/24 by 7:00pm. 3. Stoichiometry workshop next

More information

AP Chemistry Summer Assignment

AP Chemistry Summer Assignment AP Chemistry Summer Assignment Due Date: Thursday, September 1 st, 2011 Directions: Show all of your work for full credit. Include units and labels. Record answers to the correct number of significant

More information

Practice Problems: Set #3-Solutions

Practice Problems: Set #3-Solutions Practice Problems: Set #3-Solutions IIa) Balance the following equations:(10) 1) Zn (s) + H 3 PO 4 (aq) Zn 3 (PO 4 ) 2 (s) + H 2 (g) 3Zn (s) + 2H 3 PO 4 (aq) Zn 3 (PO 4 ) 2 (s) + 3H 2 (g) 2. Mg 3 N 2 (s)

More information

Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals.

Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals. Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals. Evidence to indicate that a chemical reaction has occurred: Temperature change Different coloured materials

More information

Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals.

Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals. Chemistry 11 Notes on Chemical Reactions Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals. Evidence to indicate that a chemical reaction has occurred:

More information

Unit 4: Reactions and Stoichiometry

Unit 4: Reactions and Stoichiometry Unit 4: Reactions and Stoichiometry Reactions Chemical equation Expression representing a chemical reaction Formulas of reactants on the left side Formulas of products on the right side Arrow(s) connect(s)

More information

CHM 1045 Qualifying Exam

CHM 1045 Qualifying Exam CHM 1045 Qualifying Exam 1. Which of the following is the basic unit of volume in the metric system? A) liter B) kilogram C) meter D) centimeter E) gram 2. Which of the following is the largest unit? A)

More information

VOCABULARY Define. 1. stoichiometry. 2. composition stoichiometry. 3. reaction stoichiometry. 4. unknown. 5. mole ratio

VOCABULARY Define. 1. stoichiometry. 2. composition stoichiometry. 3. reaction stoichiometry. 4. unknown. 5. mole ratio CHAPTER 9 HOMEWORK 9-1 (pp. 275 279) Define. 1. stoichiometry 2. composition stoichiometry 3. reaction stoichiometry 4. unknown 5. mole ratio SKILL BUILDER On a separate sheet of paper, write five possible

More information

4. Magnesium has three natural isotopes with the following masses and natural abundances:

4. Magnesium has three natural isotopes with the following masses and natural abundances: Exercise #1. Determination of Weighted Average Mass 1. The average mass of pennies minted after 1982 is 2.50 g and the average mass of pennies minted before 1982 is 3.00 g. Suppose that a bag of pennies

More information

The Mole. The mole (mol) is the amount of a substance that contains the same number of entities as there are atoms in exactly 12 g of carbon-12.

The Mole. The mole (mol) is the amount of a substance that contains the same number of entities as there are atoms in exactly 12 g of carbon-12. 3-1 The Mole The mole (mol) is the amount of a substance that contains the same number of entities as there are atoms in exactly 12 g of carbon-12. The term entities refers to atoms, ions, molecules, formula

More information

TOPIC 9. CHEMICAL CALCULATIONS III - stoichiometry.

TOPIC 9. CHEMICAL CALCULATIONS III - stoichiometry. TOPIC 9. CHEMICAL CALCULATIONS III - stoichiometry. Stoichiometric calculations. By combining a knowledge of balancing equations with the concept of the mole, it is possible to easily calculate the masses

More information

2) Isotopes are atoms of the same element, which have the same number of but a different number.

2) Isotopes are atoms of the same element, which have the same number of but a different number. AP Chemistry Semester 1 Exam Review Alternate Atomic Structure 1) Fill in the table: Name Per Isotope Symbol Atomic Mass Mass # Atomic # # of protons # of neutrons # of electrons Hydrogen-1 16 16 18 35.45

More information

Chemistry. Bridging the Gap Summer Homework. Name..

Chemistry. Bridging the Gap Summer Homework. Name.. Chemistry Bridging the Gap Summer Homework Name.. Standard Form Number Number in standard form 0.008 8 x 10-3 0.07 7 x 10-2 0.55 5.5 x 10-1 0.000052 0.048 0.0086 0.00086 0.000086 0.0000000001 0.000455

More information

Chapter 3. Mass Relationships in Chemical Reactions

Chapter 3. Mass Relationships in Chemical Reactions Chapter 3 Mass Relationships in Chemical Reactions In this chapter, Chemical structure and formulas in studying the mass relationships of atoms and molecules. To explain the composition of compounds and

More information

IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily.

IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily. The Mole Atomic mass units and atoms are not convenient units to work with. The concept of the mole was invented. This was the number of atoms of carbon-12 that were needed to make 12 g of carbon. 1 mole

More information

1) What is the volume of a tank that can hold Kg of methanol whose density is 0.788g/cm 3?

1) What is the volume of a tank that can hold Kg of methanol whose density is 0.788g/cm 3? 1) Convert the following 1) 125 g to Kg 6) 26.9 dm 3 to cm 3 11) 1.8µL to cm 3 16) 4.8 lb to Kg 21) 23 F to K 2) 21.3 Km to cm 7) 18.2 ml to cm 3 12) 2.45 L to µm 3 17) 1.2 m to inches 22) 180 ºC to K

More information

Stoichiometry ( ) ( )

Stoichiometry ( ) ( ) Stoichiometry Outline 1. Molar Calculations 2. Limiting Reactants 3. Empirical and Molecular Formula Calculations Review 1. Molar Calculations ( ) ( ) ( ) 6.02 x 10 23 particles (atoms or molecules) /

More information

Chapter 3 Stoichiometry

Chapter 3 Stoichiometry Chapter 3 Sep 22 1:45 PM Average atomic mass: The weighted average of all isotopes of a specific element. Takes into consideration abundance of each isotope. (% x M 1 ) + (% x M 2 ) +... Sep 22 1:45 PM

More information

Unit 9 Stoichiometry Notes

Unit 9 Stoichiometry Notes Unit 9 Stoichiometry Notes Stoichiometry is a big word for a process that chemist s use to calculate amounts in reactions. It makes use of the coefficient ratio set up by balanced reaction equations to

More information

STOICHIOMETRY. Measurements in Chemical Reactions

STOICHIOMETRY. Measurements in Chemical Reactions STOICHIOMETRY Measurements in Chemical Reactions STOICHIOMETRY Stoichiometry is the analysis of the quantities of substances in a chemical reaction. Stoichiometric calculations depend on the MOLE-MOLE

More information

Chapter 9. Table of Contents. Stoichiometry. Section 1 Introduction to Stoichiometry. Section 2 Ideal Stoichiometric Calculations

Chapter 9. Table of Contents. Stoichiometry. Section 1 Introduction to Stoichiometry. Section 2 Ideal Stoichiometric Calculations Stoichiometry Table of Contents Section 1 Introduction to Stoichiometry Section 2 Ideal Stoichiometric Calculations Section 3 Limiting Reactants and Percentage Yield Section 1 Introduction to Stoichiometry

More information

MIDTERM REVIEW. UNIT 1: Mass/Measurement

MIDTERM REVIEW. UNIT 1: Mass/Measurement MIDTERM REVIEW UNIT 1: Mass/Measurement Practice Problems 1. Circle the word/phrase that best fits the statement: A. [ PHYSICAL OR CHEMICAL] changes are changes in which the identity of the substance does

More information

Matter is anything that has mass and occupies space. Three physical states of matter

Matter is anything that has mass and occupies space. Three physical states of matter Nature of Matter Some basic concepts Matter is anything that has mass and occupies space. Three physical states of matter Characteristics of solid o Definite volume o Definite shape Characteristics of

More information

Semester 1 Review Chemistry

Semester 1 Review Chemistry Name Period Date Semester 1 Review Chemistry Units & Unit Conversions Ch. 3 (p. 73-94) PART A SI UNITS What type of measurement is indicated by each of the following units? Choices are in the last column.

More information

Test bank chapter (3)

Test bank chapter (3) Test bank chapter (3) Choose the correct answer 1. What is the mass, in grams, of one copper atom? a) 1.055 10 - g b) 63.55 g c) 1 amu d) 1.66 10-4 g. Determine the number of moles of aluminum in 96.7

More information

2. Relative molecular mass, M r - The relative molecular mass of a molecule is the average mass of the one molecule when compared with

2. Relative molecular mass, M r - The relative molecular mass of a molecule is the average mass of the one molecule when compared with Chapter 3: Chemical Formulae and Equations 1. Relative atomic mass, A r - The relative atomic mass of an element is the average mass of one atom of an element when compared with mass of an atom of carbon-12

More information

Molecule smallest particle of a substance having its chemical properties Atoms connected via covalent bonds Examples:

Molecule smallest particle of a substance having its chemical properties Atoms connected via covalent bonds Examples: Ionic equations, calculations involving concentrations, stoichiometry MUDr. Jan Pláteník, PhD Molecule smallest particle of a substance having its chemical properties Atoms connected via covalent bonds

More information

Chemistry 101 Chapter 4 STOICHIOMETRY

Chemistry 101 Chapter 4 STOICHIOMETRY STOICHIOMETRY Stoichiometry is the quantitative relationship between the reactants and products in a balanced chemical equation. Stoichiometry allows chemists to predict how much of a reactant is necessary

More information

Revision of Important Concepts. 1. Types of Bonding

Revision of Important Concepts. 1. Types of Bonding Revision of Important Concepts 1. Types of Bonding Electronegativity (EN) often molecular often ionic compounds Bonding in chemical substances Bond energy: Is the energy that is released when a bond is

More information

4) Convert: a) 10 m = km b) 500 g = mg c) 250 ml = L

4) Convert: a) 10 m = km b) 500 g = mg c) 250 ml = L Data Analysis 1) Define: a) Accuracy b) Precision 2) The actual density of water is 1.00 g/ml Fred Wilma Barney Trial 1 1.12 g/ml 0.88 g/ml 1.00 g/ml Trial 2 1.13 g/ml 1.07 g/ml 1.01 g/ml Trial 3 1.11

More information

2 nd Semester Study Guide 2017

2 nd Semester Study Guide 2017 Chemistry 2 nd Semester Study Guide 2017 Name: KEY Unit 6: Chemical Reactions and Balancing 1. Draw the remaining product 2. Write a balanced equation for the following reaction: The reaction between sodium

More information

2 nd Semester Study Guide 2016

2 nd Semester Study Guide 2016 Chemistry 2 nd Semester Study Guide 2016 Name: Unit 6: Chemical Reactions and Balancing 1. Draw the remaining product 2. Write a balanced equation for the following reaction: The reaction between sodium

More information

How many hydrogen atoms are there in the empirical formula of propene, C 3 H 6? How many neutrons are there in one atom of 24 Mg?

How many hydrogen atoms are there in the empirical formula of propene, C 3 H 6? How many neutrons are there in one atom of 24 Mg? 1 A 2 B 3 C The atomic number of Na is 11. How many electrons are there in a sodium ion, Na +? How many hydrogen atoms are there in the empirical formula of propene, C 3 H 6? What is the mass in grams

More information

Formulas and Models 1

Formulas and Models 1 Formulas and Models 1 A molecular formula shows the exact number of atoms of each element in the smallest unit of a substance An empirical formula shows the simplest whole-number ratio of the atoms in

More information

IGCSE (9-1) Edexcel - Chemistry

IGCSE (9-1) Edexcel - Chemistry IGCSE (9-1) Edexcel - Chemistry Principles of Chemistry Chemical Formulae, Equations and Calculations NOTES 1.25: Write word equations and balanced chemical equations (including state symbols): For reactions

More information

Name AP Chemistry September 30, 2013

Name AP Chemistry September 30, 2013 Name AP Chemistry September 30, 2013 AP Chemistry Exam Part I: 40 Questions, 40 minutes, Multiple Choice, No Calculator Allowed Bubble the correct answer on the blue side of your scantron for each of the

More information

Final Exam Review Questions You will be given a Periodic Table, Activity Series, and a Common Ions Chart CP CHEMISTRY

Final Exam Review Questions You will be given a Periodic Table, Activity Series, and a Common Ions Chart CP CHEMISTRY Final Exam Review Questions You will be given a Periodic Table, Activity Series, and a Common Ions Chart CP CHEMISTRY Part A True-False State whether each statement is true or false. If false, correct

More information

AP CHEMISTRY THINGS TO KNOW

AP CHEMISTRY THINGS TO KNOW AP CHEMISTRY THINGS TO KNOW Diatomic Molecules H2-hydrogen gas (do not write H) N2-nitrogen gas (do no write N) O2-oxygen gas (do not write O) F2-fluorine gas (do not write F) Cl2-chlorine gas (do not

More information

M = Molarity = mol solute L solution. PV = nrt % yield = actual yield x 100 theoretical yield. PM=dRT where d=density, M=molar mass

M = Molarity = mol solute L solution. PV = nrt % yield = actual yield x 100 theoretical yield. PM=dRT where d=density, M=molar mass Solubility Rules: 1. Most nitrate salts are soluble. 2. Most salts of alkali metals and ammonium cations are soluble. 3. Most chloride, bromide and iodide salts are soluble. Exceptions: salts containing

More information

Chapter 3: Chemical Reactions and the Earth s Composition

Chapter 3: Chemical Reactions and the Earth s Composition Chapter 3: Chemical Reactions and the Earth s Composition Problems: 3.1-3.3, 3.5, 3.11-3.86, 3.95-3.115, 3.119-3.120, 3.122, 3.125-3.128, 3.132, 3.134, 3.136-3.138-3.141 3.2 The Mole Stoichiometry (STOY-key-OM-e-tree):

More information

Practice Problems Stoich!

Practice Problems Stoich! Practice Problems Stoich! Name: **YOUR ANSWERS MUST INCLUDE THE PROPER NUMBER OF SIG FIGS AND COMPLETE UNITS IN ORDER TO RECEIVE CREDIT FOR THE PROBLEM.** BALANCE THE FOLLOWING EQUATIONS TO USE IN QUESTIONS

More information

Study Guide: Stoichiometry

Study Guide: Stoichiometry Name: Study Guide: Stoichiometry Period: **YOUR ANSWERS MUST INCLUDE THE PROPER NUMBER OF SIG FIGS AND COMPLETE UNITS IN ORDER TO RECEIVE CREDIT FOR THE PROBLEM.** BALANCE THE FOLLOWING EQUATIONS TO USE

More information

3) What is the correct value for Avogadro's number? 3) A) x 1033 B) x 1023 C) x D) x 1022

3) What is the correct value for Avogadro's number? 3) A) x 1033 B) x 1023 C) x D) x 1022 CHM1025 Exam 3 Chapters 6, 7, & 8 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) How many hydrogen atoms are in 35.0 grams of hydrogen gas? 1)

More information

CH 221 Chapter Four Part II Concept Guide

CH 221 Chapter Four Part II Concept Guide CH 221 Chapter Four Part II Concept Guide 1. Solubility Why are some compounds soluble and others insoluble? In solid potassium permanganate, KMnO 4, the potassium ions, which have a charge of +1, are

More information

4 CO O 2. , how many moles of KCl will be produced? Use the unbalanced equation below: PbCl 2. PbSO 4

4 CO O 2. , how many moles of KCl will be produced? Use the unbalanced equation below: PbCl 2. PbSO 4 Honors Chemistry Practice Final 2017 KEY 1. Acetylene gas, C 2, is used in welding because it generates an extremely hot flame when combusted with oxygen. How many moles of oxygen are required to react

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

What type of solution that contains all of the

What type of solution that contains all of the What type of solution that contains all of the solute it can hold at a given temperature? Saturated Solution What type of solution that contains less solute than it is able to hold at a given temperature?

More information

(DO NOT WRITE ON THIS TEST)

(DO NOT WRITE ON THIS TEST) Final Prep Chap 8&9 (DO NOT WRITE ON THIS TEST) Multiple Choice Identify the choice that best completes the statement or answers the question. 1. After the correct formula for a reactant in an equation

More information

Chemistry B Final Exam Review Packet Winter 2017

Chemistry B Final Exam Review Packet Winter 2017 Chemistry B Final Exam Review Packet Winter 2017 The final exam will count as approximately 15% of your final grade in Chemistry B. Exam Format: Multiple choice ~35 questions Free Response/Calculations:

More information

Class XI Chapter 1 Some Basic Concepts of Chemistry Chemistry

Class XI Chapter 1 Some Basic Concepts of Chemistry Chemistry Question 1.1: Calculate the molecular mass of the following: (i) H 2 O (ii) CO 2 (iii) CH 4 (i) H 2 O: The molecular mass of water, H 2 O = (2 Atomic mass of hydrogen) + (1 Atomic mass of oxygen) = [2(1.0084)

More information

5. [7 points] What is the mass of gallons (a fifth) of pure ethanol (density = g/cm 3 )? [1 gallon = Liters]

5. [7 points] What is the mass of gallons (a fifth) of pure ethanol (density = g/cm 3 )? [1 gallon = Liters] 1 of 6 10/20/2009 3:55 AM Avogadro s Number, N A = 6.022 10 23 1. [7 points] Given the following mathematical expression: (15.11115.0)/(2.154 10 3 ) How many significant figures should the answer contain?

More information

7/16/2012. Chapter Four: Like Dissolve Like. The Water Molecule. Ionic Compounds in Water. General Properties of Aqueous Solutions

7/16/2012. Chapter Four: Like Dissolve Like. The Water Molecule. Ionic Compounds in Water. General Properties of Aqueous Solutions General Properties of Aqueous Solutions Chapter Four: TYPES OF CHEMICAL REACTIONS AND SOLUTION STOICHIOMETRY A solution is a homogeneous mixture of two or more substances. A solution is made when one substance

More information

Name: Class: Date: ID: A. (g), what is the ratio of moles of oxygen used to moles of CO 2 produced? a. 1:1 b. 2:1 c. 1:2 d. 2:2

Name: Class: Date: ID: A. (g), what is the ratio of moles of oxygen used to moles of CO 2 produced? a. 1:1 b. 2:1 c. 1:2 d. 2:2 Name: Class: _ Date: _ Chpt 12 review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What is conserved in the reaction shown below? H 2 + Cl 2 2HCl a.

More information

SOLUTIONS. Solutions - page

SOLUTIONS. Solutions - page SOLUTIONS For gases in a liquid, as the temperature goes up the solubility goes. For gases in a liquid, as the pressure goes up the solubility goes. Example: What is the molarity of a solution with 2.0

More information

Which of the following answers is correct and has the correct number of significant figures?

Which of the following answers is correct and has the correct number of significant figures? Avogadro s Number, N A = 6.022 10 23 1. [7 points] Carry out the following mathematical operation: 6.06 10 3 + 1.1 10 2 Which of the following answers is correct and has the correct number of significant

More information

Chemistry 2202 Stoichiometry Unit Retest Review Guide

Chemistry 2202 Stoichiometry Unit Retest Review Guide Chemistry 2202 Stoichiometry Unit Retest Review Guide Chapter 2: The Mole Pgs. 42 77 You should be able to: 1. Define the term molar mass and calculate the molar mass of any given element or compound.

More information

AP Chemistry Unit 1 Review Guide: IUPAC Naming, Stoichiometry, Solution Chemistry

AP Chemistry Unit 1 Review Guide: IUPAC Naming, Stoichiometry, Solution Chemistry I. IUPAC Naming AP Chemistry Unit 1 Review Guide: IUPAC Naming, Stoichiometry, Solution Chemistry For Ionic Compounds: Formula to Name: 1. Identify the cation (positive ion) by name, then identify the

More information

STOICHIOMETRY. Greek: Stoicheon = element metron = element measuring

STOICHIOMETRY. Greek: Stoicheon = element metron = element measuring STOICHIOMETRY Greek: Stoicheon = element metron = element measuring Stoichiometry is the science of measuring the quantitative proportions or mass ratios in which chemical elements stand to one another

More information

Chapter 8 Chemical Reactions

Chapter 8 Chemical Reactions Chemistry/ PEP Name: Date: Chapter 8 Chemical Reactions Chapter 8: 1 7, 9 18, 20, 21, 24 26, 29 31, 46, 55, 69 Practice Problems 1. Write a skeleton equation for each chemical reaction. Include the appropriate

More information

Counting by mass: The Mole. Unit 8: Quantification of Chemical Reactions. Calculating molar mass. Particles. moles and mass. moles and particles

Counting by mass: The Mole. Unit 8: Quantification of Chemical Reactions. Calculating molar mass. Particles. moles and mass. moles and particles Unit 8: Quantification of Chemical Reactions Chapter 10: The mole Chapter 12: Stoichiometry Counting by mass: The Mole Chemists can t count individual atoms Use moles to determine amounts instead mole

More information

Section 4: Aqueous Reactions

Section 4: Aqueous Reactions Section 4: Aqueous Reactions 1. Solution composition 2. Electrolytes and nonelectrolytes 3. Acids, bases, and salts 4. Neutralization ti reactions 5. Precipitation reactions 6. Oxidation/reduction reactions

More information

AP Chemistry - Summer Assignment

AP Chemistry - Summer Assignment AP Chemistry - Summer Assignment NOTE: a. MUST SHOW ALL WORK FOR CREDIT!! b. Where work is required, do on a separate sheet of paper c. These are the foundational things you should be able to do when you

More information

Chapter 9. Stoichiometry. Mr. Mole. NB page 189

Chapter 9. Stoichiometry. Mr. Mole. NB page 189 Chapter 9 Stoichiometry Mr. Mole NB page 189 review Let s make some Cookies! When baking cookies, a recipe is usually used, telling the exact amount of each ingredient. If you need more, you can double

More information

HONORS CHEMISTRY Putting It All Together II

HONORS CHEMISTRY Putting It All Together II NAME: SECTION: HONORS CHEMISTRY Putting It All Together II Calculations in Chemistry It s time to pull out your calculators! In the first review sheet, you were able to write formulas of compounds when

More information

General Chemistry. Chapter 3. Mass Relationships in Chemical Reactions CHEM 101 (3+1+0) Dr. Mohamed El-Newehy 10/12/2017

General Chemistry. Chapter 3. Mass Relationships in Chemical Reactions CHEM 101 (3+1+0) Dr. Mohamed El-Newehy 10/12/2017 General Chemistry CHEM 101 (3+1+0) Dr. Mohamed El-Newehy http://fac.ksu.edu.sa/melnewehy Chapter 3 Mass Relationships in Chemical Reactions 1 In this chapter, Chemical structure and formulas in studying

More information

Unit 6: Stoichiometry. How do manufacturers know how to make enough of their desired product?

Unit 6: Stoichiometry. How do manufacturers know how to make enough of their desired product? Unit 6: Stoichiometry How do manufacturers know how to make enough of their desired product? Chocolate Chip Cookies Using the following recipe, complete the questions. Cookie Recipe 1.5 c sugar 1 c. butter

More information

Chem. I Notes Ch. 11 STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Chem. I Notes Ch. 11 STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Chem. I Notes Ch. 11 STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 11.1 notes 1 MOLE = 6.02 x 10 23 representative particles representative particles

More information

Chapter 1 IB Chemistry Warm Ups Stoichiometry. Mrs. Hilliard

Chapter 1 IB Chemistry Warm Ups Stoichiometry. Mrs. Hilliard Chapter 1 IB Chemistry Warm Ups Stoichiometry Mrs. Hilliard Vocabulary 1. Atomic theory 2. Kelvin 3. Mole 4. Relative abundance 5. Molar Mass 6. Empirical formula 7. Molecular formula 8. Stoichiometry

More information

TOPIC 4: THE MOLE CONCEPTS

TOPIC 4: THE MOLE CONCEPTS TOPIC 4: THE MOLE CONCEPTS INTRODUCTION The mass is gram (g) of 1 mole of substances is called its.. 1 mole of substances has.. particles of a substances The mass of 1 mole of substances is always equal

More information

4. What is the mass of a mol sample of sodium hydroxide? A) g B) g C) g D) g E) g

4. What is the mass of a mol sample of sodium hydroxide? A) g B) g C) g D) g E) g Chem 101A Study Questions, Chapters 3 & 4 Name: Review Tues 10/02/18 Due 10/04/18 (Exam 2 date) This is a homework assignment. Please show your work for full credit. If you do work on separate paper, attach

More information

CHAPTER 2 CHEMICAL FORMULAS & COMPOSITION STOICHIOMETRY

CHAPTER 2 CHEMICAL FORMULAS & COMPOSITION STOICHIOMETRY CHAPTER 2 CHEMICAL FORMULAS & COMPOSITION STOICHIOMETRY 1 One drop of water is about 0.05g or 0.05 ml One drop of water contains about 1.67 x 10 21 H 2 O molecules 167,000,000,000,000,000,000 H 2 O molecules

More information

Chem 11 UNIT 3: STOICHIOMETRY Name:

Chem 11 UNIT 3: STOICHIOMETRY Name: Chem 11 UNIT 3: STOICHIOMETRY Name: Ms. Pirvu Period: Writing & Balancing Equations Chemical reactions can be described by chemical equations. Recall Law of Conservation of Mass mass cannot be nor. This

More information

Unit 6 Assignment Packet Name Period A1 Worksheet: Writing and Balancing Chemical Equations

Unit 6 Assignment Packet Name Period A1 Worksheet: Writing and Balancing Chemical Equations Unit 6 Assignment Packet Name Period A1 Worksheet: Writing and Balancing Chemical Equations 1. Describe the following word equation with a statement or sentence: Iron + Oxygen iron (III) oxide 2. In a

More information

Chapter 9 STOICHIOMETRY

Chapter 9 STOICHIOMETRY Chapter 9 STOICHIOMETRY Section 9.1 The Arithmetic of Equations OBJECTIVE Calculate the amount of reactants required or product formed in a nonchemical process. Section 9.1 The Arithmetic of Equations

More information

General Chemistry Multiple Choice Questions Chapter 8

General Chemistry Multiple Choice Questions Chapter 8 1 Write the skeleton chemical equation for the following word equation: Hydrochloric acid plus magnesium yields magnesium chloride and hydrogen gas. a HClO 4 + Mg --> MgClO 4 + H 2 b HClO 4 + Mg --> MgClO

More information

Moles, Mass, and Limiting Reactants

Moles, Mass, and Limiting Reactants Moles, Mass, and Limiting Reactants Interpreting a Chemical Equation 1. How many moles of chlorine gas react with 1 mol of hydrogen gas according to the balanced chemical equation? (a) 1 mol (b) 2 mol

More information

Ch. 10 Notes STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 10 Notes STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 10 Notes STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 1 MOLE = 6.02 x 10 23 representative particles representative particles = ATOMS, IONS,

More information

2. The accepted density for copper is 8.96 g/ml. Calculate the percent error for a measurement of 8.86 g/ml.

2. The accepted density for copper is 8.96 g/ml. Calculate the percent error for a measurement of 8.86 g/ml. Chem 250 2 nd Semester Exam Review Worksheet (answers and units are at the end of this worksheet, cross them off as you write down the answers to each question.) 1. Round to the correct number of significant

More information

Illinois JETS Academic Challenge Chemistry Test (District) Useful Information. PV = nrt R = L atm mol -1 K -1.

Illinois JETS Academic Challenge Chemistry Test (District) Useful Information. PV = nrt R = L atm mol -1 K -1. Useful Information PV = nrt R = 0.08206 L atm mol -1 K -1 Q = m x T x s 1 atm = 760 torr Avogadro's number = 6.022 x 10 23 K = C + 273 ph = -log [H + ] 1 1 E = (-R H ) - n 2 n 2 f i R H = 2.18 x 10-18

More information

The Atom, The Mole & Stoichiometry. Chapter 2 I. The Atomic Theory A. proposed the modern atomic model to explain the laws of chemical combination.

The Atom, The Mole & Stoichiometry. Chapter 2 I. The Atomic Theory A. proposed the modern atomic model to explain the laws of chemical combination. Unit 2: The Atom, The Mole & Stoichiometry Chapter 2 I. The Atomic Theory A. proposed the modern atomic model to explain the laws of chemical combination. Postulates of the atomic theory: 1. All matter

More information

Steward Fall 08. Moles of atoms/ions in a substance. Number of atoms/ions in a substance. MgCl 2(aq) + 2 AgNO 3(aq) 2 AgCl (s) + Mg(NO 3 ) 2(aq)

Steward Fall 08. Moles of atoms/ions in a substance. Number of atoms/ions in a substance. MgCl 2(aq) + 2 AgNO 3(aq) 2 AgCl (s) + Mg(NO 3 ) 2(aq) Dealing with chemical stoichiometry Steward Fall 08 of Not including volumetric stoichiometry of Chapter 6.0x10 A 6.0x10 Mol/mol ratio from balanced equation B 6.0x10 6.0x10 s, Equations, and Moles: II

More information

Solution Stoichiometry

Solution Stoichiometry Chapter 8 Solution Stoichiometry Note to teacher: You will notice that there are two different formats for the Sample Problems in the student textbook. Where appropriate, the Sample Problem contains the

More information

Funsheet 9.1 [VSEPR] Gu 2015

Funsheet 9.1 [VSEPR] Gu 2015 Funsheet 9.1 [VSEPR] Gu 2015 Molecule Lewis Structure # Atoms Bonded to Central Atom # Lone Pairs on Central Atom Name of Shape 3D Lewis Structure NI 3 CF 4 OCl 2 C 2 F 2 HOF Funsheet 9.1 [VSEPR] Gu 2015

More information

AP Chemistry. 9. Which of the following species CANNOT function as an oxidizing agent? (A) Cr 2 O 72 (B) MnO 4 (C) NO 3 (D) S (E) I

AP Chemistry. 9. Which of the following species CANNOT function as an oxidizing agent? (A) Cr 2 O 72 (B) MnO 4 (C) NO 3 (D) S (E) I Name AP Chemistry AP Chemistry Exam Part I: 40 Questions, 40 minutes, Multiple Choice, No Calculator Allowed Bubble the correct answer on your scantron for each of the following. Use the following answers

More information

actual yield (p. 372) excess reagent (p. 369) mole-mole relationship for ag bw: x mol G b mol W a mol G xb a mol W Organizing Information

actual yield (p. 372) excess reagent (p. 369) mole-mole relationship for ag bw: x mol G b mol W a mol G xb a mol W Organizing Information 12 Study Guide 12 Study Guide Study Tip Prioritize Schedule your time realistically. Stick to your deadlines. If your class subscribes to the Interactive Textbook with ChemASAP, your students can go online

More information