Chemistry of C-C π-bonds. Lectures 5-8: Aromatic Chemistry

Size: px
Start display at page:

Download "Chemistry of C-C π-bonds. Lectures 5-8: Aromatic Chemistry"

Transcription

1 Chemistry of C-C π-bonds Lectures 5-8: Aromatic Chemistry I was sitting writing on my textbook, but the work did not progress; my thoughts were elsewhere. I turned my chair to the fire and dozed. Again the atoms were gamboling before my eyes. This time the smaller groups kept modestly in the background. My mental eye, rendered more acute by the repeated visions of the kind, fitted together all twining and twisting in snake-like motion. But look! What was that? ne of the snakes had seized hold of its own tail, and the form whirled mockingly before my eyes. As if by a flash of lightning I awoke; and this time also I spent the rest of the night in working out the consequences of the hypothesis. Let us learn to dream, gentlemen, then perhaps we shall find the truth... But let us beware of publishing our dreams till they have been tested by waking understanding andout 2 Dr Martin Smith ffice: CRL 1 st floor Telephone: (2) martin.smith@chem.ox.ac.uk

2 The Chemistry of C-C π bonds Aromatic Chemistry Benzene Preparation and general reactivity profile What is aromaticity? Resonance and molecular orbital explanations Reactivity Typical reactivity electrophilic aromatic substitution Mechanisms of electrophilic substitution bromination as a worked example itration, Sulfonation riedel Crafts Alkylation and Acylation Reminder: cation stability through hyperconjugation and delocalization Gatterman-Koch ormylation Monosubstituted Benzenes Phenol acidity Benzoic acid preparation and acidity Aniline preparation and basicity Reactions of Monosubstituted Benzenes Electrophilic Aromatic substution: ortho-, meta- and para- Substituent effects: (i) ortho- and para- directing and ACTIVATIG Energy Profiles and the ammond Postulate (ii) ortho- and para- directing and DEACTIVATIG inductive effects (iii) meta- directing and DEACTIVATIG Reactions of Monosubstituted and Polysubstituted Arenes Substituents affect both rate and orientation Designing synthetic routes The ordering of synthetic steps is important Multiple substitutions: effects of orientation (which group dominates?) Transforming functional groups in aromatic chemistry Diazonium salts Generation and Stability The S 1 reaction for aromatic compounds

3 Books The Chemistry of C-C π bonds Introducing Iodine (via a radical mechanism) Introducing luorine (the Balz-Scheimann reaction) The Sandmeyer reaction (introduction of C, and ) Replacement with (not as pointless as it appears!) ucleophilic Aromatic Substitution Mechanistic considerations An addition-elimination process (compare with conjugate addition-substitution) Evidence for anionic intermediates Substituent effects (which groups work and which ones don t?). Real Examples: Synthesis of luoxetine (Prozac) Synthesis of Vancomycin Textbooks: [1]. rganic Chemistry, ayden, Greeves, Wothers and Warren, UP, Chapter 22 [2]. Aromatic Chemistry by Malcolm Sainsbury, xford Chemistry Primers, UP, Comments, questions and queries welcome.

4 The Chemistry of C-C π bonds Aromatic Chemistry Benzene Typical reaction: Electrophilic Aromatic Substitution: E + E Example: alogenation + e 3 + Compare reactivity of benzene with the reactivity of an isolated alkene in a bromination reaction: + - Conclusion: benzene is less reactive than an isolated (cyclic) alkene (why?)

5 The Chemistry of C-C π bonds Benzene contains [4n+2] π electrons and is aromatic also drawn as: a continuous system through overlap of 6 p-orbitals The formation of a continuous π system through the overlap of 6 p-orbitals is a stabilizing interaction ow much is this aromatic stability worth? Examine hydrogenation an exothermic reaction (as the products are thermodynamically more stable than the starting materials) Conclusion:

6 The Chemistry of C-C π bonds omination gives a substitution rather than an addition product Mechanism? - e 3 + Stabilization of the cationic intermediate by delocalization (sometimes called resonance ) Evidence for the cationic intermediate [for reference, δ C (benzene) = 128.5] 13 C MR: o, p- carbons very deshielded

7 The Chemistry of C-C π bonds Reaction Energy Profile TS 1 TS 2 E + Starting materials Products reaction progress Reminder: An intermediate can be directly observed (and often isolated!) We cannot directly look at the TS, so we make assumptions about what the TS looks like based on the ammond Postulate: If two states, as for example a transition state and an unstable intermediate, occur consecutively during a reaction process and have nearly the same energy content, their interconversion will only involve a small reorganisation of molecular structure. This is an elegant way of saying: the transition state (probably) looks like an intermediate close to it in energy

8 The Chemistry of C-C π bonds ther common electrophilic substitution reactions: itration (E = 2 ) Electrophile is 2 + S 2 ther common electrophilic substitution reactions: Sulfonation (E = S 3 ) S S S 2 S S S

9 The Chemistry of C-C π bonds At high temperatures sulfonation is reversible S 3 2 S C S 3 ther common electrophilic substitution reactions: riedel Crafts Alkylation (R = alkyl) R Al 3 R Al 3 R R Rearrangement and polysubstitution Al 3 catalytic Al 3

10 The Chemistry of C-C π bonds Alkyl groups are electron-donating through hyperconjugation (so the starting materials are more reactive than the products) 'hyperconjugation' or σ-conjugation - one of the C- bonds interacts with the π system [C- must be perpendicular to the plane of the ring for the C- σ orbital to overlap with the π system] this means that alkyl groups are electron donating and means that alkyl substituted benzenes are MRE reactive than unsubstituted benzenes Cation stability a reminder 1. yperconjugation Planar Structure C 3 empty p orbital π-conjugation - [ resonance is a shorthand way of describing how the molecular orbitals overlap leading to delocalization] also drawn as: remember: the bonds are not 'moving' the cation is delocalized over these three atoms

11 The Chemistry of C-C π bonds riedel-crafts acylation Al Acylium Cation R R Al 3 R R R anhydride R R ow to introduce alkyl groups on an aromatic ring (if C alkylation does not work): Use riedel-crafts acylation and reduce the ketone functional group Target: Problem with C alkylation: Al 3 plus other products of rearrangement and polyalkylation Al K, heat Wolff-Kishner reaction

12 The Chemistry of C-C π bonds Gatterman-Koch formylation (a special riedel-crafts type reaction): Al 3 C Cu C C Monsubstituted Benzenes So far: Y Y = alogen, 2, S 3, Alkyl, acyl (aldehyde, ketone) Phenol (Y = ) Phenol an extremely stable enol Acidity: compare with non aromatic alcohol: pka = pka = A reminder (and brief aside): pka is a measure of the position of the equilibrium between an acid and its conjugate base A (aq) + 2 (l) 3 + (aq) +A - (aq)

13 The Chemistry of C-C π bonds Most important factor in acid strength is the stability of the conjugate base A - So for a strong acid, the conjugate base A - is stable, the equilibrium lies over to the RS and the pka is low. The stronger the acid, the lower the pka A few representative examples: 3 C 2 pka Et 12 Et C Acidity of Phenol vs cyclohexanol Most important to consider the stabilities of the anions 1. Delocalization The lone pair in a p-orbital on oxgen, which is perpendicular to the plane of the ring, can interact with the pi system.

14 The Chemistry of C-C π bonds Delocalization (continued) we can draw this as: [Remember the charge is not actually moving around the ring] 2. An inductive effect The aromatic substituent is sp 2 hybridized (vs sp 3 hybridized in cyclohexanol) and hence has more s character. The higher proportion of s character means that the electrons see more effective nuclear charge [cf radial probability functions]. Y = C 2 (benzoic acids) Prepared by: (i) oxidation of toluene C 2 C 2 (ii) Grignard reaction with C 2 Mg C C 2 then +

15 The Chemistry of C-C π bonds Benzoic acid pka = 4.2 (compare with acetic acid C 3 C 2, pka 4.8) C 2 C 2 Y = 2 (anilines) Prepared by: Reduction of nitro compounds Basicity: Aniline is less basic than cyclohexylamine pka = 10.7 pka = 4.6 Two effects: Delocalization Inductive effect 2 2 2

16 The Chemistry of C-C π bonds Reactions Electrophilic aromatic substitution. ow do substituents affect reactivity? Y E+ Y Y Y E E E The nature of Y affects both orientation (o- vs m- vs p-) and rate of reaction 1. rtho- and para- directing, and ACTIVATIG groups Typically: Y = alkyl, 2, R 2 (R = alkyl), CR,, R, CR) Me Me Me Me The Me group is ACTIVATIG (the reaction goes 10 9 times faster than it does with benzene) why? [activation energy is effectively the energy required to overcome the barrier to reaction]

17 The Chemistry of C-C π bonds TS 1 TS 2 Activation energy Intermediate E Y Starting materials Y Products E o, m, p reaction progress To predict reactivity we need to look at the nature of the TS - We can do this using the ammond Postulate: The transition state looks like an intermediate close to it in energy Therefore: consider intermediates in this reaction rtho-: Me Me Me Me -+ Me

18 The Chemistry of C-C π bonds Meta: Me Me Me Me -+ Me Para: Me Me Me Me -+ Me Relating this to the TS energy :

19 The Chemistry of C-C π bonds benzene higher in energy TS 1 m- higher in energy TS 2 E o-, p- similar in energy Intermediate Starting materials Products reaction progress Therefore: more stable intermediate formed faster, and ortho- and para- products predominate 2. rtho- and para- directing, and DEACTIVATIG groups Typically: Y =,,, I (these groups withdraw and donate electrons) e 3 alogens withdraw electrons via an inductive effect (this affects the rate) and donate through the unsaturated system (this affects orientation and is sometimes called a mesomeric effect).

20 The Chemistry of C-C π bonds Consider ortho- e 3 -+ TS 1 m- higher in energy TS 2 E o-, p- similar in energy Intermediate benzene lower in energy Starting materials Products reaction progress Conclusions:

21 The Chemistry of C-C π bonds Meta- directing, and DEACTIVATIG groups Typically: 2, S 3, almost all carbonyl compounds (C 2, C 2 R, C, CR) C 2 Me C 2 Me C 2 Me C 2 Me S Consider ortho- and meta- C 2 Me C 2 Me2 C 2 Me C 2 Me o-, p- higher in energy TS 1 TS 2 E m- lower in energy benzene lower in energy Intermediate Starting materials Products reaction progress

22 The Chemistry of C-C π bonds Designing a simple synthetic route: substituent effects are important for selectivity and efficiency C 2 2 C 2 2 or or 2 All cheap and readily available Which is the best starting material? Consider monosubstituted starting materials: C 2 2 Me group activating o, p - directing Choice of starting material: 3 2 S % para- 59% ortho-

23 The Chemistry of C-C π bonds The order of reactions in a synthetic sequence can be important C 2 RUTE 1 C 3 group o- & p- directing 2 C 2 Which route is best? group m-directing RUTE RUTE 1 : xidation then nitration C 2 C 2 C 2 KMn S Conclusion:

24 The Chemistry of C-C π bonds RUTE 2: itration then oxidation 3 2 KMn4 C S Conclusion: What about arenes with two or more groups? Which effects dominate? Examine the effects of individual substituents: electronically first, then consider steric effect (i) substituents direct to the same position Me Me Me C 2 Me 2

25 The Chemistry of C-C π bonds (i) substituents direct to conflicting positions oadly categorize substituents into 3 classes of decreasing effect 1. STRGLY activating and ortho- & para- directing (, R, 2 and R 2 groups) 2. Alkyl groups and halogens 3. All other meta- directors If substituents are in different classes, then the higher numbered class dominates. Me Me 2 3 C Me Me Me If substituents are in the same class then it is to be expected that mixtures will be produced (and hence that this is maybe not a good route to the proposed compound!) C 2 Me C 2 Me Important to remember that we can extend and modify these effects through functional group interconversion reactions: 2 2, Pd 2 a 2 (or Sn/) (aq.), 0 C

26 The Chemistry of C-C π bonds Diazonium salts: 2 2, Pd 2 a 2 (or Sn/) (aq.), 0 C Mechanism for generation: a a Effectively the S 1 mechanism for aromatic compounds (note: cation is not stable) Compare with S Ar reaction in the next lecture 2 sp 2 cation not stabilized by delocalization A useful reaction there is not a reagent for +

27 The Chemistry of C-C π bonds ther substituents may be introduced in this fashion: (i) iodine (probably a radical, rather than an ionic mechanism). Remember: single headed ('fish-hook') arrows indicate the movement of a single electron one electron two electrons I KI 2 I - I I I I - I I I I I 2 I I chain process continues (ii) luorine (the Balz-Schiemann reaction) 2 B 4 - a 2, B 3

28 The Chemistry of C-C π bonds (iii) The Sandmeyer reaction (to introduce, C) 2 - X a 2 aq. Cu X X =,, C Mechanism another radical reaction X Cu - X Cu(I) X Cu X Cu(II) X Recycle - catalytic in Cu Cu X Cu(I) inally: replacement by (not a good way to make benzene, but useful for directing other groups, though an outdated way to achieve this better methods available) - 2 P a 2-2 (g) 2 C aq. 2 C 2 C 2 C 2 used to direct orientation of bromination

29 The Chemistry of C-C π bonds ucleophilic Aromatic Substitution: S Ar (substitution nucleophilic aromatic) + + verall: substitution on an aromatic ring what is the mechanism? Mechanistic considerations: I. Cannot be S S 2 requires access to σ* orbital of C- bond (which is buried inside the aromatic ring) Therefore nucleophile ( - ) cannot get anti to the requisite C- bond Mechanistic considerations: II. Unlikely to be S 1 (compare with diazo compounds!) + S 1 X + Carbocation would be in an sp 2 orbital (and would not be stabilized by the aromatic ring) Compare with other cations we have seen: Cation not stabilized by delocalization

30 The Chemistry of C-C π bonds Mechanism: an addition-elimination reaction Remember: S 2 reactions at sp 2 centres (including aromatic rings) are very rare ur shorthand structures indicate that the charge is delocalized around the ring but is centred on the ortho and para positions is there evidence for this? or Anion (often called a Meisenheimer complex) 2 13 C MR: o, p- carbons very shielded In both cases the ionic charge is localized almost exclusively to the ortho and para positions Implication: groups to stabilize the anionic intermediates in S Ar reactions MUST be on these carbons

31 The Chemistry of C-C π bonds Compare with other addition-eliminations: (i) conjugate substitution of an amine [written as Ar 2 ] Et Et + heat Et Et Et 2 Amine nucleophiles prefer 1,4 addition Ar 2 -Et Et Et Ac Ar 2 Et Et Et verall addition-elimination mechanism (ii) conjugate substitution of an alcohol Me Ph Me Ph - Me proton transfer Me Ph Ph verall addition-elimination mechanism

32 The Chemistry of C-C π bonds Example of S Ar: RS Base SR - - SR nly the ortho chlorine is lost the meta one is retained urther confirmation: isolation of an intermediate (!) Me Me Me A stable molecule (structure confirmed by X-ray crystallography) Which (EWG) groups can accelerate nucleophilic aromatic substitution? So far we have seen the 2 group but other groups can also function in this regard u u u - So any group that can stabilize the negative charge in the intermediate can facilitate the reaction so carbonyl groups are effective too

33 The Chemistry of C-C π bonds ucleophilic aromatic substitution is generally fastest when the leaving group is fluoride. SLW AST u - RDS [breaks aromaticity] u [restores aromaticity] u Rate > > > I [compare with S 2: Rate I > > > ] The rate-determining step is attack of the nucleophile on the aromatic ring as this breaks the aromaticity. The second step, involving loss of the leaving group and restoration of aromaticity, is fast. Electronegative polarizes σ-bond and inductively withdraws electron density from the high energy anionic intermediate ote that the reaction is bimolecular in the RDS and therefore: Synthesis of luoxetine - serotonin uptake inhibitor for treatment of depression (marketed as Prozac ) 3 C + Ph Me a Me 2 Ac 3 C Ph Me a Me Me 3 C Ph 3 C Ph

34 The Chemistry of C-C π bonds Example of S Ar in the synthesis of a complex molecule: Synthesis of Vancomycin sugar Me 2 C C R R R a 2 C 3 2 C 2 R R R Me Me Me Me Me Me AST R R SLW R R 2 Regiochemistry in S Ar reaction: attacks at the centre substituted with the fluorine

Reactions of Aromatic Compounds. Aromatic compounds do not react like other alkenes. With an appropriate catalyst, however, benzene will react

Reactions of Aromatic Compounds. Aromatic compounds do not react like other alkenes. With an appropriate catalyst, however, benzene will react Reactions of Aromatic Compounds Aromatic compounds do not react like other alkenes 2 Fe 3 2 Does not form A major part of the problem for this reaction is the product has lost all aromatic stabilization,

More information

Chapter 17 Reactions of Aromatic Compounds

Chapter 17 Reactions of Aromatic Compounds Chapter 17 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution o General reaction - an electrophile replaces a hydrogen Electrons of pi system attack strong electrophile, generating resonancestabilized

More information

Chapter 5. Aromatic Compounds

Chapter 5. Aromatic Compounds Chapter 5. Aromatic Compounds 5.1 Structure of Benzene: The Kekule Proposal Mid-1800s, benzene was known to have the molecular formula C 6 6. Benzene reacts with 2 in the presence of iron to give substitution

More information

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS)

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS) Reactions of Aromatic Compounds Reading: Wade chapter 17, sections 17-1- 17-15 Study Problems: 17-44, 17-46, 17-47, 17-48, 17-51, 17-52, 17-53, 17-59, 17-61 Key Concepts and Skills: Predict and propose

More information

Chapter 17 Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution

Chapter 17 Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution Chapter 17 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Electrophile substitutes for a hydrogen on the benzene ring. Chapter 17: Aromatics 2-Reactions Slide 17-2 1 Mechanism Step

More information

Chapter 19: Benzene and Aromatic Substitution Reactions [Sections: 18.2, 18.6; ]

Chapter 19: Benzene and Aromatic Substitution Reactions [Sections: 18.2, 18.6; ] Chapter 19: Benzene and Aromatic Substitution eactions [Sections: 18.2, 18.6; 19.1-19.12] omenclature of Substituted Benzenes i. Monosubstituted Benzenes C 2 C 3 ii. Disubstituted Benzenes X X X Y Y Y

More information

Chapter 17 Reactions of Aromatic Compounds

Chapter 17 Reactions of Aromatic Compounds rganic Chemistry, 6 th Edition L. G. Wade, Jr. Chapter 17 Reactions of Aromatic Compounds Jo Blackburn Richland College, Dallas, TX Dallas County Community College District 2006, Prentice all Electrophilic

More information

CHAPTER 16 - CHEMISTRY OF BENZENE: ELECTROPHILIC AROMATIC SUBSTITUTION

CHAPTER 16 - CHEMISTRY OF BENZENE: ELECTROPHILIC AROMATIC SUBSTITUTION CAPTR 16 - CMISTRY F BNZN: LCTRPILIC ARMATIC SUBSTITUTIN As stated in the previous chapter, benzene and other aromatic rings do not undergo electrophilic addition reactions of the simple alkenes but rather

More information

Ch.16 Chemistry of Benzene: Electrophilic Aromatic Substitution

Ch.16 Chemistry of Benzene: Electrophilic Aromatic Substitution Ch.16 Chemistry of Benzene: Electrophilic Aromatic Substitution Electrophilic aromatic substitution: E + E + + Some electrophilic aromatic substitution: X N 2 S 3 R C R alogenation Nitration Sulfonation

More information

Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution

Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution Paul D. Adams University of Arkansas Substitution Reactions of Benzene and Its Derivatives

More information

Organic Chemistry. Second Edition. Chapter 19 Aromatic Substitution Reactions. David Klein. Klein, Organic Chemistry 2e

Organic Chemistry. Second Edition. Chapter 19 Aromatic Substitution Reactions. David Klein. Klein, Organic Chemistry 2e Organic Chemistry Second Edition David Klein Chapter 19 Aromatic Substitution Reactions Copyright 2015 John Wiley & Sons, Inc. All rights reserved. Klein, Organic Chemistry 2e 19.1 Introduction to Electrophilic

More information

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition 16. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry, 7 th edition Substitution Reactions of Benzene and Its Derivatives Benzene is aromatic: a cyclic conjugated

More information

Synthesis Using Aromatic Materials

Synthesis Using Aromatic Materials Chapter 10 Synthesis Using Aromatic Materials ELECTROPHILIC AROMATIC SUBSTITUTION AND DIRECTED ORTHO METALATION Copyright 2018 by Nelson Education Limited 1 10.2 p Bonds Acting as Nucleophiles Copyright

More information

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology Organic Chemistry M. R. Naimi-Jamal Faculty of Chemistry Iran University of Science & Technology Chapter 5-2. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry,

More information

Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or

Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or nonaromatic? 1 2 Classify cyclononatetrene and it s various ions

More information

Chapter 15. Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution on Arenes. The first step is the slow, rate-determining step

Chapter 15. Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution on Arenes. The first step is the slow, rate-determining step Electrophilic Aromatic Substitution on Arenes Chapter 15 Reactions of Aromatic Compounds The characteristic reaction of aromatic rings is substitution initiated by an electrophile halogenation nitration

More information

Chapter 15. Reactions of Aromatic Compounds. 1. Electrophilic Aromatic Substitution Reactions

Chapter 15. Reactions of Aromatic Compounds. 1. Electrophilic Aromatic Substitution Reactions hapter 15 eactions of Aromatic ompounds 1. Electrophilic Aromatic Substitution eactions v verall reaction reated by Professor William Tam & Dr. Phillis hang opyright S 3 2 S 4 S 3 2. A General Mechanism

More information

Electrophilic Aromatic Substitution. Dr. Mishu Singh Department of chemistry Maharana Pratap Govt.P.G.College Hardoi

Electrophilic Aromatic Substitution. Dr. Mishu Singh Department of chemistry Maharana Pratap Govt.P.G.College Hardoi Electrophilic Aromatic Substitution Dr. Mishu Singh Department of chemistry Maharana Pratap Govt.P.G.College Hardoi 1 Recall the electophilic addition of HBr (or Br2) to alkenes H + nu cleophile H Br H

More information

Chemistry of Benzene: Electrophilic Aromatic Substitution

Chemistry of Benzene: Electrophilic Aromatic Substitution Chemistry of Benzene: Electrophilic Aromatic Substitution Why this Chapter? Continuation of coverage of aromatic compounds in preceding chapter focus shift to understanding reactions Examine relationship

More information

12/27/2010. Chapter 15 Reactions of Aromatic Compounds

12/27/2010. Chapter 15 Reactions of Aromatic Compounds Chapter 15 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Arene (Ar-H) is the generic term for an aromatic hydrocarbon The aryl group (Ar) is derived by removal of a hydrogen atom

More information

Chapter 15 Reactions of Aromatic Compounds

Chapter 15 Reactions of Aromatic Compounds Chapter 15 1 Chapter 15 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Arene (Ar-H) is the generic term for an aromatic hydrocarbon The aryl group (Ar) is derived by removal of a hydrogen

More information

BENZENE AND AROMATIC COMPOUNDS

BENZENE AND AROMATIC COMPOUNDS BENZENE AND AROMATIC COMPOUNDS The discovery of benzene: 1825 - Michael Faraday, empirical formula of C 1834 - Eilhard Mitscherlich synthesized benzin from gum benzoin, empirical formula C Aromatic The

More information

11/30/ Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions

11/30/ Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions Chapter 9 Problems: 9.1-29, 32-34, 36-37, 39-45, 48-56, 58-59, 61-69, 71-72. 9.8 Substituent effects in the electrophilic substitution of an aromatic ring Substituents affect the reactivity of the aromatic

More information

There are two main electronic effects that substituents can exert:

There are two main electronic effects that substituents can exert: Substituent Effects There are two main electronic effects that substituents can exert: RESONANCE effects are those that occur through the π system and can be represented by resonance structures. These

More information

Chapter 16: Aromatic Compounds

Chapter 16: Aromatic Compounds Chamras Chemistry 106 Lecture otes xamination 2 Materials Chapter 16: Aromatic Compounds Benzene, the Most Commonly Known Aromatic Compound: The aromatic nature of benzene stabilizes it 36 kcal.mol 1.

More information

Benzene and Aromatic Compounds. Chapter 15 Organic Chemistry, 8 th Edition John McMurry

Benzene and Aromatic Compounds. Chapter 15 Organic Chemistry, 8 th Edition John McMurry Benzene and Aromatic Compounds Chapter 15 Organic Chemistry, 8 th Edition John McMurry 1 Background Benzene (C 6 H 6 ) is the simplest aromatic hydrocarbon (or arene). Four degrees of unsaturation. It

More information

Chapter 17. Reactions of Aromatic Compounds

Chapter 17. Reactions of Aromatic Compounds Chapter 17 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Although benzene s pi electrons are in a stable aromatic system, they are available to attack a strong electrophile to give

More information

Reactions of Aromatic Compounds

Reactions of Aromatic Compounds 2-1 Reactions of Aromatic Compounds 15.1 2-2 lectrophilic Aromatic Substitution Reactions Aromatic hydrocarbons (= arenes) undergo a substitution reaction with electrophiles: + catalyst + xample: omination

More information

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2 16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2 Dr M. Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran m-mehrdad@guilan.ac.ir Based

More information

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2 16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2 Dr M. Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran m-mehrdad@guilan.ac.ir Based

More information

Benzene and Aromatic Compounds

Benzene and Aromatic Compounds 1 Background Benzene and Aromatic Compounds Benzene (C 6 H 6 ) is the simplest aromatic hydrocarbon (or arene). Benzene has four degrees of unsaturation, making it a highly unsaturated hydrocarbon. Whereas

More information

Reactions of Benzene Reactions of Benzene 1

Reactions of Benzene Reactions of Benzene 1 Reactions of Benzene Reactions of Benzene 1 2 Halogenation of Benzene v Benzene does not react with Br 2 or Cl 2 unless a Lewis acid is present (a catalytic amount is usually enough) 3 v Mechanism v Mechanism

More information

08. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 6 th edition, Chapter 16

08. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 6 th edition, Chapter 16 08. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry, 6 th edition, Chapter 16 Benzene is a nucleophile p electrons make benzene nucleophile, like alkenes.

More information

ORGANIC - BROWN 8E CH. 22- REACTIONS OF BENZENE AND ITS DERIVATIVES

ORGANIC - BROWN 8E CH. 22- REACTIONS OF BENZENE AND ITS DERIVATIVES !! www.clutchprep.com CONCEPT: ELECTROPHILIC AROMATIC SUBSTITUTION GENERAL MECHANISM Benzene reacts with very few reagents. It DOES NOT undergo typical addition reactions. Why? If we can get benzene to

More information

Examples of Substituted Benzenes

Examples of Substituted Benzenes Organic Chemistry 5 th Edition Paula Yurkanis Bruice Examples of Substituted Benzenes Chapter 15 Reactions of Substituted Benzenes Irene Lee Case Western Reserve University Cleveland, OH 2007, Prentice

More information

Aromatic Compounds II

Aromatic Compounds II 2302272 Org Chem II Part I Lecture 2 Aromatic Compounds II Instructor: Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th Recommended Textbook: Chapter 17 in Organic Chemistry, 8 th Edition, L.

More information

Chapter 17 Aromati ti S u stit tit t u i tion Reactions

Chapter 17 Aromati ti S u stit tit t u i tion Reactions Chapter 17 Aromatic Substitution Reactions 1 17.1 Mechanism for Electricphilic Aromatic Substitution Arenium ion resonance stabilization 2 Example 1. Example 2. 3 Example 2. Mechanism of the nitration

More information

Lecture 9. Chemistry! Chemistry 328N. February 20, 2018

Lecture 9. Chemistry! Chemistry 328N. February 20, 2018 Lecture 9 Chemistry! February 20, 2018 Some istory Michael Faraday 1791-1867 British physicist and chemist, best known for his discoveries of electromagnetic induction and of the laws of electrolysis.

More information

Lecture 28 Organic Chemistry 1

Lecture 28 Organic Chemistry 1 CEM 232 rganic Chemistry I University of Illinois at ChicagoUIC Lecture 28 rganic Chemistry 1 Professor Duncan Wardrop April 22, 2010 1 Today s Lecture Topics Covered: 1. Aryl alides - Bonding, Physical

More information

Electrophilic Aromatic Substitution

Electrophilic Aromatic Substitution Chem 263 ct. 8, 2013 lectrophilic Aromatic Substitution Benzene appears to be a remarkably stable and unreactive compared to alkenes, such as cyclohexene or ethylene, or even alkanes, such as cyclohexane

More information

Electrophilic Aromatic Substitution (Aromatic compounds) Ar-H = aromatic compound 1. Nitration Ar-H + HNO 3, H 2 SO 4 Ar-NO 2 + H 2 O 2.

Electrophilic Aromatic Substitution (Aromatic compounds) Ar-H = aromatic compound 1. Nitration Ar-H + HNO 3, H 2 SO 4 Ar-NO 2 + H 2 O 2. Electrophilic Aromatic Substitution (Aromatic compounds) Ar- = aromatic compound 1. Nitration Ar- + NO 3, 2 SO 4 Ar- + 2 O 2. Sulfonation Ar- + 2 SO 4, SO 3 Ar-SO 3 + 2 O 3. alogenation Ar- + X 2, Fe Ar-X

More information

Organic Chemistry, 7 L. G. Wade, Jr. Chapter , Prentice Hall

Organic Chemistry, 7 L. G. Wade, Jr. Chapter , Prentice Hall Organic Chemistry, 7 th Edition L. G. Wade, Jr. Chapter 17 Reactions of Aromatic Compounds 2010, Prentice Hall Electrophilic Aromatic Substitution Although h benzene s pi electrons are in a stable aromatic

More information

H 2 SO 4 Ar-NO 2 + H2O

H 2 SO 4 Ar-NO 2 + H2O Phenyl group: Shorthand for phenyl: Ph, C 6 5,. An aryl group is an aromatic group: phenyl, substituted phenyl, or other aromatic group. Shorthand: Ar Generalized electrophilic aromatic substitution: E

More information

Benzenes & Aromatic Compounds

Benzenes & Aromatic Compounds Benzenes & Aromatic Compounds 1 Structure of Benzene H H C C C H C 6 H 6 H C C C H H A cyclic conjugate molecule Benzene is a colourless odourless liquid, boiling at 80 o C and melting at 5 o C. It is

More information

Chapter 13 Reactions of Arenes Electrophilic Aromatic Substitution

Chapter 13 Reactions of Arenes Electrophilic Aromatic Substitution . 13 hapter 13 eactions of Arenes lectrophilic Aromatic ubstitution lectrophiles add to aromatic rings in a fashion somewhat similar to the addition of electrophiles to alkenes. ecall: 3 4 Y 1 4 2 1 δ

More information

Electrophilic Aromatic Substitution

Electrophilic Aromatic Substitution Chem 263 Sept 29, 2016 lectrophilic Aromatic Substitution Benzene appears to be a remarkably stable (36 kcal/mole more) and unreactive compared to alkenes, such as cyclohexene or ethylene, or even alkanes,

More information

Chapter 19: Aromatic Substitution Reactions

Chapter 19: Aromatic Substitution Reactions Chem A225 Notes Page 52 Chapter 19: Aromatic Substitution Reactions Topic One: lectrophilic Aromatic Substitution I. Introduction to lectrophilic Aromatic Substitution (AS) A. eneral Reaction Pattern B.

More information

REACTIONS OF AROMATIC COMPOUNDS

REACTIONS OF AROMATIC COMPOUNDS A STUDENT SHOULD BE ABLE TO: REACTIONS OF AROMATIC COMPOUNDS 1. Predict the product(s) of Electrophilic aromatic substitution (EAS): halogenation, sulfonation, nitration, Friedel- Crafts alkylation and

More information

C h a p t e r N i n e t e e n Aromatics II: Reactions of Benzene & Its Derivatives

C h a p t e r N i n e t e e n Aromatics II: Reactions of Benzene & Its Derivatives C h a p t e r N i n e t e e n Aromatics II: Reactions of Benzene & Its Derivatives Arenium ion from addition of tert-butyl cation to benzene (blue is δ+and red δ-) Note: Problems with italicized numbers

More information

Ch 16 Electrophilic Aromatic Substitution

Ch 16 Electrophilic Aromatic Substitution Ch 16 Electrophilic Aromatic Substitution Mechanism - Aromatic rings typically undergo substitution, where an H is replaced with an electrophile (E+). - The rings do not typically undergo addition across

More information

Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Reactivity of Benzene

Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Reactivity of Benzene hapter 16 hemistry of Benzene: Electrophilic Aromatic Substitution Reactivity of Benzene - stabilization due to aromaticity makes benzene significantly less reactive than isolated alkenes 2 no reaction

More information

Solution problem 22: Non-Benzoid Aromatic Sytems

Solution problem 22: Non-Benzoid Aromatic Sytems Solution problem 22: on-enzoid Aromatic Sytems 22.1 & 22.2 Each double bond and each heteroatom (, ) with lone pairs donates 2 π- electrons as well as a negative charge. oron or a positive charge does

More information

Amines. Amines are organic compounds containing a nitrogen functionality. primary secondary tertiary quaternary

Amines. Amines are organic compounds containing a nitrogen functionality. primary secondary tertiary quaternary Amines Amines are organic compounds containing a nitrogen functionality Depending upon the number of alkyl, or aryl, groups attached to nitrogen determines its classification, or order 2 primary secondary

More information

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will 71. B SN2 stands for substitution nucleophilic bimolecular. This means that there is a bimolecular rate-determining step. Therefore, the reaction will follow second-order kinetics based on the collision

More information

Key ideas: In EAS, pi bond is Nu and undergoes addition.

Key ideas: In EAS, pi bond is Nu and undergoes addition. Objective 7. Apply addition and elimination concepts to predict electrophilic aromatic substitution reactions (EAS) of benzene and monosubstituted benzenes. Skills: Draw structure ID structural features

More information

Chem 263 Oct. 10, The strongest donating group determines where new substituents are introduced.

Chem 263 Oct. 10, The strongest donating group determines where new substituents are introduced. Chem 263 ct. 10, 2013 The strongest donating group determines where new substituents are introduced. N 2 N 3 2 S 4 + N 3 N 2 2 S 4 N 2 N 2 + 2 N N 2 N 3 2 S 4 N 2 2 N N 2 2,4,6-trinitrophenol picric acid

More information

Introduction to Organic Chemistry

Introduction to Organic Chemistry Introduction to rganic hemistry 59 Introduction to rganic hemistry andout 3 - chanism u u http://burton.chem.ox.ac.uk/teaching.html rganic hemistry J. layden,. Greeves, S. Warren Stereochemistry at a Glance

More information

Chemistry Final Examinations Summer 2006 answers

Chemistry Final Examinations Summer 2006 answers Chemistry 235 - Final Examinations Summer 2006 answers A GEERAL CEMISTRY answers are given from 1-20: no reaction C 3 CC 3 Ph C C C C C 3 Et 2 2 2 B. REACTIS AD REAGETS [32 MARKS] 2. A single substance

More information

I5 ELECTROPHILIC SUBSTITUTIONS OF

I5 ELECTROPHILIC SUBSTITUTIONS OF Section I Aromatic chemistry I5 ELECTPILIC SUBSTITUTINS F MN-SUBSTITUTED AMATIC INGS Key Notes ortho, meta and para substitution Substituent effect eaction profile Activating groups inductive o/p Deactivating

More information

Learning Guide for Chapter 18 - Aromatic Compounds II

Learning Guide for Chapter 18 - Aromatic Compounds II Learning Guide for Chapter 18 Aromatic Compounds. lectrophilic aromatic substitution ntroduction Mechanism Reagents and Products lectrophiles ffects of stituents FriedelCrafts alkylation and acylation

More information

Chapter 12. Reactions of Arenes: Electrophilic Aromatic Substitution. Class Notes. A. The method by which substituted benzenes are synthesized

Chapter 12. Reactions of Arenes: Electrophilic Aromatic Substitution. Class Notes. A. The method by which substituted benzenes are synthesized Chapter 12 Reactions of Arenes: Electrophilic Aromatic Substitution Chapter 12 suggested problems: 22, 23, 26, 27, 32, 33 Class Notes I. Electrophilic aromatic substitution reactions A. The method by which

More information

Suggested solutions for Chapter 29

Suggested solutions for Chapter 29 s for Chapter 29 29 PRBLEM 1 or each of the following reactions (a) state what kind of substitution is suggested and (b) suggest what product might be formed if monosubstitution occured. Br 2 3 2 S 4 S

More information

R N R N R N. primary secondary tertiary

R N R N R N. primary secondary tertiary Chapter 19 Amines omenclature o assification of amines Amines are classified as 1, 2, or 3 based on how many R groups are attached to the nitrogen R R R R R R primary secondary tertiary When there are

More information

AROMATIC & HETEROCYCLIC CHEMISTRY

AROMATIC & HETEROCYCLIC CHEMISTRY - 1 - AROMATIC & HETEROCYCLIC CHEMISTRY Aromatic Chemistry Aromaticity This confers an energetic stability over the equivalent double bond system. This can be explained from an MO point of view. The Huckel

More information

Benzene. Named benzene by Eilhardt Mitscherlich in < Molecular formula: C 6 H 6. < Representative of the aromatic hydrocarbon family:

Benzene. Named benzene by Eilhardt Mitscherlich in < Molecular formula: C 6 H 6. < Representative of the aromatic hydrocarbon family: Benzene < Discovered in 1825 by Michael Faraday: e called it bicarburet of hydrogen. Named benzene by Eilhardt Mitscherlich in 1833. < Molecular formula: C 6 6 < Representative of the aromatic hydrocarbon

More information

Chapter 17: Reactions of Aromatic Compounds

Chapter 17: Reactions of Aromatic Compounds 1 Chapter 17: Reactions of Aromatic Compounds I. Introduction to Electrophilic Aromatic Substitution (EAS) A. General Mechanism II. Reactions of Electrophilic Aromatic Substitution A. Halogenation (E =

More information

Reactions. Reactions. Elimination. 2. Elimination Often competes with nucleophilic substitution. 2. Elimination Alkyl halide is treated with a base

Reactions. Reactions. Elimination. 2. Elimination Often competes with nucleophilic substitution. 2. Elimination Alkyl halide is treated with a base eactions 1 eactions 2 2. limination Alkyl halide is treated with a base B: 2. limination ften competes with nucleophilic substitution LIMINATIN Nu: SUBSTITUTIN Nu Bimolecular B: limination B * * 3 Kinetics

More information

Chapter 4: Aromatic Compounds. Bitter almonds are the source of the aromatic compound benzaldehyde

Chapter 4: Aromatic Compounds. Bitter almonds are the source of the aromatic compound benzaldehyde Chapter 4: Aromatic Compounds Bitter almonds are the source of the aromatic compound benzaldehyde Sources of Benzene Benzene, C 6 H 6, is the parent hydrocarbon of the especially stable compounds known

More information

Elimination. S N 2 in synthesis. S N 2 and E2. Kinetics. Mechanism bimolecular

Elimination. S N 2 in synthesis. S N 2 and E2. Kinetics. Mechanism bimolecular bimolecular B: limination B * 1 Kinetics 2 ate determining step involves both reactants rate = k [base] [-] Second order kinetics 2 B + 2 = limination, 2 nd order 2 3 2 4 Zaitsev s ule In some cases a

More information

Problem Set #3 Solutions

Problem Set #3 Solutions Problem Set #3 Solutions 1. a) C 3 (methyl group) Since carbon (E = 2.5) is slightly more electronegative than hydrogen (E = 2.2), there will be a small dipole moment pulling electron density away from

More information

Chem 263 Nov 24, Properties of Carboxylic Acids

Chem 263 Nov 24, Properties of Carboxylic Acids Chem 263 ov 24, 2009 Properties of Carboxylic Acids Since carboxylic acids are structurally related to both ketones and aldehydes, we would expect to see some similar structural properties. The carbonyl

More information

The now-banned diet drug fen-phen is a mixture of two synthetic substituted benzene: fenfluramine and phentermine.

The now-banned diet drug fen-phen is a mixture of two synthetic substituted benzene: fenfluramine and phentermine. The now-banned diet drug fen-phen is a mixture of two synthetic substituted benzene: fenfluramine and phentermine. Chemists have synthesized compounds with structures similar to adrenaline, producing amphetamine.

More information

Fundamentals of Organic Chemistry

Fundamentals of Organic Chemistry Fundamentals of Organic Chemistry CHEM 109 For Students of Health Colleges Credit hrs.: (2+1) King Saud University College of Science, Chemistry Department CHEM 109 CHAPTER 3. AROMATIC HYDROCARBONS Aromatic

More information

and Stereochemistry) PAPER 1: ORGANIC CHEMISTRY- I (Nature of Bonding and Stereochemistry) MODULE 4: Applications of Electronic Effects

and Stereochemistry) PAPER 1: ORGANIC CHEMISTRY- I (Nature of Bonding and Stereochemistry) MODULE 4: Applications of Electronic Effects Subject Chemistry Paper No and Title Module No and Title Module Tag Paper 1: ORGANIC - I (Nature of Bonding Module 4: Applications of Electronic Effects CHE_P1_M4 PAPER 1: ORGANIC - I (Nature of Bonding

More information

240 Chem. Aromatic Compounds. Chapter 6

240 Chem. Aromatic Compounds. Chapter 6 240 Chem Aromatic Compounds Chapter 6 1 The expressing aromatic compounds came to mean benzene and derivatives of benzene. Structure of Benzene: Resonance Description C 6 H 6 1.It contains a six-membered

More information

CHEM Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution (homework) W

CHEM Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution (homework) W CHEM 2425. Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution (homework) W Short Answer Exhibit 16-1 MATCH a structure or term from the following list with each description below. Place

More information

Chem 263 Oct. 4, 2016

Chem 263 Oct. 4, 2016 Chem 263 ct. 4, 2016 ow to determine position and reactivity: Examples The strongest donating group wins: 2 3 2 S 4 + 3 2 2 S 4 2 2 + 2 2 3 2 S 4 2 2 2 2,4,6-trinitrophenol picric acid This reactivity

More information

Hour Examination # 1

Hour Examination # 1 CEM 347 rganic Chemistry II Spring 2015 Exam # 1 Solutions Key Page 1 of 11 CEM 347 rganic Chemistry II Spring 2015 Instructor: Paul Bracher our Examination # 1 Wednesday, February 11 th, 2015 6:00 8:00

More information

4 - BENZENE: AROMATICITY, CONJUGATION AND ASSOCIATED REACTIVITY

4 - BENZENE: AROMATICITY, CONJUGATION AND ASSOCIATED REACTIVITY 4 - BENZENE: AROMATICITY, CONJUGATION AND ASSOCIATED REACTIVITY During the early 1800's, a group of compounds of natural origin became collectively known as aromatic compounds. As several of these compounds

More information

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area 1 CHEMISTRY 263 HOME WORK Lecture Topics: Module7. Hydrogenation of Alkenes The Function of the Catalyst - Syn and anti- addition Hydrogenation of Alkynes - Syn- addition of hydrogen: Synthesis of cis-alkenes

More information

Electrophilic Aromatic Substitution: Direction

Electrophilic Aromatic Substitution: Direction Electrophilic Aromatic Substitution: Direction or each of the following species, show the most likely site(s) for electrophilic aromatic substitution, and predict whether the molecule reacts with electrophiles

More information

Alchohols, Phenols, Ethers

Alchohols, Phenols, Ethers Aromatic ompounds Aromaticity lectrophilic aromatic subst. epetition cleophilic aromatic subst. (McM 7th ed, 16.7) Benzyne (McM 7th ed, 16.8) eduction of aromatics (McM 7th ed, 16.10) Alchohols, Phenols,

More information

2016 Pearson Education, Inc. Isolated and Conjugated Dienes

2016 Pearson Education, Inc. Isolated and Conjugated Dienes 2016 Pearson Education, Inc. Isolated and Conjugated Dienes 2016 Pearson Education, Inc. Reactions of Isolated Dienes 2016 Pearson Education, Inc. The Mechanism Double Bonds can have Different Reactivities

More information

Chem 263 March 28, 2006

Chem 263 March 28, 2006 Chem 263 March 28, 2006 Properties of Carboxylic Acids Since carboxylic acids are structurally related to both ketones and aldehydes, we would expect to see some similar structural properties. The carbonyl

More information

CHEMISTRY 263 HOME WORK

CHEMISTRY 263 HOME WORK Lecture Topics: CHEMISTRY 263 HOME WORK Module7: Hydrogenation of Alkenes Hydrogenation - syn and anti- addition - hydrogenation of alkynes - synthesis of cis-alkenes -synthesis of trans-alkenes Text sections:

More information

Aryl Halides. Structure

Aryl Halides. Structure Aryl Halides Structure Aryl halides are compounds containing halogen attached directly to an aromatic ring. They have the general formula ArX, where Ar is phenyl, substituted phenyl. X= F,Cl,Br,I An aryl

More information

Chapter 09 Benzene and Its Derivatives

Chapter 09 Benzene and Its Derivatives Chapter 09 Benzene and Its Derivatives Benzene First isolated in 1825 from whale oil by Michael Faraday Unsaturated hydrocarbon but did not have the typical reactivity of alkenes or alkynes. CM 240: Fall

More information

Synthesis of Nitriles a. dehydration of 1 amides using POCl 3 : b. SN2 reaction of cyanide ion on halides:

Synthesis of Nitriles a. dehydration of 1 amides using POCl 3 : b. SN2 reaction of cyanide ion on halides: I. Nitriles Nitriles consist of the CN functional group, and are linear with sp hybridization on C and N. Nitriles are non-basic at nitrogen, since the lone pair exists in an sp orbital (50% s character

More information

Chapter 23 Phenols CH. 23. Nomenclature. The OH group takes precedence as the parent phenol.

Chapter 23 Phenols CH. 23. Nomenclature. The OH group takes precedence as the parent phenol. CH. 23 Chapter 23 Phenols Nomenclature The OH group takes precedence as the parent phenol. Carboxyl and acyl groups take precedence over the OH group. The OH group is a strong electron-donating group through

More information

Amines Reading Study Problems Key Concepts and Skills Lecture Topics: Amines: structure and nomenclature

Amines Reading Study Problems Key Concepts and Skills Lecture Topics: Amines: structure and nomenclature Amines Reading: Wade chapter 19, sections 19-1-19-19 Study Problems: 19-37, 19-39, 19-40, 19-41, 19-44, 19-46, 19-47, 19-48, 19-51, 19-54 Key Concepts and Skills: Explain how the basicity of amines varies

More information

CHEM Lecture 6

CHEM Lecture 6 EM 494 Special Topics in hemistry Illinois at hicago EM 494 - Lecture 6 Prof. Duncan Wardrop October 15, 2012 Midterm Papers Factors that ontrol ydrocarbon Acidity Factors that ontrol ydrocarbon onformation

More information

Chemistry 204: Benzene and Aromaticity

Chemistry 204: Benzene and Aromaticity Chemistry 204: Benzene and Aromaticity Structure of and Bonding in Benzene benzene, C 6 H 6, was first isolated in 1825 (Michael Faraday), but it was not until more than 100 years later that an adequate

More information

Lecture 13A 05/11/12. Amines. [Sn2; Hofmann elimination; reduction of alkyl azides, amides, nitriles, imines; reductive amination; Gabriel synthesis]

Lecture 13A 05/11/12. Amines. [Sn2; Hofmann elimination; reduction of alkyl azides, amides, nitriles, imines; reductive amination; Gabriel synthesis] Lecture 13A 05/11/12 Amines [Sn2; ofmann elimination; reduction of alkyl azides, amides, nitriles, imines; reductive amination; Gabriel synthesis] Curtius and ofmann rearrangements Both of these, in principle,

More information

The Study of Chemical Reactions. Mechanism: The complete, step by step description of exactly which bonds are broken, formed, and in which order.

The Study of Chemical Reactions. Mechanism: The complete, step by step description of exactly which bonds are broken, formed, and in which order. The Study of Chemical Reactions Mechanism: The complete, step by step description of exactly which bonds are broken, formed, and in which order. Thermodynamics: The study of the energy changes that accompany

More information

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320 Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320 I. Isolated, cumulated, and conjugated dienes A diene is any compound with two or C=C's is a diene. Compounds containing more than two

More information

Nitration of (Trifluoromethyl( Trifluoromethyl)benzene CF 3 HNO 3 + +

Nitration of (Trifluoromethyl( Trifluoromethyl)benzene CF 3 HNO 3 + + Effect on Rate Rate and Regioselectivity in Electrophilic Aromatic Substitution A substituent already present on the ring affects both the rate and regioselectivity of electrophilic aromatic substitution.

More information

Substituents already attached to an aromatic ring influence the preferred site of attachment of an incoming electrophile. NO2

Substituents already attached to an aromatic ring influence the preferred site of attachment of an incoming electrophile. NO2 Lecture outline Directing effects of substituents Substituents already attached to an aromatic ring influence the preferred site of attachment of an incoming electrophile. e.g., nitration of toluene 3

More information

William H. Brown & Christopher S. Foote

William H. Brown & Christopher S. Foote William. Brown & Christopher S. Foote Requests for permission to make copies of any part of the work should be mailed to:permissions Department, arcourt Brace & Company, 6277 Sea arbor Drive, Orlando,

More information

5, Organic Chemistry-II (Reaction Mechanism-1)

5, Organic Chemistry-II (Reaction Mechanism-1) Subject Chemistry Paper No and Title Module No and Title Module Tag 5, Organic Chemistry-II (Reaction Mechanism-1) 28, Arenium ion mechanism in electrophilic aromatic substitution, orientation and reactivity,

More information

More Nomenclature: Common Names for Selected Aromatic Groups. Aryl = Ar = aromatic group. It is a broad term, and includes any aromatic rings.

More Nomenclature: Common Names for Selected Aromatic Groups. Aryl = Ar = aromatic group. It is a broad term, and includes any aromatic rings. More Nomenclature: Common Names for Selected Aromatic Groups Phenyl group = or Ph = C 6 H 5 = Aryl = Ar = aromatic group. It is a broad term, and includes any aromatic rings. Benzyl = Bn = It has a -CH

More information