Karena W. Chapman *, Peter J. Chupas * X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700

Size: px
Start display at page:

Download "Karena W. Chapman *, Peter J. Chupas * X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700"

Transcription

1 Supporting Information Inter-granular cracking as a major cause of longterm capacity fading of layered cathodes Hao Liu, Mark Wolf, Khim Karki, Young-Sang Yu,#, Eric A. Stach, Jordi Cabana, Karena W. Chapman *, Peter J. Chupas * X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL, 60439, United States. Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States. Center for Function Nanomaterials, Brookhaven National Laboratory, Upton, NY , United States. # Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. Science Directorate, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL, 60439, United States. correspondence to: chapmank@aps.anl.gov, chupas@aps.anl.gov 1

2 Experimental Electrode preparation The NCA composite electrode was prepared from a mixture of 60 wt% NCA (Toda), 20 wt% PTFE (Sigma Aldrich), 10 wt% graphite (Alfa Aesar) and 10 wt% carbon black (Vulcan). The mixture was mixed and ground in a mortar and pestle. To make an electrode pellet, ~20 mg of the mixture was loaded in a 10 mm pellet die and compressed at ¼ Ton. Battery preparation and electrochemical cycling The design of the operando battery is described in reference 1. The flat gasket was replaced with a PTFE o-ring to ensure long-term cycling durability. The operando battery cell was assembled in an Ar-filled glovebox with the NCA composite electrode as the cathode, lithium metal foil as the anode, glass fiber as the separator and LiPF 6 in ethylene carbonate and dimethyl carbonate solution as the electrolyte. Electrochemical cycling of the operando battery cell was performed on a Maccor 4300 battery cycler. For the operando battery examined during the 92 nd and the 93 rd cycles, a rest period was imposed between cycle 63 and 64, cycle 71 and 72 and cycle 91 and 92. The battery was cycled at a rate of 14 mah/g (~C/20) between 2.7 and 4.5 V. A second battery was used for operando studies during the 1 st and the 2 nd cycles. The battery was cycled at a rate of 18.6 mah/g (~C/15) between 2.7 and 4.5 V while X-ray diffraction patterns were collected. To decouple the mechanical and chemical contributions to the capacity loss of NCA, coin cells prepared following the same protocol as described above were cycled to the same 2

3 upper cut-off voltage at 4.5V but to different lower cut-off voltages at 4.25V, 4.05V and 2.5V. An initial formation cycle was performed at C/20 (14 mah/g) between V, followed by cycling within specific voltage windows. Cycling within each voltage subrange ( V, , and V) induces approximately the same amount of volume change ( Vol/Vol = 2%). The current rates were dependent on the voltage range: C/10 (28 ma/g) for V, C/50 (5.6 ma/g) for V, and C/100 (2.8 ma/g) for V. This ensures that the rate of volume change of NCA is constant throughout the entire voltage window ( V). A full charge and discharge between V was conducted to check the full discharge capacity at specific cycles as described in the text; each full cycle was followed by a rest (open circuit) period of at least 24 hours before continuing cycling in limited voltage ranges. Operando XRD X-ray diffraction data were collected at the Advanced Photon Source at Argonne National Laboratory using beamline 11-ID-B (λ = Å), equipped with an amorphous silicon-based area detector from Perkin-Elmer. The detector was positioned at a distance of 95 cm from the sample. CeO 2 powder was used to calibrate the detector tilt and the sample-to-detector distance. Data reduction was performed with FIT2D software 2. Rietveld refinement Rietveld refinement of NCA was performed in TOPAS v5 software package. The sum of the site occupancy factors Ni in the transition metal layer and the Li layer was constrained to 0.8. Isotropic atomic displacement parameters (ADPs) of Li and O are 3

4 fixed to 1 Å 2 ; identical anisotropic ADPs were used for Ni, Co and Al and refined. Anisotropic peak broadening profile 3 was used. Scanning Electron Microscopy Scanning electron microscopy (SEM) images of cycled NCA meatballs were collected at Brookhaven National Laboratory using a field emission SEM (JEOL 7600F) at 15 kv. Transmission X-ray Microscopy Full-field transmission X-ray tomography was performed at beamline 6-2c at SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA (USA). The incoming beam energy was set well above the white line of absorption at the Ni K-edge; specific values were 8355 ev and 8383 ev for cycled and pristine samples, respectively. Reliable contrast can be achieved with any energy above an absorption edge, so this difference bore no consequence on the morphological analysis performed with the images. The cathode material was recovered from the NCA electrode charged to 4.5V in the 94th cycle ( V, C/20), packed into a glass capillary and mounted in the X-ray microscope. Projection micrographs were then collected between -90 and +90 in 0.5 increments with an exposure time of 0.5 seconds. Five particles were capture in the field of view for both pristine and cycle samples. Iterative alignment and reconstruction via filtered back projection with the Shepp-Logan filter were performed using the TXM- Wizard application 4. Virtual slices of the tomogram were subsequently produced to observe the internal microstructure of the particles. Single peak analysis 4

5 The experimentally measured intensity profile of a Bragg peak, I(2θ), is determined by the convolution of the instrument profile, G(2θ), and the sample s broadening function, W(2θ): 2 = 2 2. (1) The sample s broadening function is a convolution of a symmetrically broadened profile due to crystal size, f size (2θ), and a profile due to lattice parameter, i.e. d-spacing, distribution, f d (2θ). 2 = 2 2 (2) Accordingly, the population density distribution of the d-spacing of the corresponding Bragg peak can be obtained by deconvolution. The convolution of the instrument profile and profile due to the NCA crystal size, i.e. 2 2, is given by the profile at the pristine state, which does not exhibit substantial broadening due to macrostrain or lattice parameter distribution. This profile is used in the decovolution to obtain f d (2θ) of the (113) reflection during extended cycling. Deconvolution was performed using the Richardson-Lucy algorithm 5, 6 as implemented in Python. f d (2θ) can be converted to a function of Li composition, x, via the relationship between 2θ and x given in Figure S9a. Because the (113) peak intensity changes with 2θ, hence x, the Li composition distribution is given by = (3) where I 113 (x) is the integrated intensity of (113) at different Li composition, i.e. 2θ, given in Figure S9b. 5

6 The average Li composition, X, is thus given by = (4) 6

7 Determination of the nature of the asymmetric peak shape and peak splitting during 92 nd and 93 rd cycles In addition to compositional variation, stacking faults can also lead to asymmetric peak profile. However, stacking faults only affect certain class of reflections, whereas peak asymmetry is observed for all peaks in this work, and cannot explain the peak splitting. Continuous phase transition from a high to a low symmetry phase can occur with peak splitting. For example, transition from the rhombohedral to the monoclinic phase could explain the splitting of the (hkl) reflections, where h and k cannot be 0 simultaneously, but cannot account for the splitting of the (00l) reflection. Therefore, the deviation from the symmetric peak profile can only be attributed to compositional variation of the same phase. The length-scale of the phase segregation Phase segregation can occur (i) within primary particles, (ii) between secondary particles and (iii) within secondary particles, which are schematically illustrated in Figure S10. The (113) reflection splits into two peaks during the 92 nd charge and can be modelled by two separate peaks between 3.79 V and 4.26 V. The two separate peaks represent two NCA populations with different lattice parameters hence the Li composition. The peak having a consistently higher intensity is denoted as Peak A, and the other as Peak B. When phase segregation occurs within primary particles, the domain corresponding to each phase will become smaller than the size of the primary particle. Reduction in the domain size will contribute to additional broadening to the peak width according to the 7

8 Scherrer equation. As shown in Figure S11a, the width of Peak A evolves in the same way as a single peak during the 2 nd charge, where no phase segregation occurs and serves as a baseline for the peak width evolution during single-phase reaction. Because no additional broadening is observed for Peak A, the phase segregation could not have occurred between primary particles. The increase in the width of Peak B is attributed to the development of a wider distribution of Li composition for the NCA population modelled by Peak B. Phase segregation between secondary particles can be induced as a result of a reaction gradient in the electrode. The reaction gradient changes during cycling and will lead to changes in the relative intensity of Peak A and Peak B. As shown in Figure S11b, the integrated intensity of Peak A and Peak B remains effectively constant when charging from 3.79 V to 4.26 V, during which period the average Li composition changes by ~0.3. This indicates that a stagnant boundary exists between the two NCA populations, which is inconsistent with the reaction gradient hypothesis. A reaction gradient will also lead to an even distribution of Li composition, which is inconsistent with the observation of a bimodal distribution of Li composition manifested by the peak splitting. Hence, phase segregation cannot occur between secondary particles. By eliminating phase segregation within primary particles and between secondary particles, we conclude that phase segregation can occur only within secondary particles. 8

9 Figure S1. Rietveld refinement profiles for operando XRD pattern collected at the start of (a) the 1 st, (b) 2 nd and (c) 92 nd cycles. Reflections corresponding to PTFE and graphite are indicated by * and #, respectively. 2θ ranges of , , , and were excluded from refinement as they correspond to positions of the Li metal peaks, which can no longer be completely masked before data reduction. 9

10 Figure S2. The normalized phase fraction of Li x Ni 0.8 Co 0.15 Al 0.05 O 2 (NCA) at the start of different charge-discharge cycles ( V). 10

11 Figure S3. The scanning electron micrograph of a secondary NCA particle charged to 4.5V in cycle 94. No apparent fracture in the secondary or the primary particle is observed. 11

12 Figure S4. Stack plot of select reflections during the 1 st and the 2 nd cycles. 12

13 Figure S5. Stack plot of select reflections during the 92 nd and the 93 rd cycles. 13

14 Figure S6. Peak position of select reflections as a function of time during the first 2 cycles at a current rate of 19 ma/g (C/15). 14

15 Figure S7. Stack plot of the population density distribution of Li composition during the 92 nd and the 93 rd cycles. The bimodal distribution indicates two groups of NCA population with different reaction kinetics. 15

16 Figure S8. Select reflections at the top of charge (4.5V) during the 92 nd cycle (blue curve) and after >10 hours of relaxation after charged to 4.5V on the 94 th cycle (red curve). 16

17 Figure S9. Relationship between Li composition and the position and intensity of the (113) reflection. (a) The Li composition and (b) the integrated peak intensity of (113) reflection as a function of scattering angle (2θ). 17

18 Figure S10. Schematic drawing of three different phase segregation scenarios. (a) Phase segregation within primary particles. (b) Phase segregation between secondary particles. (c) Phase segregation within secondary particles. 18

19 Figure S11. Evolution of the full width at half maximum (FWHM) and the intensity of the (113) reflection. (a) The FWHM of the two peaks used to model the splitting of the (113) reflection as a function of the scattering angle during the 92 nd charge between 3.79 V and 4.26 V. The FWHM of the (113) reflection during the 2 nd charge is shown as a reference for single phase evolution. Fitting profiles at 3.79 V and 4.26 V on the 92 nd charge are shown on the right. (b) The integrated intensity of Peak A (blue dots) and Peak B (red dots) as a function of time during the 92 nd charge. The voltage profile is shown as red line. The ratio between the areas of Peak A and B indicates the sluggish population constitutes nearly 40% of the entire population. 19

20 Figure S12. Voltage (vs. Li) and specific charge capacity of NCA as a function of the volume change relative to pristine NCA. Data obtained from an operando XRD study of NCA during the 2nd charge at C/20. 20

21 Table S1. The amount of Li-Ni anti-site mixing after different number of cycles. Numbers in parentheses indicate errors in last digits. Cycle number Pristine Start of 2 nd charge Start of 92 nd charge Li-Ni mixing 0.014(2) 0.012(2) 0.012(2) References 1. Borkiewicz, O. J.; Shyam, B.; Wiaderek, K. M.; Kurtz, C.; Chupas, P. J.; Chapman, K. W. J. Appl. Crystallogr. 2012, 45, Hammersley, A. P. J. Appl. Crystallogr. 2016, 49, Stephens, P. W. J. Appl. Crystallogr. 1999, 32, Liu, Y.; Meirer, F.; Williams, P. A.; Wang, J.; Andrews, J. C.; Pianetta, P. Journal of Synchrotron Radiation 2012, 19, Lucy, L. B. Astron. J. 1974, 79, Richardson, W. H. J. Opt. Soc. Am. 1972, 62,

Mg, Zn) as High Voltage Layered Cathodes for

Mg, Zn) as High Voltage Layered Cathodes for Supporting Information for Honeycomb-Ordered Na 3 Ni 1.5 M 0.5 BiO 6 (M = Ni, Cu, Mg, Zn) as High Voltage Layered Cathodes for Sodium-Ion Batteries Peng-Fei Wang, a,d, Yu-Jie Guo, a,d, Hui Duan, a,d Tong-Tong

More information

Supporting Information

Supporting Information Supporting Information Facet-Selective Deposition of FeO x on α-moo 3 Nanobelts for Lithium Storage Yao Yao, 1 Nuo Xu, 2 Doudou Guan, 1 Jiantao Li, 1 Zechao Zhuang, 1 Liang Zhou,*,1 Changwei Shi 1, Xue

More information

Ultrathin V 2 O 5 Nanosheet Cathodes: Realizing Ultrafast Reversible Lithium Storage

Ultrathin V 2 O 5 Nanosheet Cathodes: Realizing Ultrafast Reversible Lithium Storage Supplementary Information for Ultrathin V 2 O 5 Nanosheet Cathodes: Realizing Ultrafast Reversible Lithium Storage Xianhong Rui, ab Ziyang Lu, a Hong Yu, a Dan Yang, a Huey Hoon Hng, a Tuti Mariana Lim,*

More information

Highly stable and flexible Li-ion battery anodes based on TiO 2 coated

Highly stable and flexible Li-ion battery anodes based on TiO 2 coated Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting Information for Highly stable and flexible Li-ion battery anodes

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information "Redox Properties of Alluaudite Sodium Cobalt Manganese Sulfates

More information

Supporting Information

Supporting Information Supporting Information Structural Evidence for Strong Coupling between Polarization Rotation and Lattice Strain in Monoclinic Relaxor Ferroelectrics Hui Liu, Jun Chen,*, Longlong Fan, Yang Ren, Lei Hu,

More information

Effects of Fluorine and Chromium Doping on the performance of Lithium-Rich Li 1+x MO 2 (M = Ni, Mn, Co) Positive Electrodes

Effects of Fluorine and Chromium Doping on the performance of Lithium-Rich Li 1+x MO 2 (M = Ni, Mn, Co) Positive Electrodes Effects of Fluorine and Chromium Doping on the performance of Lithium-Rich Li 1+x MO 2 (M = Ni, Mn, Co) Positive Electrodes Wei Kong Pang, 1,2 Hsiu-Fen Lin, 3 Vanessa K. Peterson, 1,2* Cheng-Zhang Lu,

More information

Electronic Supplementary Information. Facile Synthesis of Germanium-Graphene Nanocomposites. and Their Application as Anode Material for Lithium Ion

Electronic Supplementary Information. Facile Synthesis of Germanium-Graphene Nanocomposites. and Their Application as Anode Material for Lithium Ion Supplementary Material (ESI) for CrystEngCommunity This journal is (c) The Royal Society of Chemistry 2011 Electronic Supplementary Information Facile Synthesis of Germanium-Graphene Nanocomposites and

More information

Supporting Information for

Supporting Information for Supporting Information for Designing Air-Stable O3-Type Cathode Materials by Combined Structure Modulation for Na-Ion Batteries Hu-Rong Yao,, Peng-Fei Wang,, Yue Gong, Jienan Zhang, Xiqian Yu, Lin Gu,,

More information

Supplementary Figure 1 Result from XRD measurements. Synchrotron radiation XRD patterns of the as-prepared gold-ceria samples.

Supplementary Figure 1 Result from XRD measurements. Synchrotron radiation XRD patterns of the as-prepared gold-ceria samples. Supplementary Figure 1 Result from XRD measurements. Synchrotron radiation XRD patterns of the as-prepared gold-ceria samples. The detailed information on XRD measurement is seen in the Supplementary Methods.

More information

Structure Report for J. Reibenspies

Structure Report for J. Reibenspies X-ray Diffraction Laboratory Center for Chemical Characterization and Analysis Department of Chemistry Texas A & M University Structure Report for J. Reibenspies Project Name: Sucrose Date: January 29,

More information

Layered Sb 2 Te 3 and its nanocomposite: A new and outstanding electrode material for superior rechargeable Li-ion batteries

Layered Sb 2 Te 3 and its nanocomposite: A new and outstanding electrode material for superior rechargeable Li-ion batteries Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supplementary Information: Layered Sb 2 Te 3 and its nanocomposite: A new

More information

Supporting Information

Supporting Information Supporting Information A Novel Potassium-Ion Hybrid Capacitor Based on an Anode of K 2 Ti 6 O 13 Micro-Scaffolds Shengyang Dong,, Zhifei Li, Zhenyu Xing, Xianyong Wu, Xiulei Ji*, and Xiaogang Zhang*, Jiangsu

More information

The Role of Cesium Cation in Controlling Interphasial. Chemistry on Graphite Anode in Propylene Carbonate-Rich

The Role of Cesium Cation in Controlling Interphasial. Chemistry on Graphite Anode in Propylene Carbonate-Rich Supporting Information The Role of Cesium Cation in Controlling Interphasial Chemistry on Graphite Anode in Propylene Carbonate-Rich Electrolytes Hongfa Xiang,,# Donghai Mei, + Pengfei Yan, Priyanka Bhattacharya,

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1. Photographs show the titration experiments by dropwise adding ~5 times number of moles of (a) LiOH and LiOH+H 2 O, (b) H 2 O 2 and H 2 O 2 +LiOH, (c) Li

More information

Supporting Information An Interlaced Silver Vanadium Oxide-Graphene Hybrid with High Structural Stability for Use in Lithium Ion Batteries

Supporting Information An Interlaced Silver Vanadium Oxide-Graphene Hybrid with High Structural Stability for Use in Lithium Ion Batteries Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information An Interlaced Silver Vanadium Oxide-Graphene Hybrid with High Structural

More information

raw materials C V Mn Mg S Al Ca Ti Cr Si G H Nb Na Zn Ni K Co A B C D E F

raw materials C V Mn Mg S Al Ca Ti Cr Si G H Nb Na Zn Ni K Co A B C D E F Today s advanced batteries require a range of specialized analytical tools to better understand the electrochemical processes that occur during battery cycling. Evans Analytical Group (EAG) offers a wide-range

More information

[Supporting information]

[Supporting information] [Supporting information] Proof of ionic transport in interparticles of LiMPO 4 electrodes Kyu T. Lee, Wang H. Kan, Linda F. Nazar *. University of Waterloo, Department of Chemistry, Waterloo, Ontario,

More information

Transmission Electron Microscopy

Transmission Electron Microscopy L. Reimer H. Kohl Transmission Electron Microscopy Physics of Image Formation Fifth Edition el Springer Contents 1 Introduction... 1 1.1 Transmission Electron Microscopy... 1 1.1.1 Conventional Transmission

More information

Identifying the chemical and structural irreversibility in LiNi 0.8 Co 0.15 Al 0.05 O 2 - A model

Identifying the chemical and structural irreversibility in LiNi 0.8 Co 0.15 Al 0.05 O 2 - A model Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Identifying the chemical and structural irreversibility in LiNi 0.8 Co

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2016. Supporting Information for Adv. Mater., DOI: 10.1002/adma.201604015 High Performance Graphene/Ni 2 P Hybrid Anodes for Lithium

More information

3R Phase of MoS 2 and WS 2 Outperforms Corresponding 2H Phase for Hydrogen Evolution

3R Phase of MoS 2 and WS 2 Outperforms Corresponding 2H Phase for Hydrogen Evolution Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 3R Phase of MoS 2 and WS 2 Outperforms Corresponding 2H Phase for Hydrogen Evolution Rou Jun Toh,

More information

Large-Scale Synthesis of Transition-metal Doped TiO 2 Nanowires. with Controllable Overpotential

Large-Scale Synthesis of Transition-metal Doped TiO 2 Nanowires. with Controllable Overpotential Large-Scale Synthesis of Transition-metal Doped TiO 2 Nanowires with Controllable Overpotential Bin Liu 1, Hao Ming Chen, 1 Chong Liu 1,3, Sean C. Andrews 1,3, Chris Hahn 1, Peidong Yang 1,2,3,* 1 Department

More information

High-Rate Intercalation without Nanostructuring in Metastable Nb2O5 Bronze Phases

High-Rate Intercalation without Nanostructuring in Metastable Nb2O5 Bronze Phases Supporting information High-Rate Intercalation without Nanostructuring in Metastable Nb2O5 Bronze Phases Kent J. Griffith, Alexander C. Forse, John M. Griffin, Clare P. Grey Department of Chemistry, University

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 214 Electronic Supplementary Information Ultrathin and High-Ordered CoO Nanosheet

More information

Boosting rate capability of hard carbon with an ether-based. electrolyte for sodium ion batteries

Boosting rate capability of hard carbon with an ether-based. electrolyte for sodium ion batteries Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information (ESI) Boosting rate capability of

More information

Bulk graphdiyne powder applied for highly efficient lithium storage

Bulk graphdiyne powder applied for highly efficient lithium storage Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Bulk graphdiyne powder applied for highly efficient lithium storage Shengliang Zhang, ab Huibiao

More information

Supporting Information. Tuning of gallery heights in a crystalline 2D carbon nitride network

Supporting Information. Tuning of gallery heights in a crystalline 2D carbon nitride network Supporting Information Tuning of gallery heights in a crystalline 2D carbon nitride network Samantha Y. Chong, a James T. A. Jones, a Yaroslav Z. Khimyak, b Andrew I. Cooper, a Arne Thomas, c Markus Antonietti,

More information

A New Type of Lithium-ion Battery Based on Tin Electroplated Negative Electrodes

A New Type of Lithium-ion Battery Based on Tin Electroplated Negative Electrodes Int. J. Electrochem. Sci., 1(2006)110-121 www.electrochemsci.org A New Type of Lithium-ion Battery Based on Tin Electroplated Negative Electrodes J. Hassoun, S. Panero, P. Reale and B. Scrosati Department

More information

LAB 01 X-RAY EMISSION & ABSORPTION

LAB 01 X-RAY EMISSION & ABSORPTION LAB 0 X-RAY EMISSION & ABSORPTION REPORT BY: TEAM MEMBER NAME: Ashley Tsai LAB SECTION No. 05 GROUP 2 EXPERIMENT DATE: Feb., 204 SUBMISSION DATE: Feb. 8, 204 Page of 3 ABSTRACT The goal of this experiment

More information

Facile synthesis of yolk-shell structured Si-C nanocomposites as anode for lithium-ion battery 1. Experimental 1.1 Chemicals

Facile synthesis of yolk-shell structured Si-C nanocomposites as anode for lithium-ion battery 1. Experimental 1.1 Chemicals Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Facile synthesis of yolk-shell structured Si-C nanocomposites as anode for lithium-ion battery

More information

Supporting Information. Electrocatalytic polysulfide-traps for controlling redox shuttle process of Li-S battery

Supporting Information. Electrocatalytic polysulfide-traps for controlling redox shuttle process of Li-S battery Supporting Information Electrocatalytic polysulfide-traps for controlling redox shuttle process of Li-S battery Hesham Al Salem, Ganguli Babu, Chitturi V. Rao and Leela Mohana Reddy Arava * Department

More information

Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li-O 2 battery

Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li-O 2 battery Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Supporting Information Dual redox catalysts for oxygen reduction and evolution reactions:

More information

AP5301/ Name the major parts of an optical microscope and state their functions.

AP5301/ Name the major parts of an optical microscope and state their functions. Review Problems on Optical Microscopy AP5301/8301-2015 1. Name the major parts of an optical microscope and state their functions. 2. Compare the focal lengths of two glass converging lenses, one with

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1 SEM/EDS mapping of LiNi 0.4 Mn 0.4 Co 0.18 Ti 0.02 O 2. The experimental error of the mapping is ±1%. The atomic percentages of each element are based on multiple

More information

Effect of Chloride Anions on the Synthesis and. Enhanced Catalytic Activity of Silver Nanocoral

Effect of Chloride Anions on the Synthesis and. Enhanced Catalytic Activity of Silver Nanocoral Supporting Information Effect of Chloride Anions on the Synthesis and Enhanced Catalytic Activity of Silver Nanocoral Electrodes for CO 2 Electroreduction Polyansky* Yu-Chi Hsieh, Sanjaya D. Senanayake,

More information

An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance

An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance Supporting Information An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance Liang Chang, 1 Dario J. Stacchiola 2 and Yun Hang Hu 1, * 1. Department

More information

Covalent-Organic Frameworks: Potential Host Materials for Sulfur Impregnation in Lithium-Sulfur Batteries

Covalent-Organic Frameworks: Potential Host Materials for Sulfur Impregnation in Lithium-Sulfur Batteries Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Covalent-Organic Frameworks: Potential Host Materials for Sulfur Impregnation

More information

Ternary blend polymer solar cells with enhanced power conversion efficiency

Ternary blend polymer solar cells with enhanced power conversion efficiency Ternary blend polymer solar cells with enhanced power conversion efficiency Luyao Lu 1, Tao Xu 1, Wei Chen 2,3, Erik S. Landry 2,3, Luping Yu 1 * 1. Department of Chemistry and The James Franck Institute,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for SC Advances. This journal is The oyal Society of Chemistry 2014 Supporting Information Novel Functional Material Carboxymethyl Cellulose Lithium (CMC-Li) Enhanced

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.2259 An infinite chainmail of M 6 L 6 metallacycles featuring multiple Borromean links Flora L. Thorp-Greenwood, Alexander N. Kulak and Michaele J. Hardie * School of Chemistry, University

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supporting Information Room-temperature rechargeable Na-SO 2 batteries with gel-polymer electrolyte

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information High Electrocatalytic Activity of Self-standing Hollow NiCo 2 S 4 Single Crystalline Nanorod Arrays towards Sulfide Redox Shuttles in Quantum Dot-sensitized Solar Cells

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Material (ESI) for Journal of Materials Chemistry

More information

Röntgenpraktikum. M. Oehzelt. (based on the diploma thesis of T. Haber [1])

Röntgenpraktikum. M. Oehzelt. (based on the diploma thesis of T. Haber [1]) Röntgenpraktikum M. Oehzelt (based on the diploma thesis of T. Haber [1]) October 21, 2004 Contents 1 Fundamentals 2 1.1 X-Ray Radiation......................... 2 1.1.1 Bremsstrahlung......................

More information

Supplementary Figure 1 A schematic representation of the different reaction mechanisms

Supplementary Figure 1 A schematic representation of the different reaction mechanisms Supplementary Figure 1 A schematic representation of the different reaction mechanisms observed in electrode materials for lithium batteries. Black circles: voids in the crystal structure, blue circles:

More information

Supporting Information

Supporting Information Supporting Information Unprecedented activation and CO 2 capture properties of an elastic single-molecule trap Mario Wriedt, a Julian P. Sculley, b Wolfgang M. Verdegaal, b Andrey A. Yakovenko b and Hong-Cai

More information

Lithium Batteries: Impact of Stacked Graphene and Unfolded

Lithium Batteries: Impact of Stacked Graphene and Unfolded Supporting information (SI) LiFePO 4 /graphene as a Superior Cathode Material for Rechargeable Lithium Batteries: Impact of Stacked Graphene and Unfolded Graphene Jinli Yang, a Jiajun Wang, a Yongji Tang,

More information

Praktikum zur. Materialanalytik

Praktikum zur. Materialanalytik Praktikum zur Materialanalytik Energy Dispersive X-ray Spectroscopy B513 Stand: 19.10.2016 Contents 1 Introduction... 2 2. Fundamental Physics and Notation... 3 2.1. Alignments of the microscope... 3 2.2.

More information

These authors contributed equally to this work. 1. Structural analysis of as-deposited PbS quantum dots by Atomic Layer Deposition (ALD)

These authors contributed equally to this work. 1. Structural analysis of as-deposited PbS quantum dots by Atomic Layer Deposition (ALD) Supporting information for: Atomic Layer Deposition of Lead Sulfide Quantum Dots on Nanowire Surfaces Neil P. Dasgupta 1,*,, Hee Joon Jung 2,, Orlando Trejo 1, Matthew T. McDowell 2, Aaron Hryciw 3, Mark

More information

High-Quality α-mnse Nanostructures with Superior. Lithium Storage Properties

High-Quality α-mnse Nanostructures with Superior. Lithium Storage Properties SUPPORTING INFORMATION High-Quality α-mnse Nanostructures with Superior Lithium Storage Properties Na Li, Yi Zhang, Hongyang Zhao, Zhengqing Liu, Xinyu Zhang and Yaping Du* Chemicals. Oleylamine (OM, 70%,

More information

Supporting Information

Supporting Information Supporting Information Anion Redox Chemistry in the Cobalt Free 3d Transition Metal Oxide Intercalation Electrode Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2 Kun Luo a, Matthew R. Roberts a, Niccoló Guerrini a, Nuria

More information

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis MT-0.6026 Electron microscopy Scanning electron microscopy and electron probe microanalysis Eero Haimi Research Manager Outline 1. Introduction Basics of scanning electron microscopy (SEM) and electron

More information

Chapter 10. Nanometrology. Oxford University Press All rights reserved.

Chapter 10. Nanometrology. Oxford University Press All rights reserved. Chapter 10 Nanometrology Oxford University Press 2013. All rights reserved. 1 Introduction Nanometrology is the science of measurement at the nanoscale level. Figure illustrates where nanoscale stands

More information

Self-rearrangement of silicon nanoparticles. high-energy and long-life lithium-ion batteries

Self-rearrangement of silicon nanoparticles. high-energy and long-life lithium-ion batteries Supporting Information Self-rearrangement of silicon nanoparticles embedded in micron carbon sphere framework for high-energy and long-life lithium-ion batteries Min-Gi Jeong,, Hoang Long Du, Mobinul Islam,,

More information

Supporting Information High-performance sodium battery with 9,10-anthraquinone/CMK-3 cathode and ether-based electrolyte

Supporting Information High-performance sodium battery with 9,10-anthraquinone/CMK-3 cathode and ether-based electrolyte Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting Information High-performance sodium battery with 9,10-anthraquinone/CMK-3 cathode and

More information

School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, , Singapore. b

School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, , Singapore. b Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Dopamine-Mo VI complexation-assisted large-scale aqueous synthesis of single-layer MoS 2 /carbon

More information

Chapter 1 X-ray Absorption Fine Structure (EXAFS)

Chapter 1 X-ray Absorption Fine Structure (EXAFS) 1 Chapter 1 X-ray Absorption Fine Structure (EXAFS) 1.1 What is EXAFS? X-ray absorption fine structure (EXAFS, XAFS) is an oscillatory modulation in the X-ray absorption coefficient on the high-energy

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting Information Title: A sulfonated polyaniline with high density and high rate Na-storage

More information

High-Performance Flexible Asymmetric Supercapacitors Based on 3D. Electrodes

High-Performance Flexible Asymmetric Supercapacitors Based on 3D. Electrodes Supporting Information for: High-Performance Flexible Asymmetric Supercapacitors Based on 3D Porous Graphene/MnO 2 Nanorod and Graphene/Ag Hybrid Thin-Film Electrodes Yuanlong Shao, a Hongzhi Wang,* a

More information

Two Dimensional Graphene/SnS 2 Hybrids with Superior Rate Capability for Lithium ion Storage

Two Dimensional Graphene/SnS 2 Hybrids with Superior Rate Capability for Lithium ion Storage Electronic Supplementary Information Two Dimensional Graphene/SnS 2 Hybrids with Superior Rate Capability for Lithium ion Storage Bin Luo, a Yan Fang, a Bin Wang, a Jisheng Zhou, b Huaihe Song, b and Linjie

More information

Synthesis of Colloidal Au-Cu 2 S Heterodimers via Chemically Triggered Phase Segregation of AuCu Nanoparticles

Synthesis of Colloidal Au-Cu 2 S Heterodimers via Chemically Triggered Phase Segregation of AuCu Nanoparticles SUPPORTING INFORMATION Synthesis of Colloidal Au-Cu 2 S Heterodimers via Chemically Triggered Phase Segregation of AuCu Nanoparticles Nathan E. Motl, James F. Bondi, and Raymond E. Schaak* Department of

More information

Supplementary Figure 1. Large-area SEM images of rhombic rod foldectures (F1) deposited on Si substrate in (a) an in-plane magnetic field and (b) an

Supplementary Figure 1. Large-area SEM images of rhombic rod foldectures (F1) deposited on Si substrate in (a) an in-plane magnetic field and (b) an Supplementary Figure 1. Large-area SEM images of rhombic rod foldectures (F1) deposited on Si substrate in (a) an in-plane magnetic field and (b) an out-of-plane magnetic field. Scale bars: 10 m. 1 Supplementary

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder Zhi Wei Seh, Qianfan Zhang, Weiyang Li, Guangyuan Zheng, Hongbin Yao,

More information

Supporting information. Alkali Metal Ion Templated Transition Metal Formate. Framework Materials: Synthesis, Crystal Structures,

Supporting information. Alkali Metal Ion Templated Transition Metal Formate. Framework Materials: Synthesis, Crystal Structures, Supporting information Alkali Metal Ion Templated Transition Metal Formate Framework Materials: Synthesis, Crystal Structures, Ion Migration and Magnetism Espen Eikeland, 1 Nina Lock, 2 Mette Filsø, 1

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2015 Supporting Information Pyrite FeS 2 for High-rate and Long-life Rechargeable

More information

Reversible Magnesium Intercalation into a Layered Oxyfluoride Cathode

Reversible Magnesium Intercalation into a Layered Oxyfluoride Cathode Supporting Information Reversible Magnesium Intercalation into a Layered Oxyfluoride Cathode Jared T. Incorvati, 1,4 Liwen F. Wan, 2,4 Baris Key, 3,4 Dehua Zhou, 3 Chen Liao, 3,4 Lindsay Fuoco, 1,4 Michael

More information

Carbon Quantum Dots/NiFe Layered Double Hydroxide. Composite as High Efficient Electrocatalyst for Water

Carbon Quantum Dots/NiFe Layered Double Hydroxide. Composite as High Efficient Electrocatalyst for Water Supplementary Information Carbon Quantum Dots/NiFe Layered Double Hydroxide Composite as High Efficient Electrocatalyst for Water Oxidation Di Tang, Juan Liu, Xuanyu Wu, Ruihua Liu, Xiao Han, Yuzhi Han,

More information

Supporting information. Origins of High Electrolyte-Electrode Interfacial Resistances in Lithium Cells. Containing Garnet Type LLZO Solid Electrolytes

Supporting information. Origins of High Electrolyte-Electrode Interfacial Resistances in Lithium Cells. Containing Garnet Type LLZO Solid Electrolytes Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Supporting information Origins of High Electrolyte-Electrode Interfacial Resistances

More information

Atomically intercalating tin ions into the interlayer. of molybdenum oxide nanobelt toward long-cycling

Atomically intercalating tin ions into the interlayer. of molybdenum oxide nanobelt toward long-cycling Atomically intercalating tin ions into the interlayer of molybdenum oxide nanobelt toward long-cycling lithium battery Chuanqiang Wu, + Hui Xie, + Dongdong Li, Daobin Liu, Shiqing Ding, Shi Tao, Heng Chen,

More information

Structural phase transitions in Bi 2 Se 3 under high pressure

Structural phase transitions in Bi 2 Se 3 under high pressure Structural phase transitions in Bi 2 Se 3 under high pressure Zhenhai Yu 1, Lin Wang 1,2,7 * Qingyang Hu 1,7, Jinggeng Zhao 3, Shuai Yan 4, Ke Yang 4, Stanislav Sinogeikin 5, Genda Gu 6 & Ho-kwang Mao

More information

Setting The motor that rotates the sample about an axis normal to the diffraction plane is called (or ).

Setting The motor that rotates the sample about an axis normal to the diffraction plane is called (or ). X-Ray Diffraction X-ray diffraction geometry A simple X-ray diffraction (XRD) experiment might be set up as shown below. We need a parallel X-ray source, which is usually an X-ray tube in a fixed position

More information

Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries

Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries Supporting Information Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries Zhiqiang Zhu, Shiwen Wang, Jing Du, Qi Jin, Tianran Zhang,

More information

Electronic Supplementary Information. Lithium-Oxygen Batteries: Bridging Mechanistic Understanding and Battery Performance

Electronic Supplementary Information. Lithium-Oxygen Batteries: Bridging Mechanistic Understanding and Battery Performance Electronic Supplementary Information Lithium-Oxygen Batteries: Bridging Mechanistic Understanding and Battery Performance Yi-Chun Lu, a Betar M. Gallant, b David G. Kwabi, b Jonathon R. Harding, c Robert

More information

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications Philip D. Rack,, Jason D. Fowlkes,, and Yuepeng Deng Department of Materials Science and Engineering University

More information

Gold nanothorns macroporous silicon hybrid structure: a simple and ultrasensitive platform for SERS

Gold nanothorns macroporous silicon hybrid structure: a simple and ultrasensitive platform for SERS Supporting Information Gold nanothorns macroporous silicon hybrid structure: a simple and ultrasensitive platform for SERS Kamran Khajehpour,* a Tim Williams, b,c Laure Bourgeois b,d and Sam Adeloju a

More information

Supporting Information for

Supporting Information for Supporting Information for Conjugated block copolymer photovoltaics with near 3% efficiency through microphase separation Changhe Guo 1, Yen-Hao Lin 3, Matthew D. Witman 1, Kendall A. Smith 3, Cheng Wang

More information

Fabrication and characterization of poly (ethylene oxide) templated nickel oxide nanofibers for dye degradation

Fabrication and characterization of poly (ethylene oxide) templated nickel oxide nanofibers for dye degradation Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is The Royal Society of Chemistry 2014 Supplementary Information Fabrication and characterization of poly (ethylene

More information

Polymer graphite composite anodes for Li-ion batteries

Polymer graphite composite anodes for Li-ion batteries Polymer graphite composite anodes for Li-ion batteries Basker Veeraraghavan, Bala Haran, Ralph White and Branko Popov University of South Carolina, Columbia, SC 29208 Plamen Atanassov University of New

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Anisotropic phase segregation and migration of Pt in nanocrystals en route to nanoframe catalysts Zhiqiang Niu 1, Nigel Becknell 1, Yi Yu 1,2, Dohyung Kim 3, Chen Chen 1,4, Nikolay Kornienko 1, Gabor A.

More information

Combining piracetam and lithium salts: Ionic co-cocrystals and codrugs? Electronic Supplementary Information (10 pages)

Combining piracetam and lithium salts: Ionic co-cocrystals and codrugs? Electronic Supplementary Information (10 pages) Combining piracetam and lithium salts: Ionic co-cocrystals and codrugs? Dario Braga, Fabrizia Grepioni,* a Lucia Maini,* a Davide Capucci, Saverio Nanna, Johan Wouters, Luc Aerts and Luc Quéré Electronic

More information

X-ray Diffraction. Diffraction. X-ray Generation. X-ray Generation. X-ray Generation. X-ray Spectrum from Tube

X-ray Diffraction. Diffraction. X-ray Generation. X-ray Generation. X-ray Generation. X-ray Spectrum from Tube X-ray Diffraction Mineral identification Mode analysis Structure Studies X-ray Generation X-ray tube (sealed) Pure metal target (Cu) Electrons remover inner-shell electrons from target. Other electrons

More information

Jaemin Kim, Xi Yin, Kai-Chieh Tsao, Shaohua Fang and Hong Yang *

Jaemin Kim, Xi Yin, Kai-Chieh Tsao, Shaohua Fang and Hong Yang * Jaemin Kim, Xi Yin, Kai-Chieh Tsao, Shaohua Fang and Hong Yang * Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 114 Roger Adams Laboratory, MC-712, 600

More information

High Tap Density Secondary Silicon Particle. Anodes by Scalable Mechanical Pressing for

High Tap Density Secondary Silicon Particle. Anodes by Scalable Mechanical Pressing for Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information: High Tap Density Secondary Silicon

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012658 TITLE: Synthesis of Nanosized Lithium Manganate For Lithium-ion Secondary Batteries DISTRIBUTION: Approved for public

More information

Electronic Supplementary Information for. Impact of Intermediate Sites on Bulk Diffusion Barriers: Mg. Intercalation in Mg 2 Mo 3 O 8

Electronic Supplementary Information for. Impact of Intermediate Sites on Bulk Diffusion Barriers: Mg. Intercalation in Mg 2 Mo 3 O 8 Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information for Impact of Intermediate Sites on

More information

Supplementary Information. Department of Chemistry, Brookhaven National Laboratory, Upton, NY 11973, USA

Supplementary Information. Department of Chemistry, Brookhaven National Laboratory, Upton, NY 11973, USA Supplementary Information Removal of interstitial H 2 O in hexacyanometallates for a superior cathode of a sodium-ion battery Jie Song 1, Long Wang 2, Yuhao Lu 2, Jue Liu 3, Bingkun Guo 1, Penghao Xiao

More information

Supplemental Information. Crumpled Graphene Balls Stabilized. Dendrite-free Lithium Metal Anodes

Supplemental Information. Crumpled Graphene Balls Stabilized. Dendrite-free Lithium Metal Anodes JOUL, Volume 2 Supplemental Information Crumpled Graphene Balls Stabilized Dendrite-free Lithium Metal Anodes Shan Liu, Aoxuan Wang, Qianqian Li, Jinsong Wu, Kevin Chiou, Jiaxing Huang, and Jiayan Luo

More information

SEM. Chemical Analysis in the. Elastic and Inelastic scattering. Chemical analysis in the SEM. Chemical analysis in the SEM

SEM. Chemical Analysis in the. Elastic and Inelastic scattering. Chemical analysis in the SEM. Chemical analysis in the SEM THE UNIVERSITY Chemical Analysis in the SEM Ian Jones Centre for Electron Microscopy OF BIRMINGHAM Elastic and Inelastic scattering Electron interacts with one of the orbital electrons Secondary electrons,

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Information (ESI) Experimental Materials Synthesis: The α-fe 2 O 3 MSHSs hollow microspheres were prepared by a spray drying method followed by annealing in air. In a typical synthesis

More information

Significant Improvement of LiNi 0.8 Co 0.15 Al 0.05 O 2 Cathodes at 60 C by SiO 2 Dry Coating for Li-Ion Batteries

Significant Improvement of LiNi 0.8 Co 0.15 Al 0.05 O 2 Cathodes at 60 C by SiO 2 Dry Coating for Li-Ion Batteries 0013-4651/10/157 6 /A625/5/$28.00 The Electrochemical Society Significant Improvement of LiNi 0.8 Co 0.15 Al 0.05 O 2 Cathodes at C by SiO 2 Dry Coating for Li-Ion Batteries Yonghyun Cho and Jaephil Cho*,z

More information

Chapter 12. Nanometrology. Oxford University Press All rights reserved.

Chapter 12. Nanometrology. Oxford University Press All rights reserved. Chapter 12 Nanometrology Introduction Nanometrology is the science of measurement at the nanoscale level. Figure illustrates where nanoscale stands in relation to a meter and sub divisions of meter. Nanometrology

More information

High-Performance Silicon Battery Anodes Enabled by

High-Performance Silicon Battery Anodes Enabled by Supporting Information for: High-Performance Silicon Battery Anodes Enabled by Engineering Graphene Assemblies Min Zhou,, Xianglong Li, *, Bin Wang, Yunbo Zhang, Jing Ning, Zhichang Xiao, Xinghao Zhang,

More information

Electrodeposited nickel hydroxide on nickel foam with ultrahigh. capacitance

Electrodeposited nickel hydroxide on nickel foam with ultrahigh. capacitance Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance Guang-Wu Yang, Cai-Ling Xu* and Hu-Lin Li* College of Chemistry and Chemical Engineering, Lanzhou University, 73 (PR China) 1.

More information

Chemical tuning of electrochemical properties of Ptskin surface for highly active oxygen reduction reactions

Chemical tuning of electrochemical properties of Ptskin surface for highly active oxygen reduction reactions Chemical tuning of electrochemical properties of Ptskin surface for highly active oxygen reduction reactions Namgee Jung, a Young-Hoon Chung, b Dong-Young Chung, b Kwang-Hyun Choi, b Hee- Young Park, a

More information

Electronic Supplementary Information. Low-temperature Benchtop-synthesis of All-inorganic Perovskite Nanowires

Electronic Supplementary Information. Low-temperature Benchtop-synthesis of All-inorganic Perovskite Nanowires Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Low-temperature Benchtop-synthesis of All-inorganic Perovskite

More information

Competitive I 2 Sorption by Cu-BTC from Humid Gas Streams

Competitive I 2 Sorption by Cu-BTC from Humid Gas Streams Supporting Information for: Competitive I 2 Sorption by Cu-BTC from Humid Gas Streams Dorina F. Sava, Karena W. Chapman, Mark A. Rodriguez, Jeffery A. Greathouse, # Paul S. Crozier,^ Haiyan Zhao, Peter

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Na3V2(PO4)2F3-SWCNT: A High Voltage Cathode for

More information

Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin

Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin Page S16 Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin Tarek Sammakia,* Deidre M. Johns, Ganghyeok Kim, and Martin

More information

Supporting Information

Supporting Information Supporting Information Title Boron Doping and Defect-Engineering of Graphene Aerogels for Ultrasensitive NO 2 Detection Sally Turner 1,5,6, Wenjun Yan 2,3, Hu Long 5,6, Art J. Nelson 4, Alex Baker 4, Jonathan

More information