Supporting Online Material for

Size: px
Start display at page:

Download "Supporting Online Material for"

Transcription

1 Supporting nline Material for Imaging Local Electrochemical Current via Surface Plasmon Resonance Xiaonan Shan, Urmez Patel, Shaopeng Wang, Rodrigo Iglesias, Nongjian Tao* *To whom correspondence should be addressed. Published 1 March 1, Science 37, 1363 (1) DI: 1.116/science This PDF file includes: Materials and Methods SM Text Figs. S1 and S References ther Supporting nline Material for this manuscript includes the following: Movie S1

2 Materials and methods 1. Measuring electrochemical current from SPR signals SPR measures electrochemical reaction-induced changes in the bulk refractive index near the electrode. The SPR response (e.g., resonance angle, θ(t)) can be described in terms of the reactant and product concentrations, C and C R, and given by θ SPR (t) = B [α C (z,t) + α R C R (z,t)]e z / l d(z /l) (S1) where α and α R are the changes in the local refractive indices per unit concentration for the oxidized and reduced molecules, respectively. The constant, B, in Eq. S1 measures the sensitivity of the SPR angle to a change in the bulk index of refraction, which can be calibrated for a given SPR setup and reaction species. The exponential term in the integral is the decay of the evanescent field from the metal into the solution phase, where the decay length, l, is on the order of nm. Eq. 1 can be simplified if the time scale of measurement is slower than the diffuse time of the reaction species over a distance of l ~ nm. In this case, Eq. 1 is replaced by θ t) B[ α C ( z, t) α C ( z, t) ] (S) ( = + SPR z= R R z= where C (x,y,z,t) z= and C R (x,y,z,t) z= are the concentrations of the oxidized and reduced molecules near the electrode. For most ions and molecules in dilute solutions, with diffusion coefficient in the range of 1-9 to 1-11 m /s ( m /s for Ru(NH 3 ) 6 3+ )(1), the diffusion time given by l /(D) is less than 1 ms, so Eq. holds well for most electrochemical measurements. According to Eq. S, SPR directly measures the local concentrations of oxidized and reduced species on the electrode surface. In contrast, conventional electrochemical methods measure current density vs. potential or time, which is related to C and C R according to()

3 C i(t) = nfd z = nfd C R z= R z z= (S3) where n is number of electrons transferred per reaction, F is Faraday constant, and D and D R are the diffusion coefficients of the reaction species. Let us consider a redox reaction, + e R where and R are oxidized and reduced species. The diffusion equation for is C t = D C t (S4) where Co (z,t) and D are the concentration and diffusion coefficient of. Note that only the diffusion in z direction is considered, which is a good approximation as long as the lateral length scale of the image is far greater than the depth (~ nm) of the evanescent field in z direction. Performing Laplace transform on Eq. 4, we have ~ C [ ( s / D ) z] 1/ 1 ( z, s) = s C + A( s) exp (S5) where A(s) is a function to be determined from boundary conditions at the electrode surface. To relate the concentrations to current density, we perform Laplace transform on Eq. S3 and combine it with Eq. S5, which leads to ~ 1 1/ 1 1/ (, s) s C ( nfd ) s = C ~ I ( s) (S6) A similar relation can be obtained for the reduced species, given by ~ R R R Combining Eqs. S6, S7 and S, we have C 1 1/ 1 1/ ~ (, s) = s C ( nfd ) s I ( s) (S7) 3

4 i( t) = bnfl 1 ~ { s ( )} 1/ Δθ s which allows us to calculate current from the SPR signal. SPR, (1). Calibration To obtain b, SPR angular shifts per unit concentration for the oxidized and reduced forms of the ruthenium complex were determined using an independent SPR system (BI- from Biosensing Instruments, First, the ruthenium complex in the oxidized state at each concentration was injected into the flow cell, and the SPR response was determined and used to calculate Bα. Second, in order to determine Bα R, we converted the ruthenium complex to the reduced state by applying a negative electrode potential value (-.3 V). Bα R and Bα were found to be.5 mdeg/mm and 5 mdeg/mm, respectively. From b = [B(α R D 1/ R α D 1/ )] 1, and assume D R = D = 5.3*1-1 m /s, we have b =-9.1x1-6 m mm Deg -1 S -1/. Conventional electrochemical detection of TNT on fingerprint Figs. 4B and C in the main text show electrochemical current images and local cyclic voltammograms of a fingerprint covered with TNT particulates. During the measurement, conventional voltammetry was also recorded with an AutoLab potentiostat simultaneously. The voltammogram shown in Fig. S1 does not reveal obvious reduction peaks that can be associated with TNT reduction. 4

5 Fig.S1 Conventional voltammogram of TNT on fingerprint. The potential sweep rate:.5 V/sec. Electrolyte:.5 M KCl. Detection of trace TNT particulates in the presence of interference particulates We mixed candle wax and TNT particulates onto the fingerprint, and obtained the local voltammetry of the surface by imaging the local electrochemical current while cycling the potential. The regions of the wax particulates show little contrast changes with the potential (marked by black arrows). while the regions containing TNT particulates show large and characteristic changes (Fig.S). 5

6 Fig. S. Detection of TNT particulates in the presence of wax particles. (A) SPR image of TNT + wax particulates (marked by a blue circle) on fingerprint. (B-C) Electrochemical current image at different potential (-.5V and -.7V). References 1. A. J. Bard, L. R. Faulkner, Electrochemical methods : fundamentals and applications. (Wiley, New York, ed. nd, 1), pp. 813, Table C.4... A. J. Bard, L. R. Faulkner, Electrochemical methods : fundamentals and applications. (Wiley, New York, ed. nd, 1), pp.833. Supporting nline Material Video Clip Files Movie S1 Electrochemical current density video of a finger print at different potentials recorded during continuous cycling of the electrode potential between -.1V to -.34V at a rate of.1v/s. The electrolyte is.5m phosphate buffer containing 1mM Ru(NH 3 ) The Figs.1 C-F in the manuscript are the snapshots from this video. 6

Single Molecule Electrochemistry on a Porous Silica-Coated Electrode

Single Molecule Electrochemistry on a Porous Silica-Coated Electrode Supporting information for Single Molecule Electrochemistry on a Porous Silica-Coated Electrode Jin Lu, Yunshan Fan, Marco Howard, Joshua C. Vaughan, and Bo Zhang* Department of Chemistry, University of

More information

Supporting Information: Ultra-Sensitive Potentiometric Measurements of Dilute Redox Molecule

Supporting Information: Ultra-Sensitive Potentiometric Measurements of Dilute Redox Molecule Supporting Information: Ultra-Sensitive Potentiometric Measurements of Dilute Redox Molecule Solutions and Determination of Sensitivity Factors at Platinum Ultramicroelectrodes Stephen J. Percival and

More information

Supporting Information

Supporting Information Supporting Information 1 The influence of alkali metal cations upon AQ redox system Figure 1 depicts the anthraquinone-2-sulfonate (AQ) redox signals in aqueous solutions supported with various alkali

More information

XANTHINE OXIDASE MODIFIED GLASSY CARBON PASTE ELECTRODES

XANTHINE OXIDASE MODIFIED GLASSY CARBON PASTE ELECTRODES XANTHINE OXIDASE MODIFIED GLASSY CARBON PASTE ELECTRODES Ülkü Anık Kırgöz 1, Suna Timur 1, Joseph Wang 2, Azmi Telefoncu 1 Ege University/TURKIYE New Mexico State University, USA Carbon is an ideal electrode

More information

Experiment 1C. The Rotating Ring-Disk Electrode

Experiment 1C. The Rotating Ring-Disk Electrode Experiment 1C The Rotating Ring-Disk Electrode Experiment Overview When one sets the potential of an electrode away from the equilibrium potential, a current flows. The amount a potential deviates away

More information

Electrochemical Techniques: Cyclic Voltammetry

Electrochemical Techniques: Cyclic Voltammetry Electrochemical Techniques: Cyclic Voltammetry Cyclic Voltammetry of Ferrocene Carboxylic Acid 1. Aims To use cyclic voltammetry to investigate the solution electrochemistry of a simple redox couple. 2.

More information

ANALYSIS OF LEAD IN SEAWATER

ANALYSIS OF LEAD IN SEAWATER ANALYSIS OF LEAD IN SEAWATER BY DIFFERENTIAL PULSE POLAROGRAPHY Introduction Electrochemical methods of analysis can be used for the quantitative analysis of any electroactive species any species that

More information

Hydrodynamic Electrodes and Microelectrodes

Hydrodynamic Electrodes and Microelectrodes CHEM465/865, 2004-3, Lecture 20, 27 th Sep., 2004 Hydrodynamic Electrodes and Microelectrodes So far we have been considering processes at planar electrodes. We have focused on the interplay of diffusion

More information

Supporting Information

Supporting Information Copyright WILEY VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2011 Supporting Information for Adv. Mater., DOI: 10.1002/adma.201102200 Nitrogen-Doped Carbon Nanotube Composite Fiber with a Core

More information

Test Procedure for ItalSens IS-1 Graphite Sensors

Test Procedure for ItalSens IS-1 Graphite Sensors Test Procedure for ItalSens IS-1 Graphite Sensors Using Naphthol Oxidation to Check the Electrode Stability or Detect Naphthol Last revision: December 16, 2015 2015 PalmSens BV www.palmsens.com Contents

More information

239 Lecture #4 of 18

239 Lecture #4 of 18 Lecture #4 of 18 239 240 Q: What s in this set of lectures? A: Introduction, Review, and B&F Chapter 1, 15 & 4 main concepts: Section 1.1: Redox reactions Chapter 15: Electrochemical instrumentation Section

More information

Electrocatalytic Currents from Single Enzyme Molecules

Electrocatalytic Currents from Single Enzyme Molecules Supporting Information Electrocatalytic Currents from Single Enzyme Molecules Alina N. Sekretaryova, * Mikhail Yu. Vagin,, Anthony P.F. Turner, and Mats Eriksson Department of Physics, Chemistry and Biology,

More information

Detection of Heavy Metal Ions in Water by High-Resolution Surface Plasmon Resonance Spectroscopy Combined with Anodic Stripping Voltammetry

Detection of Heavy Metal Ions in Water by High-Resolution Surface Plasmon Resonance Spectroscopy Combined with Anodic Stripping Voltammetry Anal. Chem. 2007, 79, 4427-4432 Detection of Heavy Metal Ions in Water by High-Resolution Surface Plasmon Resonance Spectroscopy Combined with Anodic Stripping Voltammetry Shaopeng Wang,*, Erica S. Forzani,

More information

Cyclic Voltammetry. Objective: To learn the basics of cyclic voltammetry with a well-behaved echem system

Cyclic Voltammetry. Objective: To learn the basics of cyclic voltammetry with a well-behaved echem system Cyclic Voltammetry Objective: To learn the basics of cyclic voltammetry with a well-behaved echem system Introduction Cyclic voltammetry (CV) is a popular electroanalytical technique for its relative simplicity

More information

Goals. The laboratory instructor has already purged the solutions of dissolved. Purging the from these solutions prevents spurious

Goals. The laboratory instructor has already purged the solutions of dissolved. Purging the from these solutions prevents spurious Goals 41 Cyclic Voltammetry XXGoals The goals of this experiment are to: Learn how to set up a screen-printed electrode Learn how to operate the Gamry potentiostat Determine the redox potential of potassium

More information

Correlating Hydrogen Evolution Reaction Activity in Alkaline Electrolyte to Hydrogen Binding Energy on Monometallic Surfaces

Correlating Hydrogen Evolution Reaction Activity in Alkaline Electrolyte to Hydrogen Binding Energy on Monometallic Surfaces Supplemental Materials for Correlating Hydrogen Evolution Reaction Activity in Alkaline Electrolyte to Hydrogen Binding Energy on Monometallic Surfaces Wenchao Sheng, a MyatNoeZin Myint, a Jingguang G.

More information

Supporting Information. 13 Pages, 9 Figures. Mechanisms of Humic Acid Fouling on Capacitive and Insertion Electrodes for Electrochemical Desalination

Supporting Information. 13 Pages, 9 Figures. Mechanisms of Humic Acid Fouling on Capacitive and Insertion Electrodes for Electrochemical Desalination Supporting Information 13 Pages, 9 Figures Mechanisms of Humic Acid Fouling on Capacitive and Insertion Electrodes for Electrochemical Desalination Xitong Liu, 1 Jay F. Whitacre, 2,3,4 and Meagan S. Mauter

More information

CV Sim Simulation of the simple redox reaction (E) I The effect of the scan rate

CV Sim Simulation of the simple redox reaction (E) I The effect of the scan rate 7 CV Sim Simulation of the simple redox reaction (E) I The effect of the scan rate I Introduction CV Sim is a powerful tool implemented in EC- Lab that allows the user to simulate current vs. potential

More information

Supporting Information

Supporting Information Supporting Information Synchrotron-Based In Situ Characterization of Carbon-Supported Platinum and Platinum Monolayer Electrocatalysts Kotaro Sasaki 1*, Nebojsa Marinkovic 2, Hugh S. Isaacs 1, Radoslav

More information

Impact of Adsorption on Scanning Electrochemical Microscopy. Voltammetry and Implications for Nanogap Measurements

Impact of Adsorption on Scanning Electrochemical Microscopy. Voltammetry and Implications for Nanogap Measurements Supporting Information Impact of Adsorption on Scanning Electrochemical Microscopy Voltammetry and Implications for Nanogap Measurements Sze-yin Tan,, Jie Zhang, Alan M. Bond, Julie V. Macpherson, Patrick

More information

Study of Electrode Mechanism by Cyclic Voltammetry

Study of Electrode Mechanism by Cyclic Voltammetry Study of Electrode Mechanism by Cyclic Voltammetry Please note that this experiment is NT in the P. Chem lab in Mergenthaler. Students doing this experiment should go directly to Dunning Hall 14. Purpose

More information

Single-walled carbon nanotubes as nano-electrode and nanoreactor to control the pathways of a redox reaction

Single-walled carbon nanotubes as nano-electrode and nanoreactor to control the pathways of a redox reaction Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 014 Supporting information Single-walled carbon nanotubes as nano-electrode and nanoreactor to control

More information

Cyclic Voltammetry. Fundamentals of cyclic voltammetry

Cyclic Voltammetry. Fundamentals of cyclic voltammetry Cyclic Voltammetry Cyclic voltammetry is often the first experiment performed in an electrochemical study of a compound, biological material, or an electrode surface. The effectiveness of cv results from

More information

Solution Purging. Goals. 1. Purge both solutions with an inert gas (preferably N 2

Solution Purging. Goals. 1. Purge both solutions with an inert gas (preferably N 2 Goals 43 Cyclic Voltammetry XXGoals The goals of this experiment are to: Learn how to set up a screen-printed electrode Learn how to operate the Gamry potentiostat Determine the redox potential of potassium

More information

Standard Operating Procedure. edaq Potentionstat. Miramar College Potentiostat. -Report by Marianne Samonte, Dec 2009

Standard Operating Procedure. edaq Potentionstat. Miramar College Potentiostat. -Report by Marianne Samonte, Dec 2009 Standard Operating Procedure edaq Potentionstat Miramar College Potentiostat -Report by Marianne Samonte, Dec 2009 I. Instrument Description of Potentiostat and ecorder The components of the edaq ecorder

More information

This material is based upon work supported by the National Science Foundation under Grant Number DUE

This material is based upon work supported by the National Science Foundation under Grant Number DUE This material is based upon work supported by the National Science Foundation under Grant Number DUE-1140469. Any opinions, findings, and conclusions or recommendations expressed in this material are those

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full///e56/dc Supplementary Materials for Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on ph and hydrogen binding

More information

Chapter 22. Bulk Electrolysis: Electrogravimetry and Coulometry. Definition. Features of Bulk Electrolysis Cells

Chapter 22. Bulk Electrolysis: Electrogravimetry and Coulometry. Definition. Features of Bulk Electrolysis Cells Chapter 22 Bulk Electrolysis: Electrogravimetry and Coulometry Definition Bulk Electrolysis deals with methods that involve electrolysis producing a quantitative change in oxidation state Example: In a

More information

Supplementary Information. Carolyn Richmonds, Megan Witzke, Brandon Bartling, Seung Whan Lee, Jesse Wainright,

Supplementary Information. Carolyn Richmonds, Megan Witzke, Brandon Bartling, Seung Whan Lee, Jesse Wainright, Supplementary Information Electron transfer reactions at the plasma-liquid interface Carolyn Richmonds, Megan Witzke, Brandon Bartling, Seung Whan Lee, Jesse Wainright, Chung-Chiun Liu, and R. Mohan Sankaran*,

More information

206 Lecture #4 of 17

206 Lecture #4 of 17 Lecture #4 of 17 206 207 Q: What s in this set of lectures? A: B&F Chapters 1, 15 & 4 main concepts: Section 1.1: Redox reactions Chapter 15: Electrochemical instrumentation Section 1.2: Charging interfaces

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/332/6025/81/dc1 Supporting Online Material for Electrochemically Mediated Atom Transfer Radical Polymerization Andrew J. D. Magenau, Nicholas C. Strandwitz, Armando

More information

Practice Homework #3 Chem 248 Ardo Version:

Practice Homework #3 Chem 248 Ardo Version: Read Chapter 4, answer the following problems, and indicate with whom you worked:. (1) Do problems 1.11, 1.12, 2.10, and 4.1 in Bard and Faulkner (B&F). Answers: Problem 1.12a: Starting with expression

More information

Unit 2 B Voltammetry and Polarography

Unit 2 B Voltammetry and Polarography Unit 2 B Voltammetry and Polarography Voltammetric methods of Analysis What is Voltammetry? A time-dependent potential is applied to an electrochemical cell, and the current flowing through the cell is

More information

Mobility and Reactivity of Oxygen Adspecies on Platinum Surface

Mobility and Reactivity of Oxygen Adspecies on Platinum Surface Mobility and Reactivity of Oxygen Adspecies on Platinum Surface Wei Wang, Jie Zhang, Fangfang Wang, Bing-Wei Mao, Dongping Zhan*, Zhong-Qun Tian State Key Laboratory of Physical Chemistry of Solid Surfaces,

More information

FUEL CELLS in energy technology (4)

FUEL CELLS in energy technology (4) Fuel Cells 1 FUEL CELLS in energy technology (4) Werner Schindler Department of Physics Nonequilibrium Chemical Physics TU Munich summer term 213 Fuel Cells 2 Nernst equation and its application to fuel

More information

Electrogravimetry. All Cu is plated out Nothing else plates out

Electrogravimetry. All Cu is plated out Nothing else plates out Electrogravimetry Apply potential to cause a soluble species to reduce or deposit on a solid electrode e.g., reduce Cu 2+ onto Pt cathode Cu 2+ (aq) + 2 e - Cu (metal on Pt) Change in weight of dried cathode

More information

Table S1. Electrocatalyst plating conditions Metal Anode (foil) Plating Potential (V versus Ag/AgCl) Rh Pt 1 M HCl/HPLC.

Table S1. Electrocatalyst plating conditions Metal Anode (foil) Plating Potential (V versus Ag/AgCl) Rh Pt 1 M HCl/HPLC. 1 Materials and Methods Electrode Preparation All chemicals and supplies were high purity (> 999%) and supplied from Alfa Aesar or Fisher Scientific For anodic catalyst selection, 5 cm 2 titanium foil

More information

Electrochemical characterization of the ultrathin polypeptide film/1,2-dichloroethane liquid liquid interface

Electrochemical characterization of the ultrathin polypeptide film/1,2-dichloroethane liquid liquid interface www.elsevier.nl/locate/jelechem Journal of Electroanalytical Chemistry 483 (2000) 88 94 Electrochemical characterization of the ultrathin polypeptide film/1,2-dichloroethane liquid liquid interface Yufei

More information

4. Electrode Processes

4. Electrode Processes Electrochemical Energy Engineering, 2012 4. Electrode Processes Learning subject 1. Working electrode 2. Reference electrode 3. Polarization Learning objective 1. Understanding the principle of electrode

More information

Guanosine oxidation explored by pulse radiolysis coupled with transient electrochemistry. Electronic Supplementary Information

Guanosine oxidation explored by pulse radiolysis coupled with transient electrochemistry. Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Guanosine oxidation explored by pulse radiolysis coupled with transient electrochemistry. A. Latus,

More information

The Electrochemical Isotope Effect Redox driven stable isotope fractionation

The Electrochemical Isotope Effect Redox driven stable isotope fractionation The Electrochemical Isotope Effect Redox driven stable isotope fractionation Redox reactions (involving an electron transfer) drive many chemical transformations in the environment and are vital in biological

More information

Visualizing the bi-directional electron transfer in a Schottky junction consisted of single CdS nanoparticles and a planar gold film

Visualizing the bi-directional electron transfer in a Schottky junction consisted of single CdS nanoparticles and a planar gold film Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Visualizing the bi-directional electron transfer in

More information

Chemistry 325 Instrumental Methods of Analysis March 13, Final Exam. Name

Chemistry 325 Instrumental Methods of Analysis March 13, Final Exam. Name Final Exam Name Instructions: This exam is worth 100 points. Some questions allow a choice as to which parts are answered. Only answer the number of parts requested. 1. (32 points) Circle the best answer

More information

Supporting Information. In-Situ Detection of the Adsorbed Fe(II) Intermediate and the Mechanism of

Supporting Information. In-Situ Detection of the Adsorbed Fe(II) Intermediate and the Mechanism of Supporting Information In-Situ Detection of the Adsorbed Fe(II) Intermediate and the Mechanism of Magnetite Electrodeposition by Scanning Electrochemical Microscopy Mohsin A Bhat, #, Nikoloz Nioradze,

More information

Title: Discrimination of Inner- and Outer-sphere Electrode Reactions by Cyclic Voltammetry Experiments

Title: Discrimination of Inner- and Outer-sphere Electrode Reactions by Cyclic Voltammetry Experiments Title: Discrimination of Inner- and Outer-sphere Electrode Reactions by Cyclic Voltammetry Experiments Key Words Marcus theory, electron transfer, chronoamperometry, chronocoulometry, Cyclic voltammetry,

More information

Supporting Information. Electrochemical Reduction of Carbon Dioxide on Nitrogen-Doped Carbons: Insights from Isotopic Labeling Studies

Supporting Information. Electrochemical Reduction of Carbon Dioxide on Nitrogen-Doped Carbons: Insights from Isotopic Labeling Studies Supporting Information Electrochemical Reduction of Carbon Dioxide on Nitrogen-Doped Carbons: Insights from Isotopic Labeling Studies Dorottya Hursán 1,2 and Csaba Janáky 1,2* 1 Department of Physical

More information

Supporting Information. Ms. ID: se e. Paper-based Sensor for Electrochemical Detection of Silver

Supporting Information. Ms. ID: se e. Paper-based Sensor for Electrochemical Detection of Silver Supporting Information Ms. ID: se-2015-00051e Paper-based Sensor for Electrochemical Detection of Silver Nanoparticle Labels by Galvanic Exchange Josephine C. Cunningham, a Molly R. Kogan, a Yi-Ju Tsai,

More information

Formic acid electro-synthesis from carbon dioxide in a room temperature ionic liquid

Formic acid electro-synthesis from carbon dioxide in a room temperature ionic liquid Supporting Information: Formic acid electro-synthesis from carbon dioxide in a room temperature ionic liquid Benjamin C. M. Martindale and Richard G. Compton a * Department of Chemistry, Physical and Theoretical

More information

Electrochemical Cells Homework Unit 11 - Topic 4

Electrochemical Cells Homework Unit 11 - Topic 4 Electrochemical Cell Vocabulary Electrochemical Cells Homework Unit 11 - Topic 4 Electrode Anode Voltaic Cell Oxidation Electrolytic Cell Cathode Salt Bridge Reduction Half Reaction Refer to Table J: For

More information

Charge Percolation in Redox-Active Thin Membrane Hybrids of Mesoporous Silica and Poly(viologens)

Charge Percolation in Redox-Active Thin Membrane Hybrids of Mesoporous Silica and Poly(viologens) Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2019 Electronic Supplementary Information for Charge Percolation in Redox-Active Thin

More information

Electronic Supplementary Information for: 3D-Printed Plastic Components Tailored for Electrolysis

Electronic Supplementary Information for: 3D-Printed Plastic Components Tailored for Electrolysis Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information for: 3D-Printed Plastic Components Tailored

More information

Supplementary Information

Supplementary Information Electrochemical Charging of Single Gold Nanorods Carolina Novo, Alison M. Funston, Ann K. Gooding, Paul Mulvaney* School of Chemistry & Bio21 Institute, University of Melbourne, Parkville, VIC, 3010, Australia

More information

Protein-Ligand Interactions Are Responsible for Signal Transduction

Protein-Ligand Interactions Are Responsible for Signal Transduction Proteinigand Interactions Are Responsible for Signal ransduction ypes of Interactions: 1. ProteinProtein 2. ProteinDNA (RNA) 3. Proteinsmall molecule Dynamic Proteinigand Interaction Dynamic interaction

More information

How antibody surface coverage on nanoparticles determines the. activity and kinetics of antigen capturing for biosensing

How antibody surface coverage on nanoparticles determines the. activity and kinetics of antigen capturing for biosensing How antibody surface coverage on nanoparticles determines the activity and kinetics of antigen capturing for biosensing Bedabrata Saha, Toon H. Evers, and Menno W. J. Prins Philips Research, High Tech

More information

Heterogeneous electron transfer at Au/SAM junctions in a room-temperature ionic liquid under pressure

Heterogeneous electron transfer at Au/SAM junctions in a room-temperature ionic liquid under pressure Supporting Information Heterogeneous electron transfer at Au/SAM junctions in a room-temperature ionic liquid under pressure Tina D. Dolidze, Dimitri E. Khoshtariya,* Peter Illner and Rudi van Eldik* a)

More information

Voltammetry. Voltammetry and Polarograph. Chapter 23. Polarographic curves -- Voltammograms

Voltammetry. Voltammetry and Polarograph. Chapter 23. Polarographic curves -- Voltammograms Chapter 23 Voltammetry Voltammetry and Polarograph Electrochemistry techniques based on current (i) measurement as function of voltage (E appl ) Voltammetry Usually when the working electrode is solid,

More information

Fundamental molecular electrochemistry - potential sweep voltammetry

Fundamental molecular electrochemistry - potential sweep voltammetry Fundamental molecular electrochemistry - potential sweep voltammetry Potential (aka voltammetric) sweep methods are the most common electrochemical methods in use by chemists today They provide an efficient

More information

Mechanistic Studies of Pyridinium Electrochemistry: Alternative Chemical Pathways in the Presence of CO2

Mechanistic Studies of Pyridinium Electrochemistry: Alternative Chemical Pathways in the Presence of CO2 Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 Supporting Information: Mechanistic Studies of Pyridinium Electrochemistry: Alternative

More information

High-Resolution Multiwavelength Surface Plasmon Resonance Spectroscopy for Probing Conformational and Electronic Changes in Redox Proteins

High-Resolution Multiwavelength Surface Plasmon Resonance Spectroscopy for Probing Conformational and Electronic Changes in Redox Proteins Anal. Chem. 2000, 72, 222-226 High-Resolution Multiwavelength Surface Plasmon Resonance Spectroscopy for Probing Conformational and Electronic Changes in Redox Proteins S. Boussaad, J. Pean, and N. J.

More information

Determination of fluorides in aqueous samples using membrane, ion selective electrode (ISE)

Determination of fluorides in aqueous samples using membrane, ion selective electrode (ISE) Determination of fluorides in aqueous samples using membrane, ion selective electrode (ISE) (dr hab. inż. Andrzej Wasik, Gdańsk 2016) The aim of this laboratory exercise is to familiarise students with

More information

Nernst voltage loss in oxyhydrogen fuel cells

Nernst voltage loss in oxyhydrogen fuel cells Nernst voltage loss in oxyhydrogen fuel cells Jinzhe Lyu (Division for Experimental Physics, School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, Lenina Ave. 43, Tomsk,

More information

Lecture 12: Electroanalytical Chemistry (I)

Lecture 12: Electroanalytical Chemistry (I) Lecture 12: Electroanalytical Chemistry (I) 1 Electrochemistry Electrochemical processes are oxidation-reduction reactions in which: Chemical energy of a spontaneous reaction is converted to electricity

More information

[ppm] Electronic supplementary information. Figure H NMR of P4 in 1,2-dichlorobenzene-d 4 at 373 K.

[ppm] Electronic supplementary information. Figure H NMR of P4 in 1,2-dichlorobenzene-d 4 at 373 K. Electronic supplementary information * * * 10 8 6 4 2 0 [ppm] Figure 11. 1 H NMR of P4 in 1,2-dichlorobenzene-d 4 at 373 K. -100-110 -120-130 -140-150 -160 [ppm] Figure 2. 19 F NMR of P4 in 1,2-dichlorobenzene-d

More information

Components of output signal in Chronoamperometry

Components of output signal in Chronoamperometry Chronoamperometry Stationary electrode Unstirred = mass transport by diffusion Constant potential Measure current vs time Theory assume Ox + n e - Red - both Ox and Red are soluble - reversible reaction

More information

Templated electrochemical fabrication of hollow. molybdenum sulfide micro and nanostructures. with catalytic properties for hydrogen production

Templated electrochemical fabrication of hollow. molybdenum sulfide micro and nanostructures. with catalytic properties for hydrogen production Supporting Information Templated electrochemical fabrication of hollow molybdenum sulfide micro and nanostructures with catalytic properties for hydrogen production Adriano Ambrosi, Martin Pumera* Division

More information

Redox Titration. Properties of Umass Boston

Redox Titration. Properties of Umass Boston Redox Titration Redox Titration Ce 4+ + Fe 2+ Ce 3+ + Fe 3+ Redox titration is based on the redox reaction (oxidation-reduction) between analyte and titrant. Position of the end point Determine the end

More information

Subject: A Review of Techniques for Electrochemical Analysis

Subject: A Review of Techniques for Electrochemical Analysis Application Note E-4 Subject: A Review of Techniques for Electrochemical Analysis INTRODUCTION Electrochemistry is the study of the chemical response of a system to an electrical stimulation. The scientist

More information

Supporting Information

Supporting Information Supporting Information Electrogenerated Chemiluminescence of Single Conjugated Polymer Nanoparticles Ya-Lan Chang, Rodrigo E. Palacios, Fu-Ren F. Fan, Allen J. Bard, and Paul F. Barbara Department of Chemistry

More information

A Robust and Highly Active Copper-Based Electrocatalyst. for Hydrogen Production at Low Overpotential in Neutral

A Robust and Highly Active Copper-Based Electrocatalyst. for Hydrogen Production at Low Overpotential in Neutral Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting information A Robust and Highly Active Copper-Based Electrocatalyst for Hydrogen Production

More information

Supporting Information. Synthesis of Metallic Magnesium Nanoparticles by Sonoelectrochemistry. Iris Haas and Aharon Gedanken*

Supporting Information. Synthesis of Metallic Magnesium Nanoparticles by Sonoelectrochemistry. Iris Haas and Aharon Gedanken* Supporting Information Synthesis of Metallic Magnesium Nanoparticles by Sonoelectrochemistry Iris Haas and Aharon Gedanken* Experimental Materials and chemical preparation The Gringard reagents, ethyl-mgcl

More information

DigiElch 8 from ElchSoft

DigiElch 8 from ElchSoft Redefining Electrochemical Measurement DigiElch 8 from ElchSoft Electrochemical Simulation Software DigiElch 8 from ElchSoft is a simulation program for electrochemical experiments. DigiElch 8 offers a

More information

Special Lecture Series Biosensors and Instrumentation

Special Lecture Series Biosensors and Instrumentation !1 Special Lecture Series Biosensors and Instrumentation Lecture 2: Introduction to Electrochemistry Electrochemistry Basics Electrochemistry is the study of electron transfer processes that normally occur

More information

EMA4303/5305 Electrochemical Engineering Lecture 03 Electrochemical Kinetics

EMA4303/5305 Electrochemical Engineering Lecture 03 Electrochemical Kinetics EMA4303/5305 Electrochemical Engineering Lecture 03 Electrochemical Kinetics Dr. Junheng Xing, Prof. Zhe Cheng Mechanical & Materials Engineering Florida International University 2 Electrochemical Kinetics

More information

Supporting Information. The Study of Multireactional Electrochemical Interfaces Via a Tip Generation/Substrate

Supporting Information. The Study of Multireactional Electrochemical Interfaces Via a Tip Generation/Substrate Supporting Information The Study of Multireactional Electrochemical Interfaces Via a Tip Generation/Substrate Collection Mode of Scanning Electrochemical Microscopy The Hydrogen Evolution Reaction for

More information

Influence of Self-Assembling Redox Mediators on Charge Transfer at Hydrophobic Electrodes

Influence of Self-Assembling Redox Mediators on Charge Transfer at Hydrophobic Electrodes Supporting Information Influence of Self-Assembling Redox Mediators on Charge Transfer at Hydrophobic Electrodes Timothy J. Smith, Chenxuan Wang, and Nicholas L. Abbott* Department of Chemical and Biological

More information

Usama Anwar. June 29, 2012

Usama Anwar. June 29, 2012 June 29, 2012 What is SPR? At optical frequencies metals electron gas can sustain surface and volume charge oscillations with distinct resonance frequencies. We call these as plasmom polaritons or plasmoms.

More information

Studying electrochemical phenomena in a micro- and

Studying electrochemical phenomena in a micro- and pubs.acs.org/ac Electrochemical Reactions in Subfemtoliter-Droplets Studied with Plasmonics-Based Electrochemical Current Microscopy Yixian Wang, Xiaonan Shan, Fengjuan Cui, Jinghong Li, Shaopeng Wang,

More information

CHAPTER-5 CYCLIC VOLTAMETRIC STUDIES OF NOVEL INDOLE ANALOGUES PREPARED IN THE PRESENT STUDY

CHAPTER-5 CYCLIC VOLTAMETRIC STUDIES OF NOVEL INDOLE ANALOGUES PREPARED IN THE PRESENT STUDY CHAPTER-5 CYCLIC VOLTAMETRIC STUDIES OF NOVEL INDOLE ANALOGUES PREPARED IN THE PRESENT STUDY Page No. 175-187 5.1 Introduction 5.2 Theoretical 5.3 Experimental 5.4 References 5. 1 Introduction Electrochemical

More information

SUPORTING INFORMATION The Cathodic Voltammetric Behavior of Pillar[5]quinone in Nonaqueous Media. Symmetry Effects on the Electron Uptake Sequence.

SUPORTING INFORMATION The Cathodic Voltammetric Behavior of Pillar[5]quinone in Nonaqueous Media. Symmetry Effects on the Electron Uptake Sequence. SUPORTING INFORMATION The Cathodic Voltammetric Behavior of Pillar[5]quinone in Nonaqueous Media. Symmetry Effects on the Electron Uptake Sequence. Beijun Cheng and Angel E. Kaifer* Department of Chemistry

More information

Electro Analytical Studies on Ethoxylation of O- Nitro Phenol

Electro Analytical Studies on Ethoxylation of O- Nitro Phenol International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol.4, No.3, pp 1218-1222, July-Sept 2012 Electro Analytical Studies on Ethoxylation of O- Nitro Phenol N. Xavier 1, S. Antony

More information

Highly efficient hydrogen evolution of platinum via tuning the interfacial dissolved-gas concentration

Highly efficient hydrogen evolution of platinum via tuning the interfacial dissolved-gas concentration Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2018 Supporting Information for Highly efficient hydrogen evolution of platinum via tuning

More information

1298 Lecture #18 of 18

1298 Lecture #18 of 18 Lecture #18 of 18 1298 1299 Q: What s in this set of lectures? A: B&F Chapters 9, 10, and 6 main concepts: Sections 9.1 9.4: Sections 10.1 10.4: Rotating (Ring-)Disk Electrochemistry Electrochemical Impedance

More information

Supplementary Information. Unusual High Oxygen Reduction Performance in All-Carbon Electrocatalysts

Supplementary Information. Unusual High Oxygen Reduction Performance in All-Carbon Electrocatalysts Supplementary Information Unusual High Oxygen Reduction Performance in All-Carbon Electrocatalysts Wei Wei 1, 4,, Ying Tao 1, 4,, Wei Lv 2,, Fang-Yuan Su 2, Lei Ke 2, Jia Li 2, Da-Wei Wang 3, *, Baohua

More information

CHM 213 (INORGANIC CHEMISTRY): Applications of Standard Reduction Potentials. Compiled by. Dr. A.O. Oladebeye

CHM 213 (INORGANIC CHEMISTRY): Applications of Standard Reduction Potentials. Compiled by. Dr. A.O. Oladebeye CHM 213 (INORGANIC CHEMISTRY): Applications of Standard Reduction Potentials Compiled by Dr. A.O. Oladebeye Department of Chemistry University of Medical Sciences, Ondo, Nigeria Electrochemical Cell Electrochemical

More information

Proton-Coupled Electron Transfer Kinetics for the Hydrogen Evolution Reaction of Hangman Porphyrins

Proton-Coupled Electron Transfer Kinetics for the Hydrogen Evolution Reaction of Hangman Porphyrins Electronic Supplementary Information Proton-Coupled Electron Transfer Kinetics for the Hydrogen Evolution Reaction of Hangman Porphyrins Manolis M. Roubelakis, D. Kwabena Bediako, Dilek K. Dogutan and

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Analyst. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Electrogenerated Chemiluminescence at 9,10-Diphenylanthracene/

More information

Cyclic Voltammetry - A Versatile Electrochemical Method Investigating Electron Transfer Processes

Cyclic Voltammetry - A Versatile Electrochemical Method Investigating Electron Transfer Processes World Journal of Chemical Education, 2015, Vol. 3, No. 5, 115-119 Available online at http://pubs.sciepub.com/wjce/3/5/2 Science and Education Publishing DOI:10.12691/wjce-3-5-2 Cyclic Voltammetry - A

More information

Electrochemical Sensors: trace detection for specific detection and pattern recognition for complex matrices

Electrochemical Sensors: trace detection for specific detection and pattern recognition for complex matrices 4 Electrochemical Sensors: trace detection for specific detection and pattern recognition for complex matrices TH 29 ARTICLE Peter Rabenecker Fraunhofer-Institute for Chemical Technology (ICT), Joseph-von-Fraunhofer-Str.

More information

Bistriazole-p-benzoquinone and its alkali salts: electrochemical behaviour in aqueous alkaline solutions

Bistriazole-p-benzoquinone and its alkali salts: electrochemical behaviour in aqueous alkaline solutions Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2017 Bistriazole-p-benzoquinone and its alkali salts: electrochemical behaviour in aqueous

More information

Supporting Information. One-Pot Synthesis of Reduced Graphene

Supporting Information. One-Pot Synthesis of Reduced Graphene Supporting Information One-Pot Synthesis of Reduced Graphene Oxide/Metal (oxide) Composites Xu Wu, Yuqian Xing, David Pierce, Julia Xiaojun Zhao* a Department of Chemistry, University of North Dakota,

More information

CHAPTER 1: INTRODUCTION. In this book, we will look at some of the fun analytical. things that electrochemists have done and are currently doing.

CHAPTER 1: INTRODUCTION. In this book, we will look at some of the fun analytical. things that electrochemists have done and are currently doing. CHAPTER 1: NTRODUCTON n this book, we will look at some of the fun analytical things that electrochemists have done and are currently doing. We start with inorganic electrochemistry which allows us to

More information

Determination of fluorides in aqueous samples using membrane, ion selective electrode (ISE)

Determination of fluorides in aqueous samples using membrane, ion selective electrode (ISE) Determination of fluorides in aqueous samples using membrane, ion selective electrode (ISE) (dr hab. inż. Andrzej Wasik, Gdańsk 2016) The aim of this laboratory exercise is to familiarise students with

More information

Electrochemistry. Michael Faraday s law of electromagnetic induction says that whenever a conductor is

Electrochemistry. Michael Faraday s law of electromagnetic induction says that whenever a conductor is Surname 1 Name Course Instructor Date Electrochemistry 1. Faraday s Law Michael Faraday s law of electromagnetic induction says that whenever a conductor is positioned in a changeable magnetic field emf

More information

Supporting Information Inherent Electrochemistry and Charge Transfer Properties of Few-Layer Two Dimensional Ti 3 C 2 T x MXene

Supporting Information Inherent Electrochemistry and Charge Transfer Properties of Few-Layer Two Dimensional Ti 3 C 2 T x MXene Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 Supporting Information Inherent Electrochemistry and Charge Transfer Properties of Few-Layer Two

More information

Aggregation States and Proton Conductivity of Nafion in Thin Films

Aggregation States and Proton Conductivity of Nafion in Thin Films 2 nd Oct. 2016 Fluoropolymer 2016 New Orleans, USA Aggregation States and Proton Conductivity of Nafion in Thin Films Department of Applied Chemistry and International Institute for Carbon-neutral Energy

More information

Supporting Information

Supporting Information Supporting Information Characterizing Emulsions by Observation of Single Droplet Collisions Attoliter Electrochemical Reactors Byung-Kwon Kim, Aliaksei Boika, Jiyeon Kim, Jeffrey E. Dick, and Allen J.

More information

Investigation of the diffusion of ferricyanide through porous membranes using the SECM150

Investigation of the diffusion of ferricyanide through porous membranes using the SECM150 Investigation of the diffusion of ferricyanide through porous membranes using the SECM150 I INTRODUCTION Scanning ElectroChemical Microscopy (SECM) has the ability to provide spatially resolved, rather

More information

Electrochemical study and applications of the selective electrodeposition of silver on quantum dots

Electrochemical study and applications of the selective electrodeposition of silver on quantum dots SUPPORTING INFORMATION Electrochemical study and applications of the selective electrodeposition of silver on quantum dots Daniel Martín-Yerga*, Estefanía Costa Rama and Agustín Costa-García Department

More information

and constant current operations in capacitive deionization

and constant current operations in capacitive deionization Energy consumption analysis of constant voltage and constant current operations in capacitive deionization Supporting information Yatian Qu, a,b Patrick G. Campbell, b Lei Gu, c Jennifer M. Knipe, b Ella

More information

Quantitative analysis of GITT measurements of Li-S batteries

Quantitative analysis of GITT measurements of Li-S batteries Quantitative analysis of GITT measurements of Li-S batteries James Dibden, Nina Meddings, Nuria Garcia-Araez, and John R. Owen Acknowledgements to Oxis and EPSRC for EP/M5066X/1 - CASE studentship, EP/P019099/1-

More information