Supporting Information. Ms. ID: se e. Paper-based Sensor for Electrochemical Detection of Silver

Size: px
Start display at page:

Download "Supporting Information. Ms. ID: se e. Paper-based Sensor for Electrochemical Detection of Silver"

Transcription

1 Supporting Information Ms. ID: se e Paper-based Sensor for Electrochemical Detection of Silver Nanoparticle Labels by Galvanic Exchange Josephine C. Cunningham, a Molly R. Kogan, a Yi-Ju Tsai, a Long Luo, a Ian Richards, b and Richard M. Crooks a,* a Department of Chemistry, The University of Texas at Austin, 105 E. 24th St., Stop A5300, Austin, TX, USA b Interactives Executive Excellence LLC, 201 North Weston Lane, Austin, Texas USA 16 Pages S-1

2 Table of Contents S-1 Cover page S-2 Table of contents S-3 Electrochemical cell for gold electrodeposition on the NoSlip working electrode S-4 3D printed holder design and dimensions S-4 NoSlip and electrode stencil dimensions S-5 NoSlip electrode fabrication S-6 Co-oxidation of Au and ascorbic acid S-7 Scanning electron micrographs of working electrode S-8 Oxidation of Au over-layer to expose Ag S-8 Protocol for AgNP-biotin conjugation S-9 Protocol for binding AgNP-biotin to MµB-streptavidin S-11 ASVs in smaller potential windows prevent Au re-oxidation S-11 Re-deposition of Ag in between ASVs S-14 Effect of scan rate on Ag ASVs S-15 References S-2

3 Electrochemical cell for gold electrodeposition on the NoSlip working electrode. Gold was electrodeposited onto the working electrode (WE) of the NoSlip using a recessed electrochemical cell made of polytetrafluoroethylene (PTFE). The cell was equipped with a Pt wire counter electrode (CE), and a saturated Hg/Hg 2 SO 4 reference electrode (RE) from CH Instruments (Figure S-1a). The unassembled NoSlip was aligned in the center of the PTFE cell bottom such that the WE was exposed (Figure S-1b). An acrylic disk (3.2 cm diameter, 0.4 cm thick) was placed behind the NoSlip WE for support and a large binder clip was placed on the side of the PTFE cell and acrylic disk to prevent leaking. The dimensions of the PTFE electrochemical cell are provided in Figure S-1b. Figure S-1. (a) A photograph of the electrochemical cell setup for gold electrodeposition on the NoSlip WE. (b) Dimensions of the PTFE cell in (a) with the carbon WE of the NoSlip exposed through the cell bottom. S-3

4 3D-printed holder design and dimensions. The 3D-printed polylactic acid (PLA) holder that encases the NoSlip and allows for reproducible magnet alignment is shown in Figure S-2a. Before use, the assembled NoSlip is inserted into the 4.80 cm long side-slit in the holder, and then the magnet is placed directly above the WE (Figure S-2b). Figure S-2. (a) An Autodesk 123D 3D drawing of the 3D-printed PLA holder, including dimensions. (b) A photograph of the 3D-printed holder with the NoSlip and magnet inserted. NoSlip and electrode stencil dimensions. The Adobe Illustrator CS6 design that is used to print wax in a particular design onto chromatography paper is shown to scale in Figure S-3a. The regions outlined in blue were removed by laser cutting along the blue lines. The laser cutter was also used to cut out each individual NoSlip (i.e. around the exterior edges of each device). The electrode stencil was fabricated by laser cutting the electrode design into a plastic transparency (Figure S-3b). The stencil was then aligned with the red wax in Figure S-3a, taped on one side to a flat surface, and then the electrodes were stencil printed. S-4

5 Figure S-3. (a) A scaled drawing of the NoSlip design that is printed onto chromatography paper. (b) The design and dimensions of the electrode stencil used for stencil-printing carbon electrodes onto the NoSlip in (a). NoSlip electrode fabrication. The electrode stencil was aligned over the red wax on Layer 1 (Figure S-3a), and then thickened carbon paste was scraped across the surface of the stencil until all void spaces were filled with ink. The thickened carbon ink was prepared by placing a layer of the commercial paste into a glass petri dish and heating in an oven at 65 C for three 30 min intervals (with stirring between intervals) to remove some solvent. The resulting thickened paste was stored at 4 8 C until needed. After printing, the carbon electrodes were cured by heating the NoSlips at 65 C for 1.0 h. Finally, 4.0 µl of a blue dye solution was dispensed onto Layer 2 of the NoSlip and dried under ambient air, and then copper tape contacts were attached directly to the electrode leads. Metallic Au was electroplated onto the WE as follows. First, HAuCl 4 (400.0 µl of 6.0 mm HAuCl 4 in 0.10 M KNO 3 ) 1 3 was placed in the recessed (PTFE) cell (Figure S-1). Second, the WE potential was held at V for 15.0 s to electrodeposit Au. The electrodeposited Au S-5

6 is not deposited uniformly on the stencil-printed carbon electrode, but rather is present as Au nanoparticles dispersed over the surface (Figure S-4). Finally, the NoSlip was assembled by accordion folding and then placed into the 3D-printed PLA holder with a magnet situated above the WE (Figure S-2). Co-oxidation of Au and ascorbic acid. Figure S-4. Cyclic voltammograms of a 0.10 M BCl solution (black trace) and artificial urine (red trace) in the NoSlip from V to 1.00 V vs CQRE at a scan rate of V/s. S-6

7 Scanning electron micrographs of NoSlip working electrode. Figure S-4a is a scanning electron micrograph (SEM) of a carbon WE that was stencil printed onto the NoSlip using the procedure described in the Experimental Section of the main text. An SEM was also collected after electrodepositing gold onto the NoSlip WE (Figure S-5b) for the subsequent galvanic exchange procedure. Each SEM was collected by first cutting out a 2 x 1 inch section around a NoSlip WE, and then attaching the cutout to an SEM stage using double-sided carbon tape. Figure S-5. SEM of (a) a stencil printed carbon WE on paper and (b) electrodeposited Au 0 islands on the carbon WE in (a). S-7

8 Oxidation of Au over-layer to expose Ag. Figure S-6. Cyclic voltammograms of 0.10 M BCl solution in the NoSlip with (black trace) and without (red trace) Au 0 electrodeposited on the WE (ν = V/s). Protocol for AgNP-biotin conjugation. Functionalization of AgNPs with thiol-dna-biotin was performed using a fast ph-assisted method previously reported by Liu and coworkers, 4,5 with slight modifications. Unless stated otherwise, all mixing steps were carried out at 1500 rpm and 24 C on the BioShake iq thermomixer. Briefly, µl of 0.75 nm citrate-capped AgNPs and 2.33 µl of a µm thiol-dna-biotin solution were combined and mixed for 5.0 min. Next, two aliquots of mm citrate-hcl buffer (ph 3.0) were added to the solution (26.5 µl and 27.8 µl, respectively, with 5.0 min of mixing between the first and second additions). The citrate buffer was added to render the solution more acidic while simultaneously increasing the salt concentration. After mixing for 25.0 min, µl of mm HEPES buffer (ph 7.6) was added to neutralize the ph of the solution. The biotinylated AgNPs (AgNP-thiol-DNA-biotin, referred to hereafter S-8

9 as AgNP-biotin) were then washed two times by centrifuging (20.0 min at 16,000 g), the supernatant was carefully removed, and then the AgNP-biotin conjugate was resuspended in µl of 0.10 M borate solution (ph 7.5) after the first centrifugation and BCl solution (0.10 M borate and 0.10 M NaCl, ph 7.5) after the second centrifugation. Protocol for binding AgNP-biotin to MµB-streptavidin. The biotinylated AgNPs were bound to streptavidin-functionalized magnetic microbeads (MµBs) using our previously reported method. 6 First, µl of 1.11 pm streptavidin-coated MµBs were placed in a microcentrifuge tube, and then the MµBs were washed three times with 50.0 µl of 10.0 mm phosphate buffer (ph 7.4). After the third wash, the MµBs were resuspended in µl of the previously synthesized AgNP-biotin solution. The resulting solution was mixed at 24 C for 30 min and then washed three times with µl aliquots of BCl solution. Note that unless specified otherwise, all washing steps were carried out by magnetic separation; that is, by holding a magnet against the sidewall of the microcentrifuge tube for 30 s, followed by removal of the supernatant and resuspension in the specified solution. Figure S-7 shows the UV-vis spectra of the AgNP-biotin solution before and after incubation with streptavidin-coated MµBs. Prior to addition of the MµBs, two peaks are present: the one at 400 nm arises from the plasmon excitation of individual AgNPs, and the one centered at 260 nm corresponds to the DNA coating on the AgNPs. After conjugation, the peak at 400 nm in the spectrum of the first supernatant is significantly smaller, indicating successful S-9

10 attachment of the AgNPs to the MµBs. The peak heights at 400 nm before and after incubation were used to calculate the number of AgNPs bound to the MµBs. Figure S-7. UV-vis spectra of the AgNP-biotin solution before incubation with streptavidin-coated magnetic microbeads (black trace) and the first supernatant after removal of the microbeads (red trace). ASVs in smaller potential windows prevent Au re-oxidation. In the main text we claim that the in Figure 3 the peak is larger in the second ASV than the first because some of the Au 0 over-layer is oxidized between and 0.20 V, thereby allowing Ag 0 to be electrochemically accessible. This claim is supported by the following experiment. A NoSlip was injected with 50.0 µl of 33.8 pm MµB-AgNP composite (suspended in 0.10 M BCl solution) and the galvanic exchange electrochemical procedure was followed as described in the Experimental Section of the main text, with one modification: the potential was scanned from to V for the first and second ASVs instead of to 0.20 V. The scan was stopped at V, S-10

11 because as shown in Figure S-7 Au 0 starts to oxidize from the WE around V. The results of this experiment are shown in Figure S-8. The first and second ASV peaks are nearly identical in size and shape, presumably due to the Au 0 over-layer not being oxidized. Figure S-8. First- and second-scan ASVs of the MµB-AgNP composite in the NoSlip. The scans started at and ended at V, and the scan rate was V/s. Re-deposition of Ag between ASVs. As discussed in the main text, we expected that the Ag peaks in anodic stripping voltammograms (ASVs) subsequent to the first one would get smaller, because the Ag + will diffuse away from the WE and is therefore not fully re-deposited. However, all Ag ASV peaks after the first one are approximately the same size. This behavior will be further justified in the following control experiments. The reduction potential of Ag + was determined by injecting the MµB-AgNP composite (33.8 pm AgNP labels) into the NoSlip and performing galvanic exchange with one modification: a cyclic S-11

12 voltammogram was collected instead of the second ASV. As seen in Figure S-9a, reduction of Ag occurs between approximately and V vs CQRE. This means that during successive scans, Ag 0 can be re-deposited at the beginning of the ASVs. However, at a scan rate of V/s, Ag 0 would be deposited for ~30 s, which can be compared to the s of deposition in the normal sensing experiment (see main text). To test whether Ag 0 is re-deposited at the beginning of the scans we collected ASVs with different starting potentials (Figure S-9b). The peak area was 6.9 µc, 6.9 µc, and 6.3 µc when the ASV started at -0.70, -0.60, and V, respectively. Integrating the peak that resulted from the ASV scan starting at V is not possible because the baseline and peak are convoluted. Importantly, the cathodic current observed at the beginning of the ASV scans is present even in the absence of the MµB-AgNP composite (black trace), and therefore we attribute it to oxygen reduction (none of the solutions used in the NoSlips is degassed). In conclusion, re-deposition of Ag 0 is not the primary explanation for the Ag ASV peaks maintaining their size in successive scans, because there is not a significant difference in the Ag ASV peak size when scans are started at different potentials (and hence the total deposition time changes). S-12

13 Figure S-9. (a) Cyclic voltammograms of unconjugated MµBs (i.e., no AgNPs) in 0.10 M BCl solution (black trace) and the MµB-AgNP composite (red trace) in the NoSlip following the galvanic exchange electrochemical procedure (including the second-scan ASV). The voltammograms were initiated at V and the potential was reversed at 0.10 V. The scan rate of the cyclic voltammograms was 0.10 V/s. (b) Second-scan ASVs initiated at the starting potentials specified in the legend and concluding at 0.20 V. The scan rate was V/s. S-13

14 Effect of scan rate on Ag ASVs. The following control experiment was performed to support our hypothesis that AgCl (s) forms near the electrode surface and results in reproducible Ag ASVs after the first scan. The MµB-AgNP composite (33.8 pm AgNP labels) was injected into a NoSlip and seven scans were collected at the scan rates indicated in the legend (Figure S-10a). By integrating the ASVs in Figure S-10a we determined the amount of Ag 0 present on each electrode (Figure S-10b). There is only a slight variation in charge with scan rate. The linear correlation between the peak height and the square root of scan rate (Figure S-10c) indicates that the electrochemical reaction is reversible and that the constant presence of the Ag peak results from the limited diffusion of Cl - in the solution. In conclusion, our system involves Cl - diffusing to the electrode surface, Ag undergoing kinetically fast oxidation, and AgCl (s) formation. 7 Similarly, Figure S-10d shows a linear correlation between the baseline current and the scan rate. S-14

15 Figure S-10. (a) Successive ASVs of the MµB-AgNP composite in the NoSlip from V to 0.2 V with a range of scan rates (0.010 to 0.40 V/s). Plots of: (b) charge vs scan rate, (c) peak current vs square root scan rate, and (d) baseline current vs scan rate, all of which were extracted from the ASVs in (a). References (1) Pereira, S. V.; Bertolino, F. A.; Fernandez-Baldo, M. A.; Messina, G. A.; Salinas, E.; Sanz, M. I.; Raba, J. A Microfluidic Device Based on a Screen-Printed Carbon Electrode with Electrodeposited Gold Nanoparticles for the Detection of IgG Anti-Trypanosoma Cruzi Antibodies. Analyst 2011, 136, (2) Yang, W.; Gerasimov, J. Y.; Lai, R. Y. Folding-Based Electrochemical DNA Sensor Fabricated on a Gold-Plated Screen-Printed Carbon Electrode. Chem. Commun. 2009, S-15

16 (3) Cunningham, J. C.; Brenes, N. J.; Crooks, R. M. Paper Electrochemical Device for Detection of DNA and Thrombin by Target-Induced Conformational Switching. Anal. Chem. 2014, 86, (4) Zhang, X.; Servos, M. R.; Liu, J. Instantaneous and Quantitative Functionalization of Gold Nanoparticles with Thiolated DNA Using a ph-assisted and Surfactant-Free Route. J. Am. Chem. Soc. 2012, 134, (5) Zhang, X.; Servos, M. R.; Liu, J. Fast ph-assisted Functionalization of Silver Nanoparticles with Monothiolated DNA. Chem. Commun. 2012, 48, (6) Scida, K.; Cunningham, J. C.; Renault, C.; Richards, I.; Crooks, R. M. Simple, Sensitive, and Quantitative Electrochemical Detection Method for Paper Analytical Devices. Anal. Chem. 2014, 86, (7) Bard, A. J.; Faulkner, L. R. Electrochemical Methods; 2nd ed.; Wiley: New York, S-16

Electronic Supplementary Information. Ms. ID: LC-ART July, Paper Diagnostic Device for Quantitative Electrochemical Detection

Electronic Supplementary Information. Ms. ID: LC-ART July, Paper Diagnostic Device for Quantitative Electrochemical Detection Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Ms. ID: LC-ART-06-2015-000731 17 July, 2015 Paper Diagnostic

More information

Fast ph-assisted functionalization of silver nanoparticles with monothiolated DNA

Fast ph-assisted functionalization of silver nanoparticles with monothiolated DNA Supporting Information for Fast ph-assisted functionalization of silver nanoparticles with monothiolated DNA Xu Zhang ab, Mark R. Servos b, and Juewen Liu* a a Department of Chemistry and Waterloo Institute

More information

Instantaneous and Quantitative Functionalization of Gold Nanoparticles with Thiolated DNA Using a ph-assisted and Surfactant-Free Route

Instantaneous and Quantitative Functionalization of Gold Nanoparticles with Thiolated DNA Using a ph-assisted and Surfactant-Free Route Supporting Information Instantaneous and Quantitative Functionalization of Gold Nanoparticles with Thiolated DNA Using a ph-assisted and Surfactant-Free Route Xu Zhang,, Mark R. Servos and Juewen Liu *

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 215 Electronic Supplementary Information Redox cycling-amplified enzymatic Ag deposition

More information

Supplementary Information

Supplementary Information Supplementary Information Size-dependent direct electrochemical detection of gold nanoparticles: application in magnetoimmunoassays Alfredo de la Escosura Muñiz a, Claudio Parolo a, Flavio Maran b and

More information

Supplementary Information

Supplementary Information Supplementary Information Ultrasensitive electrochemical detection of prostate-specific antigen (PSA) using gold-coated magnetic nanoparticles as dispersible electrodes Kyloon Chuah, Leo M. H. Lai, Ian

More information

Supporting Information Design and characterization of an electrochemical peptide-based sensor fabricated via click chemistry

Supporting Information Design and characterization of an electrochemical peptide-based sensor fabricated via click chemistry Electronic upplementary Material (EI) for Chemical Communications This journal is The Royal ociety of Chemistry 2011 upporting Information Design and characterization of an electrochemical peptide-based

More information

Electronic Supplementary Information. Facile synthesis of polypyrrole coated copper nanowire: new concept to engineered core-shell structures

Electronic Supplementary Information. Facile synthesis of polypyrrole coated copper nanowire: new concept to engineered core-shell structures Electronic Supplementary Information Facile synthesis of polypyrrole coated copper nanowire: new concept to engineered core-shell structures Yang Liu, a Zhen Liu, a Ning Lu, b Elisabeth Preiss, a Selcuk

More information

Supporting Information

Supporting Information Supporting Information Electrogenerated Chemiluminescence of Single Conjugated Polymer Nanoparticles Ya-Lan Chang, Rodrigo E. Palacios, Fu-Ren F. Fan, Allen J. Bard, and Paul F. Barbara Department of Chemistry

More information

Electronic supplementary information for:

Electronic supplementary information for: Electronic supplementary information for: Charge-transfer-induced suppression of galvanic replacement and synthesis of (Au@Ag)@Au double shell nanoparticles for highly uniform, robust and sensitive bioprobes

More information

Chapter 2. Materials and Methods

Chapter 2. Materials and Methods Chapter 2 Materials and Methods 2. Materials and Methods This chapter describes the chemicals, reagents and instruments used for carrying out this study. A brief discussion of the methods used for the

More information

Table S1. Electrocatalyst plating conditions Metal Anode (foil) Plating Potential (V versus Ag/AgCl) Rh Pt 1 M HCl/HPLC.

Table S1. Electrocatalyst plating conditions Metal Anode (foil) Plating Potential (V versus Ag/AgCl) Rh Pt 1 M HCl/HPLC. 1 Materials and Methods Electrode Preparation All chemicals and supplies were high purity (> 999%) and supplied from Alfa Aesar or Fisher Scientific For anodic catalyst selection, 5 cm 2 titanium foil

More information

Bottom-up Optimization of SERS Hot Spots. Supplementary Information

Bottom-up Optimization of SERS Hot Spots. Supplementary Information Bottom-up Optimization of SERS Hot Spots Laura Fabris, * Department of Materials Science and Engineering, Institute for Advanced Materials Devices ad Nanotechnology, Rutgers, The State University of New

More information

CHAPTER 3. FABRICATION TECHNOLOGIES OF CdSe/ZnS / Au NANOPARTICLES AND NANODEVICES. 3.1 THE SYNTHESIS OF Citrate-Capped Au NANOPARTICLES

CHAPTER 3. FABRICATION TECHNOLOGIES OF CdSe/ZnS / Au NANOPARTICLES AND NANODEVICES. 3.1 THE SYNTHESIS OF Citrate-Capped Au NANOPARTICLES CHAPTER 3 FABRICATION TECHNOLOGIES OF CdSe/ZnS / Au NANOPARTICLES AND NANODEVICES 3.1 THE SYNTHESIS OF Citrate-Capped Au NANOPARTICLES Au NPs with ~ 15 nm were prepared by citrate reduction of HAuCl 4

More information

Supporting Information. 15 January, Ms. ID: ac b. Parallel Screening of Electrocatalyst Candidates using Bipolar

Supporting Information. 15 January, Ms. ID: ac b. Parallel Screening of Electrocatalyst Candidates using Bipolar Supporting Information 15 January, 2013 Ms. ID: ac-2012-03581b Parallel Screening of Electrocatalyst Candidates using Bipolar Electrochemistry Stephen E. Fosdick, Sean P. Berglund, C. Buddie Mullins, and

More information

3D Dendritic Gold Nanostructures: Seeded Growth of Multi-Generation Fractal Architecture

3D Dendritic Gold Nanostructures: Seeded Growth of Multi-Generation Fractal Architecture -Supporting Information- 3D Dendritic Gold Nanostructures: Seeded Growth of Multi-Generation Fractal Architecture Ming Pan, Shuangxi Xing, Ting Sun, Wenwen Zhou, Melinda Sindoro, Hui Hian Teo, Qingyu Yan,

More information

Supporting Information

Supporting Information Gold Nanoparticle-Modified ITO Electrode for Electrogenerated Chemiluminescence: Well-Preserved Transparency and Highly-Enhanced Activity Zuofeng Chen and Yanbing Zu * Department of Chemistry, The University

More information

Supporting Information for

Supporting Information for Supporting Information for Electrodeposition of Isolated Platinum Atoms and Clusters on Bismuth Characterization and Electrocatalysis Min Zhou, Jeffrey E. Dick, and Allen J. Bard Center for Electrochemistry,

More information

Supporting Information. Temperature dependence on charge transport behavior of threedimensional

Supporting Information. Temperature dependence on charge transport behavior of threedimensional Supporting Information Temperature dependence on charge transport behavior of threedimensional superlattice crystals A. Sreekumaran Nair and K. Kimura* University of Hyogo, Graduate School of Material

More information

Three Dimensional Nano-assemblies of Noble Metal. Nanoparticles-Infinite Coordination Polymers as a Specific

Three Dimensional Nano-assemblies of Noble Metal. Nanoparticles-Infinite Coordination Polymers as a Specific Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Three Dimensional Nano-assemblies of Noble Metal Nanoparticles-Infinite

More information

Supporting Information. Single Particle Detection by Area Amplification Single Wall Carbon Nanotube Attachment to a Nanoelectrode

Supporting Information. Single Particle Detection by Area Amplification Single Wall Carbon Nanotube Attachment to a Nanoelectrode Supporting Information Single Particle Detection by Area Amplification Single Wall Carbon Nanotube Attachment to a Nanoelectrode Jun Hui Park, Scott N. Thorgaard, Bo Zhang, Allen J. Bard * Center for Electrochemistry,

More information

Supplementary Material

Supplementary Material Supplementary Material Digital Electrogenerated Chemiluminescence Biosensor for the Determination of Multiple Proteins Based on Boolean Logic Gate Honglan Qi*, Xiaoying Qiu, Chen Wang, Qiang Gao, Chengxiao

More information

Supplementary Information. Seeding Approach to Noble Metal Decorated Conducting Polymer Nanofiber Network

Supplementary Information. Seeding Approach to Noble Metal Decorated Conducting Polymer Nanofiber Network Supplementary Information Seeding Approach to Noble Metal Decorated Conducting Polymer Nanofiber Network Zhen Liu, Selcuk Poyraz, Yang Liu, Xinyu Zhang* Department of Polymer and Fiber Engineering, Auburn

More information

Sensitive and Recyclable Substrates of Surface-enhanced Raman Scattering

Sensitive and Recyclable Substrates of Surface-enhanced Raman Scattering Supporting Information Cyclic Electroplating and Stripping of Silver on Au@SiO 2 Core/Shell Nanoparticles for Sensitive and Recyclable Substrates of Surface-enhanced Raman Scattering Dan Li a, Da-Wei Li

More information

Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, (P. R. China).

Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, (P. R. China). Electronic Supplementary Material (ESI) for Nanoscale Synergistically enhanced activity of graphene quantum dot/multi-walled carbon nanotube composites as metal-free catalysts for oxygen reduction reaction

More information

Supporting Information

Supporting Information Supporting Information A fishnet electrochemical Hg 2+ sensing strategy based on gold nanopartical-bioconjugate and thymine-hg 2+ -thymine coordination chemistry Xuemei Tang 1, Huixiang Liu 1, Binghua

More information

Homogeneous Electrochemical Assay for Protein Kinase Activity

Homogeneous Electrochemical Assay for Protein Kinase Activity Homogeneous Electrochemical Assay for Protein Kinase Activity Ik-Soo Shin,,, Rohit Chand, Sang Wook Lee, Hyun-Woo Rhee, Yong-Sang Kim, * and Jong-In Hong* Corresponding Author *Prof. Dr. J.-I. Hong, Department

More information

Digitized single scattering nanoparticles for probing molecular binding

Digitized single scattering nanoparticles for probing molecular binding Electronic Supplementary Information (ESI) Digitized single scattering nanoparticles for probing molecular binding Yue Liu a, Cheng Zhi Huang a,b* a Education Ministry Key Laboratory on Luminescence and

More information

Electrochemiluminescence detection of near single DNA molecule with quantum dots-dendrimer nanocomposite for signal amplification

Electrochemiluminescence detection of near single DNA molecule with quantum dots-dendrimer nanocomposite for signal amplification Electronic Supplementary Information (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011 Electrochemiluminescence detection of near single DNA molecule with quantum

More information

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011 Supplementary Information for Selective adsorption toward toxic metal ions results in selective response: electrochemical studies on polypyrrole/reduced graphene oxide nanocomposite Experimental Section

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information One-pot synthesis of ultralong coaxial Au@Pt nanocables with

More information

Application Note Antibody-SOMAmer Sandwich Assay

Application Note Antibody-SOMAmer Sandwich Assay Application Note Antibody-SOMAmer Sandwich Assay Introduction SOMAmer reagents (Slow Off-rate Modified Aptamers) are DNA-based high affinity (average Kd < 1 nm) protein binding reagents with proprietary

More information

Spherotech, Inc Irma Lee Circle, Unit 101, Lake Forest, Illinois PARTICLE COATING PROCEDURES

Spherotech, Inc Irma Lee Circle, Unit 101, Lake Forest, Illinois PARTICLE COATING PROCEDURES SPHERO TM Technical Note STN-1 Rev C. 041106 Introduction Currently, there are several methods of attaching biological ligands to polystyrene particles. These methods include adsorption to plain polystyrene

More information

Preparation of Prussian blue-modified screen-printed electrodes via a chemical deposition for mass production of stable hydrogen peroxide sensors

Preparation of Prussian blue-modified screen-printed electrodes via a chemical deposition for mass production of stable hydrogen peroxide sensors Procedure 7 Preparation of Prussian blue-modified screen-printed electrodes via a chemical deposition for mass production of stable hydrogen peroxide sensors Francesco Ricci, Danila Moscone and Giuseppe

More information

Supporting Information. 27 March, Electrooxidative Grafting of Amine-terminated Dendrimers Encapsulating Nanoparticles

Supporting Information. 27 March, Electrooxidative Grafting of Amine-terminated Dendrimers Encapsulating Nanoparticles Supporting Information 27 March, 2013 Electrooxidative Grafting of Amine-terminated Dendrimers Encapsulating Nanoparticles for Spatially Controlled Surface Functionalization of Indium Tin Oxide Soon Bo

More information

mrna Isolation Kit for Blood/Bone Marrow For isolation mrna from blood or bone marrow lysates Cat. No

mrna Isolation Kit for Blood/Bone Marrow For isolation mrna from blood or bone marrow lysates Cat. No For isolation mrna from blood or bone marrow lysates Cat. No. 1 934 333 Principle Starting material Application Time required Results Key advantages The purification of mrna requires two steps: 1. Cells

More information

camp Direct Immunoassay Kit

camp Direct Immunoassay Kit camp Direct Immunoassay Kit Catalog Number KA0886 100 assays Version: 05 Intended for research use only www.abnova.com Table of Contents Introduction... 3 Background... 3 General Information... 4 Materials

More information

Achieving High Electrocatalytic Efficiency on Copper: A Low-Cost Alternative to Platinum for Hydrogen Generation in Water

Achieving High Electrocatalytic Efficiency on Copper: A Low-Cost Alternative to Platinum for Hydrogen Generation in Water Supporting Information Achieving High Electrocatalytic Efficiency on Copper: A Low-Cost Alternative to Platinum for Hydrogen Generation in Water Jian Zhao, a,b,c,d Phong D. Tran,* a,c Yang Chen, a,c Joachim

More information

Transient Electrocatalytic Water Oxidation in Single Nanoparticle Collision

Transient Electrocatalytic Water Oxidation in Single Nanoparticle Collision Supporting Information for: Transient Electrocatalytic Water Oxidation in Single Nanoparticle Collision Fan Zhang, Peter A. Defnet, Yunshan Fan, Rui Hao, and Bo Zhang * Department of Chemistry, University

More information

Supporting Information

Supporting Information This journal is (c) The Royal Society of Chemistry 21 Zeta potential based Colorimetric Immunoassay for the direct detection of Diabetic marker HbA1c using Gold Nanoprobes Nishima Wangoo, a,b Jyotsna Kaushal,

More information

[Supplementary Information] One-Pot Synthesis and Electrocatalytic Activity of Octapodal Au-Pd Nanoparticles

[Supplementary Information] One-Pot Synthesis and Electrocatalytic Activity of Octapodal Au-Pd Nanoparticles [Supplementary Information] One-Pot Synthesis and Electrocatalytic Activity of Octapodal Au-Pd Nanoparticles Jong Wook Hong, Young Wook Lee, Minjung Kim, Shin Wook Kang, and Sang Woo Han * Department of

More information

Dr. Aoife Morrin. School of Chemical Sciences Dublin City University Ireland. The National Centre for Sensor Research

Dr. Aoife Morrin. School of Chemical Sciences Dublin City University Ireland. The National Centre for Sensor Research INVESTIGATION OF NANOSTRUCTURED MATERIALS FOR NOVEL BIOSENSOR FABRICATION METHODOLOGIES Dr. Aoife Morrin National Centre for Sensor Research School of Chemical Sciences Dublin City University Ireland Introduction

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2016 Supporting Information Single-crystalline Pd square nanoplates enclosed by {100}

More information

An image depicting a 48-well plate comprising 48 individual electrochemical cells

An image depicting a 48-well plate comprising 48 individual electrochemical cells Associate content An image depicting a 48-well plate comprising 48 individual electrochemical cells embossed in hydrophobic R H paper; a schematic diagram showing the design and dimensions of the molds

More information

Supporting Information. Emergent, Collective Oscillations of Self- Mobile Particles and Patterned Surfaces under Redox Conditions

Supporting Information. Emergent, Collective Oscillations of Self- Mobile Particles and Patterned Surfaces under Redox Conditions Supporting Information Emergent, Collective Oscillations of Self- Mobile Particles and Patterned Surfaces under Redox Conditions Michael E. Ibele, a Paul E. Lammert, b Vincent H. Crespi,* b and Ayusman

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Analyst. This journal is The Royal Society of Chemistry 2014 Supporting information Quantized double layer charging of Au 130 (SR) 50 Nanomolecules Vijay Reddy

More information

Electrochemically Synthesized Multi-block

Electrochemically Synthesized Multi-block Electrochemically Synthesized Multi-block Nanorods Sungho Park SungKyunKwan University, Department of Chemistry & SKKU Advanced Institute of Nanotechnology (SAINT) J. Am. Chem. Soc. 2003, 125, 2282-2290

More information

Chemically-Resolved Transient Collision Events of Single Electrocatalytic Nanoparticles. Zhihui Guo, Stephen J. Percival, and Bo Zhang*

Chemically-Resolved Transient Collision Events of Single Electrocatalytic Nanoparticles. Zhihui Guo, Stephen J. Percival, and Bo Zhang* Supporting Information for Chemically-Resolved Transient Collision Events of Single Electrocatalytic Nanoparticles Zhihui Guo, Stephen J. Percival, and Bo Zhang* Department of Chemistry, University of

More information

Electrochemical study and applications of the selective electrodeposition of silver on quantum dots

Electrochemical study and applications of the selective electrodeposition of silver on quantum dots SUPPORTING INFORMATION Electrochemical study and applications of the selective electrodeposition of silver on quantum dots Daniel Martín-Yerga*, Estefanía Costa Rama and Agustín Costa-García Department

More information

Supplementary Material for. Zinc Oxide-Black Phosphorus Composites for Ultrasensitive Nitrogen

Supplementary Material for. Zinc Oxide-Black Phosphorus Composites for Ultrasensitive Nitrogen Electronic Supplementary Material (ESI) for Nanoscale Horizons. This journal is The Royal Society of Chemistry 2018 Supplementary Material for Zinc Oxide-Black Phosphorus Composites for Ultrasensitive

More information

Physisorption of Antibodies using BioReady Bare Nanoparticles

Physisorption of Antibodies using BioReady Bare Nanoparticles TECHNICAL RESOURCE Lateral Flow Immunoassays Physisorption of Antibodies using BioReady Bare Nanoparticles Introduction For more than 20 years, lateral flow immunoassay diagnostic tests have provided a

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 217 Supporting Information Catalyst preparation A certain of aqueous NiCl 2 6H 2 O (2 mm), H 2 PtCl

More information

Supporting Information

Supporting Information Supporting Information D Nanoporous Ag@BSA Composite Microspheres As Hydrogen Peroxide Sensor Quanwen Liu a, *, Ting Zhang b, Lili Yu c, Nengqin Jia c, Da-Peng Yang d * a School of Chemistry and Materials

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information A coaxial triboelectric nanogenerator

More information

Supplementary Information. For. A Universal Method for Preparing Functional ITO Electrodes with Ultrahigh Stability

Supplementary Information. For. A Universal Method for Preparing Functional ITO Electrodes with Ultrahigh Stability Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supplementary Information For A Universal Method for Preparing Functional ITO Electrodes with Ultrahigh

More information

Nickel Phosphide-embedded Graphene as Counter Electrode for. Dye-sensitized Solar Cells **

Nickel Phosphide-embedded Graphene as Counter Electrode for. Dye-sensitized Solar Cells ** Nickel Phosphide-embedded Graphene as Counter Electrode for Dye-sensitized Solar Cells ** Y. Y. Dou, G. R. Li, J. Song, and X. P. Gao =.78 D 1359 G 163 a =.87 D 138 G 159 b =1.3 D 1351 G 1597 c 1 15 1

More information

Microscopy. Maggie L. Weber, Andrew J. Wilson, and Katherine A. Willets. Corresponding author:

Microscopy. Maggie L. Weber, Andrew J. Wilson, and Katherine A. Willets. Corresponding author: Supporting Information for Characterizing the Spatial Dependence of Redox Chemistry on Plasmonic Nanoparticle Electrodes using Correlated Super-resolution SERS Imaging and Electron Microscopy Maggie L.

More information

Electrogenerated Upconverted Emission from Doped Organic Nanowires

Electrogenerated Upconverted Emission from Doped Organic Nanowires Electrogenerated Upconverted Emission from Doped Organic Nanowires Qing Li, Chuang Zhang, Jian Yao Zheng, Yong Sheng Zhao*, Jiannian Yao* Electronic Supplementary Information (ESI) 1 Experimental details

More information

Supporting Information. Time-Resolved Botulinum Neurotoxin A Activity Monitored using. Peptide-Functionalized Au Nanoparticle Energy Transfer Sensors

Supporting Information. Time-Resolved Botulinum Neurotoxin A Activity Monitored using. Peptide-Functionalized Au Nanoparticle Energy Transfer Sensors Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2014 Supporting Information Time-Resolved Botulinum Neurotoxin A Activity Monitored using Peptide-Functionalized

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2006 69451 Weinheim, Germany A Simple and Sensitive Dip Stick Test in Serum Based on Lateral Flow Separation of Aptamer-Linked Nanostructures Juewen Liu, Debapriya Mazumdar

More information

Amplified electrochemiluminescent immunosensing using apoferritin-templated poly(ethylenimine) nanoparticles as co-reactant

Amplified electrochemiluminescent immunosensing using apoferritin-templated poly(ethylenimine) nanoparticles as co-reactant Amplified electrochemiluminescent immunosensing using apoferritin-templated poly(ethylenimine) nanoparticles as co-reactant Ni Liao, Ying Zhuo, Yaqin Chai, Yun Xiang, Yaling Cao, Ruo Yuan, Jing Han Education

More information

Current based methods

Current based methods Current based methods Amperometric and voltammetric sensors More significant influence on analytical parameters (sensitivity, selectivity, interferences elimination) kind of method, potential range, electrode

More information

Mobility and Reactivity of Oxygen Adspecies on Platinum Surface

Mobility and Reactivity of Oxygen Adspecies on Platinum Surface Mobility and Reactivity of Oxygen Adspecies on Platinum Surface Wei Wang, Jie Zhang, Fangfang Wang, Bing-Wei Mao, Dongping Zhan*, Zhong-Qun Tian State Key Laboratory of Physical Chemistry of Solid Surfaces,

More information

Determination of Electron Transfer Number for Oxygen Reduction Reaction: from Theory to Experiment

Determination of Electron Transfer Number for Oxygen Reduction Reaction: from Theory to Experiment Supporting Information Determination of Electron Transfer Number for Oxygen Reduction Reaction: from Theory to Experiment Ruifeng Zhou 1, 2, Yao Zheng 1, Mietek Jaroniec 3 and Shi-Zhang Qiao 1, * 1 School

More information

Ultrasensitive Immunoassay Based on Pseudobienzyme. Amplifying System of Choline Oxidase and Luminol-Reduced

Ultrasensitive Immunoassay Based on Pseudobienzyme. Amplifying System of Choline Oxidase and Luminol-Reduced Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Ultrasensitive Immunoassay Based on Pseudobienzyme Amplifying System of

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2017 SUPPORTING INFORMATION Synthesis of Circular and Triangular Gold Nanorings with

More information

A Robust and Highly Active Copper-Based Electrocatalyst. for Hydrogen Production at Low Overpotential in Neutral

A Robust and Highly Active Copper-Based Electrocatalyst. for Hydrogen Production at Low Overpotential in Neutral Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting information A Robust and Highly Active Copper-Based Electrocatalyst for Hydrogen Production

More information

Electrochemistry. Michael Faraday s law of electromagnetic induction says that whenever a conductor is

Electrochemistry. Michael Faraday s law of electromagnetic induction says that whenever a conductor is Surname 1 Name Course Instructor Date Electrochemistry 1. Faraday s Law Michael Faraday s law of electromagnetic induction says that whenever a conductor is positioned in a changeable magnetic field emf

More information

Probing the Kinetics of Ligand Exchange on Colloidal Gold. Nanoparticles by Surface-Enhanced Raman Scattering

Probing the Kinetics of Ligand Exchange on Colloidal Gold. Nanoparticles by Surface-Enhanced Raman Scattering -Supporting Information- Probing the Kinetics of Ligand Exchange on Colloidal Gold Nanoparticles by Surface-Enhanced Raman Scattering Yuhua Feng, Shuangxi Xing, Jun Xu, Hong Wang, Jun Wei Lim, and Hongyu

More information

Buffers, Electrochemistry. Jan Pláteník & Tomáš Navrátil 2010/2011

Buffers, Electrochemistry. Jan Pláteník & Tomáš Navrátil 2010/2011 Buffers, Electrochemistry Practical Lesson on Medical Chemistry and Biochemistry General Medicine Jan Pláteník & Tomáš Navrátil 2010/2011 1 BUFFERS AND BUFFER CAPACITY 1.1 Principle of buffering: A buffer

More information

Electrochemically-assisted self-assembly of mesoporous silica thin films SUPPLEMENTARY INFORMATION A. WALCARIUS, E. SIBOTTIER, M. ETIENNE, J.

Electrochemically-assisted self-assembly of mesoporous silica thin films SUPPLEMENTARY INFORMATION A. WALCARIUS, E. SIBOTTIER, M. ETIENNE, J. SUPPLEMENTARY INFORMATION Electrochemically-assisted self-assembly of mesoporous silica thin films A. WALCARIUS, E. SIBOTTIER, M. ETIENNE, J. GHANBAJA 50 nm Fig. S1. TEM image of an electrodeposited surfactant-templated

More information

High-Purity Separation of Gold Nanoparticle Dimers and Trimers

High-Purity Separation of Gold Nanoparticle Dimers and Trimers -Supporting Information- High-Purity Separation of Gold Nanoparticle Dimers and Trimers Gang Chen, Yong Wang, Li Huey Tan, Miaoxin Yang, Lee Siew Tan, Yuan Chen and Hongyu Chen* Division of Chemistry and

More information

Portable type TXRF analyzer: Ourstex 200TX

Portable type TXRF analyzer: Ourstex 200TX Excerpted from Adv. X-Ray. Chem. Anal., Japan: 42, pp. 115-123 (2011) H. Nagai, Y. Nakajima, S. Kunimura, J. Kawai Improvement in Sensitivity and Quantification by Using a Portable Total Reflection X-Ray

More information

Experiment 28 DIRECT METHANOL FUEL CELL

Experiment 28 DIRECT METHANOL FUEL CELL Experiment 28 Direct methanol fuel cell 1 Experiment 28 DIRECT METHANOL FUEL CELL Objective The purpose of this experiment is to learn the principle of direct methanol fuel cell (DMFC) and set up a simple

More information

An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti 3 C 2 X 2 (X=OH, F) nanosheets for Oxygen Reduction Reaction

An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti 3 C 2 X 2 (X=OH, F) nanosheets for Oxygen Reduction Reaction An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti 3 X 2 (X=OH, F) nanosheets for Oxygen Reduction Reaction Xiaohong Xie, Siguo Chen*, Wei Ding, Yao Nie, and Zidong Wei* Experimental

More information

Mechanistic Studies of Pyridinium Electrochemistry: Alternative Chemical Pathways in the Presence of CO2

Mechanistic Studies of Pyridinium Electrochemistry: Alternative Chemical Pathways in the Presence of CO2 Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 Supporting Information: Mechanistic Studies of Pyridinium Electrochemistry: Alternative

More information

Nickel Sulfides Freestanding Holey Films as Air-Breathing Electrodes for. Flexible Zn-Air Batteries

Nickel Sulfides Freestanding Holey Films as Air-Breathing Electrodes for. Flexible Zn-Air Batteries Nickel Sulfides Freestanding Holey Films as Air-Breathing Electrodes for Flexible Zn-Air Batteries Kyle Marcus, 1,# Kun Liang, 1,# Wenhan Niu, 1,# Yang Yang 1,* 1 NanoScience Technology Center, Department

More information

Chemistry 213. Electrochemistry

Chemistry 213. Electrochemistry Chemistry 213 Electrochemistry Part A: Electrochemical Cells Objective Oxidation/reduction reactions find their most important use in the construction of voltaic cells (chemical batteries). In this experiment,

More information

Single Catalyst Electrocatalytic Reduction of CO 2 in Water to H 2 :CO Syngas Mixtures with Water Oxidation to O 2

Single Catalyst Electrocatalytic Reduction of CO 2 in Water to H 2 :CO Syngas Mixtures with Water Oxidation to O 2 Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Supporting Information Single Catalyst Electrocatalytic Reduction of CO 2

More information

1 Supporting Information. 2 Reconfigurable and resettable arithmetic logic units based. 4 Siqi Zhang a, Kun Wang a, Congcong Huang b and Ting Sun a*

1 Supporting Information. 2 Reconfigurable and resettable arithmetic logic units based. 4 Siqi Zhang a, Kun Wang a, Congcong Huang b and Ting Sun a* Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 1 Supporting Information 2 Reconfigurable and resettable arithmetic logic units based 3 on magnetic

More information

Supporting Information

Supporting Information Supporting Information Fabrication of Cubic Nanocages and Nanoframes by Dealloying Au/Ag Alloy Nanoboxes with an Aqueous Etchant Based on Fe(NO 3 ) 3 or NH 4 OH Xianmao Lu, 1,2 Leslie Au, 1 Joseph McLellan,

More information

often display a deep green color due to where the SPR occurs (i.e., the wavelength of light that interacts with this specific morphology).

often display a deep green color due to where the SPR occurs (i.e., the wavelength of light that interacts with this specific morphology). Synthesis-Dependent Catalytic Properties of Gold Nanoparticles Nanoscience is the study of materials that have dimensions, intuitively, on the nanoscale, typically between 1 100 nm. This field has received

More information

Supporting Information. Rh-doped Pt-Ni octahedral nanoparticles: understanding the correlation between elemental distribution, ORR and shape stability

Supporting Information. Rh-doped Pt-Ni octahedral nanoparticles: understanding the correlation between elemental distribution, ORR and shape stability Supporting Information Rh-doped Pt-Ni octahedral nanoparticles: understanding the correlation between elemental distribution, ORR and shape stability Experimental part Chemicals and materials Platinum(II)acetylacetonate

More information

Supporting Information. Electrochemical Reduction of Carbon Dioxide on Nitrogen-Doped Carbons: Insights from Isotopic Labeling Studies

Supporting Information. Electrochemical Reduction of Carbon Dioxide on Nitrogen-Doped Carbons: Insights from Isotopic Labeling Studies Supporting Information Electrochemical Reduction of Carbon Dioxide on Nitrogen-Doped Carbons: Insights from Isotopic Labeling Studies Dorottya Hursán 1,2 and Csaba Janáky 1,2* 1 Department of Physical

More information

Tunable nitrogen-doped carbon aerogels as sustainable electrocatalysts in the oxygen. reduction reaction Electronic Supplementary information (ESI)

Tunable nitrogen-doped carbon aerogels as sustainable electrocatalysts in the oxygen. reduction reaction Electronic Supplementary information (ESI) Tunable nitrogen-doped carbon aerogels as sustainable electrocatalysts in the oxygen reduction reaction Electronic Supplementary information (ESI) Stephanie-Angelika Wohlgemuth,* a Tim-Patrick Fellinger

More information

Supplementary Figure 1: Power dependence of hot-electrons reduction of 4-NTP to 4-ATP. a) SERS spectra of the hot-electron reduction reaction using

Supplementary Figure 1: Power dependence of hot-electrons reduction of 4-NTP to 4-ATP. a) SERS spectra of the hot-electron reduction reaction using Supplementary Figure 1: Power dependence of hot-electrons reduction of 4-NTP to 4-ATP. a) SERS spectra of the hot-electron reduction reaction using 633 nm laser excitation at different powers and b) the

More information

Supporting Information

Supporting Information Supporting Information Superstructural Raman Nanosensors with Integrated Dual Functions for Ultrasensitive Detection and Tunable Release of Molecules Jing Liu #, Jianhe Guo #, Guowen Meng and Donglei Fan*

More information

Supporting Information s for

Supporting Information s for Supporting Information s for # Self-assembling of DNA-templated Au Nanoparticles into Nanowires and their enhanced SERS and Catalytic Applications Subrata Kundu* and M. Jayachandran Electrochemical Materials

More information

SUPPORTING INFORMATION. A New Approach for the Surface Enhanced Resonance Raman Scattering (SERRS)

SUPPORTING INFORMATION. A New Approach for the Surface Enhanced Resonance Raman Scattering (SERRS) SUPPORTING INFORMATION A New Approach for the Surface Enhanced Resonance Raman Scattering (SERRS) Detection of Dopamine at Picomolar (pm) Levels in the Presence of Ascorbic Acid Murat Kaya, Mürvet Volkan

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2011 69451 Weinheim, Germany Silver Nanocrystals with Concave Surfaces and Their Optical and Surface-Enhanced Raman Scattering Properties** Xiaohu Xia, Jie Zeng, Brenden

More information

Supporting Information for. Highly durable Pd metal catalysts for the oxygen. reduction reaction in fuel cells; Coverage of Pd metal with.

Supporting Information for. Highly durable Pd metal catalysts for the oxygen. reduction reaction in fuel cells; Coverage of Pd metal with. Supporting Information for Highly durable Pd metal catalysts for the oxygen reduction reaction in fuel cells; Coverage of Pd metal with silica Sakae Takenaka 1 *, Naoto Susuki 1, Hiroaki Miyamoto 1, Eishi

More information

Immunoassay Kit (Colorimetric)

Immunoassay Kit (Colorimetric) RayBio cgmp Direct Immunoassay Kit (Colorimetric) User Manual Version 1.0 May 25, 2014 RayBio cgmp Direct Immunoassay Kit (Colorimetric) Protocol (Cat#: 68AT-cGMP-S100) RayBiotech, Inc. We Provide You

More information

Correlating Hydrogen Evolution Reaction Activity in Alkaline Electrolyte to Hydrogen Binding Energy on Monometallic Surfaces

Correlating Hydrogen Evolution Reaction Activity in Alkaline Electrolyte to Hydrogen Binding Energy on Monometallic Surfaces Supplemental Materials for Correlating Hydrogen Evolution Reaction Activity in Alkaline Electrolyte to Hydrogen Binding Energy on Monometallic Surfaces Wenchao Sheng, a MyatNoeZin Myint, a Jingguang G.

More information

Single Gold Nanoparticles as Real-Time Optical Probes for the Detection of NADH-Dependent Intracellular Metabolic Enzymatic Pathways

Single Gold Nanoparticles as Real-Time Optical Probes for the Detection of NADH-Dependent Intracellular Metabolic Enzymatic Pathways Single Gold Nanoparticles as Real-Time Optical Probes for the Detection of NADH-Dependent Intracellular Metabolic Enzymatic Pathways Lei Zhang, Yang Li, Da-Wei Li, Chao Jing,Xiaoyuan Chen, Min Lv, Qing

More information

Electrochemical Cells Intro

Electrochemical Cells Intro Electrochemical Cells Intro Outcomes: Outline the historical development of voltaic (galvanic) cells. Explain the operation of a voltaic cell at the visual, particulate and symbolic levels. Vocabulary:

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting information The Assembly of Vanadium (IV)-Substituted Keggin-type

More information

Electrochemical Cells

Electrochemical Cells CH302 LaBrake and Vanden Bout Electrochemical Cells Experimental Observations of Electrochemical Cells 1. Consider the voltaic cell that contains standard Co 2+ /Co and Au 3+ /Au electrodes. The following

More information

Highly Controlled Synthesis and Super-Radiant. Photoluminescence of Plasmonic Cube-in-Cube. Nanoparticles

Highly Controlled Synthesis and Super-Radiant. Photoluminescence of Plasmonic Cube-in-Cube. Nanoparticles Supporting Information Highly Controlled Synthesis and Super-Radiant Photoluminescence of Plasmonic Cube-in-Cube Nanoparticles Jeong-Eun Park, Sungi Kim, Jiwoong Son, Yeonhee Lee and Jwa-Min Nam* Department

More information

Paraquat ELISA Kit. Catalog Number KA assays Version: 17. Intended for research use only.

Paraquat ELISA Kit. Catalog Number KA assays Version: 17. Intended for research use only. Paraquat ELISA Kit Catalog Number KA1424 96 assays Version: 17 Intended for research use only www.abnova.com Table of Contents Introduction... 3 Background... 3 Principle of the Assay... 3 General Information...

More information

Electrocatalysis by Subcellular Liver Fractions Bound to Carbon Nanostructures for Stereoselective Green Drug Metabolite Synthesis

Electrocatalysis by Subcellular Liver Fractions Bound to Carbon Nanostructures for Stereoselective Green Drug Metabolite Synthesis Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting Information Electrocatalysis by Subcellular Liver Fractions Bound to Carbon Nanostructures

More information