INDIRECT DETECTION IN ION-EXCLUSION CHROMATOGRAPHY

Size: px
Start display at page:

Download "INDIRECT DETECTION IN ION-EXCLUSION CHROMATOGRAPHY"

Transcription

1 ACTA CHROMATOGRAPHICA, NO. 12, 2002 INDIRECT DETECTION IN ION-EXCLUSION CHROMATOGRAPHY B. K. Głód Medical Research Centre, Polish Academy of Sciences, Laoratory of Experimental Pharmacology, ul. Pawińskiego 5, Warszawa, Poland ABSTRACT Indirect detection is widely applied in ion-exchange chromatography and capillary electrophoresis. Equations are derived which predict its application in ion-exclusion chromatography is also possile. Two detection systems are discussed, photometric and conductometric. With the latter it was possile to present results from direct and indirect detection on one chromatogram, depending on the relative limiting conductivities (diffusion coefficients) of solute and ackground electrolyte. INTRODUCTION Ion-exclusion chromatography (IEC) finds application in the analysis of weak and medium-strength acids [1 3]. Detection techniques include direct UV asorance [3,4], refractive index (RI) [5,6], potentiometric [7,8], conductivity [9], and mass spectrometry [10]. Direct UV asorption at 210 nm is the detection method most frequently used for volatile fatty acids. The detection limit is rather high, ecause the solute lacks a chromophore. Because of the sensitivity of the detector to even trace amounts of contaminants [4], it cannot e used for complex samples without suitale sample pretreatment, owing to interference prolems. The conductometric detector, the detector most commonly used in IEC, is also characterized y high sensitivity ecause the dissociation of acids is small, and is also depressed y any uffer present. Although aliphatic acids can e separated in IEC with pure water as moile phase, resolution is poor ecause of the fronting peaks (leading tails) which result ecause the degree of dissociation (ionization) of the acids is not controlled, an effect which is increased y hydrophoic asorption of the undissociated forms of the acids [2]. Addition of modifiers to the moile phase has een proposed to overcome these prolems; such modifiers include:

2 (i) dilute strong acid, which acts as a uffer [4] (ii) ion-pairing reagent, which reduces the effective charge on the solute [8]; and (iii) low concentrations of polyalcohols and sugars, which increase the hydrophilicity of the cation-exchange resin [11]. These conditions are suitale for ulk property detectors, e.g. potentiometric [8], conductivity [11], or electrokinetic [12]. Indirect photometric detection has een already used successfully in ion chromatography [13] and in capillary electrophoresis [14]. For this mode of detection an asoring reagent with the same electric charge as the analysed solute and with a high molar asorption coefficient is added to the moile phase. In IEC indirect photometric detection has een applied to the analysis of volatile fatty acids [15]. The aim of this paper is to discuss theoretical prediction of indirect photometric and conductometric detection in IEC. EXPERIMENTAL Instrumentation Measurements were performed y means of a chromatograph comprising a GP40 gradient pump, AD20 asorance detector, ED40 electrochemical detector, LC30 chromatography oven, and PeakNet 5.1 chromatographic data acquisition and analysis software, all from Dionex (USA). Samples were separated on a 300 mm 7.8 mm i.d. TSKGel SCX(H + ) column from TosoHaas (Japan). Manual injection was performed with a 100 µl syringe (Scientific Glass Engineering, Ringwood, Australia). Reagents All reagents (BDH, Poole, UK; Fluka, Buchs, Switzerland; and Ajax Chemicals, Auurn, Australia) were of analytical-reagent grade and were used without further purification. Water was passed through Millipore (Bedford, USA) Milli-RO4 and Milli-Q water purification systems. Moile phases were filtered through a 0.22-µm memrane filter

3 RESULTS AND DISCUSSION Changes in the Concentration of the Background Electrolyte Indirect detection is ased on measurement of changes of the concentration of the ackground (proe) electrolyte, the electric charge of which should e the same as that of the solute. This means that for acid analysis the ackground electrolyte should also e acid a dilute solution of a strong, completely dissociated acid is usually used. Optimum conditions for detection are not always optimum for separation, however. Changes in the concentration of the ackground electrolyte can e calculated from a knowledge of the dissociation constant and the mass-conservation equation. For dilute solutes we can assume that the concentration of hydrogen ions is constant throughout the column, i.e. [H + ] = const. Under these conditions, outside the region of the solute (chromatographic peak) the electrical neutrality condition can e expressed as: [H + ] = [B ] (1) Injection of the test acidic solute, HR, on to the chromatographic column reduces the concentration of the dissociated form of ackground electrolyte. In accordance with the electrical neutrality condition at the peak maximum in the moile phase: [H + ] = [B ] max + [R ] (2) where B and R denote the dissociated forms of the ackground electrolyte and solute, respectively. Eqs (1) and (2) can e easily transformed to: [R ] = [B ] [B ] max (3) Conductometric Detection The conductivity, G, of the dilute electrolyte is a function of its limiting ionic conductivities, λ i, the stoichiometric coefficients, ν i, the valence, z i, the surface area of the electrodes, A, and the distance etween them, l: G = (ν + c + z + λ + + ν c z λ )A/l (4) For a monovalent monovalent acid eq. (4) can e rewritten: G = (λ B [B ] + λ H+ [H + ])A/l (5) At the peak maximum this conductivity depends also on the solute concentration:

4 G max = (λ B [B ] max + λ H+ [H + ] + λ R [R ])A/l (6) The chromatographic peak height can e calculated as the difference etween the conductivities otained y use of eqs (5) and (6): G = (λ B [B ] max + λ R [R ] λ B [B ])A/l = = (λ R [R ] λ B [R ])A/l (7) From eqs (3) and (7) we finally otain: G = (λ R λ B )[R ]A/l (8) From eq. (8) it is apparent that the height of the chromatographic peak should e directly proportional to the concentration of dissociated form of the analysed acid. It should also e possile to record results from oth direct and indirect conductometric detection on one chromatogram. Peak direction depends on the relative limiting ionic conductivity of the solute compared with that of the ackground electrolyte. Photometric Detection According to the Lamert Beer law, the ackground asorance, A, of the acid, HB, used as uffer can e expressed as: A = lε B [B ] + lε HB [HB] (9) where l denotes the length of detector cell and ε B and ε HB are, respectively, the molar asorption coefficients of the dissociated and undissociated forms of acid. Asorption at the peak maximum, on the asis of eqs (1) and (9) is descried y: A max = lε B [B ] max + lε HB [HB] max (10) The height of the chromatographic peak can e otained from eqs (9) and (10): A = lε B [B ] max + lε HB [HB] max lε B [B ] lε HB [HB] (11) By comining eq. (11) with eq. (3), using the definition of the dissociation constant, and assuming that the concentration of the undissociated form of the solute acid is constant throughout the chromatographic peak ([HB] max = [HB]), we otain: A = lε B [R ] (12)

5 Estimation of [R ] The mass conservation equation for the solute acid can e given as: c i V i = ([R ] + [HR])V P (13) where V P (= c i V i /c max ) denotes the volume of the peak maximum. From eq. (13) and the definition of the dissociation constant we otain: [R ] = c i V i /V P (1 + [H + ]/K a ) = c i V i K a /V P (K a + [H + ]) (14) After equiliration of the column the mass alance of the ackground electrolyte can e presented in the form: c = [B ] + [HB] (15) Because the concentration of the solute is usually small, and ecause the uffer suppresses its dissociation, it can e assumed that the concentration of hydrogen ions is constant throughout the column. Outside the chromatographic peak the concentration of the dissociated form of the ackground electrolyte is equal to the concentration of hydrogen ions, as descried y eq. (1). After resolving the quadratic equation otained from eqs (13) (15) we finally otain: [R ] = V P (2K a c V K K 2 a + 4K c where the peak volume is descried y: + i i K ) (16) V P = V R (2π/N) 1/2 (17) Eqs (8), (12) and (17) can e used to predict results from indirect conductometric and photometric detection. Chromatographic peak height should e directly proportional to the amount of the solute acid and should increase asymptotically with increasing dissociation constant. The largest peaks should e otained for completely dissociated acids (anions). Peak height, on the other hand, decreases with increasing uffered acid dissociation constant and concentration. Experimental Verification Ion-exclusion chromatography is used mainly for analysis of weak acids. Although pure water is frequently used as moile phase it has the disadvantages of poor resolution and fronting peaks [2]. To improve peak symmetry dilute, strong acids, e.g. sulphuric, are added to the moile phase. This stailizes the degree of ionization of the acid analysed. From

6 the discussion aove it ecame apparent that indirect photometric detection in ion-exclusion chromatography could e achieved y adding aromatic acids to the moile phase [15]. Preliminary results from indirect conductometric and photometric detection in IEC are presented elsewhere [16]. Aliphatic acids, including oxalic, malonic, formic, and acetic, were selected as test compounds. The IEC separation of these acids is presented in Fig. 1. A 1 mm solution of phthalic acid was used as moile phase. Two detectors, conductometric (A) and UV-300 nm (B) were serially connected to the column. Whereas indirect photometric detection was achieved for all the test solutes, indirect conductometric detection was achieved for acetic acid only. For the other acids analysed direct conductometric response was oserved. Finally, it should e also mentioned that phthalic acid affects the retention of the acid test solutes y competing for hydrophoic adsorption sites. Fig. 1 Ion-exclusion chromatograms otained from (1) oxalic, (2) malonic, (3) formic, and (7) acetic acids with conductometric (A) and UV-300 nm (B) detection. The moile phase was 1 mm phthalic acid, the flow rate 0.5 ml min 1, and the volume injected 20 µl

7 CONCLUSIONS The possiility of using indirect detection in ion-exclusion chromatography has een confirmed. Solutions of aromatic acids can e used as moile phases. Derived equations and experimental data show that indirect conductometric detection can e achieved for solutes for which the ionic conductivities (diffusion coefficients) are smaller than that of the ackground electrolyte. Direct detection (positive peaks) is oserved when the ionic conductivities are larger than that of the electrolyte. Quantitative correlation was otained etween derived equation and experimental results. Phthalic acid, used as indirect detection proe, led to reduced retention of aliphatic fatty acids ecause of competition for adsorption sites. REFERENCES [1] B. K. Głód, G. A. Czapski, and P. R. Haddad, Trends Anal. Chem., 19, 492 (2000) [2] B. K. Głód, Neurochem. Res., 22, 1237 (1997) [3] B. K. Głód, Acta Chromatogr., 7, 13 (1997) [4] E. Papp and P. Keresztes, J. Chromatogr., 506, 157 (1990) [5] C. W. Klampfl, W. Bucherger, G. Rider, and G. K. Bone, J. Chromatogr., 770, 23 (1997) [6] G. Iwinski and D. R. Jenke, J. Chromatogr., 392, 397 (1987) [7] K. Kihara, S. Rokushika, and H. Hotano, J. Chromatogr., 410, 103 (1987) [8] B. K. Głód, P. W. Alexander, P. R. Haddad, and Z. L. Chen., J. Chromatogr., 699, 31 (1995) [9] S. R. Bachman and M. E. Peden, Water Air Soil Pollut., 33, 129 (1987) [10] L. Yang, R. E. Sturgeon, and J. W. H. Lam, J. Anal. Atomic Spectr., 16, 1302 (2001) [11] K. Tanaka, K. Ohta, J. S. Fritz, Y. S. Lee, and S. B. Shim, J. Chromatogr., 706, 385 (1995) [12] B. K. Głód and W. Kemula, J. Chromatogr., 366, 211 (1986) [13] H. Small and T. E. Miller Jr, Anal. Chem., 54, 462 (1982) [14] E. Butler-Roerts and D. T. Eash, J. Liq. Chromatogr. Related Technol., 22, 2101 (2001) [15] Z. L. Chen, B. K. Głód, and M. A. Adams, J. Chromatogr. A, 818, 61 (1998) [16] B. K. Głód and P. R. Hadad, in preparation

M > ACN > > THF

M > ACN > > THF Method Development in HPLC Dr. Amitha Hewavitharana School of Pharmacy University of Queensland Method Development in HPLC References: D A Skoog Principles of instrumental analysis, 3 rd Edition Chapters

More information

Ion Chromatography in Environmental Analysis of Selected Organic Acids

Ion Chromatography in Environmental Analysis of Selected Organic Acids 2012 International Conference on Environmental Science and Technology IPCBEE vol.30 (2012) (2012) IACSIT Press, Singapore Ion Chromatography in Environmental Analysis of Selected Organic Acids Bogdan Zygmunt

More information

C190-E105 Printed in Japan ATD

C190-E105 Printed in Japan ATD C190-E105 Principles and Applications of the Prominence Organic Acid Analysis System Junichi Masuda and Takeshi Goto, Analytical Applications Department Contents 1. Introduction 1 2. What is Ion Exclusion

More information

"Analysis of Inorganic Anions in Potomac Water, Sediment and Floc by Ion Chromatography" FINAL REPORT. by James E. Girard, Ph.D.

Analysis of Inorganic Anions in Potomac Water, Sediment and Floc by Ion Chromatography FINAL REPORT. by James E. Girard, Ph.D. DC WRRC Report No. 37 "Analysis of Inorganic Anions in Potomac Water, Sediment and Floc by Ion Chromatography" FINAL REPORT by James E. Girard, Ph.D. The work upon which this publication is based was supported

More information

Cation Exchange HPLC Columns

Cation Exchange HPLC Columns Cation Exchange HPLC Columns Hamilton offers seven polymeric packing materials for cation exchange separations. Type Recommended Application(s) PRP-X00 PRP-X00 PRP-X800 HC-0 HC-7 Ca + HC-7 H + HC-7 Pb

More information

Modeling of Ion-Exclusion and Vacancy Ion-Exclusion Chromatography in Analytical and Concentration Overload Conditions

Modeling of Ion-Exclusion and Vacancy Ion-Exclusion Chromatography in Analytical and Concentration Overload Conditions Modeling of Ion-Exclusion and Vacancy Ion-Exclusion Chromatography in Analytical and Concentration Overload Conditions Krzysztof Kaczmarski 1, *, Wojciech Zapala 1, Wojciech Wanat 1, Masanobu Mori 2, Bronislaw

More information

Analysis of Metals, Halides, and Inorganic Ions Using Hydrophilic Interaction Chromatography

Analysis of Metals, Halides, and Inorganic Ions Using Hydrophilic Interaction Chromatography Application Note Inorganic Ions, Water Testing, Minerals, Metals, Basic Chemicals Analysis of Metals, Halides, and Inorganic Ions Using Hydrophilic Interaction Chromatography Authors Anne Mack, Adam Bivens

More information

Determination of trace anions in concentrated hydrofluoric acid

Determination of trace anions in concentrated hydrofluoric acid APPLICATION NOTE 78 Determination of trace anions in concentrated hydrofluoric acid Authors Archava Siriraks Thermo Fisher Scientific, Sunnyvale, CA Keywords HF, ICS-5000 +, IonPac AS10, IonPac AC10, ion

More information

Application Note. Author. Abstract. Xinlei Yang Agilent Technologies Co. Ltd Shanghai, China

Application Note. Author. Abstract. Xinlei Yang Agilent Technologies Co. Ltd Shanghai, China Rapid Deteration of Eight Related Aromatic Acids in the p-phthalic Acid Mother Liquid Using an Agilent 126 Infinity LC System and an Agilent Poroshell 12 SB-C18 Column Application Note Author Xinlei Yang

More information

New On-Line High-Pressure Electrolytic Eluent Generators for Ion Chromatography

New On-Line High-Pressure Electrolytic Eluent Generators for Ion Chromatography New On-Line High-Pressure Electrolytic Eluent Generators for Ion Chromatography Yan Liu, Zhongqing Lu, and Chris Pohl, Thermo Fisher Scientific, Sunnyvale, CA USA Overview Purpose: In this work, new high-pressure

More information

Voltage-Induced Sample Release from Anion Exchange Supports in Capillary Electrochromatography

Voltage-Induced Sample Release from Anion Exchange Supports in Capillary Electrochromatography 1998 The Japan Society for Analytical Chemistry 571 Voltage-Induced Sample Release from Anion Exchange Supports in Capillary Electrochromatography Shinya KITAGAWA and Takao TSUDA Department of Applied

More information

It s hot! ZIC -chilic

It s hot! ZIC -chilic It s hot! ZIC -chilic Complementary selectivity for HPLC and LC-MS separation of polar hydrophilic compounds EMD Millipore Corp. is a subsidiary of Merck KGaA, Darmstadt, Germany ZIC -chilic Your benefits

More information

Ch.28 HPLC. Basic types of Liquid Chromatography Partition (LLC) Adsorption (LSC) Ion Exchange (IC) Size Exclusion (SEC or Gel Chromatography)

Ch.28 HPLC. Basic types of Liquid Chromatography Partition (LLC) Adsorption (LSC) Ion Exchange (IC) Size Exclusion (SEC or Gel Chromatography) Ch.28 HPLC 28.1 Basic types of Liquid Chromatography Partition (LLC) Adsorption (LSC) Ion Exchange (IC) Size Exclusion (SEC or Gel Chromatography) High Performance (Pressure) LC Glass column st.steel (high

More information

EFFECTS OF MOBILE PHASE COMPOSITION ON THE SEPARATION OF CATECHOLAMINES BY LIQUID CHROMATOGRAPHY WITH ELECTROCHEMICAL DETECTION

EFFECTS OF MOBILE PHASE COMPOSITION ON THE SEPARATION OF CATECHOLAMINES BY LIQUID CHROMATOGRAPHY WITH ELECTROCHEMICAL DETECTION Pharmacology EFFECTS OF MOBILE PHASE COMPOSITION ON THE SEPARATION OF CATECHOLAMINES BY LIQUID CHROMATOGRAPHY WITH ELECTROCHEMICAL DETECTION A. ISIMER N. E. BASCI A. BOZKURT S. O. KAYAALP SUMMARY: In this

More information

Introduction to Pharmaceutical Chemical Analysis

Introduction to Pharmaceutical Chemical Analysis Introduction to Pharmaceutical Chemical Analysis Hansen, Steen ISBN-13: 9780470661222 Table of Contents Preface xv 1 Introduction to Pharmaceutical Analysis 1 1.1 Applications and Definitions 1 1.2 The

More information

New Developments in Capillary Ion Chromatography using 4 μm Columns and Charge Detection

New Developments in Capillary Ion Chromatography using 4 μm Columns and Charge Detection New Developments in Capillary Ion Chromatography using 4 μm Columns and Charge Detection Barbara Shao, Terri Christison, Fei Pang, Cathy Tanner, and Frank Hoefler, Thermo Fisher Scientific, Sunnyvale,

More information

Instrumental Analysis

Instrumental Analysis Chem 454 Name: Instrumental Analysis Exam I February 5, 1999 80 possible points 1] 5 points Which of the following samples would be suitable for analysis by a calibration curve technique using a potentiometric

More information

Analysis of Beer by Comprehensive 2D-LC with the Agilent 1290 Infinity 2D-LC system

Analysis of Beer by Comprehensive 2D-LC with the Agilent 1290 Infinity 2D-LC system Analysis of Beer by Comprehensive 2D-LC with the Agilent 1290 Infinity 2D-LC system Application Note Food Testing & Agriculture Authors Edgar Naegele Agilent Technologies, Inc. Waldbronn, Germany Keiko

More information

ANALYTICAL SCIENCES APRIL 1995, VOL

ANALYTICAL SCIENCES APRIL 1995, VOL ANALYTICAL SCIENCES APRIL 1995, VOL. 11 239 Comparison of Three Chromatographic Systems Determination of Organic Acids in Wine for Ming-Yu DING, Hitoshi KOIzuMI and Yoshihito SUZUKI Department of Chemistry

More information

Determination of Polyacrylic Acid in Boiler Water Using Size-Exclusion Chromatography with Charged Aerosol Detection

Determination of Polyacrylic Acid in Boiler Water Using Size-Exclusion Chromatography with Charged Aerosol Detection Determination of Polyacrylic Acid in Boiler Water Using Size-Exclusion Chromatography with Charged Aerosol Detection Mark Tracy, Xiaodong Liu, and Ian Acworth, Thermo Fisher Scientific, Sunnyvale, CA,

More information

High Performance Liquid Chromatography

High Performance Liquid Chromatography High Performance Liquid Chromatography What is HPLC? It is a separation technique that involves: Injection of small volume of liquid sample Into a tube packed with a tiny particles (stationary phase).

More information

Analysis - HPLC A.136. Primesep 5 µm columns B.136

Analysis - HPLC A.136. Primesep 5 µm columns B.136 Primesep 5 µm columns Primesep columns feature double functionality of the bonding i.e : alkyl chain with anionic or cationic group, chelating group. This feature creates unique selectivities when using

More information

Analytical method related to authorised feed additive - 1i534

Analytical method related to authorised feed additive - 1i534 Title DETERMINATION OF MESO-TARTARIC ACID, (D- + L-TARTARIC ACID), OXALIC ACID, MONO- AND DIHYDROXYMALONIC ACID IN mta-solutions Subtitle Liquid chromatography 1 SCOPE Determination of 50-60 mg of meso-tartaric

More information

Determination of Cations and Amines in Hydrogen Peroxide by Ion Chromatography Using a RFIC (Reagent-Free) System

Determination of Cations and Amines in Hydrogen Peroxide by Ion Chromatography Using a RFIC (Reagent-Free) System Application Update 55 Determination of Cations and Amines in Hydrogen Peroxide by Ion Chromatography Using a RFIC (Reagent-Free System Introduction Hydrogen peroxide is an essential chemical in the fabrication

More information

Microwave Absorption by Light-induced Free Carriers in Silicon

Microwave Absorption by Light-induced Free Carriers in Silicon Microwave Asorption y Light-induced Free Carriers in Silicon T. Sameshima and T. Haa Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan E-mail address: tsamesim@cc.tuat.ac.jp

More information

Supporting Information. Dynamics of the Dissociating Uracil Anion. Following Resonant Electron Attachment

Supporting Information. Dynamics of the Dissociating Uracil Anion. Following Resonant Electron Attachment Supporting Information Dynamics of the Dissociating Uracil Anion Following Resonant Electron Attachment Y. Kawarai,, Th. Weer, Y. Azuma, C. Winstead, V. McKoy, A. Belkacem, and D.S. Slaughter, Department

More information

Performance evaluation of the Agilent 1290 Infinity 2D-LC Solution for comprehensive two-dimensional liquid chromatography

Performance evaluation of the Agilent 1290 Infinity 2D-LC Solution for comprehensive two-dimensional liquid chromatography Performance evaluation of the Agilent 1290 Infinity 2D-LC Solution for comprehensive two-dimensional liquid chromatography Technical Overview 2D-LC Conventional 1D-LC Abstract This Technical Overview presents

More information

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS 1. List two advantages of temperature programming in GC. a) Allows separation of solutes with widely varying retention factors in a reasonable

More information

APPLICATION NOTE Goal. Introduction. Keywords

APPLICATION NOTE Goal. Introduction. Keywords APPLICATION NOTE 72398 A highly sensitive high-performance liquid chromatographycharged aerosol detection method for the quantitative analysis of polysorbate 8 in protein solution Authors Zhen Long, Guobin

More information

Introduction to Chromatographic Separations

Introduction to Chromatographic Separations Introduction to Chromatographic Separations Analysis of complex samples usually involves previous separation prior to compound determination. Two main separation methods instrumentation are available:

More information

Instrumental Analysis II Course Code: CH3109. Chromatographic &Thermal Methods of Analysis Part 1: General Introduction. Prof. Tarek A.

Instrumental Analysis II Course Code: CH3109. Chromatographic &Thermal Methods of Analysis Part 1: General Introduction. Prof. Tarek A. Instrumental Analysis II Course Code: CH3109 Chromatographic &Thermal Methods of Analysis Part 1: General Introduction Prof. Tarek A. Fayed What is chemical analysis? Qualitative analysis (1) Chemical

More information

Effect of Mobile-Phase Composition on Pressure-Induced Shifts in Solute Retention for LC Separations using -Cyclodextrin Stationary Phases

Effect of Mobile-Phase Composition on Pressure-Induced Shifts in Solute Retention for LC Separations using -Cyclodextrin Stationary Phases Effect of Moile-Phase Composition on Pressure-Induced Shifts in Solute Retention for LC Separations using -Cyclodextrin Stationary Phases Moira C. Ringo, Christine E. Evans Chemistry Department, Uni ersity

More information

Preparative Separation of Active Components from Natural Products using Low-pressure Gradient Preparative HPLC

Preparative Separation of Active Components from Natural Products using Low-pressure Gradient Preparative HPLC PO-CON1405E Preparative Separation of Active Components from Natural Products using Low-pressure Gradient Preparative HPLC Pittcon 014 50-7P Kenichiro Tanaka 1, William Hedgepeth 1, Lincoln Grimes, Tsutomu

More information

No.106. Aqueous SEC Columns for Analysis of Cationic Polymers: TSKgel PWXL-CP Series. Contents. Page

No.106. Aqueous SEC Columns for Analysis of Cationic Polymers: TSKgel PWXL-CP Series. Contents. Page No.106 Aqueous SEC Columns for Analysis of Cationic Polymers: TSKgel PWXL-CP Series Contents Page 1. Introduction 2. Features 3. Basic characteristics 3-1. Pore characteristics 3-2. Sample injection volume

More information

HPLC Background Chem 250 F 2008 Page 1 of 24

HPLC Background Chem 250 F 2008 Page 1 of 24 HPLC Background Chem 250 F 2008 Page 1 of 24 Outline: General and descriptive aspects of chromatographic retention and separation: phenomenological k, efficiency, selectivity. Quantitative description

More information

Chromatography. Gas Chromatography

Chromatography. Gas Chromatography Chromatography Chromatography is essentially the separation of a mixture into its component parts for qualitative and quantitative analysis. The basis of separation is the partitioning of the analyte mixture

More information

GUIDELINES FOR THE DESIGN OF CHROMATOGRAPHIC ANALYTICAL METHODS INTENDED FOR CIPAC COLLABORATIVE STUDY

GUIDELINES FOR THE DESIGN OF CHROMATOGRAPHIC ANALYTICAL METHODS INTENDED FOR CIPAC COLLABORATIVE STUDY Page 1 of 13 CIPAC/4105/R GUIDELINES FOR THE DESIGN OF CHROMATOGRAPHIC ANALYTICAL METHODS INTENDED FOR CIPAC COLLABORATIVE STUDY Prepared for CIPAC by Dr M J Tandy*, P M Clarke and B White (UK) The rapid

More information

Supplementary Material (A)

Supplementary Material (A) Supplementary Material (A) Spirooxazine photochromic performance. 16 Asorance 1. T 1/ = 1 s T / = 110 s T 1/ = 9 s T / = 0 s 0 00 1000 Time (seconds) 100 000 a, Coloration and fade speeds otained with

More information

penta-hilic UHPLC COLUMNS

penta-hilic UHPLC COLUMNS penta-hilic UHPLC COLUMNS Highly retentive, proprietary penta-hydroxy-ligand penta-hilic Excellent peak shape for polar compounds with a variety of functional groups: acids, bases, zwitterions strong and

More information

Hydrophilic Interaction Liquid Chromatography: Some Aspects of Solvent and Column Selectivity

Hydrophilic Interaction Liquid Chromatography: Some Aspects of Solvent and Column Selectivity Hydrophilic Interaction Liquid Chromatography: Some Aspects of Solvent and Column Selectivity Monica Dolci, Thermo Fisher Scientific, Runcorn, Cheshire, UK Technical Note 20544 Key Words Hydrophilic, HILIC,

More information

Supplementary Information

Supplementary Information Constitutionally Selective Amplification of Multicomponent 84-Memered Macrocyclic Hosts for ( )-Cytidine H + Mee-Kyung Chung, a Kay Severin, Stephen J. Lee, c Marcey L. Waters, a and Michel R. Gagné*,a

More information

Dionex IonPac AS28-Fast-4µm column

Dionex IonPac AS28-Fast-4µm column CHROMATOGRAPHY Thermo Scientific Dionex IonPac AS-Fast-4µm Columns Product Specifications The Thermo Scientific Dionex IonPac AS-Fast-4µm column is a high-capacity, hydroxide-selective anionexchange column

More information

CHEM 429 / 529 Chemical Separation Techniques

CHEM 429 / 529 Chemical Separation Techniques CHEM 429 / 529 Chemical Separation Techniques Robert E. Synovec, Professor Department of Chemistry University of Washington Lecture 1 Course Introduction Goal Chromatography and Related Techniques Obtain

More information

Shodex TM ODP2 HP series columns

Shodex TM ODP2 HP series columns HPLC Columns Shodex TM ODP2 HP series columns Better retention of highly polar substances Technical notebook No. 6 Contents 1. Introduction 1-1. Specifications 1-2. Eluent Compatibility of ODP2 HP Series

More information

Novel Electrodeionization Devices: Applications in Inorganic Analysis

Novel Electrodeionization Devices: Applications in Inorganic Analysis Novel Electrodeionization Devices: Applications in Inorganic Analysis John M. Riviello and Archava Siriraks ABSTRACT Electrodeionization (EDI) is a well established technique for the production of ultrapure

More information

Mechanisms of retention in HPLC

Mechanisms of retention in HPLC Mechanisms of retention in HPLC María Celia García-Álvarez-Coque Department of Analytical Chemistry University of Valencia Valencia, Spain https://sites.google.com/site/fuschrom/ 1 Part 3 Mechanisms of

More information

Chem(bio) Week 2: Determining the Equilibrium Constant of Bromothymol Blue. Keywords: Equilibrium Constant, ph, indicator, spectroscopy

Chem(bio) Week 2: Determining the Equilibrium Constant of Bromothymol Blue. Keywords: Equilibrium Constant, ph, indicator, spectroscopy Ojectives: Keywords: Equilirium Constant, ph, indicator, spectroscopy Prepare all solutions for measurement of the equilirium constant for romothymol Make a series of spectroscopic measurements on the

More information

Sensitive HILIC UHPLC-UV determination of steviol glycoside natural sweeteners

Sensitive HILIC UHPLC-UV determination of steviol glycoside natural sweeteners APPLICATION NOTE 21734 Sensitive HILIC UHPLC-UV determination of steviol glycoside natural sweeteners Authors Aaron Lamb, Joanne Jones, Thermo Fisher Scientific, Runcorn, UK Keywords Environment, food

More information

Luminescence transitions. Fluorescence spectroscopy

Luminescence transitions. Fluorescence spectroscopy Luminescence transitions Fluorescence spectroscopy Advantages: High sensitivity (single molecule detection!) Measuring increment in signal against a dark (zero) background Emission is proportional to excitation

More information

High Performance Liquid Chromatography

High Performance Liquid Chromatography STANDARDBASE techniques: High Performance Liquid Chromatography Drenthe College, The Netherlands 1. Introduction HPLC. High Performance Liquid Chromatography High Performance Liquid Chromatography (HPLC)

More information

Introduction to Capillary GC. Page 1. Agilent Restricted February 2, 2011

Introduction to Capillary GC. Page 1. Agilent Restricted February 2, 2011 ?? Kβ? Page 1 Typical GC System Gas supply Injector Detector Data handling GAS Column Oven Page 2 CARRIER GAS Carries the solutes down the column Selection and velocity influences efficiency and retention

More information

Ion Chromatography. Anion Exchange. Chromatography Ion Exchange Theory. Dr. Shulamit Levin

Ion Chromatography. Anion Exchange. Chromatography Ion Exchange Theory. Dr. Shulamit Levin Ion Exchange Chromatography Chromatographic Process BA Mobile phase Stationary Phase A Shula Levin Bioforum B Distribution: K = C s/c m B shulal@zahav.net.il http://shulalc.co.il/ A Elution through the

More information

Determination of Verapamil Hydrochloride Purity Using the Acclaim PA Column

Determination of Verapamil Hydrochloride Purity Using the Acclaim PA Column Application Note 95 Determination of Hydrochloride Purity Using the Acclaim PA Column INTRODUCTION -based medications are prescribed for several heart and blood pressure indications. The fastacting formulations

More information

Fractionation of Acidic, Basic, and Neutral Drugs from Plasma with an SPE Mixed Mode Strong Cation Exchange Polymeric Resin (Agilent SampliQ SCX)

Fractionation of Acidic, Basic, and Neutral Drugs from Plasma with an SPE Mixed Mode Strong Cation Exchange Polymeric Resin (Agilent SampliQ SCX) Fractionation of Acidic, Basic, and Neutral Drugs from Plasma with an SPE Mixed Mode Strong Cation Exchange Polymeric Resin (Agilent SampliQ SCX) Application Note Forensic Toxicology Authors Bellah. Pule,

More information

CHEM 3590 Final examination 2017 Instructor : Dr. Hélène Perreault Monday December 11, 1:30-4:30 pm, Frank Kennedy Gold Gym seats

CHEM 3590 Final examination 2017 Instructor : Dr. Hélène Perreault Monday December 11, 1:30-4:30 pm, Frank Kennedy Gold Gym seats CHEM 3590 Final examination 2017 Instructor : Dr. Hélène Perreault Monday December 11, 1:30-4:30 pm, Frank Kennedy Gold Gym seats 310-343 Questions 1-15 have multiple choices (50 pts). Please answer on

More information

HPLC Workshop 16 June 2009 What does this do? Chromatography Theory Review Several chromatographic techniques Even though each method utilizes different techniques to separate compounds, the principles

More information

Abstract: An minimalist overview of chromatography for the person who would conduct chromatographic experiments, but not design experiments.

Abstract: An minimalist overview of chromatography for the person who would conduct chromatographic experiments, but not design experiments. Chromatography Primer Abstract: An minimalist overview of chromatography for the person who would conduct chromatographic experiments, but not design experiments. At its heart, chromatography is a technique

More information

with diode array detection

with diode array detection Application Note Small Molecule Pharmaceuticals Analysis of Tween 8 by highperformance liquid chromatography with diode array detection Authors Jianxin Yu, Scott Citrowske, Nikki Carlson, and Jacob Strange

More information

Skoog/Holler/Crouch Chapter 26 Principles of Instrumental Analysis, 6th ed. CHAPTER 26

Skoog/Holler/Crouch Chapter 26 Principles of Instrumental Analysis, 6th ed. CHAPTER 26 Skoog/Holler/Crouch Chapter 26 Principles of Instrumental Analysis, 6th ed. Instructor s Manual CHAPTE 26 26-1. (a) Elution is a process in which species are washed through a chromatographic column by

More information

Determination of Tetrafluoroborate, Perchlorate, and Hexafluorophosphate in a Simulated Electrolyte Sample from Lithium Ion Battery Production

Determination of Tetrafluoroborate, Perchlorate, and Hexafluorophosphate in a Simulated Electrolyte Sample from Lithium Ion Battery Production Determination of Tetrafluoroborate, Perchlorate, and Hexafluorophosphate in a Simulated Electrolyte Sample from Lithium Ion Battery Production Thunyarat Phesatcha, Suparerk Tukkeeree, Jeff Rohrer 2 Thermo

More information

DEVELOPMENT OF HPLC METHOD FOR ANALYSIS OF NITRITE AND NITRATE IN VEGETABLE

DEVELOPMENT OF HPLC METHOD FOR ANALYSIS OF NITRITE AND NITRATE IN VEGETABLE Journal of Agricultural, Food and Environmental Sciences UDC 635.546.173/.175]:543.544.5.068.7 Original scientific paper DEVELOPMENT OF HPLC METHOD FOR ANALYSIS OF NITRITE AND NITRATE IN VEGETABLE A. Najdenkoska*

More information

High Performance Liquid Chromatography

High Performance Liquid Chromatography Updated: 3 November 2014 Print version High Performance Liquid Chromatography David Reckhow CEE 772 #18 1 HPLC System David Reckhow CEE 772 #18 2 Instrument Basics PUMP INJECTION POINT DETECTOR COLUMN

More information

High Performance Liquid Chromatography

High Performance Liquid Chromatography Updated: 3 November 2014 Print version High Performance Liquid Chromatography David Reckhow CEE 772 #18 1 HPLC System David Reckhow CEE 772 #18 2 1 Instrument Basics PUMP INJECTION POINT DETECTOR COLUMN

More information

Chromatographic Methods of Analysis Section - 4 : Ion Exchange Chrom. Prof. Tarek A. Fayed

Chromatographic Methods of Analysis Section - 4 : Ion Exchange Chrom. Prof. Tarek A. Fayed Chromatographic Methods of Analysis Section - 4 : Ion Exchange Chrom. Prof. Tarek A. Fayed Ion Exchange Chromatography (IEC) In this type of chromatography, the solid stationary phase )organic resin) is

More information

Determination of Chloride, Fluoride, Bromide, Nitrate, Sulphate and Phosphate in Water Sample...

Determination of Chloride, Fluoride, Bromide, Nitrate, Sulphate and Phosphate in Water Sample... I J P F A International Science Press Determination of Chloride, Fluoride, Bromide, Nitrate, Sulphate and Phosphate in Water Sample from Different Area of North Gujarat Region by Ion Chromatography Bharat

More information

Frank Steiner, Michael Heidorn, and Markus M. Martin Thermo Fisher Scientific, Germering, Germany

Frank Steiner, Michael Heidorn, and Markus M. Martin Thermo Fisher Scientific, Germering, Germany Generic Method Approach for Pharmaceutical Drug Discovery and Development using Reversed-Phase Hydrophilic Interaction Liquid Chromatography with Universal Charged Aerosol Detection Frank Steiner, Michael

More information

Liquid storage: Holds the solvent which is going to act as the mobile phase. Pump: Pushes the solvent through to the column at high pressure.

Liquid storage: Holds the solvent which is going to act as the mobile phase. Pump: Pushes the solvent through to the column at high pressure. High performance liquid chromatography (HPLC) is a much more sensitive and useful technique than paper and thin layer chromatography. The instrument used for HPLC is called a high performance liquid chromatograph.

More information

PRODUCT MANUAL OMNIPAC PCX-500 GUARD COLUMN (PCX-500 GUARD, P/N ) OMNIPAC PCX-500 ANALYTICAL COLUMN (PCX-500 ANALYTICAL, P/N )

PRODUCT MANUAL OMNIPAC PCX-500 GUARD COLUMN (PCX-500 GUARD, P/N ) OMNIPAC PCX-500 ANALYTICAL COLUMN (PCX-500 ANALYTICAL, P/N ) PRODUCT MANUAL OMNIPAC PCX-500 GUARD COLUMN (PCX-500 GUARD, P/N 042195) OMNIPAC PCX-500 ANALYTICAL COLUMN (PCX-500 ANALYTICAL, P/N 042191) QUICKSTART STEPS AND LINKS Click blue text below to get started.

More information

Available online at Energy Procedia 100 (2009) (2008) GHGT-9

Available online at   Energy Procedia 100 (2009) (2008) GHGT-9 Availale online at www.sciencedirect.com Energy Procedia (29) (28) 655 66 Energy Procedia www.elsevier.com/locate/procedia www.elsevier.com/locate/xxx GHGT-9 Pre-comustion CO 2 capture for IGCC plants

More information

LEARNING OBJECTIVES CHEM 212: SEPARATION SCIENCE CHROMATOGRAPHY UNIT. Thomas Wenzel, Bates College. In-class Problem Set Extraction.

LEARNING OBJECTIVES CHEM 212: SEPARATION SCIENCE CHROMATOGRAPHY UNIT. Thomas Wenzel, Bates College. In-class Problem Set Extraction. LEARNING OBJECTIVES CHEM 212: SEPARATION SCIENCE CHROMATOGRAPHY UNIT Thomas Wenzel, Bates College In-class Problem Set Extraction Problem #1 1. Devise a scheme to be able to isolate organic acids, bases

More information

Chem 321 Name Answer Key D. Miller

Chem 321 Name Answer Key D. Miller 1. For a reversed-phase chromatography experiment, it is noted that the retention time of an analyte decreases as the percent of acetonitrile (CH 3 CN) increases in a CH 3 CN/H 2 O mobile phase. Explain

More information

Chem 454 instrumental Analysis Exam 1 February 6 th, 2008

Chem 454 instrumental Analysis Exam 1 February 6 th, 2008 Chem 454 instrumental Analysis Exam 1 February 6 th, 2008 1 Name: 1] A glass electrode was immersed into a solution of ph 4.33 gave a response of 677.1 mv. This electrode was used to measure a sample solution

More information

for Acclaim Trinity TM P1

for Acclaim Trinity TM P1 for Acclaim Trinity TM P Product Manual for Acclaim TRINITY P Columns Page of 4 Product Manual for Acclaim Trinity TM P Columns 07556 Acclaim Trinity P, 3µm, 4.6 x 00mm 07556 Acclaim Trinity P, 3µm, 4.6

More information

CHROMATOGRAPHY. The term "chromatography" is derived from the original use of this method for separating yellow and green plant pigments.

CHROMATOGRAPHY. The term chromatography is derived from the original use of this method for separating yellow and green plant pigments. CHROMATOGRAPHY The term "chromatography" is derived from the original use of this method for separating yellow and green plant pigments. THEORY OF CHROMATOGRAPHY: Separation of two sample components in

More information

Rapid Post-Blast Inorganic Explosive Analysis by Suppressed Ion Chromatography

Rapid Post-Blast Inorganic Explosive Analysis by Suppressed Ion Chromatography Rapid Post-Blast Inorganic Explosive Analysis by Suppressed Ion Chromatography L. Canella, C. Austin, A. Beavis, P. Maynard, M. Dawson, C Roux, and P. Doble Centre for Forensic Science, University of Technology,

More information

This method describes the identification of the following prohibited colorants in cosmetic products:

This method describes the identification of the following prohibited colorants in cosmetic products: A. IDENTIFICATION BY TLC 1. SCOPE AND FIELD OF APPLICATION This method describes the identification of the following prohibited colorants in cosmetic products: Names C I number Pigment Orange 5 12075 Metanil

More information

Value of Eclipse Plus C18 and ph Selectivity to Analyze Amine-Containing Drugs

Value of Eclipse Plus C18 and ph Selectivity to Analyze Amine-Containing Drugs Value of Eclipse Plus C18 and ph Selectivity to Analyze Ae-Containing Drugs Application Pharmaceuticals Authors John W. Henderson Jr., William J. Long, and Cliff Woodward Agilent Technologies 285 Centerville

More information

Thermo Scientific. Anion-Exchange Column

Thermo Scientific. Anion-Exchange Column CHROMATOGRAPHY Thermo Scientific Dionex IonPac AS9-µm Anion-Exchange Column Product Specifications The Themo Scientific Dionex IonPac AS9-µm high-capacity, hydroxide-selective, anion-exchange column is

More information

ANALYTICAL SCIENCES JANUARY 2006, VOL The Japan Society for Analytical Chemistry

ANALYTICAL SCIENCES JANUARY 2006, VOL The Japan Society for Analytical Chemistry 2006 The Japan Society for Analytical Chemistry 117 Selective and Simultaneous Determination of Phosphate and Silicate Ions in Leaching Process Waters for Ceramics Glaze Raw Materials of Narutal Origin

More information

Plasma-free Metanephrines Quantitation with Automated Online Sample Preparation and a Liquid Chromatography-Tandem Mass Spectrometry Method

Plasma-free Metanephrines Quantitation with Automated Online Sample Preparation and a Liquid Chromatography-Tandem Mass Spectrometry Method Plasma-free Metanephrines Quantitation with Automated Online Sample Preparation and a Liquid Chromatography-Tandem Mass Spectrometry Method Xiang He and Marta Kozak ThermoFisher Scientific, San Jose, CA,

More information

Determinations of Inorganic Anions and Organic Acids in Beverages Using Suppressed Conductivity and Charge Detection

Determinations of Inorganic Anions and Organic Acids in Beverages Using Suppressed Conductivity and Charge Detection Determinations of Inorganic Anions and Organic Acids in Beverages Using Suppressed Conductivity and Charge Detection Terri Christison, Linda Lopez Thermo Fisher Scientific, Sunnyvale, CA, USA Overview

More information

Lecture 15: Introduction to mass spectrometry-i

Lecture 15: Introduction to mass spectrometry-i Lecture 15: Introduction to mass spectrometry-i Mass spectrometry (MS) is an analytical technique that measures the mass/charge ratio of charged particles in vacuum. Mass spectrometry can determine masse/charge

More information

Efficient Separations Obtained by Using Smaller Particle Size Analytical Columns with a High-Pressure Ion Chromatography System

Efficient Separations Obtained by Using Smaller Particle Size Analytical Columns with a High-Pressure Ion Chromatography System Efficient Separations Obtained by Using Smaller Particle Size Analytical Columns with a High-Pressure Ion Chromatography System arbara Shao, Frank Hoefler, Maria Rey, and Linda Lopez, Thermo Fisher Scientific,

More information

Application Note. Author. Abstract. Pharmaceutical QA/QC. Siji Joseph Agilent Technologies, Inc. Bangalore, India

Application Note. Author. Abstract. Pharmaceutical QA/QC. Siji Joseph Agilent Technologies, Inc. Bangalore, India Effective use of pharmacopeia guidelines to reduce cost of chromatographic analysis Optimized, cost-effective HPLC analysis of atorvastatin by varying column dimensions within the USP allowed limts

More information

Chromatography and its applications

Chromatography and its applications Chromatography and its applications Reference Introduction to chromatography theory and practice Instrumental methods of chemical analysis by H.Kaur INTRODUCTION There are many methods which have been

More information

4. Ion chromatography (IC) 4.1. Educational aims and objectives

4. Ion chromatography (IC) 4.1. Educational aims and objectives 4. Ion chromatography (IC) 4.1. Educational aims and objectives Principles of ion chromatography method and instrumentation. Methods for ionic compounds analysis including ion chromatography and its subtypes.

More information

ION PAIRING REAGENTS AND BUFFERS

ION PAIRING REAGENTS AND BUFFERS ON PRNG REGENTS ND UFFERS ULTRPURE ON PRNG REGENTS ND UFFERS The dvantages of on Pair hromatography on Pair hromatography is a method for improving the separation of charged analytes. n the resolution

More information

Analysis of Trace (mg/kg) Thiophene in Benzene Using Two-Dimensional Gas Chromatography and Flame Ionization Detection Application

Analysis of Trace (mg/kg) Thiophene in Benzene Using Two-Dimensional Gas Chromatography and Flame Ionization Detection Application Analysis of Trace (mg/kg) Thiophene in Using Two-Dimensional Gas Chromatography and Flame Ionization Detection Application Petrochemical Authors James D. McCurry and Bruce D. Quimby Agilent Technologies

More information

Ion Chromatography *

Ion Chromatography * OpenStax-CNX module: m50231 1 Ion Chromatography * Brett Virgin-Downey Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 1 Introduction

More information

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING QUESTION BANK V SEMESTER EI6501 Analytical Instruments Regulation 2013 Academic

More information

High Pressure/Performance Liquid Chromatography (HPLC)

High Pressure/Performance Liquid Chromatography (HPLC) High Pressure/Performance Liquid Chromatography (HPLC) High Performance Liquid Chromatography (HPLC) is a form of column chromatography that pumps a sample mixture or analyte in a solvent (known as the

More information

Ion Chromatographic Determination of Sulfide, and Thiosulfate in Mixtures by Means of Their Postcolumn Reactions with Iodine.

Ion Chromatographic Determination of Sulfide, and Thiosulfate in Mixtures by Means of Their Postcolumn Reactions with Iodine. ANALYTICAL SCIENCES AUGUST 1994, VOL. 10 595 Ion Chromatographic Determination of Sulfide, and Thiosulfate in Mixtures by Means of Their Postcolumn Reactions with Iodine Sulfite Yasuyuki MIURA, Mieko TSUBAMOTO

More information

DEVELOPMENT AND VALIDATION OF GC-FID METHOD FOR THE DETERMINATION OF ETHANOL RESIDUE IN MARJORAM OINTMENT

DEVELOPMENT AND VALIDATION OF GC-FID METHOD FOR THE DETERMINATION OF ETHANOL RESIDUE IN MARJORAM OINTMENT Acta Poloniae Pharmaceutica ñ Drug Research, Vol. 66 No. 6 pp. 611ñ615, 2009 ISSN 0001-6837 Polish Pharmaceutical Society DEVELOPMENT AND VALIDATION OF GC-FID METHOD FOR THE DETERMINATION OF ETHANOL RESIDUE

More information

Expanded capabilities in ammonium and amine detection

Expanded capabilities in ammonium and amine detection PRODUCT SPECIFICATIONS Thermo Scientifi c Dionex SC-CERS 500 Salt Converter-Cation Electrolytically Regenerated Suppressor Expanded capabilities in ammonium and amine detection Benefits Broadened ammonium

More information

Other types of liquid chromatography

Other types of liquid chromatography Other types of liquid chromatography Objectives: After this discussion you should be able to: Define IEC Basic mechanism Relationship between net charge and isoelectric point (pi) Relationship between

More information

DETERMINATION OF DRUG RELEASE DURING DISSOLUTION OF NICORANDIL IN TABLET DOSAGE FORM BY USING REVERSE PHASE HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

DETERMINATION OF DRUG RELEASE DURING DISSOLUTION OF NICORANDIL IN TABLET DOSAGE FORM BY USING REVERSE PHASE HIGH PERFORMANCE LIQUID CHROMATOGRAPHY CHAPTER 9 DETERMINATION OF DRUG RELEASE DURING DISSOLUTION OF NICORANDIL IN TABLET DOSAGE FORM BY USING REVERSE PHASE HIGH PERFORMANCE LIQUID CHROMATOGRAPHY CHAPTER 9 Determination of drug release during

More information

Fast and Reliable Method for the Analysis of Methylmalonic Acid from Human Plasma

Fast and Reliable Method for the Analysis of Methylmalonic Acid from Human Plasma Fast and Reliable Method for the Analysis of Methylmalonic Acid from Human Plasma Jon Bardsley 1, James Goldberg 2 1 Thermo Fisher Scientific, Runcorn, UK; 2 Thermo Fisher Scientific, West Palm Beach,

More information

CEE 697z Organic Compounds in Water and Wastewater

CEE 697z Organic Compounds in Water and Wastewater Print version CEE 697z Organic Compounds in Water and Wastewater NOM Characterization Ran Zhao Lecture #6 Dave Reckhow - Organics In W & WW Outline Introduction of NOM Water treatment processes for NOM

More information

Accurate Mass Analysis of Hydraulic Fracturing Waters: Identification of Polyethylene Glycol Surfactants by LC/Q-TOF-MS

Accurate Mass Analysis of Hydraulic Fracturing Waters: Identification of Polyethylene Glycol Surfactants by LC/Q-TOF-MS Accurate Mass Analysis of Hydraulic Fracturing Waters: Identification of Polyethylene Glycol Surfactants by LC/Q-TOF-MS Application Note Authors E. Michael Thurman and Imma Ferrer Center for Environmental

More information

4.1.1 (conductance) (conductivity)

4.1.1 (conductance) (conductivity) Conductometry 1 ก 4.1 ก ก ก กก ก ก ( ) 4.1.1 (conductance) (conductivity) ก ก (conductance, G) (Mho, Ω -1 ) (siemen, S) ก ก ก ก (molten salts) ก ก ก (aqueous solution) ก ก ก 4.1 flow through cell ก (area,

More information