THE NON-ENZYMATIC HYDROLYSIS OF p-nitrophenyl PHOSPHATE1

Size: px
Start display at page:

Download "THE NON-ENZYMATIC HYDROLYSIS OF p-nitrophenyl PHOSPHATE1"

Transcription

1 THE NON-ENZYMATIC HYDROLYSIS OF p-nitrophenyl PHOSPHATE1 The kinetics of the non-enzy~natic h)drolysis of p-nitrophenyl phosphate have been studied in aqueous solution in the ph range 2.6 to 9.0 and at temperatures from 68.0' to 82.0' C. 'The reaction has been followed by colorimetric measurement of the nitrophenol produced by the reactlon O,.\'CcH,OPOaM- + H?O + OrSC6HAOIH + H?POI-. The reaction is first order with respect to /)-nitrophenyl phosphate and has an activation energy of 26.0 lkcal./mole at ph 2.6. An explanation has been proposed in ternis of the different rates of hytlrolysis of the various ionic species of the ester present in solution. Studies have been made of enzymatic hydrolyses of p-nitrophenyl phosphate by Morton (1) using alkaline phosphatases of cow's milk and calf intestinal mucosa and by Axelrod (2) using enzymes present in citrus juices. In both cases the hydrolysis produces inorganic phosphate and p-nitrophenol by the simple reaction In view of current theories (3, 4) of organic phosphate hydrolyses it seemed desirable to make a more complete study of this reaction over a wide range of ph in the absence of enzymes. EXPERIMESTAL A4aterials p-nitrophenyl phosphate (disoclit~m salt) was supplied by 1Iann Research Laboratories Inc. and was used without further purification. A stock solution (about 8x10-M) was kept in colcl storage. Analysis indicated the presence of about 0.5% 9-nitrophenol in the original phosphate. p-nitroplzenol used for calibration purposes was purifiecl by boiling wit11 dilute hydrochloric acid and activated charcoal. The recrystallized material hacl a melting point of 114.0" C. Buffer solutions.--the following buffer solutions were used and their ph values at 7G.9" C. (give11 in parentheses) were measured using Beckman high-temperature electrodes: acid potassiu~n pl~thalate/l~ydrocl~loric acicl (2.G), acid potassium phthalate (3.8), acetic acicl/sodium acetate (4.7), acid potassium plitlialate/potassium hydroxide (5.8), trisl~ydrox~~methylaminometha1ie/11ydrochloric acid (7.4), boric acid/sodium hydroxicle (9.0). The concentrations of these buffers were adjusted and potassium chloricle was nclcled to make the ionic strength of the reaction mixtures 0.1. Procedure Kinetic runs were done using the apparatus clescribecl in a previous paper (5). The rate of reaction was measured by following calorimetrically the concentration of p-nitrophenol produced, the nietliod being similar to that of Axelrod (2). One-milliliter aliquots were extracted from the reaction mixture at convenient time intervals and diluted by adcling to 10 ml. ll&/g sodium hydroxide at room te~nperature. This effectively stops all 'ivfanziscri/t received Decevzber 16, Conlribzrl~on from lhe Dcparln~enl of Che~r~islry, Uniacrsily of Ottawa, Ottawa, Ca)zada. 2Nalional Research Cozlncil Postdoclorate Fellow Can. J. Chem. Vol. 3G (1958)

2 reaction (see Fig. 2) and produces the yellow color characteristic of the P-nitrophenylate ion. The absorbailce of the solutioil was measured in a Beckmail model DU spectrophotometer at 400 mp at which wavelength there is strong absorption due to the salt form (6). The addition of of reaction nlixture did not alter the ph of the sodium hydroxide sufficiently to affect the calibration. A standard calibration graph of absorbance versus p-nitrophenol concentration was prepared using the purified p-nitrophenol described above. RESLJLTS Order of the Reactiofz The reaction at 76.9' C. was found to be first order with respect to P-nitrophenyl P H FIG. 2. Tcn~perature = if.9" C. p-sitrophenyl phosphate = 0.831X10-3 >If.

3 C.4XADIAN JOURNAL OF CI-IEMISTRY. VOL. 36, 1958 P H FIG. 3. Temperature = 25O C. phosphate and first order with respect to time, over the first 10-20% hydrolysis. This is illustrated by plots of the first-order log function against time for different initial conditions of ph and phosphate concentration shown in Fig. 1. The Effect of $TI Runs were done at different ph values from 2.G to 9.0 at 76.9' C. and Fig. 2 shows a plot of the first-order rate constant against ph. For comparison, Fig. 3 shows a microtitration curve of p-nitrophenyl phosphate obtained (at 25OC.) using the standard procedure. It can be seen that the increase in rate obtained at lower ph values parallels the change in ionic form of the phosphate ester.

4 I-IOLBROOK AND OUELLIST: 0-NITROPI-IENYL PIIOSPHATE 689 The Activation Energy The activation energy corresponding to the first-order rate constant at ph 2.6 was obtained by measuring the rate as a function of temperature from 68.0" to 82.0' C. Fig. 4 shows a plot of loglok versus l/to K. DISCUSSION Although the enzymatic hydrolyses of a number of organic phosphates have been studied at physiologically important ph values, relatively few attempts have beell made to study these hydrolyses over a wide range of ph values in the absence of enzyme. We have previously studied the non-enzymatic hydrolyses of ATP (7) and ADP (5) and have found that the effect of ph upon these hydrolyses could be explained in terms of the differing rates of hydrolysis of different ionic species present in solution. The hydrolysis of fi-nitrophenyl phosphate, which follows the simple over-all equation NOz. C,H,OPO3II- f Hz0 -+ NOz. C6H40H f HzPOd-, [I] shows a similar relationship between the effect of ph (Fig. 2) and the titration curve ol the ester (Fig. 3). The inflectioil point in the latter at about ph 5.0 presuinably corresponds to the equilibrium NO~CGH,OPO~- f H' NO?CGH,OPO~H-. At ph 9.0 it has been observed that the rate of hydrolysis is practically zero, when the ester is largely present as the completely ionized form NOzCGH40P03=, whereas at ph , when the predominant ionic species present is the singly charged T\T02C6H40PO3H- (assuming no large variation in the equilibrium constant from 25" to 70" C.), the rate of hydrolysis is appreciable. The general expressioil for the rate of hydrolysis between ph 2.6 and 9.0 can be written rate = [H20] {kl[t\t02c6h40p03h-1 +k2[n02c6h40po3=]), where [p-nitrophenyl phosphatelo = [NO2C6H40PO3H-] + [N02C6H40P03=]. Hence under the coiiditions at ph 2.6, an approximation is rate = kl[h20] [fi-nitrophenyl phosphatelo. At this ph, the first order of the reaction with respect to the phosphate ester has been delllollstrated (Fig. 1) and the activation energy has been found to be 26.0 kcal. An entropy of activation AS1 = e.u. (taking [H20] = 55.5 moles/liter) was calculated. Whether the rate-determining hydrolysis of the singly charged species occurs by a C-0 or 0-P bond splitting is uncertain and could only be decided by H2018 experiments. The mechanism by which this step occurs may well involve a proton transfer as suggested by Westheimer and I<umamoto (8) for the hydrolysis of the mono anions of mono- and di-benzyl phosphates. The entropy of activation of e.u. is more negative than those found for the 0-P splitting of the adenosine phosphates at alkaline ph values (5) although larger negative values have been reported by Friess (9) for ATP, pyrophosphoric acid, and triphosphoric acid under mildly acidic conditions. I11 a recent study of the hydrolyses of substituted phenyl phosphates, Chanley and Feageson (10) have noted that singly charged species tend to hydrolyze more rapidly than either the completely ionized or the uncharged species. This was explained in terms of I<oshland's nucleophilic displacement mechanism (4) for such reactions.

5 69 0 CANADIAN JOURNAL OF CHEMISTRY. VOL. 36, 1958 Table I gives a comparison of the rates of hydrolysis of substituted aromatic phosphates observed by Chanley and Feageson (10) with our observed rate of hydrolysis of p-nitrophenyl phosphate under identical conditions. The rates are shown to increase in accordance with the increase in electrophilic character of the group attached to the phosphorus atom, as would be predicted from a ~lucleophilic displacement mechanism. TABLE I Dissociation consta~lts Rate, hr.-i X 10, Cornpo~lnd P ~ I pk? pti of reaction at 80' C. Phenyl phosphate m-carboxyphenyl phosphate p-carboxyphenyl phosphate p-nitrophenyl phosphate < La cinktique de l'hydrolyse non-enzymatique du p-nitrophknyl phosphate en solution aqueuse a kt6 CtudiCe B des ph allant de et 2 des tempkratures allant de 68.0" C " C. La rkaction a Ctk suivie par la mesure colorimktrique du p-nitrophknol libcr6 selon la rhaction La rbaction est du premier ordre par rapport au p-nitrophknyl phosphate et elle a une knergie d'activation de 26.0 kcal./mole 2 ph 2.6. On propose une explication en termes du taux d'hydrolyse des diffkrentes espsces ioniques en solution. REFERENCES MORTON, R. I<. Biochem. J. 61, 232 (1955). AXELROD, B. J. Biol. Chem. 167, 57 (1947). BARNARD, P. W. C., BUNTON, C. A., LLEWELLYN, D. R., OLDHAM, I<. G., C. A. Chem. & Ind. (London), '760 (1955). KOSHLAND, D. E., Jr. J. Am. Chern. Soc. 74, 2286 (1952). HOLBROOK, I<. A. and OUELLET, L. Can. J. Chem. 35, 1496 (1957). BIGGS, A. I. Trans. Faraday Soc. 50, 800 (1954). COUTURE, A. M. and OUELLET, L. Can. J. Chem. 35, 1248 (1957). I<UM.~MOTO. 1. and \YESTHEIYEII. F. H. 1. Am. Chem. Soc FRIESS, S. 'L: J. Am. Chem. ~dc. 75, 325 (1953). CHANLEY, J. D. and FEAGESON, E. J. Am. Chem. Soc. 77, 4002 (1955). L., and VERNON,

Certificate of Analysis

Certificate of Analysis Certificate of Analysis 10 Old Barn Road Lake Placid, NY 12946 Technical Support: T: 800 548-7853 F: 518 523-4513 email: techserv@upstate.com Sales Department: T: 800 233-3991 F: 781 890-7738 Licensing

More information

it is assumed that only EH and ESH are catalytically active Michaelis-Menten equation for this model is:

it is assumed that only EH and ESH are catalytically active Michaelis-Menten equation for this model is: initial rates for many enzymatic reactions exhibit bell-shaped curves as a function of ph curves reflect the ionizations of certain amino acid residues that must be in a specific ionization state for enzyme

More information

Chapter 17 Answers. Practice Examples [H3O ] 0.018M, 1a. HF = M. 1b. 30 drops. 2a.

Chapter 17 Answers. Practice Examples [H3O ] 0.018M, 1a. HF = M. 1b. 30 drops. 2a. Chapter 17 Answers Practice Examples 1a. + [HO ] 0.018M, 1b. 0 drops [HF] = 0.8 M. [H O + ] = 0.10 M, HF = 0.97 M. a. + HO 1.10 M, CHO = 0.150 M. b. 15g NaCHO a. The hydronium ion and the acetate ion react

More information

Lecture 12. Acid/base reactions. Equilibria in aqueous solutions.

Lecture 12. Acid/base reactions. Equilibria in aqueous solutions. Lecture 12 Acid/base reactions. Equilibria in aqueous solutions. Titrations Kotz 7 th ed. Section 18.3, pp.821-832. In a titration a solution of accurately known concentration is added gradually added

More information

PRACTICAL 3 ph AND BUFFERS

PRACTICAL 3 ph AND BUFFERS PRACTICAL 3 ph AND BUFFERS ph and Buffers Structure 3.1 Introduction 3.2 ph and Buffers: Basic Concept 3.2.1 ph 3.2.2 Buffers and Buffer Solutions 3.3 Methods for Determining ph Experiment 1: Measurement

More information

Kotz 7 th ed. Section 18.3, pp

Kotz 7 th ed. Section 18.3, pp Lecture 15 Acid/base reactions. Equilibria in aqueous solutions. Titrations Kotz 7 th ed. Section 18.3, pp.821-832. In a titration a solution of accurately known concentration is added gradually added

More information

EXPERIMENT 14. ACID DISSOCIATION CONSTANT OF METHYL RED 1

EXPERIMENT 14. ACID DISSOCIATION CONSTANT OF METHYL RED 1 EXPERIMET 14. ACID DISSOCIATIO COSTAT OF METHYL RED 1 The acid dissociation constant, Ka, of a dye is determined using spectrophotometry. Introduction In aqueous solution, methyl red is a zwitterion and

More information

Downloaded from

Downloaded from I.I.T.Foundation - XI Chemistry MCQ #10 Time: 45 min Student's Name: Roll No.: Full Marks: 90 Solutions I. MCQ - Choose Appropriate Alternative 1. Molarity is the number of moles of a solute dissolved

More information

NCERT. [H O] Since water is in large excess, its concentration can be assumed to be constant and combining it with K provides a new constant K w

NCERT. [H O] Since water is in large excess, its concentration can be assumed to be constant and combining it with K provides a new constant K w UNIT-5 PH AND PH CHANGE IN AQUEOUS SOLUTIONS YOU have already performed experiments on dynamic equilibrium between unionised salt and the ions produced by it on dissolving in a solvent. In this unit we

More information

shown by line A. The net effect of temperature on an enzyme-catalyzed reaction is given by line C.

shown by line A. The net effect of temperature on an enzyme-catalyzed reaction is given by line C. Experiment 8 EFFECT OF TEMPERATURE ON ENZYME ACTIVITY Temperature affects the stability of an enzyme as well as the binding of substrate and its transformation to product. Line B of Fig. 8-l shows the

More information

1 st European Union Science Olympiad in Dublin, Ireland. task B

1 st European Union Science Olympiad in Dublin, Ireland. task B 1 st European Union Science Olympiad in Dublin, Ireland task B Task B The Properties of Proteins Introduction In this task you will investigate some of the properties of proteins. Proteins consist of a

More information

The Common Ion Effect

The Common Ion Effect Chapter 17 ACID BASE EQUILIBRIA (Part I) Dr. Al Saadi 1 17.1 The Common Ion Effect A phenomenon known as the common ion effect states that: When a compound containing an ion in common with an already dissolved

More information

Lesmahagow High School AHChemistry Inorganic and Physical Chemistry Lesmahagow High School CfE Advanced Higher Chemistry

Lesmahagow High School AHChemistry Inorganic and Physical Chemistry Lesmahagow High School CfE Advanced Higher Chemistry Lesmahagow High School CfE Advanced Higher Chemistry Unit 1 Inorganic and Physical Chemistry Chemical Equilibrium 1 Dynamic Equilibrium Revision Dynamic equilibrium happens in a closed system when the

More information

9/24/12. Chemistry Second Edition Julia Burdge. Reactions in Aqueous Solutions

9/24/12. Chemistry Second Edition Julia Burdge. Reactions in Aqueous Solutions Chemistry Second Edition Julia Burdge 4 Reactions in Aqueous Solutions Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 4 Reactions in Aqueous Solutions

More information

Buffered and Isotonic Solutions

Buffered and Isotonic Solutions Buffer and Isotonic Solutions Buffers are compounds or mixtures of compounds that resist changes in ph upon the addition of small quantities of acid or base. The resistance to a change in ph is known as

More information

ACIDS AND BASES. Note: For most of the acid-base reactions, we will be using the Bronsted-Lowry definitions.

ACIDS AND BASES. Note: For most of the acid-base reactions, we will be using the Bronsted-Lowry definitions. DEFINITIONS: ACIDS AND BASES Arrhenius Definition An acid in aqueous solution produces H + ions. A base in aqueous solution produces OH - ions. Bronsted Lowry Theory An acid is a proton donor A base is

More information

Chemistry 5.07SC Biological Chemistry I Fall Semester, 2013

Chemistry 5.07SC Biological Chemistry I Fall Semester, 2013 Chemistry 5.07SC Biological Chemistry I Fall Semester, 2013 Lecture 10. Biochemical Transformations II. Phosphoryl transfer and the kinetics and thermodynamics of energy currency in the cell: ATP and GTP.

More information

Acids, Bases, & Neutralization Chapter 20 & 21 Assignment & Problem Set

Acids, Bases, & Neutralization Chapter 20 & 21 Assignment & Problem Set Acids, Bases, & Neutralization Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Acids, Bases, & Neutralization 2 Study Guide: Things You Must Know

More information

HA(s) + H 2 O(l) = H 3 O + (aq) + A (aq) b) NH 3 (g) + H 2 O(l) = NH 4 + (aq) + OH (aq) Acid no. H + type base no. OH type

HA(s) + H 2 O(l) = H 3 O + (aq) + A (aq) b) NH 3 (g) + H 2 O(l) = NH 4 + (aq) + OH (aq) Acid no. H + type base no. OH type You are already familiar with some acid and base chemistry. According to the Arrhenius model, acids are substances that when dissolved in water ionize to yield hydrogen ion (H + ) and a negative ion. e.g.

More information

Chem 103 Exam #1. Identify the letter of the choice that best completes the statement or answers the question. Multiple Choice

Chem 103 Exam #1. Identify the letter of the choice that best completes the statement or answers the question. Multiple Choice Chem 103 Exam #1 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following can act as a Bronsted-Lowry base, but not as a Bronsted-Lowry

More information

19.4 Neutralization Reactions > Chapter 19 Acids, Bases, and Salts Neutralization Reactions

19.4 Neutralization Reactions > Chapter 19 Acids, Bases, and Salts Neutralization Reactions Chapter 19 Acids, Bases, and Salts 19.1 Acid-Base Theories 19.2 Hydrogen Ions and Acidity 19.3 Strengths of Acids and Bases 19.4 Neutralization Reactions 19.5 Salts in Solution 1 Copyright Pearson Education,

More information

For this lab, you will determine the purity of the aspirin by titration and by spectrophotometric analysis.

For this lab, you will determine the purity of the aspirin by titration and by spectrophotometric analysis. Introduction: ommercially prepared aspirin tablets are not considered 100% pure acetylsalicylic acid. Most aspirin tablets contain a small amount of binder which helps prevent the tablets from crumbling.

More information

Ionic Equilibria. In the Brönsted Lowry classification, acids and bases may be anions such as HSO 4

Ionic Equilibria. In the Brönsted Lowry classification, acids and bases may be anions such as HSO 4 Ionic Equilibria Brönsted Lowry Theory According to the Brönsted Lowry theory, an acid is a substance, charged or uncharged, that is capable of donating a proton, and a base is a substance, charged or

More information

D = (Ut+)E4+ (UOH3+)E3,

D = (Ut+)E4+ (UOH3+)E3, HEAT OF HYDROLYSIS OF URANIUM (IV) IN PERCHLORIC ACID SOLUTIONS1 ABSTRACT The heat of hydrolysis of uranium (IV) in perchloric acid solution has been measured by a spectrophotometric technique. A value

More information

Chemistry I Notes Unit 10: Acids and Bases

Chemistry I Notes Unit 10: Acids and Bases Chemistry I Notes Unit 10: Acids and Bases Acids 1. Sour taste. 2. Acids change the color of acid- base indicators (turn blue litmus red). 3. Some acids react with active metals and release hydrogen gas,

More information

Experiment 1: Preparation of Vanillyl Alcohol

Experiment 1: Preparation of Vanillyl Alcohol Experiment 1: Preparation of Vanillyl Alcohol INTRDUCTIN A common method for preparing alcohols is the reduction of aldehydes to form primary alcohols [equation (1)] or of ketones to produce secondary

More information

We need to find the new concentrations of the species in this buffer system. Remember that we also DILUTED the solution by adding 5.0 ml of the HCl.

We need to find the new concentrations of the species in this buffer system. Remember that we also DILUTED the solution by adding 5.0 ml of the HCl. 164 Take 100. ml of the previous buffer (0.05 M tris / 0.075 M tris-hcl), and add 5.0 ml of.10 M HCl. What is the ph of the mixture? The HCl reacts with the tris base, converting it to tris-hcl We need

More information

Chapter 10. Acids and Bases

Chapter 10. Acids and Bases Chapter 10 Acids and Bases 1 Properties of Aqueous Solutions of Acids and Bases Aqueous acidic solutions have the following properties: 1. They have a sour taste.. They change the colors of many indicators.

More information

Product Properties Test Guidelines OPPTS Dissociation Constants in Water

Product Properties Test Guidelines OPPTS Dissociation Constants in Water United States Environmental Protection Agency Prevention, Pesticides and Toxic Substances (7101) EPA 712 C 96 036 August 1996 Product Properties Test Guidelines OPPTS 830.7370 Dissociation Constants in

More information

Full file at Chapter 2 Water: The Solvent for Biochemical Reactions

Full file at   Chapter 2 Water: The Solvent for Biochemical Reactions Chapter 2 Water: The Solvent for Biochemical Reactions SUMMARY Section 2.1 Summary Water is a polar molecule, with a partial negative charge on the oxygen and partial positive charges on the hydrogens.

More information

Chemistry 132 NT. Acid-Base Equilibria

Chemistry 132 NT. Acid-Base Equilibria Chemistry 132 NT Instead of having answers on a math test, they should just call them impressions, and if you got a different impression, so what, can t we all be brothers? Jack Handey 1 2 Chem 132 NT

More information

Kinetic Analysis of Ester Hydrolysis

Kinetic Analysis of Ester Hydrolysis Boston University penbu Chemistry http://open.bu.edu rganic Chemistry Laboratory Experiments 2011-07-14 Kinetic Analysis of Ester Hydrolysis Mulcahy, Seann P. https://hdl.handle.net/2144/1417 Boston University

More information

Acid-Base Equilibria. 1.NH 4 Cl 2.NaCl 3.KC 2 H 3 O 2 4.NaNO 2. Acid-Ionization Equilibria. Acid-Ionization Equilibria

Acid-Base Equilibria. 1.NH 4 Cl 2.NaCl 3.KC 2 H 3 O 2 4.NaNO 2. Acid-Ionization Equilibria. Acid-Ionization Equilibria Acid-Ionization Equilibria Acid-Base Equilibria Acid ionization (or acid dissociation) is the reaction of an acid with water to produce hydronium ion (hydrogen ion) and the conjugate base anion. (See Animation:

More information

AIM To verify Beer - Lambert s law and to determine the dissociation constant (Ka) of methyl red, Spectrophotometrically.

AIM To verify Beer - Lambert s law and to determine the dissociation constant (Ka) of methyl red, Spectrophotometrically. C 141(Expt. No. ) NAME : ROLL No. : SIGNATURE : BATCH : DATE : VERIFICATION OF BEER - LAMBERT S LAW & DETERMINATION OF DISSOCIATION CONSTANT (Ka) OF METHYLRED, SPECTROPHOTOMETRICALLY AIM To verify Beer

More information

Chemistry Determination of Mixed Acids

Chemistry Determination of Mixed Acids Chemistry 3200 Acid-base titration is one of the most common operations in analytical chemistry. A solution containing an unknown amount of ionizable hydrogen can be titrated with a solution of standard

More information

Zn(II) and Cd(II) based complexes for probing the enzymatic hydrolysis of Na 4 P 2 O 7 by Alkaline phosphatase in physiological condition

Zn(II) and Cd(II) based complexes for probing the enzymatic hydrolysis of Na 4 P 2 O 7 by Alkaline phosphatase in physiological condition Supplementary information Zn(II) and Cd(II) based complexes for probing the enzymatic hydrolysis of Na 4 P 2 O 7 by Alkaline phosphatase in physiological condition Priyadip Das, Sourish Bhattacharya, Sandhya

More information

MAJOR FIELD TEST IN CHEMISTRY SAMPLE QUESTIONS

MAJOR FIELD TEST IN CHEMISTRY SAMPLE QUESTIONS MAJOR FIELD TEST IN CHEMISTRY SAMPLE QUESTIONS The following questions illustrate the range of the test in terms of the abilities measured, the disciplines covered, and the difficulty of the questions

More information

Chapter 15. Acid-Base Equilibria

Chapter 15. Acid-Base Equilibria Chapter 15 Acid-Base Equilibria The Common Ion Effect The common-ion effect is the shift in an ionic equilibrium caused by the addition of a solute that provides an ion already involved in the equilibrium

More information

A. Reaction Mechanisms and Catalysis (1) proximity effect (2) acid-base catalysts (3) electrostatic (4) functional groups (5) structural flexibility

A. Reaction Mechanisms and Catalysis (1) proximity effect (2) acid-base catalysts (3) electrostatic (4) functional groups (5) structural flexibility (P&S Ch 5; Fer Ch 2, 9; Palm Ch 10,11; Zub Ch 9) A. Reaction Mechanisms and Catalysis (1) proximity effect (2) acid-base catalysts (3) electrostatic (4) functional groups (5) structural flexibility B.

More information

AQA Chemistry A-Level : Acids and Bases

AQA Chemistry A-Level : Acids and Bases AQA Chemistry A-Level 3.1.12: Acids and Bases Detailed Notes 3.1.12.1 - Brønsted-Lowry Acids and Bases Acid-base equilibria involve the transfer of protons between substances. Therefore substances can

More information

UNIT 8 NEUTRALIZATION TITRATION-I

UNIT 8 NEUTRALIZATION TITRATION-I UNIT 8 NEUTRALIZATION TITRATION-I Structure 8.1 Introduction Objectives 8. Basic Concepts of Titrimetry, Primary and Secondary Standards 8.3 Titration Curves Titration of A Strong Acid Versus Strong Base

More information

Developing a Spectrophotometric Quantitative Assay for p-nitrophenol

Developing a Spectrophotometric Quantitative Assay for p-nitrophenol Developing a Spectrophotometric Quantitative Assay for p-nitrophenol The insecticide parathion (O,O-diethyl-o-p-nitrophenyl phosphorothioate) undergoes a welldefined pathway of biodegradation. In the first

More information

19.3 Strengths of Acids and Bases > Chapter 19 Acids, Bases, and Salts Strengths of Acids and Bases

19.3 Strengths of Acids and Bases > Chapter 19 Acids, Bases, and Salts Strengths of Acids and Bases Chapter 19 Acids, Bases, and Salts 19.1 Acid-Base Theories 19.2 Hydrogen Ions and Acidity 19.3 Strengths of Acids and Bases 19.4 Neutralization Reactions 19.5 Salts in Solution 1 Copyright Pearson Education,

More information

Q.1 Predict what will happen when SiCl 4 is added to water.

Q.1 Predict what will happen when SiCl 4 is added to water. Transition etals 1 The aqueous chemistry of cations Hydrolysis when salts dissolve in water the ions are stabilised by polar water molecules hydrolysis can occur and the resulting solution can become acidic

More information

Measurement of Enzyme Activity - ALP Activity (ALP: Alkaline phosphatase)

Measurement of Enzyme Activity - ALP Activity (ALP: Alkaline phosphatase) Measurement of Enzyme Activity - ALP Activity (ALP: Alkaline phosphatase) Measurement and analysis of enzyme activity is often used in the field of life science such as medicines and foods to investigate

More information

8. Draw Lewis structures and determine molecular geometry based on VSEPR Theory

8. Draw Lewis structures and determine molecular geometry based on VSEPR Theory Chemistry Grade 12 Outcomes 1 Quantum Chemistry and Atomic Structure Unit I 1. Perform calculations on wavelength, frequency and energy. 2. Have an understanding of the electromagnetic spectrum. 3. Relate

More information

Chem 150, Spring Unit 4 - Acids & Bases. Introduction

Chem 150, Spring Unit 4 - Acids & Bases. Introduction Chem 150, Spring 2015 Unit 4 - Acids & Bases Introduction Patients with emphysema cannot expel CO2 from their lungs rapidly enough. This can lead to an increase of carbonic (H2CO3) levels in the blood

More information

Stuff to Know for the Final Exam I

Stuff to Know for the Final Exam I Exam I Kinetics Rates; relationships Rate Laws Reaction Orders Rate versus time; 1st and 2nd order linear equations and graphs Half life; 1st and 2nd order E a, transition state, ΔE, E profile Arrhenius

More information

BCH 4053 Spring 2001 Chapter 2 Lecture Notes

BCH 4053 Spring 2001 Chapter 2 Lecture Notes BCH 4053 Spring 001 Chapter Lecture Notes 1 Chapter Water, ph and Ionic Equilibria Physical Properties of Water High boiling point High melting point High heat of vaporization High heat of fusion 3 Physical

More information

Water, the SPECIAL Equilibrium

Water, the SPECIAL Equilibrium THE ACID TEST Water, the SPECIAL Equilibrium I. Characteristics of Water A. Water are highly. B. They are in continuous. C. Always. D. Water is dense in the solid phase than in the phase. i.e. ice floats

More information

Acid-Base Equilibria. 1.NH 4 Cl 2.NaCl 3.KC 2 H 3 O 2 4.NaNO 2. Solutions of a Weak Acid or Base

Acid-Base Equilibria. 1.NH 4 Cl 2.NaCl 3.KC 2 H 3 O 2 4.NaNO 2. Solutions of a Weak Acid or Base Acid-Base Equilibria 1 Will the following salts be acidic, basic or neutral in aqueous solution? 1.NH 4 Cl.NaCl.KC H O 4.NaNO A = acidic B = basic C = neutral Solutions of a Weak Acid or Base The simplest

More information

Unit 6 Solids, Liquids and Solutions

Unit 6 Solids, Liquids and Solutions Unit 6 Solids, Liquids and Solutions 12-1 Liquids I. Properties of Liquids and the Kinetic Molecular Theory A. Fluids 1. Substances that can flow and therefore take the shape of their container B. Relative

More information

1) Which of the following represents the breaking of a noncovalent interaction? Topic: The Nature of Noncovalent Interactions

1) Which of the following represents the breaking of a noncovalent interaction? Topic: The Nature of Noncovalent Interactions Multiple Choice Questions 1) Which of the following represents the breaking of a noncovalent interaction? A) hydrolysis of an ester B) dissolving of salt crystals C) ionization of water D) decomposition

More information

Enzymatic Assay of ACTOMYOSIN ATPase Assay

Enzymatic Assay of ACTOMYOSIN ATPase Assay Enzymatic Assay of ACTOMYOSIN PRINCIPLE: ATP + H 2 O ATPase > ADP + P i Abbreviations used: ATP = Adenosine 5'-Triphosphate ATPase = Adenosine 5'-Triphosphatase ADP = Adenosine 5'-Diphosphate P i = Inorganic

More information

Determination of the Identity of an Unknown Weak Acid

Determination of the Identity of an Unknown Weak Acid Determination of the Identity of an Unknown Weak Acid Adapted from R. C. Kerber et. al http://www.sinc.sunysb.edu/class/orgolab/che199_susb014.pdf; W.F. Kinard et.al http://www.cofc.edu/~kinard/221lchem/2002chem221labschedule.htm;

More information

Kinetics and Mechanism of Hydrolysis of Mono-2-chloro- 5-nitroaniline Phosphate via Conjugate Acid Species

Kinetics and Mechanism of Hydrolysis of Mono-2-chloro- 5-nitroaniline Phosphate via Conjugate Acid Species Asian Journal of Chemistry Vol. 20, No. 5 (2008), 3408-3412 Kinetics and Mechanism of Hydrolysis of Mono-2-chloro- 5-nitroaniline Phosphate via Conjugate Acid Species M.K. SINGH* and C.P. SHINDE Department

More information

Unit 4: General Principles of Chemistry I Rates, Equilibria and Further Organic Chemistry (including synoptic assessment)

Unit 4: General Principles of Chemistry I Rates, Equilibria and Further Organic Chemistry (including synoptic assessment) Write your name here Surname Other names Edexcel GCE Centre Number Candidate Number Chemistry Advanced Unit 4: General Principles of Chemistry I Rates, Equilibria and Further Organic Chemistry (including

More information

Chapter 23 Phenols CH. 23. Nomenclature. The OH group takes precedence as the parent phenol.

Chapter 23 Phenols CH. 23. Nomenclature. The OH group takes precedence as the parent phenol. CH. 23 Chapter 23 Phenols Nomenclature The OH group takes precedence as the parent phenol. Carboxyl and acyl groups take precedence over the OH group. The OH group is a strong electron-donating group through

More information

[C] [D] K eq = [A] [B]

[C] [D] K eq = [A] [B] Enzyme Kinetics: Properties of -Galactosidase Preparation for Laboratory: Web Tutorial 4, Beta Galactosidase - submit answers to questions Additonal background: Freeman, Proteins pp 51-54 and Box 3.3 pp56-57,

More information

Chapter 14. Principles of Neutralization Titrations

Chapter 14. Principles of Neutralization Titrations Chapter 14 Principles of Neutralization Titrations Neutralization titrations are widely used to determine the amounts of acids and bases and to monitor the progress of reactions that produce or consume

More information

Chapter 8 Acid-Base Equilibria

Chapter 8 Acid-Base Equilibria Chapter 8 Acid-Base Equilibria 8-1 Brønsted-Lowry Acids and Bases 8-2 Water and the ph Scale 8-3 The Strengths of Acids and Bases 8-4 Equilibria Involving Weak Acids and Bases 8-5 Buffer Solutions 8-6

More information

18.8 Oxidation. Oxidation by silver ion requires an alkaline medium

18.8 Oxidation. Oxidation by silver ion requires an alkaline medium 18.8 Oxidation Oxidation by silver ion requires an alkaline medium Test for detecting aldehydes Tollens reagent to prevent precipitation of the insoluble silver oxide, a complexing agent is added: ammonia

More information

Unit Nine Notes N C U9

Unit Nine Notes N C U9 Unit Nine Notes N C U9 I. AcidBase Theories A. Arrhenius Acids and Bases 1. Acids contain hydronium ions (H O ) commonly referred to as hydrogen ions (H ) that dissociate in water a. Different acids release

More information

SAMPLE CHEMISTRY QUESTIONS MIXTURE OF UNIT 3 & 4 MATERIALS

SAMPLE CHEMISTRY QUESTIONS MIXTURE OF UNIT 3 & 4 MATERIALS SAMPLE CHEMISTRY QUESTIONS MIXTURE OF UNIT 3 & 4 MATERIALS QUESTION 1 The equation describing the production of butyl ethanoate is given below. Catalyst C4H 9OH CH 3COOH CH 3COOC 4H 9 H 2O( l ) 0.0500

More information

Acids and Bases. Reviewing Vocabulary CHAPTER ASSESSMENT CHAPTER 19. Compare and contrast each of the following terms.

Acids and Bases. Reviewing Vocabulary CHAPTER ASSESSMENT CHAPTER 19. Compare and contrast each of the following terms. Acids and Bases Reviewing Vocabulary Compare and contrast each of the following terms. 1. Arrhenius model, Brønsted-Lowry model 2. acid ionization constant, base ionization constant 3. conjugate acid,

More information

+ H 2 O HPO 4. (a) In this system, there are two acid-base conjugate pairs. These are (1) HPO4

+ H 2 O HPO 4. (a) In this system, there are two acid-base conjugate pairs. These are (1) HPO4 1 The dihydrogenphosphate-hydrogenphosphate ion system is an important buffer in the human body. H 2 PO 4 H 2 O HPO 4 2 H 3 O (a) In this system, there are two acid-base conjugate pairs. These are acid

More information

Acids, Bases, Salts, and Buffers

Acids, Bases, Salts, and Buffers Acids, Bases, Salts, and Buffers Investigation questions Parts 1 and 2 What is ph and how is it related to the identity and concentration of the substance in a solution? What is a salt? Introduction I.

More information

Table of Contents. Purpose... 2 Background... 2 Prelab Questions... 3 Procedure:... 3 Calculations:... 4

Table of Contents. Purpose... 2 Background... 2 Prelab Questions... 3 Procedure:... 3 Calculations:... 4 Table of Contents Purpose... 2 Background... 2 Prelab Questions... 3 Procedure:... 3 Calculations:... 4 CHM 212 Experiment 4 Determination of the Ka of Potassium Hydrogen Phthalate (KHP) Using a Gran Plot

More information

EXPT 11. pk a of ph Indicators

EXPT 11. pk a of ph Indicators EXPT 11. pk a of ph Indicators [Key Contents] - acid dissociation constant, pk a - buffer, Henderson-Hasselbalch equation - spectrophotometry, Beer's law - ph indicator [References] Principles of Modern

More information

CHEMISTRY LABORATORY - I

CHEMISTRY LABORATORY - I The Great Chemist ALFRED NOBEL CHEMISTRY LABORATORY - I -1- WORK SHEET Titration 1 : Standardization of AgNO 3 Standard Sodium chloride Vs AgNO 3 Sl.No Vol.of Sodium chloride V 1 (ml) Burette reading (ml)

More information

Kinetics and Mechanism of the Oxidation of Benzyl Alcohol and Benzaldehyde by Aqueous Sodium Dichromate

Kinetics and Mechanism of the Oxidation of Benzyl Alcohol and Benzaldehyde by Aqueous Sodium Dichromate Kinetics and Mechanism of the Oxidation of Benzyl Alcohol and Benzaldehyde by Aqueous Sodium Dichromate DONALD G. LEE AND UDO A. SPITZER The Department of Chemistry, University of Regina, Regina, Saskatchewan

More information

Properties of Aqueous Mixtures of Pure Salts. Thermodynamics of the Ternary System: Water-Calcium Chloride-Magnesium Chloride at 25 C

Properties of Aqueous Mixtures of Pure Salts. Thermodynamics of the Ternary System: Water-Calcium Chloride-Magnesium Chloride at 25 C JOURNAL OF RESEARCH of the National bureau of Standards A. Physics and Chemistry Vol. 70A, No. 4, July-August 9 Properties of Aqueous Mixtures of Pure Salts. Thermodynamics of the Ternary System: Water-Calcium

More information

Chemical Equilibria Part 2

Chemical Equilibria Part 2 Unit 1 - Inorganic & Physical Chemistry 1.4 Chemical Equilibria Part 2 Acid / Base Equilibria Indicators ph Curves Buffer Solutions Pupil Notes Learning Outcomes Questions & Answers KHS ChemistrySept 2015

More information

Arrhenius base is one that dissociates in water to form hydroxide ions.

Arrhenius base is one that dissociates in water to form hydroxide ions. Chemistry Notes: Acids and Bases Arrhenius base is one that dissociates in water to form hydroxide ions. Arrhenius acid is on that dissociates in water to form hydrogen ions (protons). A Bronsted-Lowry

More information

Water: The Solvent for Biochemical Reactions

Water: The Solvent for Biochemical Reactions Chapter 2 Water: The Solvent for Biochemical Reactions 11 SUMMARY Section 2.1 Section 2.2 Section 2.3 Section 2.4 Water is a polar molecule, with a partial negative charge on the oxygen and partial positive

More information

Canadian Journal o Chemistry

Canadian Journal o Chemistry Canadian Journal o Chemistry VOLUME 47 MARCH 15, 1969 NCMBER 6 Nucleophilic decomposition of u-disulfones PAUL ALLEN, JR. AND PATRICK J. CONWAY The Department of Clzelnistry and Chemical Engineering, Stevens

More information

10/16/17 ACIDS AND BASES, DEFINED WATER IS AMPHOTERIC OUTLINE. 9.1 Properties of Acids and Bases. 9.2 ph. 9.3 Buffers

10/16/17 ACIDS AND BASES, DEFINED WATER IS AMPHOTERIC OUTLINE. 9.1 Properties of Acids and Bases. 9.2 ph. 9.3 Buffers ACIDS AND BASES, DEFINED A hydrogen atom contains a proton and an electron, thus a hydrogen ion (H + ) is a proton: Acids: Proton (H + ) transfer between molecules is the basis of acid/base chemistry Ø

More information

Punnett, Campbell and Vacala, Trevor - Integrating Microlab into General Chemistry I & II Experiments

Punnett, Campbell and Vacala, Trevor - Integrating Microlab into General Chemistry I & II Experiments Punnett, Campbell and Vacala, Trevor - Integrating Microlab into General Chemistry I & II Experiments Introduction Our project was centered around a new piece of equipment, Microlab, which has the capability

More information

Calorimetric Determination of Reaction Enthalpies

Calorimetric Determination of Reaction Enthalpies H + (aq) + OH - q H 2 O Calorimetric Determination of Reaction Enthalpies Purpose: Determine the enthalpy of dissociation of CH 3 COOH CH 3 COOH (aq) CH 3 COO - (aq) + H + (aq) Techniques: Calorimetry

More information

Mixtures of Acids and Bases

Mixtures of Acids and Bases Mixtures of Acids and Bases CH202, lab 6 Goals : To calculate and measure the ph of pure acid and base solutions. To calculate and measure the ph of mixtures of acid and base solutions. Safety : Hydrochloric

More information

STUDYING CHEMICAL REACTIONS BY TITRATION ANALYSIS

STUDYING CHEMICAL REACTIONS BY TITRATION ANALYSIS STUDYING CHEMICAL REACTIONS BY TITRATION ANALYSIS OBJECTIVES: Study the relationship of reactants & products in solution phase chemical reactions, Learn how to prepare solutions from solid and liquid stock,

More information

Application Note: A TD-700 Laboratory Fluorometer Method for Alkaline Phosphatase Fluorescence

Application Note: A TD-700 Laboratory Fluorometer Method for Alkaline Phosphatase Fluorescence 1. INTRODUCTION Because of their critical functions in eukaryotic cells, methods for measuring protein phosphatases were established at least as early as 1953 1. In 1965 Fernley and Walker 2 decribed the

More information

Lecture 7. Acids. non-metals form anions. metals form cations H+ - Professor Hicks Inorganic Chemistry (CHE152) + anion. molecular compounds

Lecture 7. Acids. non-metals form anions. metals form cations H+ - Professor Hicks Inorganic Chemistry (CHE152) + anion. molecular compounds Lecture 7 Professor icks Inorganic Chemistry (CE152) Acids + + anion + - anion substances that release + ions when dissolved Strong acids Cl NO 3 2 SO 4 + Cl - + NO - 3 2 + SO 2-4 hydrochloric acid nitric

More information

First week Experiment No.1 / /2013. Spectrophotometry. 1. Determination of copper via ammine complex formation using standard series method

First week Experiment No.1 / /2013. Spectrophotometry. 1. Determination of copper via ammine complex formation using standard series method First week Experiment No.1 / /2013 Spectrophotometry 1. Determination of copper via ammine complex formation using standard series method Principal In the standard series method the teat and standard solution

More information

Chemistry 6A F2007. Dr. J.A. Mack 11/28/07. Exam 3: Friday 12/7/07 (here in lecture) Standard Solutions: What will be covered on the exam?

Chemistry 6A F2007. Dr. J.A. Mack 11/28/07. Exam 3: Friday 12/7/07 (here in lecture) Standard Solutions: What will be covered on the exam? Chemistry 6A F2007 Dr. J.A. Mack Exam : Friday 12/7/07 (here in lecture) What will be covered on the exam? Chapter 6: 6.9-6.15 Chapter 7: All Chapter 8: All Chapter 9: 9.1-9.9 Any thing from lab as well

More information

becomes the acid + b base

becomes the acid + b base IV. DISSCIATIN F WATER. p YDRGEN [ ] EXPNENT FUNCTIN. Āris Kaksis 016, Riga Stradin s University http://aris.gusc.lv/biothermodynamics/dissociation.doc Brensted protolytic concept of acid and base 193

More information

Hashem Al-Dujaily. Hala Al Suqi. Mamoun + Diala. Tamer Barakat + Hashem Al-Dujaily

Hashem Al-Dujaily. Hala Al Suqi. Mamoun + Diala. Tamer Barakat + Hashem Al-Dujaily 3 Hashem Al-Dujaily Tamer Barakat + Hashem Al-Dujaily Hala Al Suqi Mamoun + Diala Last time we talked about the Ionization of water and then started talking about kw (ion product for water) which is a

More information

2014 Assessment Report. Chemistry Level 3

2014 Assessment Report. Chemistry Level 3 National Certificate of Educational Achievement 2014 Assessment Report Chemistry Level 3 91390 Demonstrate understanding of thermochemical principles and the properties of particles and substances 91391

More information

Advanced Unit 6: Chemistry Laboratory Skills II

Advanced Unit 6: Chemistry Laboratory Skills II Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Chemistry Advanced Unit 6: Chemistry Laboratory Skills II Candidate Number Tuesday 17 May 2016 Morning

More information

Exploring Equilibria

Exploring Equilibria Exploring Equilibria Name: Chem 112 This experiment explores a variety of equilibrium systems. A reference Table of Reactions is attached to aid in your explanations. In this qualitative lab, your observations,

More information

CHEMISTRY (SALTERS) 2853

CHEMISTRY (SALTERS) 2853 OXFORD AMBRIDGE AND RSA EXAMINATIONS Advanced GE EMISTRY (SALTERS) 2853 Polymers, Proteins and Steel Wednesday 21 JANUARY 2004 Morning 1 hour 30 minutes andidates answer on the question paper. Additional

More information

Chapter 10: Carboxylic Acids and Their Derivatives

Chapter 10: Carboxylic Acids and Their Derivatives Chapter 10: Carboxylic Acids and Their Derivatives The back of the white willow tree (Salix alba) is a source of salicylic acid which is used to make aspirin (acetylsalicylic acid) The functional group

More information

2 Answer all the questions. OH(g) ΔH = 91 kj mol 1 equation 1.1. (a) A pressure of between 50 and 100 atmospheres is used for this reaction.

2 Answer all the questions. OH(g) ΔH = 91 kj mol 1 equation 1.1. (a) A pressure of between 50 and 100 atmospheres is used for this reaction. 2 Answer all the questions. 1 Methanol is added to ethanol to make the ethanol unfit to drink. Methanol can be made by the following reaction. CO(g) + 2H 2 (g) CH 3 OH(g) ΔH = 91 kj mol 1 equation 1.1

More information

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. CP Chem Review 2 Matching Match each item with the correct statement below. a. activated complex d. activation energy b. reaction rate e. free energy c. inhibitor 1. the minimum energy colliding particles

More information

Chapter 2 Water: The Solvent for Biochemical Reactions

Chapter 2 Water: The Solvent for Biochemical Reactions Chapter 2 Water: The Solvent for Biochemical Reactions SUMMARY Section 2.1 Water is a polar molecule, with a partial negative charge on the oxygen and partial positive charges on the hydrogens. There are

More information

Experiment 8 and 9 Weak Acids and Bases: Exploring the Nature of Buffers

Experiment 8 and 9 Weak Acids and Bases: Exploring the Nature of Buffers Experiment 8 and 9 Weak Acids and Bases: Exploring the Nature of Buffers Pre-Laboratory Assignments Reading: Textbook Chapter 16 Chapter 17:1-3 This Laboratory Handout Pre-Laboratory Assignments: Complete

More information

K a =

K a = Q1.The acid dissociation constant, K a, for ethanoic acid is given by the expression K a = The value of K a for ethanoic acid is 1.74 10 5 mol dm 3 at 25 C. A buffer solution is prepared using ethanoic

More information

Determining ph and Titrations

Determining ph and Titrations Determining ph and Titrations Key Terms acid-base indicators transition interval ph meter titration equivalence point end point standard solution primary standard Section 2 3A Main Ideas Indicators can

More information

Chemistry Class 11 Syllabus

Chemistry Class 11 Syllabus Chemistry Class 11 Syllabus Course Structure Unit Title Marks I Basic Concepts of Chemistry 11 II Structure of Atom III Classification of Elements & Periodicity in Properties 4 IV Chemical Bonding and

More information

ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor

ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor HCl(aq) + H 2 O(l) H 3 O + (aq) + Cl - (aq) Acid Base Conjugate acid Conjugate

More information