Supporting Information

Size: px
Start display at page:

Download "Supporting Information"

Transcription

1 1 Supporting Information Cu/Pd Catalyzed Synthesis of Fully Decorated Polycyclic Triazoles: Introducing C H Functionalization to Multicomponent Multicatalytic Reactions (MC) 2 R Zafar Qureshi, Jung Yun Kim, Theodora Bruun, Mark Lautens* Davenport Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6 (Canada) *mlautens@chem.utoronto.ca 1. General Methods 2 2. Azides 2 3. Terminal alkynes 5 4. Internal alkynes 6 5. Intermediate synthesis 7 6. (MC) 2 R H NMR Study Mechanism for palladium catalyzed step Scope Product derivatization NMR spectra 26

2 2 General methods All reagents, starting materials and catalysts were purchased from Sigma Aldrich or Combiblocks and used as received. DMSO was purchased from ACP chemicals and triethylamine was purchased from Sigma Aldrich and used as received. All other solvents were distilled under N 2 prior to use. Unless otherwise noted, reactions were carried out in dry glassware under argon. TLC was performed with EMD TLC Silica gel 60 F254 aluminum sheets. Visualization was accomplished with 254 nm UV light followed by staining with potassium permanganate. Flash and gradient column chromatography was carried out using Silicycle Ultra-Pure mesh silica gel. Melting points were taken on a Fisher- Johns melting point apparatus and are uncorrected. IR spectra were obtained using a Perkin-Elmer Spectrum 1000 FT-IR spectrometer as neat films or as solutions (CHCl 3 ) on a NaCl plate. Data is presented as frequency of absorption (cm 1 ). 1 H, 19 F and 13 C NMR spectra were recorded at 23 C in CDCl 3 with a Bruker Avance 400 spectrometer, Varian Mercury 400 spectrometer, Varian Unity 500 spectrometer or an Agilent DD2-600 spectrometer. Recorded shifts for protons and carbon NMR are reported in parts per million (δ scale) and are referenced to tetramethylsilane (δ 0). Data are represented as follows: chemical shift, multiplicity (s=singlet, d=doublet, t=triplet, p=pentet, m=multiplet, b=broad), coupling constant (J, Hz) and integration. High resolution mass spectra were obtained from a JEOL AccuTOF model JMS-T1000LC mass spectrometer (DART) or an ABI/Sciex Qstar mass spectrometer (ESI). Azides: Scheme S1: Large scale synthesis of 2-iodobenzyl azide. A mixture of 2-iodotoluene (22 g, 100 mmol), N-bromosuccinimide (20 g, 112 mmol) and benzoyl peroxide (1 g) in benzene (100 ml) was refluxed for 10 h. The reaction was cooled to RT, filtered and the filtrate was washed with Na 2 SO 3, dried with MgSO 4, filtered and concentrated to give crude 2-iodobenzyl bromide. Purification by flash chromatography (Hexanes) gave (60%) of a white solid. The benzyl bromide and NaN 3 (11.8 g, 181 mmol, 3 equiv) were stirred in DMF (100 ml) at RT overnight, diluted with H 2 O (400 ml) and extracted with a 1:1 mixture of EtOAc:Hexanes (250 ml X 4). The organic layer was washed with brine (100 ml X 3), dried with MgSO 4, filtered and concentrated to give pure 2- iodobenzyl azide (15.39 g, 98%).

3 3 Scheme S2: Synthesis of substituted benzyl azides. Typical protocol for the synthesis of azides: To a solution of the 2-iodobenzoic acid derivatives (2 mmol) in THF (0.4 M) at 0 C was added BH 3. SMe 2 (0.28 ml, 3 mmol, 1.5 equiv). The reactions were warmed to RT overnight and quenched with MeOH (1ml), diluted with EtOAc and washed with H 2 O (10 ml) and brine (10 ml). The organic layer was separated and dried with MgSO 4, filtered and concentrated to give the crude benzyl alcohols which were used without further purification. The crude alcohols were dissolved in dry toluene (3 ml). Diphenylphosphoryl azide (1.2 equiv) followed by DBU (1.3 equiv) was added and the reactions were stirred at RT for 1 h. The reactions were diluted with Et 2 O (10 ml), quenched with 2 M HCl (5 ml), and washed with H 2 O (10 ml) and brine (10 ml). The organic layer was separated and dried with MgSO 4, filtered and concentrated to give the crude azides. The azides were purified by flash chromatography (5% EtOAc in Hexanes). 2-iodobenzyl azide, 1a Compound in agreement with literature report (Synthesis, 2013, 45, ). 1 H NMR: (399 MHz, Chloroform-d) δ 7.88 (d, J = 7.8 Hz, 1H), (m, 2H), (m, 1H), 4.46 (s, 2H). 13 C NMR: (100 MHz, cdcl 3 ) δ , , , , , 99.12, (azidomethyl)-1-iodo-4-methylbenzene, S1 1 H NMR: (399 MHz, Chloroform-d) δ 7.73 (d, J = 8.0 Hz, 1H), (m, 1H), (m, 1H), 4.41 (s, 2H), 2.32 (d, J = 0.7 Hz, 3H). 13 C NMR: (100 MHz, cdcl 3 ) δ , , , , , 94.84, 58.93, IR: 2925, 2091, 1466, 1339, 1279, 1262, 1242, 1167, 1012, 930, 746, 808, 746, 709. HRMS: (DART) calc d for C 8 H 9 NI (M + H N 2 ) ; Found (azidomethyl)-4-fluoro-1-iodobenzene, S2 1 H NMR: (399 MHz, Chloroform-d) δ 7.61 (dd, J = 7.9, 2.6 Hz, 1H), 7.34 (dd, J = 8.6, 5.7 Hz, 1H), 7.10 (td, J = 8.3, 2.6 Hz, 1H), 4.43 (s, 2H). 13 C NMR: (100 MHz, Chloroform-d) δ (d, J = Hz), (d, J = 3.4 Hz), (d, J = 8.2 Hz), (d, J = 23.9 Hz), (d, J = 21.1 Hz), (d, J = 8.2 Hz). 19 F NMR: (376 MHz, Chloroform-d) δ (td, J = 7.7, 5.4 Hz). IR: 2094, 1591, 1583, 1479, 1386, 1340, 1263, 1221, 1179, 1029, 861, 813, 777, 663.

4 4 HRMS: (DART) calc d for C 7 H 6 NIF (M + H N 2 ) ; Found (azidomethyl)-4-chloro-2-iodobenzene, S3 1 H NMR: (399 MHz, Chloroform-d) δ 7.87 (d, J = 2.1 Hz, 1H), 7.36 (dd, J = 8.2, 2.1 Hz, 1H), 7.30 (d, J = 8.3 Hz, 1H), 4.43 (s, 2H). 13 C NMR: (100 MHz, cdcl 3 ) δ , , , , , 98.68, IR: 2093, 1578, 1554, 1464, 1373, 1338, 1287, 1243, 1103, 1029, 871, 840, 808, 680. HRMS: (DART) calc d for C 7 H 6 NICl (M + H N 2 ) ; Found Scheme S3: Synthesis of azide S5. S4 (prepared according to Eur. J. Org. Chem. 2014, ) (388 mg, 2 mmol) and NaN 3 (390 mg, 6 mmol) were stirred in DMF (5 ml) at RT overnight, diluted with H 2 O (20 ml) and extracted with a 1:1 mixture of EtOAc:Hexanes (25 ml X 4). The organic layer was washed with brine (20 ml X 3), dried with MgSO 4, filtered and concentrated to give S5 (585 mg, 97%). 5-iodo-4-(iodomethyl)benzo[d][1,3]dioxole, S4 1 H NMR: (400 MHz, Chloroform-d) δ 7.27 (dd, J = 8.2, 0.9 Hz, 1H), 6.50 (dd, J = 8.2, 0.8 Hz, 1H), 6.05 (d, J = 0.9 Hz, 2H), 4.44 (d, J = 1.0 Hz, 2H). 13 C NMR: (101 MHz, CDCl 3 ) δ , , , , , , IR: 3076, 2894, 2775, 1838, 1495, 1450, 1417, 1331, 1247, 1218, 1177, 1147, 1127, 1047, 1002, 923, 864, 804, 738, 666. MP: C HRMS: compound decomposes in mass spectrometer. 4-(azidomethyl)-5-iodobenzo[d][1,3]dioxole, S5

5 5 1 H NMR: (399 MHz, Chloroform-d) δ 7.34 (d, J = 8.2 Hz, 1H), 6.58 (d, J = 8.2 Hz, 1H), 6.02 (s, 2H), 4.44 (s, 3H). 13 C NMR: (100 MHz, cdcl 3 ) δ , , , , , , 89.03, IR: 2894, 2783, 2090, 1497, 1450, 1338, 1242, 1158, 1098, 1046, 1016, 927, 874, 842, 797, 761, 700, 654. HRMS: (DART) calc d for C 8 H 7 NO 2 I (M + H N 2 ) ; Found Terminal alkynes: bis-tert-butyl pent-4-yn-1-ylcarbamate, S6 Prepared according to US Patent: , B1, cyclopenta-2,4-dien-1-yl(2-((prop-2-yn-1-yloxy)methyl)cyclopenta-2,4-dien-1-yl)iron, S7 Prepared according to New J. Chem. 2014, 38, (tert-butyl) 2-(prop-2-yn-1-yl) (S)-pyrrolidine-1,2-dicarboxylate, S8 Prepared according to J. Org. Chem. 2010, 75, benzoyl-1-(prop-2-yn-1-yl)pyrimidine-2,4(1H,3H)-dione, S9

6 6 Prepared according to Eur. J. Med. Chem. 2013, 70, (3aR,5R,6S,6aR)-5-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyl-6-(prop-2-yn-1- yloxy)tetrahydrofuro[2,3-d][1,3]dioxole, S10 Prepared according to Angew. Chem. Int. Ed. 2015, 54, (3S,5S,8R,9S,10S,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-3-(prop-2-yn-1- yloxy)hexadecahydro-1h-cyclopenta[a]phenanthrene, S11 Prepared according to Patent: WO2009/49370 A1, Internal alkynes: Figure S1: Internal alkyne used in (MC) 2 R (prepared according to Org. Lett. 2002, 4, ).

7 7 diethyl 3,3'-(ethyne-1,2-diyl)dibenzoate, S12 1 H NMR: (399 MHz, Chloroform-d) δ 8.22 (td, J = 1.7, 0.6 Hz, 1H), 8.03 (ddd, J = 7.8, 1.2, 0.7 Hz, 1H), 7.71 (dt, J = 7.7, 1.3 Hz, 1H), 7.44 (tt, J = 7.8, 0.5 Hz, 1H), 4.40 (q, J = 7.1 Hz, 2H), 1.42 (t, J = 7.1 Hz, 3H). 13 C NMR: (100 MHz, cdcl 3 ) δ , , , , , , , 89.19, 61.25, IR: 2981, 1715, 1603, 1579, 1487, 1431, 1367, 1321, 1278, 1266, 1236, 1166, 1149, 1100, 1079, 1020, 998, 943, 911, 863, 816, 749, 681. MP: C HRMS: (ESI) calc d for C 27 H 26 N 3 (M + H) ; Found ,2-di(thiophen-3-yl)ethyne, S13 1 H NMR: (399 MHz, Chloroform-d) δ 7.50 (dd, J = 3.0, 1.2 Hz, 2H), 7.29 (dd, J = 5.0, 3.0 Hz, 2H), 7.18 (dd, J = 5.0, 1.2 Hz, 2H). 13 C NMR: (100 MHz, cdcl 3 ) δ , , , , IR: 3100, 1570, 1539, 1476, 1353, 1183, 1076, 960, 867, 829, 775, 693. MP: C HRMS: (DART) calc d for C 10 H 6 S 2 (M + H) ; Found All other starting materials are commercial. Intermediate synthesis: Scheme S4: Synthesis of intermediate 3a. A mixture of 1-iodobenzyl azide, 1a (2.59 g, 10 mmol), 1-hexyne, 2a (1.14 ml, 10 mmol), triethylamine (2.8 ml, 20 mmol) and CuI (1.9 g, 10 mmol) is stirred in THF (50 ml) at RT overnight. The reaction was

8 8 filtered, concentrated and purified by column chromatography (10% EtOAc in Hexanes) to the give 2.95 g (87%) 3a as a white solid. 4-butyl-1-(2-iodobenzyl)-1H-1,2,3-triazole, 3a Compound in agreement with literature report (Synthesis, 2013, 45, ). 1 H NMR: (300 MHz, Chloroform-d) δ 7.89 (dd, J = 8.3, 1.3 Hz, 1H), 7.32 (td, J = 7.6, 1.3 Hz, 1H), 7.28 (s, 1H), 7.04 (ddt, J = 8.2, 3.6, 1.7 Hz, 2H), 5.58 (s, 2H), (m, 2H), (m, 2H), 1.37 (dq, J = 14.4, 7.3 Hz, 2H), 0.92 (t, J = 7.3 Hz, 3H). 13 C NMR: (126 MHz, cdcl 3 ) δ , , , , , , , , , , , 98.43, 58.13, 58.13, 31.47, 25.36, 22.27, (MC) 2 R: Scheme S5: (MC) 2 R. Typical protocol: 2-iodobenzyl azide, 1a (142.5 mg, 0.55 mmol, 1.1 equiv) was added a 2 dram amber vial with a Teflon coated stirbar under air. CuI (4.7 mg, 25.0 µmol, 5 mol % Cu), the Herrmann-Beller palladacycle (11.7 mg, 12.5 µmol, 5 mol % Pd), diphenylacetylene, 5a (178.2 mg, 1 mmol, 2 equiv) and PivOH (25.5 mg, 0.25 mmol, 50 mol %) were added to the vial followed by 1-hexyne, 1a (57.4 µl, 0.5 mmol, 1 equiv), triethylamine (348.5 µl, 2.5 mmol, 5 equiv) and DMSO (2 ml, 0.25 M, ppm H 2 O by KF titration). The vial was purged with Argon, capped, Teflon taped and then heated to 120 C for 24h. For optimization reactions: The vial was cooled to RT and diluted with 10 ml solution of a 1:1 mixture of EtOAc:Hexanes and washed with 20 ml saturated NaCl solution. The aqueous layer was extracted with 10 ml of the 1:1 EtOAc:Hexanes solution twice. The organic layers were combined, dried with MgSO 4 and filtered into a flask containing 1 ml of a 20 mm solution (in THF) of trimethoxybenzene. The filtrate was concentrated and yields were obtained through NMR spectroscopy.

9 9 For scope reactions: The vial was cooled to RT and the contents directly loaded onto a column (3cm x 20cm) and purified using mixtures of EtOAc in Hexanes. The pale yellow foams obtained from chromatography can be crystallized by slow evaporation from a 1:2 mixture of DCM:Hexanes. Large scale reaction: A 75 ml pressure flask was charged with 2-iodobenzyl azide, 1a (1.42 g, 5.5 mmol, 1.1 equiv), CuI (47.6 mg, 0.25 mmol, 5 mol % Cu), HBP (117.2 mg, mmol, 5 mol % Pd), diphenylacetylene, 5a (1.78 g, 10 mmol, 2 equiv), PivOH (255.3 mg, 2.5 mmol, 50 mol %), 1-hexyne, 2a (574 µl, 5.0 mmol, 1 equiv), triethylamine (3.48 ml, 25 mmol, 5 equiv) and DMSO (20 ml, 0.25M, 345 ppm H 2 O by KF titration) under air. The green mixture was flushed with Argon, capped and heated to 120 C for 24h. The flask was cooled to RT, diluted with 100 ml mixture of EtOAc:Hexanes (1:1), washed with 100 ml saturated NaCl solution. The aqueous layer was extracted with 100 ml of the 1:1 EtOAc:Hexanes solution twice. The organic layers were combined, dried with MgSO 4, filtered and concentrated. The black residue was purified by column chromatography (5 20% EtOAc in Hexanes) to give 1.53g (78%) 7a along with 1.04 g (94% recovery) 5a. 3-butyl-4,5-diphenyl-10H-benzo[e][1,2,3]triazolo[1,5-a]azepine, 7a Yield: 145 mg, 74%. Room temperature: 1 H NMR: (500 MHz, Chloroform-d) δ 7.46 (ddd, J = 7.5, 1.5, 0.6 Hz, 1H), 7.38 (ddd, J = 7.8, 1.4, 0.5 Hz, 1H), 7.32 (td, J = 7.4, 1.4 Hz, 1H), (m, 1H), (m, 4H), (m, 6H), 5.62 (broad s, 2H), 2.02 (broad s, 2H), 1.15 (broad s, 2H), 1.03 (dq, J = 14.8, 7.3 Hz, 2H), 0.69 (t, J = 7.3 Hz, 3H). 13 C NMR: (126 MHz, cdcl 3 ) δ , , , , , , , , , , , , , , , , , 52.73, 31.37, 25.45, 22.45, IR: 2955, 2928, 2857, 1506, 1219, 1078, 772, 751, 740, 698, 415. MP: C HRMS: (ESI) calc d for C 27 H 26 N 3 (M + H) ; Found *Alkyl protons appear as broad singlets at room temperature which can be resolved at -40 o C At -40 o C: 1 H NMR: (600 MHz, Chloroform-d) δ 7.50 (d, J = 7.5 Hz, 1H), 7.42 (dd, J = 8.1, 2.2 Hz, 1H), 7.36 (td, J = 7.4, 1.4 Hz, 1H), (m, 5H), (m, 6H), 5.90 (d, J = 13.9 Hz, 1H), 5.43 (d, J = 13.1 Hz, 1H), (m, 1H), (m, 1H), (m, 1H), (m, 2H), (m, 1H), 0.68 (t, J = 7.3 Hz, 3H).

10 10 13 C NMR: (151 MHz, cdcl 3 ) δ , , , , , , , , , , , , , , , , , , 52.58, 31.45, 25.37, 22.49, H NMR study: Scheme S6: (MC) 2 R for 1 H NMR study. 2-iodobenzyl azide, 1a (28.5 mg, 0.11 mmol, 1.1 equiv), CuI (0.96 mg, 5.0 µmol, 5 mol % Cu), HBP (2.3 mg, 2.5 µmol, 5 mol % Pd), diphenylacetylene, 5a (35.6 mg, 0.2 mmol, 2 equiv), PivOH (5.1 mg, 0.05 mmol, 50 mol %), 1-hexyne, 2a (11.5 µl, 0.1 mmol, 1 equiv), triethylamine (70 µl, 0.5 mmol, 5 equiv) and DMSO d6 (0.4 ml, 0.25 M, ppm H 2 O by KF titration) were added to a 5 mm NMR tube and purged with Ar. A spectrum was taken at RT, then the probe was heated to 120 C. Spectra were taken every 15 mins for 2 h at the beginning of the experiment and then every hour for the remainder of the experiment. At the first time point at 120 C, 1a has reacted with 2a to form 3a. The excess azide degrades over the next few hours. The conversion of 3a to 7a is then observed. The reaction was purified by column chromatography (10 30% EtOAc in Hexanes) to give 30 mg (77%) of 7a, which closely matched the final NMR yield of 80%.

11 % NMR Yield Reaction Progression Time (hours) Figure S2: Plot of yield versus time for azide 1a, intermediate 3a and product 7a. Mechanism for palladium catalyzed step: Scheme S7: (MC) 2 R with 3,3-dideutereo hexyne. The reaction was run using standard conditions with 3,3-dideutereo hexyne, 2a-d (J. Org. Chem. 2005, 7, ) to give 7a-d with 92% D. Scope: 3-butyl-8-methyl-4,5-diphenyl-10H-benzo[e][1,2,3]triazolo[1,5-a]azepine, 7b

12 12 Yield: 142 mg, 70%. 1 H NMR: (500 MHz, Chloroform-d) δ 7.27 (d, J = 1.8 Hz, 1H), 7.24 (d, J = 8.2 Hz, 1H), (m, 4H), (m, 6H), 7.05 (ddd, J = 8.1, 1.9, 0.8 Hz, 1H), 5.57 (broad s, 2H), 2.33 (s, 3H), 2.01 (broad s, 2H), 1.15 (broad s, 2H), 1.03 (h, J = 7.3 Hz, 2H), 0.69 (t, J = 7.3 Hz, 3H). 13 C NMR: (126 MHz, cdcl 3 ) δ , , , , , , , , , , , , , , , , , , 52.72, 31.39, 25.43, 22.43, 20.93, IR: 2955, 2928, 1615, 1599, 1497, 1464, 1441, 1219, 1072, 1031, 846, 826, 750, 705, 697. MP: C HRMS: (ESI) calc d for C 28 H 28 N 3 (M + H) ; Found butyl-8-fluoro-4,5-diphenyl-10H-benzo[e][1,2,3]triazolo[1,5-a]azepine, 7c Yield: 112 mg, 55%. 1 H NMR: (500 MHz, Chloroform-d) δ (m, 1H), (m, 4H), (m, 7H), (m, 1H), 5.60 (broad s, 2H), 2.03 (broad s, 2H), 1.17 (broad s, 2H), 1.04 (h, J = 7.3 Hz, 2H), 0.69 (t, J = 7.3 Hz, 3H). 13 C NMR: (126 MHz, cdcl 3 ) δ , , (d, J = 2.1 Hz), (d, J = 7.9 Hz), , , , , , (d, J = 2.9 Hz), , , , , , , , , , , , , 51.92, 31.32, 25.38, 22.38, F NMR: (377 MHz, Chloroform-d) δ (m). IR: 2956, 2929, 2860, 1610, 1577, 1489, 1465, 1441, 1265, 1201, 1074, 1000, 925, 878, 843, 803, 754, 725, 701. MP: C HRMS: (DART) calc d for C 27 H 25 N 3 F (M + H) ; Found butyl-7-chloro-4,5-diphenyl-10H-benzo[e][1,2,3]triazolo[1,5-a]azepine, 7d

13 13 Yield: 113 mg, 53%. 1 H NMR: (500 MHz, Chloroform-d) δ 7.40 (dd, J = 8.2, 0.5 Hz, 1H), (m, 1H), 7.29 (dd, J = 8.1, 2.1 Hz, 1H), (m, 10H), 5.59 (broad s, 2H), 2.00 (braod s, 2H), 1.15 (broad s, 2H), 1.03 (dq, J = 14.8, 7.4 Hz, 2H), 0.69 (t, J = 7.3 Hz, 3H). 13 C NMR: (126 MHz, cdcl 3 ) δ , , , , , , , , , , , , , , , , , , 52.04, 31.34, 25.39, 22.42, IR: 2956, 2927, 2858, 1596, 1560, 1485, 1465, 1441, 1206, 1075, 889, 836, 821, 803, 750, 699. MP: C HRMS: (DART) calc d for C 27 H 25 N 3 Cl (M + H) ; Found butyl-6,7-diphenyl-12H-[1,3]dioxolo[4',5':3,4]benzo[1,2-e][1,2,3]triazolo[1,5-a]azepine, 7e Yield: 133 mg, 61%. 1 H NMR: (500 MHz, Chloroform-d) δ (m, 4H), (m, 6H), 6.82 (dd, J = 8.4, 0.7 Hz, 1H), 6.67 (dd, J = 8.4, 0.6 Hz, 1H), 6.03 (s, 2H), 5.67 (broad s, 2H), 2.01 (t, J = 7.9 Hz, 2H), 1.14 (p, J = 7.5 Hz, 2H), 1.03 (h, J = 7.3 Hz, 2H), 0.69 (t, J = 7.3 Hz, 3H). 13 C NMR: (126 MHz, cdcl 3 ) δ , , , , , , , , , , , , , , , , , , , 44.82, 31.38, 25.39, 22.40, IR: 2957, 2928, 2859, 1600, 1473, 1459, 1441, 1251, 1209, 1177, 1058, 1041, 1007, 931, 837, 818, 748, 698, 667. MP: C HRMS: (DART) calc d for C 28 H 26 N 3 O 2 (M + H) ; Found (4,5-diphenyl-10H-benzo[e][1,2,3]triazolo[1,5-a]azepin-3-yl)butanenitrile, 7f Yield: 176 mg, 88%. 1 H NMR: (500 MHz, Chloroform-d) δ 7.47 (ddd, J = 7.5, 1.5, 0.6 Hz, 1H), 7.39 (ddd, J = 7.9, 1.4, 0.5 Hz, 1H), 7.34 (td, J = 7.4, 1.4 Hz, 1H), (m, 1H), (m, 10H), 5.63 (broad s, 2H), 2.17 (t, J = 7.4 Hz, 2H), 2.10 (t, J = 7.3 Hz, 2H), (m, 3H). 13 C NMR: (126 MHz, cdcl 3 ) δ , , , , , , , , , , , , , , , , , , , 52.80, 24.47, 24.23,

14 14 IR: 3019, 1599, 1575, 1488, 1440, 1353, 1324, 1206, 1074, 1030, 1001, 883, 851, 815, 741, 698, 666. MP: C HRMS: (DART) calc d for C 27 H 23 N 4 (M + H) ; Found (4,5-diphenyl-10H-benzo[e][1,2,3]triazolo[1,5-a]azepin-3-yl)methanol, 7g Yield: 79 mg, 43%. 1 H NMR: (500 MHz, Chloroform-d) δ (m, 1H), (m, 2H), (m, 1H), (m, 10H), 5.64 (broad s, 2H), 4.08 (d, J = 5.1 Hz, 2H), 1.72 (broad s, 1H). 13 C NMR: (126 MHz, cdcl 3 ) δ , , , , , , , , , , , , , , , , , , 56.30, IR: 3355, 3054, 3019, 1598, 1489, 1441, 1355, 1216, 1074, 1026, 883, 820, 756, 746, 698. MP: C HRMS: (DART) calc d for C 24 H 20 N 3 O (M + H) ; Found ,5-diphenyl-3-(((tetrahydro-2H-pyran-2-yl)oxy)methyl)-10H-benzo[e][1,2,3]triazolo[1,5-a]azepine, 7gthp Yield: 119 mg, 53%. 1 H NMR: (500 MHz, Chloroform-d) δ 7.47 (ddd, J = 7.5, 1.5, 0.5 Hz, 1H), (m, 2H), (m, 1H), (m, 10H), 5.64 (broads, 2H), 4.28 (s, 2H), 3.76 (broad s, 1H), (m, 1H), (m, 1H), (m, 1H), (m, 3H), (m, 2H). 13 C NMR: (126 MHz, cdcl 3 ) δ , , , , , , , , , , , , , , , , , , 97.86, 61.51, 60.04, 52.75, 30.16, 25.33, IR: 2945, 1599, 1489, 1464, 1441, 1322, 1201, 1118, 1075, 1054, 1024, 970, 905, 869, 814, 755, 751, 698. MP: C HRMS: (DART) calc d for C 29 H 28 N 3 O 2 (M + H) ; Found

15 15 2-(4,5-diphenyl-10H-benzo[e][1,2,3]triazolo[1,5-a]azepin-3-yl)ethan-1-ol, 7h Yield: 135 mg, 72%. 1 H NMR: (500 MHz, Chloroform-d) δ 7.47 (d, J = 7.6 Hz, 1H), 7.39 (dd, J = 7.8, 1.3 Hz, 1H), (m, 1H), (m, 1H), (m, 4H), (m, 6H), 5.63 (broad s, 2H), 3.59 (q, J = 6.0 Hz, 2H), (m, 1H), 2.18 (broad s, 2H). 13 C NMR: (126 MHz, cdcl 3 ) δ , , , , , , , , , , , , , , , , , , , , 60.85, 52.81, 28.44, IR: 3361, 3055, 3020, 2930, 1599, 1575, 1488, 1440, 1362, 1322, 1207, 1148, 1074, 1046, 1001, 882, 863, 822, 740, 697. MP: C HRMS: (DART) calc d for C 25 H 22 N 3 O (M + H) ; Found (2-((tert-butyldimethylsilyl)oxy)ethyl)-4,5-diphenyl-10H-benzo[e][1,2,3]triazolo[1,5-a]azepine, 7h-tbs Yield: 102 mg, 41%. 1 H NMR: (500 MHz, Chloroform-d) δ (m, 1H), 7.36 (ddd, J = 7.8, 1.4, 0.4 Hz, 1H), 7.31 (td, J = 7.4, 1.4 Hz, 1H), (m, 1H), (m, 4H), (m, 6H), 5.61 (broad s, 2H), 3.50 (broad s, 2H), 2.27 (broad s, 2H), 0.73 (s, 9H), (s, 6H). 13 C NMR: (126 MHz, cdcl 3 ) δ , , , , , , , , , , , , , , , , , , 62.35, 52.71, 29.14, 25.83, 18.16, IR: 2953, 2927, 2855, 1600, 1575, 1488, 1471, 1463, 1441, 1387, 1360, 1253, 1212, 1098, 1040, 1005, 917, 835, 753, 740, 697, 665. MP: C HRMS: (DART) calc d for C 31 H 36 N 3 OSi (M + H) ; Found (4,5-diphenyl-10H-benzo[e][1,2,3]triazolo[1,5-a]azepin-3-yl)propan-1-ol, 7i

16 16 Yield: 145 mg, 74%. 1 H NMR: (500 MHz, Chloroform-d) δ 7.47 (ddd, J = 7.5, 1.5, 0.5 Hz, 1H), 7.38 (ddd, J = 7.8, 1.4, 0.5 Hz, 1H), 7.33 (td, J = 7.5, 1.4 Hz, 1H), (m, 2H), (m, 4H), (m, 6H), 5.62 (broad s, 2H), 3.39 (t, J = 6.1 Hz, 2H)i, 2.16 (t, J = 7.3 Hz, 2H), 1.86 (broad s, 1H), 1.41 (ddd, J = 7.2, 6.1, 1.2 Hz, 2H). 13 C NMR: (126 MHz, cdcl 3 ) δ , , , , , , , , , , , , , , , , , , 62.07, 52.80, 31.17, IR: 3279, 2950, 2863, 1487, 1449, 1433, 1372, 1202, 1150, 1051, 1042, 1014, 921, 890, 864, 821, 777, 757, 743, 729, 697, 673. MP: C HRMS: (DART) calc d for C 26 H 24 N 3 O (M + H) ; Found (4,5-diphenyl-10H-benzo[e][1,2,3]triazolo[1,5-a]azepin-3-yl)propan-2-ol, 7j Yield: 63 mg, 32%. 1 H NMR: (500 MHz, Chloroform-d) δ (m, 2H), (m, 6H), (m, 6H), 5.83 (d, J = 13.7 Hz, 1H), 5.42 (d, J = 13.7 Hz, 1H), 2.11 (s, 1H), 1.24 (s, 3H), 1.08 (s, 3H). 13 C NMR: (126 MHz, cdcl 3 ) δ , , , , , , , , , , , , , , , , , , 69.49, 52.51, 30.32, IR: 3567, 3443, 3054, 3019, 2977, 2926, 1599, 1575, 1489, 1441, 1380, 1363, 1324, 1219, 1166, 1147, 1075, 1056, 1001, 957, 883, 862, 754, 742, 698. MP: C HRMS: (DART) calc d for C 26 H 24 N 3 O (M + H) ; Found Bis-tert-butyl (3-(4,5-diphenyl-10H-benzo[e][1,2,3]triazolo[1,5-a]azepin-3-yl)propyl)carbamate, 7k

17 17 Yield: 74 mg, 25%. 1 H NMR: (500 MHz, Chloroform-d) δ 7.46 (ddd, J = 7.6, 1.4, 0.7 Hz, 1H), 7.36 (ddd, J = 7.9, 1.4, 0.5 Hz, 1H), 7.32 (td, J = 7.4, 1.4 Hz, 1H), (m, 1H), (m, 4H), (m, 6H), 5.61 (broad s, 2H), 3.35 (t, J = 7.4 Hz, 2H), 2.00 (broad s, 2H), (m, 2H), 1.38 (s, 18H). 13 C NMR: (126 MHz, cdcl 3 ) δ , , , , , , , , , , , , , , , , , , , 81.83, 52.73, 45.88, 28.60, 27.95, IR: 2979, 2932, 1781, 1740, 1694, 1488, 1441, 1393, 1367, 1287, 1133, 853, 756, 698. MP: C HRMS: (DART) calc d for C 36 H 41 N 4 O 4 (M + H) ; Found tert-butyl (3-(4,5-diphenyl-10H-benzo[e][1,2,3]triazolo[1,5-a]azepin-3-yl)propyl)carbamate, 7l Yield: 88 mg, 36%. 1 H NMR: (500 MHz, Chloroform-d) δ 7.46 (ddd, J = 7.6, 1.5, 0.5 Hz, 1H), 7.38 (ddd, J = 7.8, 1.4, 0.5 Hz, 1H), 7.33 (td, J = 7.4, 1.4 Hz, 1H), (m, 1H), (m, 4H), (m, 6H), 5.61 (broad s, 2H), 4.34 (broad s, 1H), (m, 2H), (m, 2H), 1.41 (s, 9H), 1.32 (broads, 2H). 13 C NMR: (126 MHz, cdcl 3 ) δ , , , , , , , , , , , , , , , , , , , , , 78.82, 52.76, 39.77, 28.92, 28.42, IR: 3364, 3059, 2975, 2930, 1699, 1505, 1489, 1441, 1364, 1247, 1164, 1075, 740, 698. MP: C HRMS: (DART) calc d for C 31 H 33 N 3 O 2 (M + H) ; Found ,5-diphenyl-3-(pyridin-3-yl)-10H-benzo[e][1,2,3]triazolo[1,5-a]azepine, 7m

18 18 Yield: 146 mg, 71%. 1 H NMR: (500 MHz, Chloroform-d) δ 8.47 (d, J = 2.1 Hz, 1H), (m, 1H), (m, 3H), (m, 2H), (m, 2H), (m, 2H), (m, 1H), (m, 1H), (m, 1H), (m, 3H), 5.70 (broad s, 2H). 13 C NMR: (126 MHz, cdcl 3 ) δ , , , , , , , , , , , , , , , , , , , , , , , IR: 3055, 3022, 1599, 1573, 1488, 1441, 1410, 1362, 1215, 1146, 1101, 1029, 1005, 808, 749, 739, 696. MP: C HRMS: (DART) calc d for C 28 H 21 N 4 (M + H) ; Found ((((3S,5S,8R,9S,10S,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)hexadecahydro-1Hcyclopenta[a]phenanthren-3-yl)oxy)methyl)-4,5-diphenyl-10H-benzo[e][1,2,3]triazolo[1,5-a]azepine, 7n Yield: 195 mg, 53%. 1 H NMR: (500 MHz, Chloroform-d) δ 7.45 (ddd, J = 7.5, 1.5, 0.6 Hz, 1H), (m, 2H), (m, 2H), (m, 10H), 5.62 (s, 2H), 3.91 (s, 2H), 2.92 (tt, J = 11.1, 4.6 Hz, 1H), 1.94 (dt, J = 12.5, 3.4 Hz, 1H), 1.80 (dtd, J = 13.3, 9.4, 5.9 Hz, 1H), (m, 1H), (m, 1H), 1.44 (dt, J = 13.6, 5.1 Hz, 1H), (m, 8H), 0.89 (d, J = 6.6 Hz, 3H), 0.87 (d, J = 2.3 Hz, 3H), 0.85 (d, J = 2.3 Hz, 3H), (m, 1H), 0.73 (s, 2H), 0.63 (s, 3H), 0.55 (ddd, J = 12.3, 10.4, 4.0 Hz, 1H). 13 C NMR: (126 MHz, cdcl 3 ) δ , , , , , , , , , , , , , , , , , , 77.97, 60.76, 56.51, 56.29, 54.36, 52.76, 44.74, 42.59, 40.05, 39.52, 36.95, 36.18, 35.79, 35.70, 35.48, 34.44, 32.10, 28.82, 28.25, 28.01, 27.95, 24.21, 23.83, 22.82, 22.56, 21.20, 18.67, 12.24, [α] D 20 = +0.12, c = 1.0 CHCl 3. IR: 2930, 2864, 1494, 1470, 1442, 1382, 1075, 759, 741, 697. MP: C HRMS: (DART) calc d for C 51 H 66 N 3 O (M + H) ; Found (tert-butyl) 2-((4,5-diphenyl-10H-benzo[e][1,2,3]triazolo[1,5-a]azepin-3-yl)methyl) (S)-pyrrolidine- 1,2-dicarboxylate, 7o

19 19 Yield: 233 mg, 83%. 1 H NMR: (500 MHz, Chloroform-d) δ 7.48 (ddd, J = 7.3, 1.4, 0.6 Hz, 1H), (m, 2H), (m, 1H), (m, 10H), 5.64 (broads, 2H), (m, 2H), (m, 0.4H), (m, 0.6H), (m, 2H), (m, 1H), (m, 3H), 1.46 (s, 4H), 1.22 (s, 5H). 13 C NMR: (126 MHz, cdcl 3 ) δ , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 79.77, 79.53, 58.84, 58.55, 58.09, 57.48, 52.82, 46.49, 46.22, 30.72, 29.82, 28.45, 28.10, 24.09, [α] D 20 = -0.12, c = 0.5 CHCl 3. IR: 3055, 2976, 2930, 1746, 1693, 1489, 1477, 1442, 1395, 1365, 1159, 1122, 1087, 966, 756, 743, 699. MP: C HRMS: (DART) calc d for C 34 H 35 N 4 O 4 (M + H) ; Found *Signals for both 1 H NMR and 13 C NMR were split due to rotomeric effects 3-((((3aR,5R,6S,6aR)-5-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3- d][1,3]dioxol-6-yl)oxy)methyl)-4,5-diphenyl-10h-benzo[e][1,2,3]triazolo[1,5-a]azepine, 7p Yield: 185 mg, 61%. 1 H NMR: (500 MHz, Chloroform-d) δ 7.48 (ddd, J = 7.5, 1.4, 0.5 Hz, 1H), (m, 2H), (m, 1H), (m, 10H), (m, 3H), 4.26 (d, J = 3.7 Hz, 1H), 4.19 (broads, 2H), 4.08 (dd, J = 6.8, 3.1 Hz, 1H), (m, 3H), 3.72 (dt, J = 3.2, 0.5 Hz, 1H), 1.58 (broad s, 1H), 1.44 (s, 3H), 1.40 (s, 3H), 1.36 (s, 2H), 1.22 (s, 3H). 13 C NMR: (126 MHz, cdcl 3 ) δ , , , , , , , , , , , , , , , , , , , , , 81.74, 81.62, 80.83, 72.58, 66.76, 62.90, 52.79, 26.75, 26.16, [α] D 20 = +0.24, c = 0.5 CHCl 3.

20 20 IR: 2987, 1489, 1442, 1372, 1213, 1163, 1069, 1018, 845, 741, 698. MP: C HRMS: (DART) calc d for C 36 H 38 N 3 O 6 (M + H) ; Found ((4,5-diphenyl-10H-benzo[e][1,2,3]triazolo[1,5-a]azepin-3-yl)methyl)pyrimidine-2,4(1H,3H)-dione, 7q Yield: 171 mg, 74%. 1 H NMR: (500 MHz, Chloroform-d) δ 8.40 (s, 1H), 7.48 (ddd, J = 7.4, 1.4, 0.5 Hz, 1H), (m, 2H), (m, 1H), (m, 4H), (m, 6H), 6.98 (d, J = 8.0 Hz, 1H), 5.66 (broad s, 2H), 5.50 (dd, J = 8.0, 2.4 Hz, 1H), (m, 2H). 13 C NMR: (126 MHz, cdcl 3 ) δ , , , , , , , , , , , , , , , , , , , , , , 52.91, IR: 3172, 3055, 1680, 1489, 1442, 1388, 1361, 1266, 1223, 759, 742, 700. MP: C HRMS: (DART) calc d for C 28 H 22 N 5 O 2 (M + H) ; Found cyclopenta-2,4-dien-1-yl(2-(((4,5-diphenyl-10h-benzo[e][1,2,3]triazolo[1,5-a]azepin-3- yl)methoxy)methyl)cyclopenta-2,4-dien-1-yl)iron, 7r Yield: 147 mg, 52%. 1 H NMR: (500 MHz, Chloroform-d) δ 7.46 (ddd, J = 7.5, 1.4, 0.6 Hz, 1H), 7.33 (ddd, J = 7.5, 6.8, 1.8 Hz, 1H), (m, 2H), (m, 10zH), 5.63 (s, 2H), 4.11 (s, 2H), (m, 9H), 3.88 (s, 2H). 13 C NMR: (126 MHz, cdcl 3 ) δ , , , , , , , , , , , , , , , , , , 69.52, 68.37, 68.35, 68.27, 62.78, IR: 3059, 3005, 2919, 2854, 1666, 1599, 1488, 1441, 1411, 1261, 1235, 1217, 1065, 1000, 819, 740, 697. MP: C HRMS: (DART) calc d for C 35 H 30 N 3 OFe (M + H) ; Found

21 21 3-butyl-4,5-di-p-tolyl-10H-benzo[e][1,2,3]triazolo[1,5-a]azepine, 7s Yield: 110 mg, 52%. 1 H NMR: (500 MHz, Chloroform-d) δ 7.43 (dd, J = 7.5, 1.4 Hz, 1H), 7.34 (dd, J = 7.9, 1.4 Hz, 1H), 7.28 (td, J = 7.4, 1.4 Hz, 1H), 7.22 (td, J = 7.6, 1.5 Hz, 1H), (m, 2H), (m, 4H), (m, 2H), 5.58 (broad s, 3H), 2.25 (s, 3H), 2.23 (s, 3H), 2.01 (broad s, 2H), (m, 2H), 1.04 (h, J = 7.3 Hz, 2H), 0.69 (t, J = 7.2 Hz, 3H). 13 C NMR: (126 MHz, cdcl 3 ) δ , , , , , , , , , , , , , , , , , , 52.67, 31.40, 25.45, 22.47, 21.13, 21.11, IR: 3023, 2957, 2926, 2858, 1506, 1448, 1211, 1109, 1022, 816, 756. MP: C HRMS: (DART) calc d for C 29 H 30 N 3 (M + H) ; Found butyl-4,5-bis(4-(trifluoromethyl)phenyl)-10H-benzo[e][1,2,3]triazolo[1,5-a]azepine, 7t Yield: 180 mg, 68%. 1 H NMR: (500 MHz, Chloroform-d) δ (m, 5H), (m, 3H), (m, 4H), 5.65 (broad s, 2H), 2.01 (t, J = 7.8 Hz, 2H), 1.12 (broad s, 2H), 1.02 (h, J = 7.3 Hz, 2H), 0.67 (t, J = 7.2 Hz, 3H). 13 C NMR: (126 MHz, cdcl 3 ) δ , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 52.77, 31.35, 25.55, 22.43, F NMR: (377 MHz, CDCl 3 ) δ , IR: 2961, 2932, 2874, 1616, 1406, 1327, 1167, 1126, 1067, 804, 760. MP: C HRMS: (DART) calc d for C 29 H 24 N 3 F 6 (M + H) ; Found butyl-4,5-bis(4-chlorophenyl)-10H-benzo[e][1,2,3]triazolo[1,5-a]azepine, 7u

22 22 Yield: 156 mg, 68%. 1 H NMR: (500 MHz, Chloroform-d) δ 7.45 (d, J = 6.8 Hz, 1H), (m, 1H), (m, 2H), (m, 2H), (m, 4H), (m, 2H), 5.59 (broad s, 2H), 2.03 (broad s, 2H), 1.17 (broad s, 2H), 1.06 (dq, J = 14.7, 7.3 Hz, 2H), 0.72 (t, J = 7.3 Hz, 3H). 13 C NMR: (126 MHz, cdcl 3 ) δ , , , , , , , , , , , , , , , , , , 52.68, 31.37, 25.50, 22.45, IR: 2956, 2928, 2859, 1592, 1488, 1395, 1214, 1148, 1089, 1015, 818, 793, 752, 666. MP: C HRMS: (DART) calc d for C 27 H 24 N 3 Cl 2 (M + H) ; Found butyl-4,5-di-m-tolyl-10H-benzo[e][1,2,3]triazolo[1,5-a]azepine, 7v Yield: 136 mg, 65%. 1 H NMR: (500 MHz, Chloroform-d) δ 7.45 (dd, J = 7.5, 1.4 Hz, 1H), 7.36 (dd, J = 7.9, 1.3 Hz, 1H), 7.30 (td, J = 7.4, 1.4 Hz, 1H), (m, 1H), (m, 1H), 7.04 (dd, J = 7.4, 0.9 Hz, 2H), 7.01 (dt, J = 2.5, 0.8 Hz, 1H), (m, 4H), 5.61 (broad s, 2H), 2.25 (s, 3H), 2.21 (s, 3H), 2.02 (broad s, 2H), 1.15 (broad s, 2H), 1.03 (h, J = 7.3 Hz, 2H), 0.70 (t, J = 7.3 Hz, 3H). 13 C NMR: (126 MHz, cdcl 3 ) δ , , , , , , , , , , , , , , , , , , , , , , 52.69, 31.44, 25.45, 22.48, 21.37, 21.22, IR: 2955, 2826, 2859, 1602, 1583, 1486, 1464, 1453, 1434, 1210, 1095, 880, 834, 789, 750, 710, 698. MP: C HRMS: (DART) calc d for C 29 H 30 N 3 (M + H) ; Found butyl-4,5-bis(3-(trifluoromethyl)phenyl)-10H-benzo[e][1,2,3]triazolo[1,5-a]azepine, 7w

23 23 Yield: 159 mg, 60%. 1 H NMR: (500 MHz, Chloroform-d) δ (m, 2H), (m, 3H), (m, 1H), (m, 2H), (m, 4H), 5.66 (broad s, 2H), 2.02 (t, J = 8.0 Hz, 2H), 1.15 (broad s, 2H), 1.02 (h, J = 7.6 Hz, 2H), 0.68 (t, J = 7.3 Hz, 3H). 13 C NMR: (126 MHz, cdcl 3 ) δ , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 52.80, 31.39, 25.58, 22.37, F NMR: (377 MHz, CDCl 3 ) δ , IR: 2959, 2932, 1487, 1432, 1330, 1252, 1164, 1123, 1094, 1072, 907, 796, 753, 702. MP: C HRMS: (DART) calc d for C 29 H 24 N 3 F 6 (M + H) ; Found diethyl 3,3'-(3-butyl-10H-benzo[e][1,2,3]triazolo[1,5-a]azepine-4,5-diyl)dibenzoate, 7x Yield: 174 mg, 65%. 1 H NMR: (500 MHz, Chloroform-d) δ 7.89 (td, J = 1.8, 0.5 Hz, 1H), (m, 3H), (m, 1H), 7.44 (ddd, J = 7.6, 1.8, 1.2 Hz, 1H), (m, 2H), 7.30 (td, J = 7.8, 0.6 Hz, 1H), (m, 3H), 5.67 (broad s, 2H), 4.34 (q, J = 7.1 Hz, 2H), 4.34 (q, J = 7.1 Hz, 2H), 2.00 (broad s, 2H), 1.37 (t, J = 7.2 Hz, 6H), 1.16 (broad s, 2H), 1.03 (dt, J = 14.9, 7.3 Hz, 2H), 0.68 (t, J = 7.3 Hz, 3H). 13 C NMR: (126 MHz, cdcl 3 ) δ , , , , , , , , , , , , , , , , , , , , , , , , 61.18, 61.16, 52.79, 31.40, 25.51, 22.41, 14.30, 14.29, IR: 2957, 1715, 1581, 1446, 1433, 1367, 1288, 1241, 1219, 1106, 1082, 1022, 747, 700. MP: C HRMS: (DART) calc d for C 33 H 34 N 3 O 4 (M + H) ; Found

24 24 3-butyl-4,5-di(thiophen-3-yl)-10H-benzo[e][1,2,3]triazolo[1,5-a]azepine, 7y Yield: 146 mg, 72%. 1 H NMR: (500 MHz, Chloroform-d) δ 7.43 (ddd, J = 7.4, 1.6, 0.5 Hz, 1H), 7.40 (ddd, J = 7.7, 1.5, 0.5 Hz, 1H), 7.32 (td, J = 7.4, 1.5 Hz, 1H), 7.28 (dd, J = 7.7, 1.5 Hz, 1H), 7.24 (dd, J = 4.9, 3.0 Hz, 1H), 7.16 (dd, J = 5.0, 3.0 Hz, 1H), 7.12 (dd, J = 2.9, 1.3 Hz, 1H), 7.02 (dd, J = 3.0, 1.3 Hz, 1H), 6.94 (dd, J = 4.9, 1.3 Hz, 1H), 6.79 (dd, J = 5.0, 1.3 Hz, 1H), 5.55 (broad s, 2H), 2.08 (broad s, 2H), 1.30 (broad s, 2H), 1.10 (dq, J = 14.7, 7.4 Hz, 2H), 0.74 (t, J = 7.3 Hz, 3H). 13 C NMR: (126 MHz, cdcl 3 ) δ , , , , , , , , , , , , , , , , , , 52.61, 31.28, 25.38, 22.48, IR: 3102, 2956, 2928, 2859, 1488, 1451, 1434, 1356, 1206, 1081, 868, 843, 776, 755, 735, 657. HRMS: (DART) calc d for C 23 H 22 N 3 S 2 (M + H) ; Found ethyl 3-butyl-4-phenyl-10H-benzo[e][1,2,3]triazolo[1,5-a]azepine-5-carboxylate, 7z Yield: 142 mg, 73%. 1 H NMR: (500 MHz, Chloroform-d) δ (m, 1H), (m, 1H), (m, 7H), 5.54 (broad s, 2H), 3.93 (q, J = 7.2 Hz, 2H), 1.89 (broad s, 2H), 1.23 (p, J = 7.5 Hz, 2H), 0.99 (h, J = 7.4 Hz, 2H), 0.83 (t, J = 7.2 Hz, 3H), 0.66 (t, J = 7.3 Hz, 3H). 13 C NMR: (126 MHz, cdcl 3 ) δ , , , , , , , , , , , , , , , 61.49, 52.69, 31.31, 25.13, 22.35, 13.54, IR: 2957, 2930, 2872, 1721, 1717, 1368, 1263, 1231, 1024, 762, 701. MP: C HRMS: (ESI) calc d for C 24 H 26 N 3 O 2 (M + H) ; Found Product derivatization:

25 25 Scheme S8: Derivatization of product 7a. To a solution of 7a (50 mg, 0.13 mmol) and alkyl bromide (1-bromobutane 56 µl, 4 equiv; 1,5- dibromopentane 43 µl, 2.5 equiv) in THF (5 ml) at -78 C was added nbuli (0.1 ml, 2.5 M in Hexanes, 2 equiv). The reactions were warmed to RT overnight, concentrated and purified by column chromatography (10% EtOAc in Hexanes) to give the alkylated products as white foams. 3,10,10-tributyl-4,5-diphenyl-10H-benzo[e][1,2,3]triazolo[1,5-a]azepine, 12 Yield: 63 mg, 97%. 1 H NMR: (500 MHz, Chloroform-d) δ 7.60 (dd, J = 8.2, 1.3 Hz, 1H), 7.39 (dd, J = 8.0, 1.4 Hz, 1H), 7.31 (ddd, J = 8.2, 7.2, 1.5 Hz, 1H), (m, 4H), (m, 7H), 3.28 (s, 1H), (m, 3H), (m, 7H), (m, 14H), 0.69 (t, J = 7.1 Hz, 3H). 13 C NMR: (126 MHz, cdcl 3 ) δ , , , , , , , , , , , , , , , , , , 69.04, 33.38, 31.25, 30.81, 27.28, 26.41, 25.68, 23.35, 23.15, 22.50, 14.23, IR: MP: C HRMS: (DART) calc d for C 35 H 42 N 3 (M + H) ; Found butyl-4,5-diphenylspiro[benzo[e][1,2,3]triazolo[1,5-a]azepine-10,1'-cyclohexane], 13 Yield: 48 mg, 83%.

26 26 1 H NMR: (500 MHz, Chloroform-d) δ 7.67 (d, J = 8.0 Hz, 1H), (m, 2H), (m, 2H), (m, 2H), (m, 7H), (m, 1H), (m, 1H), 2.79 (ddd, J = 14.1, 10.2, 4.0 Hz, 1H), 2.48 (dtd, J = 13.8, 9.9, 4.9 Hz, 1H), (m, 1H), (m, 2H), 1.92 (ddd, J = 14.3, 10.1, 5.7 Hz, 1H), (m, 1H), (m, 2H), (m, 1H), (m, 1H), (m, 3H), 0.70 (t, J = 7.2 Hz, 3H). 13 C NMR: (126 MHz, cdcl 3 ) δ , , , , , , , , , , , , , , , , , , , 65.44, 33.97, 33.00, 31.29, 25.63, 25.57, 23.47, 22.70, 22.52, IR: 2955, 2929, 2855, 1489, 1441, 751, 699. MP: C HRMS: (DART) calc d for C 32 H 34 N 3 (M + H) ; Found NMR Spectra:

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61

62 62

63 63

64 64

65 65

66 66

67 67

68 68

69 69

70 Figure S3: Crystal structure of product 7z. 70

71 71 Table 1. Crystal data and structure refinement for d1619. Identification code Empirical formula d1619 Formula weight Temperature Wavelength Crystal system C24 H25 N3 O2 147(2) K Å Orthorhombic Space group P Unit cell dimensions a = (2) Å a= 90. b = (5) Å b= 90. c = (7) Å g = 90. Volume (12) Å 3 Z 4 Density (calculated) Mg/m 3 Absorption coefficient mm -1 F(000) 824 Crystal size x x mm 3 Theta range for data collection to Index ranges Reflections collected <=h<=5, -20<=k<=20, -27<=l<=27 Independent reflections 3655 [R(int) = ] Completeness to theta = % Absorption correction Semi-empirical from equivalents Max. and min. transmission and Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 3655 / 0 / 272 Goodness-of-fit on F Final R indices [I>2sigma(I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Absolute structure parameter 0.01(7) Extinction coefficient n/a Largest diff. peak and hole and e.å -3

72 72 Table 2. Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters (Å 2 x 10 3 ) for d1619. U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. x y z U(eq) O(1) 1046(3) 5999(1) 4834(1) 47(1) O(2) 4794(4) 6129(1) 4360(1) 45(1) N(1) 5002(3) 3493(1) 3749(1) 25(1) N(2) 4974(4) 2807(1) 3478(1) 32(1) N(3) 3149(4) 2843(1) 3081(1) 31(1) C(1) 6756(4) 3673(1) 4228(1) 29(1) C(2) 5226(4) 3770(1) 4777(1) 28(1) C(3) 5715(5) 3291(1) 5251(1) 37(1) C(4) 4280(5) 3360(1) 5753(1) 46(1) C(5) 2307(6) 3890(2) 5777(1) 50(1) C(6) 1827(5) 4386(1) 5315(1) 39(1) C(7) 3328(4) 4339(1) 4809(1) 28(1) C(8) 2929(4) 4913(1) 4333(1) 25(1) C(9) 2824(3) 4759(1) 3758(1) 23(1) C(10) 3191(4) 3979(1) 3530(1) 22(1) C(11) 2019(4) 3554(1) 3097(1) 25(1) C(12) -136(4) 3770(1) 2698(1) 30(1) C(13) 663(4) 3847(1) 2063(1) 36(1) C(14) -1586(6) 4074(2) 1674(1) 53(1) C(15) -881(7) 4136(2) 1045(1) 79(1) C(16) 2339(4) 5374(1) 3316(1) 24(1) C(17) 4043(4) 5450(1) 2851(1) 28(1) C(18) 3714(4) 6033(1) 2445(1) 36(1) C(19) 1638(5) 6528(1) 2488(1) 38(1) C(20) -99(5) 6447(1) 2939(1) 37(1) C(21) 257(4) 5876(1) 3356(1) 30(1) C(22) 2745(4) 5737(1) 4537(1) 31(1) C(23) 4438(18) 6983(3) 4486(2) 49(2)

73 73 C(24) 5937(16) 7407(2) 4072(2) 51(2) C(24A) 4400(20) 7430(4) 4102(3) 44(2) C(23A) 5549(18) 6869(4) 4573(3) 38(2) Table 3. Bond lengths [Å] and angles [ ] for d1619. O(1)-C(22) 1.203(3) O(2)-C(22) 1.325(3) O(2)-C(23A) 1.426(8) O(2)-C(23) 1.517(5) N(1)-N(2) 1.342(2) N(1)-C(10) 1.358(2) N(1)-C(1) 1.461(2) N(2)-N(3) 1.316(2) N(3)-C(11) 1.364(2) C(1)-C(2) 1.503(3) C(1)-H(1A) C(1)-H(1B) C(2)-C(3) 1.394(3) C(2)-C(7) 1.394(3) C(3)-C(4) 1.379(3) C(3)-H(3A) C(4)-C(5) 1.374(4) C(4)-H(4A) C(5)-C(6) 1.390(3) C(5)-H(5A) C(6)-C(7) 1.403(3) C(6)-H(6A) C(7)-C(8) 1.494(2) C(8)-C(9) 1.352(2) C(8)-C(22) 1.506(3) C(9)-C(10) 1.461(2) C(9)-C(16) 1.493(2) C(10)-C(11) 1.381(3) C(11)-C(12) 1.494(3)

74 74 C(12)-C(13) 1.526(3) C(12)-H(12A) C(12)-H(12B) C(13)-C(14) 1.521(3) C(13)-H(13A) C(13)-H(13B) C(14)-C(15) 1.498(4) C(14)-H(14A) C(14)-H(14B) C(15)-H(15A) C(15)-H(15B) C(15)-H(15C) C(16)-C(21) 1.389(3) C(16)-C(17) 1.394(3) C(17)-C(18) 1.385(3) C(17)-H(17A) C(18)-C(19) 1.379(3) C(18)-H(18A) C(19)-C(20) 1.381(3) C(19)-H(19A) C(20)-C(21) 1.391(3) C(20)-H(20A) C(21)-H(21A) C(23)-C(24) 1.433(8) C(23)-H(23A) C(23)-H(23B) C(24)-H(24A) C(24)-H(24B) C(24)-H(24C) C(24A)-C(23A) 1.573(11) C(24A)-H(24D) C(24A)-H(24E) C(24A)-H(24F) C(23A)-H(23C) C(23A)-H(23D)

75 75 C(22)-O(2)-C(23A) 125.1(4) C(22)-O(2)-C(23) 110.1(3) N(2)-N(1)-C(10) (15) N(2)-N(1)-C(1) (15) C(10)-N(1)-C(1) (15) N(3)-N(2)-N(1) (14) N(2)-N(3)-C(11) (15) N(1)-C(1)-C(2) (16) N(1)-C(1)-H(1A) C(2)-C(1)-H(1A) N(1)-C(1)-H(1B) C(2)-C(1)-H(1B) H(1A)-C(1)-H(1B) C(3)-C(2)-C(7) (18) C(3)-C(2)-C(1) (18) C(7)-C(2)-C(1) (15) C(4)-C(3)-C(2) 120.4(2) C(4)-C(3)-H(3A) C(2)-C(3)-H(3A) C(5)-C(4)-C(3) 119.5(2) C(5)-C(4)-H(4A) C(3)-C(4)-H(4A) C(4)-C(5)-C(6) 121.0(2) C(4)-C(5)-H(5A) C(6)-C(5)-H(5A) C(5)-C(6)-C(7) 120.0(2) C(5)-C(6)-H(6A) C(7)-C(6)-H(6A) C(2)-C(7)-C(6) (17) C(2)-C(7)-C(8) (16) C(6)-C(7)-C(8) (18) C(9)-C(8)-C(7) (16) C(9)-C(8)-C(22) (16) C(7)-C(8)-C(22) (15) C(8)-C(9)-C(10) (15) C(8)-C(9)-C(16) (16)

76 76 C(10)-C(9)-C(16) (15) N(1)-C(10)-C(11) (15) N(1)-C(10)-C(9) (16) C(11)-C(10)-C(9) (17) N(3)-C(11)-C(10) (16) N(3)-C(11)-C(12) (16) C(10)-C(11)-C(12) (16) C(11)-C(12)-C(13) (17) C(11)-C(12)-H(12A) C(13)-C(12)-H(12A) C(11)-C(12)-H(12B) C(13)-C(12)-H(12B) H(12A)-C(12)-H(12B) C(14)-C(13)-C(12) (18) C(14)-C(13)-H(13A) C(12)-C(13)-H(13A) C(14)-C(13)-H(13B) C(12)-C(13)-H(13B) H(13A)-C(13)-H(13B) C(15)-C(14)-C(13) 113.6(2) C(15)-C(14)-H(14A) C(13)-C(14)-H(14A) C(15)-C(14)-H(14B) C(13)-C(14)-H(14B) H(14A)-C(14)-H(14B) C(14)-C(15)-H(15A) C(14)-C(15)-H(15B) H(15A)-C(15)-H(15B) C(14)-C(15)-H(15C) H(15A)-C(15)-H(15C) H(15B)-C(15)-H(15C) C(21)-C(16)-C(17) (17) C(21)-C(16)-C(9) (16) C(17)-C(16)-C(9) (16) C(18)-C(17)-C(16) (19) C(18)-C(17)-H(17A) 119.7

77 77 C(16)-C(17)-H(17A) C(19)-C(18)-C(17) (19) C(19)-C(18)-H(18A) C(17)-C(18)-H(18A) C(18)-C(19)-C(20) (18) C(18)-C(19)-H(19A) C(20)-C(19)-H(19A) C(19)-C(20)-C(21) (19) C(19)-C(20)-H(20A) C(21)-C(20)-H(20A) C(16)-C(21)-C(20) (19) C(16)-C(21)-H(21A) C(20)-C(21)-H(21A) O(1)-C(22)-O(2) (19) O(1)-C(22)-C(8) (19) O(2)-C(22)-C(8) (16) C(24)-C(23)-O(2) 107.9(4) C(24)-C(23)-H(23A) O(2)-C(23)-H(23A) C(24)-C(23)-H(23B) O(2)-C(23)-H(23B) H(23A)-C(23)-H(23B) C(23)-C(24)-H(24A) C(23)-C(24)-H(24B) H(24A)-C(24)-H(24B) C(23)-C(24)-H(24C) H(24A)-C(24)-H(24C) H(24B)-C(24)-H(24C) C(23A)-C(24A)-H(24D) C(23A)-C(24A)-H(24E) H(24D)-C(24A)-H(24E) C(23A)-C(24A)-H(24F) H(24D)-C(24A)-H(24F) H(24E)-C(24A)-H(24F) O(2)-C(23A)-C(24A) 102.4(5) O(2)-C(23A)-H(23C) 111.3

78 78 C(24A)-C(23A)-H(23C) O(2)-C(23A)-H(23D) C(24A)-C(23A)-H(23D) H(23C)-C(23A)-H(23D) Symmetry transformations used to generate equivalent atoms:

79 79 Table 4. Anisotropic displacement parameters (Å 2 x 10 3 ) for d1619. The anisotropic displacement factor exponent takes the form: -2p 2 [ h 2 a* 2 U h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 O(1) 49(1) 48(1) 45(1) -15(1) 8(1) 12(1) O(2) 63(1) 31(1) 42(1) -13(1) 13(1) -16(1) N(1) 28(1) 22(1) 24(1) 3(1) 1(1) 4(1) N(2) 39(1) 23(1) 32(1) 0(1) 1(1) 3(1) N(3) 36(1) 25(1) 31(1) -1(1) -1(1) 1(1) C(1) 26(1) 32(1) 29(1) 5(1) -3(1) 0(1) C(2) 29(1) 28(1) 26(1) 3(1) -4(1) -9(1) C(3) 47(1) 32(1) 32(1) 6(1) -9(1) -9(1) C(4) 69(2) 42(1) 28(1) 10(1) -3(1) -14(1) C(5) 68(2) 57(1) 25(1) 3(1) 12(1) -17(1) C(6) 44(1) 45(1) 27(1) -1(1) 6(1) -7(1) C(7) 31(1) 31(1) 21(1) 0(1) -2(1) -10(1) C(8) 23(1) 26(1) 27(1) -1(1) 2(1) -3(1) C(9) 20(1) 23(1) 25(1) 0(1) 3(1) -1(1) C(10) 23(1) 22(1) 22(1) 4(1) 3(1) 0(1) C(11) 26(1) 24(1) 26(1) 0(1) 2(1) 0(1) C(12) 27(1) 30(1) 32(1) -5(1) -3(1) 0(1) C(13) 38(1) 38(1) 30(1) 1(1) -1(1) -2(1) C(14) 54(2) 65(2) 39(1) 3(1) -11(1) 5(1) C(15) 81(2) 113(3) 43(1) 23(2) -12(2) -8(2) C(16) 27(1) 20(1) 24(1) -2(1) -3(1) -2(1) C(17) 29(1) 29(1) 26(1) 1(1) -1(1) 2(1) C(18) 41(1) 38(1) 29(1) 7(1) -1(1) -4(1) C(19) 50(1) 28(1) 36(1) 8(1) -12(1) -1(1) C(20) 39(1) 26(1) 47(1) -2(1) -11(1) 9(1) C(21) 28(1) 28(1) 35(1) -4(1) -1(1) 2(1) C(22) 36(1) 32(1) 24(1) -3(1) -3(1) 1(1) C(23) 76(4) 22(2) 49(3) -18(2) 9(3) -9(2) C(24) 65(5) 25(2) 64(3) -6(2) 4(2) -2(2)

80 80 Table 5. Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters (Å 2 x 10 3 ) for d1619. x y z U(eq) H(1A) H(1B) H(3A) H(4A) H(5A) H(6A) H(12A) H(12B) H(13A) H(13B) H(14A) H(14B) H(15A) H(15B) H(15C) H(17A) H(18A) H(19A) H(20A) H(21A) H(23A) H(23B) H(24A) H(24B) H(24C) H(24D) H(24E) H(24F)

81 81 H(23C) H(23D)

82 82 Table 6. Torsion angles [ ] for d1619. C(10)-N(1)-N(2)-N(3) 0.1(2) C(1)-N(1)-N(2)-N(3) (15) N(1)-N(2)-N(3)-C(11) 0.3(2) N(2)-N(1)-C(1)-C(2) (18) C(10)-N(1)-C(1)-C(2) 66.1(2) N(1)-C(1)-C(2)-C(3) (19) N(1)-C(1)-C(2)-C(7) -59.8(2) C(7)-C(2)-C(3)-C(4) 1.7(3) C(1)-C(2)-C(3)-C(4) (19) C(2)-C(3)-C(4)-C(5) 2.0(3) C(3)-C(4)-C(5)-C(6) -3.6(4) C(4)-C(5)-C(6)-C(7) 1.5(4) C(3)-C(2)-C(7)-C(6) -3.7(3) C(1)-C(2)-C(7)-C(6) (18) C(3)-C(2)-C(7)-C(8) (18) C(1)-C(2)-C(7)-C(8) -6.2(3) C(5)-C(6)-C(7)-C(2) 2.2(3) C(5)-C(6)-C(7)-C(8) (2) C(2)-C(7)-C(8)-C(9) 45.8(3) C(6)-C(7)-C(8)-C(9) (2) C(2)-C(7)-C(8)-C(22) (19) C(6)-C(7)-C(8)-C(22) 45.9(2) C(7)-C(8)-C(9)-C(10) -2.1(3) C(22)-C(8)-C(9)-C(10) (18) C(7)-C(8)-C(9)-C(16) (18) C(22)-C(8)-C(9)-C(16) -4.5(3) N(2)-N(1)-C(10)-C(11) -0.4(2) C(1)-N(1)-C(10)-C(11) (16) N(2)-N(1)-C(10)-C(9) (16) C(1)-N(1)-C(10)-C(9) 0.5(3) C(8)-C(9)-C(10)-N(1) -40.3(3) C(16)-C(9)-C(10)-N(1) (17) C(8)-C(9)-C(10)-C(11) 139.4(2) C(16)-C(9)-C(10)-C(11) -40.8(3)

Supporting Information

Supporting Information Supporting Information Synthesis of H-Indazoles from Imidates and Nitrosobenzenes via Synergistic Rhodium/Copper Catalysis Qiang Wang and Xingwei Li* Dalian Institute of Chemical Physics, Chinese Academy

More information

Stereoselective Synthesis of (-) Acanthoic Acid

Stereoselective Synthesis of (-) Acanthoic Acid 1 Stereoselective Synthesis of (-) Acanthoic Acid Taotao Ling, Bryan A. Kramer, Michael A. Palladino, and Emmanuel A. Theodorakis* Department of Chemistry and Biochemistry, University of California, San

More information

Tetrahydrofuran (THF) was distilled from benzophenone ketyl radical under an argon

Tetrahydrofuran (THF) was distilled from benzophenone ketyl radical under an argon SUPPLEMENTARY METHODS Solvents, reagents and synthetic procedures All reactions were carried out under an argon atmosphere unless otherwise specified. Tetrahydrofuran (THF) was distilled from benzophenone

More information

Supporting Information

Supporting Information Supporting Information Divergent Reactivity of gem-difluoro-enolates towards Nitrogen Electrophiles: Unorthodox Nitroso Aldol Reaction for Rapid Synthesis of -Ketoamides Mallu Kesava Reddy, Isai Ramakrishna,

More information

Copper Mediated Fluorination of Aryl Iodides

Copper Mediated Fluorination of Aryl Iodides Copper Mediated Fluorination of Aryl Iodides Patrick S. Fier and John F. Hartwig* Department of Chemistry, University of California, Berkeley, California 94720, United States. Supporting Information Table

More information

Enantioselective Conjugate Addition of 3-Fluoro-Oxindoles to. Vinyl Sulfone: An Organocatalytic Access to Chiral. 3-Fluoro-3-Substituted Oxindoles

Enantioselective Conjugate Addition of 3-Fluoro-Oxindoles to. Vinyl Sulfone: An Organocatalytic Access to Chiral. 3-Fluoro-3-Substituted Oxindoles Enantioselective Conjugate Addition of 3-Fluoro-Oxindoles to Vinyl Sulfone: An Organocatalytic Access to Chiral 3-Fluoro-3-Substituted Oxindoles Xiaowei Dou and Yixin Lu * Department of Chemistry & Medicinal

More information

Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed. Cascade Trifluoromethylation/Cyclization of. 2-(3-Arylpropioloyl)benzaldehydes

Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed. Cascade Trifluoromethylation/Cyclization of. 2-(3-Arylpropioloyl)benzaldehydes Supporting Information to Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed Cascade Trifluoromethylation/Cyclization of 2-(3-Arylpropioloyl)benzaldehydes Yan Zhang*, Dongmei Guo, Shangyi

More information

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes Supplementary Information Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes Galyna Dubinina, Hideki Furutachi, and David A. Vicic * Department of Chemistry, University of Hawaii,

More information

A Total Synthesis of Paeoveitol

A Total Synthesis of Paeoveitol A Total Synthesis of Paeoveitol Lun Xu, Fengyi Liu, Li-Wen Xu, Ziwei Gao, Yu-Ming Zhao* Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi

More information

Supporting Information

Supporting Information Supporting Information Silver-Mediated Oxidative Trifluoromethylation of Alcohols to Alkyl Trifluoromethyl Ethers Jian-Bo Liu, Xiu-Hua Xu, and Feng-Ling Qing Table of Contents 1. General Information --------------------------------------------------------------------------2

More information

Supporting Information

Supporting Information Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2012 Subcellular Localization and Activity of Gambogic Acid Gianni Guizzunti,* [b] Ayse Batova, [a] Oraphin Chantarasriwong,

More information

Supporting Information for: Direct Conversion of Haloarenes to Phenols under Mild, Transition-Metal-Free Conditions

Supporting Information for: Direct Conversion of Haloarenes to Phenols under Mild, Transition-Metal-Free Conditions Supporting Information for: Direct Conversion of Haloarenes to Phenols under Mild, Transition-Metal-Free Conditions Patrick S. Fier* and Kevin M. Maloney* S1 General experimental details All reactions

More information

Supporting Information. Table of Contents. 1. General Notes Experimental Details 3-12

Supporting Information. Table of Contents. 1. General Notes Experimental Details 3-12 Supporting Information Table of Contents page 1. General Notes 2 2. Experimental Details 3-12 3. NMR Support for Timing of Claisen/Diels-Alder/Claisen 13 4. 1 H and 13 C NMR 14-37 General Notes All reagents

More information

Catalytic Reductive Dehydration of Tertiary Amides to Enamines under Hydrosilylation Conditions

Catalytic Reductive Dehydration of Tertiary Amides to Enamines under Hydrosilylation Conditions SUPPORTIG IFORMATIO Catalytic Reductive Dehydration of Tertiary Amides to Enamines under Hydrosilylation Conditions Alexey Volkov, a Fredrik Tinnis, a and Hans Adolfsson.* a a Department of Organic Chemistry,

More information

Synthesis of Glaucogenin D, a Structurally Unique. Disecopregnane Steroid with Potential Antiviral Activity

Synthesis of Glaucogenin D, a Structurally Unique. Disecopregnane Steroid with Potential Antiviral Activity Supporting Information for Synthesis of Glaucogenin D, a Structurally Unique Disecopregnane Steroid with Potential Antiviral Activity Jinghan Gui,* Hailong Tian, and Weisheng Tian* Key Laboratory of Synthetic

More information

Supplementary Materials for

Supplementary Materials for www.advances.sciencemag.org/cgi/content/full/1/5/e1500304/dc1 Supplementary Materials for Isolation of bis(copper) key intermediates in Cu-catalyzed azide-alkyne click reaction This PDF file includes:

More information

An Efficient Total Synthesis and Absolute Configuration. Determination of Varitriol

An Efficient Total Synthesis and Absolute Configuration. Determination of Varitriol An Efficient Total Synthesis and Absolute Configuration Determination of Varitriol Ryan T. Clemens and Michael P. Jennings * Department of Chemistry, University of Alabama, 500 Campus Dr. Tuscaloosa, AL

More information

Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain

Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain rganic Lett. (Supporting Information) 1 Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain Charles Kim, Richard Hoang and Emmanuel A. Theodorakis* Department of Chemistry

More information

Supporting Information

Supporting Information Supporting Information Organocatalytic Enantioselective Formal Synthesis of Bromopyrrole Alkaloids via Aza-Michael Addition Su-Jeong Lee, Seok-Ho Youn and Chang-Woo Cho* Department of Chemistry, Kyungpook

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Supporting Information TEMPO-catalyzed Synthesis of 5-Substituted Isoxazoles from Propargylic

More information

Poly(4-vinylimidazolium)s: A Highly Recyclable Organocatalyst Precursor for. Benzoin Condensation Reaction

Poly(4-vinylimidazolium)s: A Highly Recyclable Organocatalyst Precursor for. Benzoin Condensation Reaction Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 24 Supporting Information Poly(4-vinylimidazolium)s: A Highly Recyclable rganocatalyst Precursor

More information

Use of mixed Li/K metal TMP amide (LiNK chemistry) for the synthesis of [2.2]metacyclophanes

Use of mixed Li/K metal TMP amide (LiNK chemistry) for the synthesis of [2.2]metacyclophanes Supporting Information for Use of mixed Li/K metal TMP amide (LiNK chemistry) for the synthesis of [2.2]metacyclophanes Marco Blangetti, Patricia Fleming and Donal F. O Shea* Centre for Synthesis and Chemical

More information

The First Asymmetric Total Syntheses and. Determination of Absolute Configurations of. Xestodecalactones B and C

The First Asymmetric Total Syntheses and. Determination of Absolute Configurations of. Xestodecalactones B and C Supporting Information The First Asymmetric Total Syntheses and Determination of Absolute Configurations of Xestodecalactones B and C Qiren Liang, Jiyong Zhang, Weiguo Quan, Yongquan Sun, Xuegong She*,,

More information

Ring-Opening / Fragmentation of Dihydropyrones for the Synthesis of Homopropargyl Alcohols

Ring-Opening / Fragmentation of Dihydropyrones for the Synthesis of Homopropargyl Alcohols Ring-pening / Fragmentation of Dihydropyrones for the Synthesis of Homopropargyl Alcohols Jumreang Tummatorn, and Gregory B. Dudley, * Department of Chemistry and Biochemistry, Florida State University,

More information

A Facile and General Approach to 3-((Trifluoromethyl)thio)- 4H-chromen-4-one

A Facile and General Approach to 3-((Trifluoromethyl)thio)- 4H-chromen-4-one A Facile and General Approach to 3-((Trifluoromethyl)thio)- 4H-chromen-4-one Haoyue Xiang and Chunhao Yang* State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy

More information

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry Supplementary data

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry Supplementary data Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2012 Supplementary data Cu-catalyzed in situ generation of thiol using xanthate as thiol

More information

Fast and Flexible Synthesis of Pantothenic Acid and CJ-15,801.

Fast and Flexible Synthesis of Pantothenic Acid and CJ-15,801. Fast and Flexible Synthesis of Pantothenic Acid and CJ-15,801. Alan L. Sewell a, Mathew V. J. Villa a, Mhairi Matheson a, William G. Whittingham b, Rodolfo Marquez a*. a) WestCHEM, School of Chemistry,

More information

Supporting Information for. A New Method for the Cleavage of Nitrobenzyl Amides and Ethers

Supporting Information for. A New Method for the Cleavage of Nitrobenzyl Amides and Ethers SI- 1 Supporting Information for A ew Method for the Cleavage of itrobenzyl Amides and Ethers Seo-Jung Han, Gabriel Fernando de Melo, and Brian M. Stoltz* The Warren and Katharine Schlinger Laboratory

More information

Supporting Information - I: Experimental Procedures and Characterization

Supporting Information - I: Experimental Procedures and Characterization Supporting Information - I: Experimental Procedures and Characterization The Direct Reductive Amination of Electron-deficient Amines with Aldehydes: the Unique Reactivity of Re 2 O 7 Catalyst 1 Braja Gopal

More information

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information Experimental Supporting Information for Experimental and DFT Studies Explain Solvent Control of C-H Activation and Product Selectivity in the Rh(III)-Catalyzed Formation of eutral and Cationic Heterocycles

More information

An unusual dianion equivalent from acylsilanes for the synthesis of substituted β-keto esters

An unusual dianion equivalent from acylsilanes for the synthesis of substituted β-keto esters S1 An unusual dianion equivalent from acylsilanes for the synthesis of substituted β-keto esters Chris V. Galliford and Karl A. Scheidt* Department of Chemistry, Northwestern University, 2145 Sheridan

More information

Silver-Catalyzed Cascade Reaction of β-enaminones and Isocyanoacetates to Construct Functionalized Pyrroles

Silver-Catalyzed Cascade Reaction of β-enaminones and Isocyanoacetates to Construct Functionalized Pyrroles Supporting Information for Silver-Catalyzed Cascade Reaction of β-enaminones and Isocyanoacetates to Construct Functionalized Pyrroles Guichun Fang, a, Jianquan Liu a,c, Junkai Fu,* a Qun Liu, a and Xihe

More information

The version of SI posted May 6, 2004 contained errors. The correct version was posted October 21, 2004.

The version of SI posted May 6, 2004 contained errors. The correct version was posted October 21, 2004. The version of SI posted May 6, 2004 contained errors. The correct version was posted October 21, 2004. Sterically Bulky Thioureas as Air and Moisture Stable Ligands for Pd-Catalyzed Heck Reactions of

More information

Supporting Information

Supporting Information An Improved ynthesis of the Pyridine-Thiazole Cores of Thiopeptide Antibiotics Virender. Aulakh, Marco A. Ciufolini* Department of Chemistry, University of British Columbia 2036 Main Mall, Vancouver, BC

More information

Supplementary Table S1: Response evaluation of FDA- approved drugs

Supplementary Table S1: Response evaluation of FDA- approved drugs SUPPLEMENTARY DATA, FIGURES AND TABLE BIOLOGICAL DATA Spheroids MARY-X size distribution, morphology and drug screening data Supplementary Figure S1: Spheroids MARY-X size distribution. Spheroid size was

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPRTING INFRMATIN A Direct, ne-step Synthesis of Condensed Heterocycles: A Palladium-Catalyzed Coupling Approach Farnaz Jafarpour and Mark Lautens* Davenport Chemical Research Laboratories, Chemistry

More information

Supporting Information:

Supporting Information: Supporting Information: An rganocatalytic Asymmetric Sequential Allylic Alkylation/Cyclization of Morita-Baylis-Hillman Carbonates and 3-Hydroxyoxindoles Qi-Lin Wang a,b, Lin Peng a, Fei-Ying Wang a, Ming-Liang

More information

All solvents and reagents were used as obtained. 1H NMR spectra were recorded with a Varian

All solvents and reagents were used as obtained. 1H NMR spectra were recorded with a Varian SUPPLEMETARY OTE Chemistry All solvents and reagents were used as obtained. 1H MR spectra were recorded with a Varian Inova 600 MR spectrometer and referenced to dimethylsulfoxide. Chemical shifts are

More information

Supporting Information for: Synthesis of Chiral Tryptamines via a Regioselective Indole Alkylation

Supporting Information for: Synthesis of Chiral Tryptamines via a Regioselective Indole Alkylation Supporting Information for: Synthesis of Chiral Tryptamines via a Regioselective Indole Alkylation Jens Wolfard, Jie Xu,* Haiming Zhang, and Cheol K. Chung* Department of Small Molecule Process Chemistry,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2018 Supporting Information Content Synthesis of compounds 2a, 2b in Scheme

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Asymmetric Vinylogous aza-darzens Approach to Vinyl Aziridines Isaac Chogii, Pradipta Das, Michael D. Delost, Mark N. Crawford and Jon T. Njardarson* Department of Chemistry and

More information

Regioselective Synthesis of the Tricyclic Core of Lateriflorone

Regioselective Synthesis of the Tricyclic Core of Lateriflorone Regioselective Synthesis of the Tricyclic Core of Lateriflorone Eric J. Tisdale, Hongmei Li, Binh G. Vong, Sun Hee Kim, Emmanuel A. Theodorakis* Department of Chemistry and Biochemistry, University of

More information

Supporting Information

Supporting Information Supporting Information Total Synthesis of (±)-Grandilodine B Chunyu Wang, Zhonglei Wang, Xiaoni Xie, Xiaotong Yao, Guang Li, and Liansuo Zu* School of Pharmaceutical Sciences, Tsinghua University, Beijing,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is the Partner Organisations 2016 Supporting Information Synthesis of Biaryl Sultams Using Visible-Light-Promoted Denitrogenative

More information

Brønsted Base-Catalyzed Reductive Cyclization of Alkynyl. α-iminoesters through Auto-Tandem Catalysis

Brønsted Base-Catalyzed Reductive Cyclization of Alkynyl. α-iminoesters through Auto-Tandem Catalysis Supporting Information Brønsted Base-Catalyzed Reductive Cyclization of Alkynyl α-iminoesters through Auto-Tandem Catalysis Azusa Kondoh, b and Masahiro Terada* a a Department of Chemistry, Graduate School

More information

Supporting Material. 2-Oxo-tetrahydro-1,8-naphthyridine-Based Protein Farnesyltransferase Inhibitors as Antimalarials

Supporting Material. 2-Oxo-tetrahydro-1,8-naphthyridine-Based Protein Farnesyltransferase Inhibitors as Antimalarials Supporting Material 2-Oxo-tetrahydro-1,8-naphthyridine-Based Protein Farnesyltransferase Inhibitors as Antimalarials Srinivas Olepu a, Praveen Kumar Suryadevara a, Kasey Rivas b, Christophe L. M. J. Verlinde

More information

Kinetics experiments were carried out at ambient temperature (24 o -26 o C) on a 250 MHz Bruker

Kinetics experiments were carried out at ambient temperature (24 o -26 o C) on a 250 MHz Bruker Experimental Materials and Methods. All 31 P NMR and 1 H NMR spectra were recorded on 250 MHz Bruker or DRX 500 MHz instruments. All 31 P NMR spectra were acquired using broadband gated decoupling. 31

More information

Supporting Information

Supporting Information Supporting Information Efficient Benzimidazolidinone Synthesis via Rhodium-Catalyzed Double-Decarbonylative C C Activation/Cycloaddition between Isatins and Isocyanates Rong Zeng, Peng-hao Chen, and Guangbin

More information

for Brønsted Base-Mediated Aziridination of 2- Alkyl Substituted-1,3-Dicarbonyl Compounds and 2-Acyl-1,4-Dicarbonyl Compounds by Iminoiodanes

for Brønsted Base-Mediated Aziridination of 2- Alkyl Substituted-1,3-Dicarbonyl Compounds and 2-Acyl-1,4-Dicarbonyl Compounds by Iminoiodanes 10.1071/CH16580_AC CSIRO 2017 Australian Journal of Chemistry 2017, 70(4), 430-435 Supplementary Material for Brønsted Base-Mediated Aziridination of 2- Alkyl Substituted-1,3-Dicarbonyl Compounds and 2-Acyl-1,4-Dicarbonyl

More information

How to build and race a fast nanocar Synthesis Information

How to build and race a fast nanocar Synthesis Information How to build and race a fast nanocar Synthesis Information Grant Simpson, Victor Garcia-Lopez, Phillip Petemeier, Leonhard Grill*, and James M. Tour*, Department of Physical Chemistry, University of Graz,

More information

Straightforward Synthesis of Enantiopure (R)- and (S)-trifluoroalaninol

Straightforward Synthesis of Enantiopure (R)- and (S)-trifluoroalaninol S1 Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010 Straightforward Synthesis of Enantiopure (R)- and (S)-trifluoroalaninol Julien

More information

Supporting Information. (1S,8aS)-octahydroindolizidin-1-ol.

Supporting Information. (1S,8aS)-octahydroindolizidin-1-ol. SI-1 Supporting Information Non-Racemic Bicyclic Lactam Lactones Via Regio- and cis-diastereocontrolled C H insertion. Asymmetric Synthesis of (8S,8aS)-octahydroindolizidin-8-ol and (1S,8aS)-octahydroindolizidin-1-ol.

More information

Supporting Information

Supporting Information Supporting Information ACA: A Family of Fluorescent Probes that Bind and Stain Amyloid Plaques in Human Tissue Willy M. Chang, a Marianna Dakanali, a Christina C. Capule, a Christina J. Sigurdson, b Jerry

More information

Halogen halogen interactions in diiodo-xylenes

Halogen halogen interactions in diiodo-xylenes Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) for CrystEngComm. This journal is The Royal Society

More information

Supplementary Figure 1. 1 H and 13 C NMR spectra for compound 1a

Supplementary Figure 1. 1 H and 13 C NMR spectra for compound 1a 216.29 185.02 164.20 148.97 128.19 87.70 79.67 77.30 77.04 76.79 74.66 26.23 2.02 2.03 2.01 3.05 7.26 6.92 6.90 6.25 6.23 5.61 5.60 5.58 5.25 5.24 1.58 Supplementary Figure 1. 1 H and 13 C NMR spectra

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2012 69451 Weinheim, Germany Concise Syntheses of Insect Pheromones Using Z-Selective Cross Metathesis** Myles B. Herbert, Vanessa M. Marx, Richard L. Pederson, and Robert

More information

Synthesis and nucleophilic aromatic substitution of 3- fluoro-5-nitro-1-(pentafluorosulfanyl)benzene

Synthesis and nucleophilic aromatic substitution of 3- fluoro-5-nitro-1-(pentafluorosulfanyl)benzene Supporting Information for Synthesis and nucleophilic aromatic substitution of 3- fluoro-5-nitro-1-(pentafluorosulfanyl)benzene Javier Ajenjo 1, Martin Greenhall 2, Camillo Zarantonello 2 and Petr Beier

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2015 Supporting Information Palladium-Catalyzed Regio-selective xidative C-H

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 208 Supporting Information Cobalt-Catalyzed Regioselective Syntheses of Indeno[2,-c]pyridines

More information

Reactions. James C. Anderson,* Rachel H. Munday. School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK

Reactions. James C. Anderson,* Rachel H. Munday. School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK Vinyl-dimethylphenylsilanes as Safety Catch Silanols in Fluoride free Palladium Catalysed Cross Coupling Reactions. James C. Anderson,* Rachel H. Munday School of Chemistry, University of Nottingham, Nottingham,

More information

Supporting Information

Supporting Information Supporting Information Enantioselective Synthesis of 3-Alkynyl-3-Hydroxyindolin-2-ones by Copper-Catalyzed Asymmetric Addition of Terminal Alkynes to Isatins Ning Xu, Da-Wei Gu, Jing Zi, Xin-Yan Wu, and

More information

Divergent Synthesis of CF 3 -Substituted Polycyclic Skeletons Based on Control of Activation Site of Acid Catalysts

Divergent Synthesis of CF 3 -Substituted Polycyclic Skeletons Based on Control of Activation Site of Acid Catalysts Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Divergent Synthesis of CF 3 -Substituted Polycyclic Skeletons Based on Control of Activation Site

More information

Supporting Information

Supporting Information J. Am. Chem. Soc. Supporting Information S 1 The First Suzuki Cross-Coupling of Aryltrimethylammonium Salts. Simon B. Blakey and David W. C. MacMillan* Division of Chemistry and Chemical Engineering, California

More information

SYNTHESIS OF A 3-THIOMANNOSIDE

SYNTHESIS OF A 3-THIOMANNOSIDE Supporting Information SYNTHESIS OF A 3-THIOMANNOSIDE María B Comba, Alejandra G Suárez, Ariel M Sarotti, María I Mangione* and Rolando A Spanevello and Enrique D V Giordano Instituto de Química Rosario,

More information

A Sumanene-based Aryne, Sumanyne

A Sumanene-based Aryne, Sumanyne A Sumanene-based Aryne, Sumanyne Niti Ngamsomprasert, Yumi Yakiyama, and Hidehiro Sakurai* Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871

More information

Supramolecular complexes of bambusuril with dialkyl phosphates

Supramolecular complexes of bambusuril with dialkyl phosphates Supramolecular complexes of bambusuril with dialkyl phosphates Tomas Fiala and Vladimir Sindelar RECETX, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic Contents Synthesis... S2 Tripropargyl

More information

Supporting Information

Supporting Information Supporting Information Towards Singlet Oxygen Delivery at a Measured Rate: A Selfreporting Photosensitizer Sundus Erbas-Cakmak #, Engin U. Akkaya # * # UNAM-National Nanotechnology Research Center, Bilkent

More information

Hualong Ding, Songlin Bai, Ping Lu,* Yanguang Wang*

Hualong Ding, Songlin Bai, Ping Lu,* Yanguang Wang* Supporting Information for Preparation of 2-Amino-3-arylindoles via Pd-Catalyzed Coupling between 3-Diazoindolin-2-imines and Arylboronic Acids as well as Their Extension to 3-Aryl-3-fluoroindolin-2-imines

More information

hydroxyanthraquinones related to proisocrinins

hydroxyanthraquinones related to proisocrinins Supporting Information for Regiodefined synthesis of brominated hydroxyanthraquinones related to proisocrinins Joyeeta Roy, Tanushree Mal, Supriti Jana and Dipakranjan Mal* Address: Department of Chemistry,

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Regiodivergent Heterocyclization: A Strategy for the Synthesis of Substituted Pyrroles and Furans Using α-formyl Ketene Dithioacetals as Common Precursors Ting Wu,

More information

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003 Supporting Information for Angew. Chem. Int. Ed. Z53001 Wiley-VCH 2003 69451 Weinheim, Germany 1 Ordered Self-Assembly and Electronic Behavior of C 60 -Anthrylphenylacetylene Hybrid ** Seok Ho Kang 1,

More information

Construction of Vicinal Quaternary Carbon Centers via Cobalt- Catalyzed Asymmetric Reverse Prenylation

Construction of Vicinal Quaternary Carbon Centers via Cobalt- Catalyzed Asymmetric Reverse Prenylation Supporting Information Construction of Vicinal Quaternary Carbon Centers via Cobalt- Catalyzed Asymmetric Reverse Prenylation Minghe Sun, Jia-Feng Chen, Shufeng Chen, Changkun Li* Shanghai Key Laboratory

More information

Nanocrystalline Magnesium Oxide-Stabilized Palladium(0): An Efficient and Reusable Catalyst for the Synthesis of N-(2- pyridyl)indoles

Nanocrystalline Magnesium Oxide-Stabilized Palladium(0): An Efficient and Reusable Catalyst for the Synthesis of N-(2- pyridyl)indoles Electronic Supplementary Material (ESI) for ew Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre ational de la Recherche Scientifique 2015 Supplementary Material (ESI)

More information

Supporting Information

Supporting Information Supporting Information for Cu-Mediated trifluoromethylation of benzyl, allyl and propargyl methanesulfonates with TMSCF 3 Xueliang Jiang 1 and Feng-Ling Qing* 1,2 Address: 1 Key Laboratory of Organofluorine

More information

SUPPORTING INFORMATION. Fathi Elwrfalli, Yannick J. Esvan, Craig M. Robertson and Christophe Aïssa

SUPPORTING INFORMATION. Fathi Elwrfalli, Yannick J. Esvan, Craig M. Robertson and Christophe Aïssa Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 SUPPORTING INFORMATION S1 Fathi Elwrfalli, Yannick J. Esvan, Craig M. Robertson and Christophe

More information

Regioselective Silylation of Pyranosides Using a Boronic Acid / Lewis Base Co-Catalyst System

Regioselective Silylation of Pyranosides Using a Boronic Acid / Lewis Base Co-Catalyst System Regioselective Silylation of Pyranosides Using a Boronic Acid / Lewis Base Co-Catalyst System Doris Lee and Mark S. Taylor* Department of Chemistry, Lash Miller Laboratories, University of Toronto 80 St.

More information

Qile Wang, and Nan Zheng* Department of Chemistry and Biochemistry, University of Arkansas. Fayetteville, Arkansas,

Qile Wang, and Nan Zheng* Department of Chemistry and Biochemistry, University of Arkansas. Fayetteville, Arkansas, Supporting Information A Photocatalyzed Synthesis of Naphthalenes by Using Aniline as a Traceless Directing Group in [4+2] Annulation of AminoBenzocyclobutenes with Alkynes Qile Wang, and Nan Zheng* Department

More information

Supporting Information. A rapid and efficient synthetic route to terminal. arylacetylenes by tetrabutylammonium hydroxide- and

Supporting Information. A rapid and efficient synthetic route to terminal. arylacetylenes by tetrabutylammonium hydroxide- and Supporting Information for A rapid and efficient synthetic route to terminal arylacetylenes by tetrabutylammonium hydroxide- and methanol-catalyzed cleavage of 4-aryl-2-methyl-3- butyn-2-ols Jie Li and

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Pd-Catalyzed C-H Activation/xidative Cyclization of Acetanilide with orbornene:

More information

Formal Total Synthesis of Optically Active Ingenol via Ring-Closing Olefin Metathesis

Formal Total Synthesis of Optically Active Ingenol via Ring-Closing Olefin Metathesis Formal Total Synthesis of Optically Active Ingenol via Ring-Closing Olefin Metathesis Kazushi Watanabe, Yuto Suzuki, Kenta Aoki, Akira Sakakura, Kiyotake Suenaga, and Hideo Kigoshi* Department of Chemistry,

More information

Accessory Information

Accessory Information Accessory Information Synthesis of 5-phenyl 2-Functionalized Pyrroles by amino Heck and tandem amino Heck Carbonylation reactions Shazia Zaman, *A,B Mitsuru Kitamura B, C and Andrew D. Abell A *A Department

More information

Indium Triflate-Assisted Nucleophilic Aromatic Substitution Reactions of. Nitrosobezene-Derived Cycloadducts with Alcohols

Indium Triflate-Assisted Nucleophilic Aromatic Substitution Reactions of. Nitrosobezene-Derived Cycloadducts with Alcohols Supporting Information Indium Triflate-Assisted ucleophilic Aromatic Substitution Reactions of itrosobezene-derived Cycloadducts with Alcohols Baiyuan Yang and Marvin J. Miller* Department of Chemistry

More information

Asymmetric Organocatalytic Strecker-Type Reactions of Aliphatic N,N- Dialkylhydrazones

Asymmetric Organocatalytic Strecker-Type Reactions of Aliphatic N,N- Dialkylhydrazones Asymmetric Organocatalytic Strecker-Type Reactions of Aliphatic N,N- Dialkylhydrazones Aurora Martínez-Muñoz, David Monge,* Eloísa Martín-Zamora, Eugenia Marqués-López, Eleuterio Álvarez, Rosario Fernández,*

More information

Electronic Supplementary Material (ESI) for Medicinal Chemistry Communications This journal is The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Medicinal Chemistry Communications This journal is The Royal Society of Chemistry 2012 Supporting Information. Experimental Section: Summary scheme H 8 H H H 9 a H C 3 1 C 3 A H H b c C 3 2 3 C 3 H H d e C 3 4 5 C 3 H f g C 2 6 7 C 2 H a C 3 B H c C 3 General experimental details: All solvents

More information

Carbonylative Coupling of Allylic Acetates with. Arylboronic Acids

Carbonylative Coupling of Allylic Acetates with. Arylboronic Acids Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Carbonylative Coupling of Allylic Acetates with Arylboronic Acids Wei Ma, a Ting Yu, Dong Xue,*

More information

Organocatalytic asymmetric synthesis of 3,3-disubstituted oxindoles featuring two heteroatoms at C3 position

Organocatalytic asymmetric synthesis of 3,3-disubstituted oxindoles featuring two heteroatoms at C3 position Organocatalytic asymmetric synthesis of 3,3-disubstituted oxindoles featuring two heteroatoms at C3 position Feng Zhou, Xing-Ping Zeng, Chao Wang, Xiao-Li Zhao, and Jian Zhou* [a] Shanghai Key Laboratory

More information

Supporting Information

Supporting Information Supporting Information SmI 2 -Mediated Carbon-Carbon Bond Fragmentation in α-aminomethyl Malonates Qiongfeng Xu,, Bin Cheng, $, Xinshan Ye,*, and Hongbin Zhai*,,,$ The State Key Laboratory of Natural and

More information

Efficient Mono- and Bis-Functionalization of 3,6-Dichloropyridazine using (tmp) 2 Zn 2MgCl 2 2LiCl ** Stefan H. Wunderlich and Paul Knochel*

Efficient Mono- and Bis-Functionalization of 3,6-Dichloropyridazine using (tmp) 2 Zn 2MgCl 2 2LiCl ** Stefan H. Wunderlich and Paul Knochel* Efficient Mono- and Bis-Functionalization of 3,6-Dichloropyridazine using (tmp) 2 Zn 2Mg 2 2Li ** Stefan H. Wunderlich and Paul Knochel* Ludwig Maximilians-Universität München, Department Chemie & Biochemie

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION UPPRTING INFRMATIN Application of a Rhodium-Catalyzed Addition/Cyclization equence Toward the ynthesis of Polycyclic eteroaromatics Nai-Wen Tseng and Mark Lautens* Davenport Laboratories, Chemistry Department,

More information

Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe

Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe Supporting Information for Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe Ho Yu Au-Yeung, Jefferson Chan, Teera Chantarojsiri and Christopher J. Chang* Departments

More information

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003 Supporting Information for Angew. Chem. Int. Ed. Z51666 Wiley-VCH 2003 69451 Weinheim, Germany Catalytic Enantioselective Synthesis of xindoles and Benzofuranones that Bear a Quaternary Stereocenter Ivory

More information

Efficient Pd-Catalyzed Amination of Heteroaryl Halides

Efficient Pd-Catalyzed Amination of Heteroaryl Halides 1 Efficient Pd-Catalyzed Amination of Heteroaryl Halides Mark D. Charles, Philip Schultz, Stephen L. Buchwald* Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 Supporting

More information

Aziridine in Polymers: A Strategy to Functionalize Polymers by Ring- Opening Reaction of Aziridine

Aziridine in Polymers: A Strategy to Functionalize Polymers by Ring- Opening Reaction of Aziridine Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information (ESI) Aziridine in Polymers: A Strategy to Functionalize

More information

Supporting Information

Supporting Information Supporting Information Brønsted Acid-Catalyzed [6+2]-Cycloaddition of 2-Vinylindoles with In Situ Generated 2-Methide-2H-pyrroles: Direct, Catalytic, and Enantioselective Synthesis of 2,3-Dihydro-H-pyrrolizines

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Synthetic chemistry ML5 and ML4 were identified as K P.(TREK-) activators using a combination of fluorescence-based thallium flux and automated patch-clamp assays. ML5, ML4, and ML5a were synthesized using

More information

Transition-Metal-Free Esterification of Amides via Selective N C Cleavage under Mild Conditions. Supporting Information

Transition-Metal-Free Esterification of Amides via Selective N C Cleavage under Mild Conditions. Supporting Information Transition-Metal-Free Esterification of Amides via Selective N C Cleavage under Mild Conditions Guangchen Li, Peng Lei,, and Michal Szostak*, Department of Chemistry, Rutgers University, 73 Warren Street,

More information

Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A

Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A Fuerst et al. Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A S1 Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers:

More information

Selective Reduction of Carboxylic acids to Aldehydes Catalyzed by B(C 6 F 5 ) 3

Selective Reduction of Carboxylic acids to Aldehydes Catalyzed by B(C 6 F 5 ) 3 S1 Selective Reduction of Carboxylic acids to Aldehydes Catalyzed by B(C 6 F 5 ) 3 David Bézier, Sehoon Park and Maurice Brookhart* Department of Chemistry, University of North Carolina at Chapel Hill,

More information

Supporting Information

Supporting Information Meyer, Ferreira, and Stoltz: Diazoacetoacetic acid Supporting Information S1 2-Diazoacetoacetic Acid, an Efficient and Convenient Reagent for the Synthesis of Substituted -Diazo- -ketoesters Michael E.

More information

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex.

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex. Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex. Emmanuelle Despagnet-Ayoub, Michael K. Takase, Jay A. Labinger and John E. Bercaw Contents 1. Experimental

More information