Unit One Parts 3 & 4: molecular bonding

Size: px
Start display at page:

Download "Unit One Parts 3 & 4: molecular bonding"

Transcription

1 Unit ne Parts 3 & 4: molecular bonding hanging the order we approach this material... gjr- - 1 Locating electrons and drawing Lewis structures Assigning formal charges Describe bonds in terms of orbital overlap and the formation of σ & π bonds Look at the effects of different bonds on the shape & properties of molecules Look at resonance and the movement of π electrons Meet the organic chemists best friend...the 'curly arrow' dr gareth rowlands; g.j.rowlands@massey.ac.nz; science tower a4.12

2 Types of bonds gjr Br 3 Br rganic chemists view the world as bonds being made and broken But what does this mean? And what is this bond malarkey anyway? Ionic bonds ne atom takes an electron from another atom Ionic bond formed by attraction between cation (+) & anion ( ) a l a l a + l a l a + l al ovalent bonds Two electrons are shared by two atoms So the bond (and our line ) represents two electrons

3 Electron configuration gjr e Li Be B F e a Mg Al Si P S l Ar K a Sc Ti V r Mn Fe o i u Zn Ga Ge As Se Br Kr energy 2s 2p x 2p y 2p z hydrogen 1s 1 1s e e 3 6 Li Be Li B F e a Mg Al Si P S l Ar K a Sc Ti V r Mn Fe o i u Zn Ga Ge As Se Br Kr energy 2p x 2p y 2p z 2s 2p x 2p y 2p z 2s carbon helium lithium 1s 2 2s 1s 2 1s 2px 2 2s 2 1 2py 1 1s 2 2s 2 2p 2 1s Aufbau Principle lowest energy orbital Pauli Exclusion Principle spin +½ or -½ und's rule electrons as far apart as possible (degenerate orbitals)

4 Valence electrons gjr s 2 2s 2 2p 2 2s 2 2p 2 1s 2 2s 2 2p 3 2s 2 2p 3 valence electrons group e Li Be B F e Valence electrons highest energy shell Gives us a good idea of how molecules will bond 8 is the magic number (but not a catchy song title...)

5 Lewis structures The basis of simple Lewis structures is the ctet Rule Most atoms want 8 valence electrons to fill the outer shell 2s 2 2p 6 (please remember this is a simplification) ydrofluoric acid F gjr F F F Methanol Ethene

6 Lewis structures II gjr- - 6 Acetone The atoms are not charged even though they are sharing 4 other electrons Lone pairs of electrons are pairs of valence electrons that are not shared In ions a valence electron is either added ( ) or lost (+) gained valence electron B lost valence electron Borohydride anion B4 B B Ammonium cation 4 +

7 Formal charges gjr- - 7 So far we know if a molecule is charged or not and in reality that charge is spread over the entire molecule It is useful to "localise" the charge on one atom - this is the formal charge fc fc = number of valence electrons number of unshared electrons ½ number of shared electrons nitrogen; fc = 5-0-½(8)=+1 cation ozone neutral left-hand oxygen; fc = 6-4-½(4)=0 central oxygen; fc = 6-2-½(6)=+1 right-hand oxygen; fc = 6-6-½(2)=-1 atom's formal charges

8 Atomic orbitals: its a quantum world out there So we have got an idea where the electrons (& bonds) are... But how are they formed? A number of different models...we will look at a very simplified version Atomic electrons reside in atomic orbitals (areas of space with a 90% probability of finding the electron) nly two electrons per orbital (one of spin +½ & one of spin ½) gjr- - 8 s rbitals + not charge so less confusing to draw as two s orbitals with different phases two s orbitals with different phases Spherical in shape Larger s orbitals (>1) have 1 or more nodes (0% probability of finding electron) hange in phase either side of node Phase is just a result of maths...so won't worry about it yet...

9 Atomic orbitals: p orbitals gjr- - 9 p x z p y z p z z y y y x x x The three p orbitals are degenerate (same energy) Just differ by the direction they are orientated

10 Atomic orbits gjr hydrogen carbon 2p x 2p y 2p z energy 2s 2p x 2p y 2p z energy 2s 1s 1s 1s 1s 2s 2p x 2p y umber of electrons per atom given by atomic number Add electrons to lowest energy orbital first If orbitals have the same energy electrons will not pair up

11 Single bonds gjr σ* energy 1s σ 1s A bond is formed by the overlap of two atomic orbitals (and electrons) The overlap forms two molecular orbitals - the bonding σ & anti-bonding σ* verlap with an s orbital always gives a σ bond (symmetrical) More information can be obtained at:

12 gjr Single σ bond in 2 bonding σ molecular orbital (M) anti-bonding σ* molecular orbital Similar M obtained form the overlap of s & p So bonds are σ bonds similar to above In saturated hydrocarbons σ bonds are made from 1s and sp 3 The wonderful topic of hybridisation will be covered elsewhere...

13 energy Single bonds from p orbitals gjr x z overlap end-on y overlap side-on What happens when we combine the p orbitals of two atoms? nly two can approach head-to-head these give a new σ bond Again, if carbon joined to 4 other atoms then it is sp 3 σ* 2p y σ 2p y

14 Double bonds: side-to-side overlap of p orbitals gjr = π* energy = π carbon 2p z carbon 2p z Side-to-side overlap gives π bond & π* anti-bonding Differ from σ bonds as they have no axis of symmetry (phase change) It appears to be two orbitals (above & below) but is only one Double bond prevents rotation resulting in cis trans isomerism

15 Double bond molecular orbitals gjr Bonding π M Anti-bonding π* M In an alkene the two are joined by one σ bond & one π bond So a carbon joined to three groups has 3 x σ bonds & 1 x π bond Such a carbon is said to be sp 2 as 1 x s & 2 x p used in σ bond and remaining p used in π bond

16 is-trans isomerism gjr multistep enzymecatalysed reverse process light isomerises complexed cis-retinal cisretinal transretinal To change between cis and trans double bonds we have to break π bond and then reform it the bond simply will not twist around

17 ther bonds Triple bond gjr σ π (2p z + 2p z ) σ σ π π π (2p y + 2p y ) An alkyne or triple bond comprises 1 x σ bond and 2 x π bonds A atom joined by 2 x σ bonds & 2 x π bonds is called an sp carbon as only 1 x s & 1 x p involved in σ bonds on-bonded electron pairs (lone pairs) Lone pairs occupy n (non-bonding) molecular orbitals

18 Example gjr ( 3 ) 3 P Br Draw the Lewis structure & identify the types of bond (σ or π) in above compound First we need to know the number of valence electrons... P Br ext attach the atoms & obey the octet rule (8 electrons)... P Br Finally, draw as normal and point out the bonds... π bond P 3 Br 3 σ bonds 3 P 3 Br

19 Geometries about carbon atoms The wonderfully titled Valence Shell Electron-Pair Repulsion (VSEPR) theory tells that pairs of electrons (bonds or lone-pairs) want to be as far apart as possible...(like charges repel) gjr If a carbon has just two groups (e.g. ethyne) they will be directly opposite each other (in a straight line) and hence linear linear 120 trigonal planar If there are three groups (e.g. ethene), they will point to the corners of a triangle. All groups are arranged in the same plane (flat) and so we call this trigonal planar

20 Geometry II gjr Br tetrahedral Br Four groups again want to be as far apart as possible and this gives the tetrahedral arrangement This is probably the most important shape in organic chemistry sp 1 linear sp 2 trigonal planar dynemicin A sp 3 tetrahedral

21 Bond strengths gjr bond energy > > Bond Strength - energy to break a bond Multiple bonds are stronger than single bonds BUT - σ bond is stronger than a π bond This is a result of orbital overlap bond energy >

22 Bond strengths and lengths gjr F F l bond energy 134pm bond energy 178pm l 154pm 193pm Br Br Bond lengths - average distance between two linked atoms Shorter the bond, the stronger it is Explain the following: 134pm 122pm 610kJmol 1 736kJmol 1 For a full list of bond strengths and lengths see the course Study Guide (Pg34)

23 Bond Polarisation Is l covalent or ionic? gjr δ+ δ l l l Polar covalent bond - electrons in the bond are shared BUT polarised (attracted) towards one atom more So covalent bond has a degree of ionic character Electronegativity E - the more electronegative (higher number) atom attracts the electrons 2.1 Li Be a 0.9 Mg 1.2 K a Rb 0.8 Sr 1.0 B 2.0 Al Si P S 2.5 F 4.0 l 3.0 Br 2.8 I 2.5 Bond Type E difference Examples alculation ionic > 1.7 al 3.0(l) - 0.9(a) = 2.1 polar covalent covalent l 3 3.5() - 2.1() = (l) - 2.1() = () - 2.1() = () - 2.1() = 0.4

24 Bond Polarisation II An understanding of the polarisation of bonds in organic molecules helps us to understand the chemistry of these compounds gjr δ+ δ δ 3 I 3 δ+ 3 δ δ+ δ+ Me δ 3 Mg δ+ δ Br It also explains why = bond is stronger than = (yet more reactive) π* π* energy energy p A carbon p A carbon π p A carbon π p A oxygen δ+ δ

25 Resonance gjr top oxygen; fc = 6-4-½(4)=0 nitrogen; fc = 5-0-½(8)=+1 bottom oxygen; fc = 6-6-½(2)=-1 If we draw the Lewis structure for nitromethane 32 we get... So the two are different? But...(and isn't there always a 'but' in chemistry...) Both bond lengths are 122pm ( = 130pm & = = 116pm) Reason... Moving the electrons gives us another acceptable Lewis structure These structures are resonance structures The truth (or reality) is a resonance hybrid - somewhere in the middle

26 Resonance II gjr Resonance structures - two or more acceptable Lewis structures nly differ by the position of the electrons They do not exist - they are extremes - reality is in the middle The 'curly arrow' is represents the movement of 2 electrons In many respects it is the key to organic chemistry Pushable electrons e.g. Receptors e.g. lone pairs, positively charged atoms π bond electrons atoms that can accept electrons atoms which have pushable electrons

27 Delocalisation gjr Resonance is not the movement of electrons, our structures are just extremes The electrons are spread over the system or delocalised or 3 1 / 2 1 / 2 Electrons spread over three atoms - bond lengths are equal (130pm) Ph 3 3 X Ph Ph 3 3 Ph 3 3 X Ph δ 3 δ 3 Ph 3 3

28 Delocalisation II eutral molecules also have resonance forms gjr δ 3 δ+ Again this explains the physics observations bond of ethanoic acid is far shorter than in an alcohol 124pm 129pm 3 ethanoic acid 3 2 ethanol 146pm 122pm 3 3 propanone Most famous example of delocalisation is probably benzene

29 Delocalisation III gjr We can use resonance and delocalisation to explain why phenol is acidic (and causes burns) whilst an alcohol such as ethanol is not δ δ δ δ

30 onjugation gjr Any double bond separated from another double bond or charge or lone pair can delocalise Such systems are said to be in conjugation Systems with a high degree of conjugation are frequently coloured

31 verview gjr What have we learnt? Quite a bit... Last two lectures have provided information about bonding We have learnt how to find electrons We have started to learn how electrons move We have introduced resonance and delocalisation What's next? A look at the forces between molecules ow polarisation and shape effects intermolecular forces Start to recognise which molecules are polarised dr gareth rowlands; g.j.rowlands@massey.ac.nz; science tower a4.12

Atomic Structure. Atomic Structure. Atomic Structure. Atomic Structure. Electron Configuration. Electron Configuration

Atomic Structure. Atomic Structure. Atomic Structure. Atomic Structure. Electron Configuration. Electron Configuration Atomic Electron onfiguration Atomic Electron onfiguration z z z E 3rd SELL 3d 3p 3s y 2p x x y 2p y x y 2p z x 2nd SELL t SELL 2p x y z 2nd SELL 2p x y z y z x Atomic Ground State onfiguration Lowest energy

More information

Chapter 1. The Basics Bonding and Molecular Structure. Table of Contents. 1. Life & the Chemistry of Carbon Compounds

Chapter 1. The Basics Bonding and Molecular Structure. Table of Contents. 1. Life & the Chemistry of Carbon Compounds hapter 1 The Basics Bonding and Molecular Structure reated by Professor William Tam & Dr. Phillis hang Table of ontents 1. Life & the hemistry of arbon ompounds 2. Atomic Structure 3. hemical Bonds: The

More information

Chapter One MULTIPLE CHOICE QUESTIONS. Topic: General Section: 1.1 Difficulty Level: Easy

Chapter One MULTIPLE CHOICE QUESTIONS. Topic: General Section: 1.1 Difficulty Level: Easy Chapter ne MULTIPLE CICE QUESTIS Topic: General Section: 1.1 1. Credit for the first synthesis of an organic compound from an inorganic precursor is usually given to: A) Berzelius B) Arrhenius C) Kekule

More information

Chapter 1. The Basics Bonding and Molecular Structure. Ch. 1-1

Chapter 1. The Basics Bonding and Molecular Structure. Ch. 1-1 Chapter 1 The Basics Bonding and Molecular Structure Ch. 1-1 1. Introduction The name Organic Chemistry came from the word organism Organic Chemistry is the study of carbon compounds. Carbon, atomic number

More information

Essential Organic Chemistry. Chapter 1

Essential Organic Chemistry. Chapter 1 Essential Organic Chemistry Paula Yurkanis Bruice Chapter 1 Electronic Structure and Covalent Bonding Periodic Table of the Elements 1.1 The Structure of an Atom Atoms have an internal structure consisting

More information

like carbon, has fewer than an octet. It is simply less likely but still imperative to draw.

like carbon, has fewer than an octet. It is simply less likely but still imperative to draw. Andrew Rosen Chapter 1: The Basics - Bonding and Molecular Structure 1.1 - We Are Stardust - Organic chemistry is simply the study of carbon-based compounds, hydrocarbons, and their derivatives, which

More information

Chapter 12. Chemical Bonding

Chapter 12. Chemical Bonding Chapter 12 Chemical Bonding Chapter 12 Introduction to Chemical Bonding Chemical Bonding Valence electrons are the electrons in the outer shell (highest energy level) of an atom. A chemical bond is a mutual

More information

Carbon Compounds and Chemical Bonds

Carbon Compounds and Chemical Bonds Carbon Compounds and Chemical Bonds Introduction Organic Chemistry The chemistry of the compounds of carbon The human body is largely composed of organic compounds Organic chemistry plays a central role

More information

Bonding in Organic Compounds

Bonding in Organic Compounds Bonding in rganic ompounds hapter 1 1 Bonding in rganic ompounds APTER SUMMARY rganic chemistry is the study of compounds of carbon This is a separate branch of chemistry because of the large numbers of

More information

Chapter 1: Structure Determines Properties 1.1: Atoms, Electrons, and Orbitals

Chapter 1: Structure Determines Properties 1.1: Atoms, Electrons, and Orbitals hapter 1: Structure Determines Properties 1.1: Atoms, Electrons, and rbitals Molecules are made up of atoms Atoms- protons- (+)-charge, mass = 1.676 X 10-7 kg neutrons- no charge, mass = 1.6750 X 10-7

More information

Chapter 8 H H H H. Molecular Compounds & Covalent Bonding. Why do covalent bonds form? 8.1 Molecular Compounds. Properties of Molecular Compounds

Chapter 8 H H H H. Molecular Compounds & Covalent Bonding. Why do covalent bonds form? 8.1 Molecular Compounds. Properties of Molecular Compounds Chapter 8 Molecular Compounds & Covalent Bonding Why do covalent bonds form? If only group 5A, 6A, 7A atoms existed, ionic bonds can t form. NNMETALS Each atom needs electrons so they are not willing to

More information

Chapter 1 Carbon Compounds and Chemical Bonds

Chapter 1 Carbon Compounds and Chemical Bonds Chapter 1 Carbon Compounds and Chemical Bonds Introduction Organic Chemistry The chemistry of the compounds of carbon The human body is largely composed of organic compounds Organic chemistry plays a central

More information

Chapter 6 Chemical Bonding

Chapter 6 Chemical Bonding Chapter 6 Chemical Bonding Section 6-1 Introduction to Chemical Bonding Chemical Bonds Valence electrons are attracted to other atoms, and that determines the kind of chemical bonding that occurs between

More information

Covalent Compounds: Bonding Theories and Molecular Structure

Covalent Compounds: Bonding Theories and Molecular Structure CHM 123 Chapter 8 Covalent Compounds: Bonding Theories and Molecular Structure 8.1 Molecular shapes and VSEPR theory VSEPR theory proposes that the geometric arrangement of terminal atoms, or groups of

More information

PART 3 Chemical Bonds, Valence Bond Method, and Molecular Shapes. Reference: Chapter 9 10 in textbook

PART 3 Chemical Bonds, Valence Bond Method, and Molecular Shapes. Reference: Chapter 9 10 in textbook PART 3 Chemical Bonds, Valence Bond Method, and Molecular Shapes Reference: Chapter 9 10 in textbook 1 Valence Electrons Valence ae Electron Define: the outer shell electrons Important for determination

More information

Chapters 9&10 Structure and Bonding Theories

Chapters 9&10 Structure and Bonding Theories Chapters 9&10 Structure and Bonding Theories Ionic Radii Ions, just like atoms, follow a periodic trend in their radii. The metal ions in a given period are smaller than the non-metal ions in the same

More information

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories Topics Molecular Geometry Molecular Geometry and Polarity Valence Bond Theory Hybridization of Atomic Orbitals Hybridization in Molecules

More information

EXPERIMENT 15: MOLECULAR MODELS

EXPERIMENT 15: MOLECULAR MODELS EXPERIMENT 15: MLEULAR MDELS Introduction: Given formulas of some molecules and ions, you will use the periodic table, valence electron count, and electronegativities to deduce their geometry and polarities.

More information

William H. Brown & Christopher S. Foote

William H. Brown & Christopher S. Foote William. Brown & Christopher S. Foote Requests for permission to make copies of any part of the work should be mailed to:permissions Department, arcourt Brace & Company, 6277 Sea arbor Drive, rlando, Florida

More information

CHEMISTRY. Chapter 9 The Basics of Chemical Bonding. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION

CHEMISTRY. Chapter 9 The Basics of Chemical Bonding. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION CEMISTRY The Molecular Nature of Matter SIXT EDITIN Jespersen Brady yslop Chapter 9 The Basics of Chemical Bonding Copyright 2012 by John Wiley & Sons, Inc. Chemical Bonds Attractive forces that hold atoms

More information

Structure and Bonding of Organic Molecules

Structure and Bonding of Organic Molecules Chem 220 Notes Page 1 Structure and Bonding of Organic Molecules I. Types of Chemical Bonds A. Why do atoms forms bonds? Atoms want to have the same number of electrons as the nearest noble gas atom (noble

More information

Chapter 01 Covalent Bonding and Shapes of Molecules. Atomic Structure. Chapter 01 Topics. Structure. Atomic Structure. Subatomic Particles

Chapter 01 Covalent Bonding and Shapes of Molecules. Atomic Structure. Chapter 01 Topics. Structure. Atomic Structure. Subatomic Particles hapter 01 ovalent Bonding and Shapes of Molecules EM 240: Fall 2016 Prof. Greg ook hapter 01 Topics Mostly a review of general chemistry Atomic Structure Lewis Models and Bonding Bonding and Shapes of

More information

Section 12: Lewis Structures

Section 12: Lewis Structures Section 12: Lewis Structures The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC 112.35(c). 12.01 Electronegativity Chemistry (5)(C) 12.02 Electron

More information

Organic Chemistry Lecture I. Dr. John D. Spence

Organic Chemistry Lecture I. Dr. John D. Spence HEMISTRY 3 Organic hemistry Lecture I Dr. John D. Spence jdspence@scu.edu jspence@csus.eduedu http://www.csus.edu/indiv/s/spencej What is Organic hemistry? 780 s hemistry of compounds from living organisms

More information

Chapter 9: Chemical Bonding I: Lewis Theory. Lewis Theory: An Overview

Chapter 9: Chemical Bonding I: Lewis Theory. Lewis Theory: An Overview Chapter 9: Chemical Bonding I: Lewis Theory Dr. Chris Kozak Memorial University of ewfoundland, Canada Lewis Theory: An verview Valence e - play a fundamental role in chemical bonding. e - transfer leads

More information

Loudon Ch. 1 Review: Chemical Structure & Bonds Jacquie Richardson, CU Boulder Last updated 2/8/2018

Loudon Ch. 1 Review: Chemical Structure & Bonds Jacquie Richardson, CU Boulder Last updated 2/8/2018 Organic chemistry focuses most heavily on the top three rows of the periodic table, plus a few elements from lower rows: H (1) He (2) Li (3) Be (4) B (5) C (6) N (7) O (8) F (9) Ne (10) Na (11) Mg (12)

More information

Chemistry 121: Topic 4 - Chemical Bonding Topic 4: Chemical Bonding

Chemistry 121: Topic 4 - Chemical Bonding Topic 4: Chemical Bonding Topic 4: Chemical Bonding 4.0 Ionic and covalent bonds; Properties of covalent and ionic compounds 4.1 Lewis structures, the octet rule. 4.2 Molecular geometry: the VSEPR approach. Molecular polarity.

More information

Chapter 8. Chemical Bonding: Basic Concepts

Chapter 8. Chemical Bonding: Basic Concepts Chapter 8. Chemical Bonding: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

Ch 6 Chemical Bonding

Ch 6 Chemical Bonding Ch 6 Chemical Bonding What you should learn in this section (objectives): Define chemical bond Explain why most atoms form chemical bonds Describe ionic and covalent bonding Explain why most chemical bonding

More information

Unit 1 Atomic Theory

Unit 1 Atomic Theory Unit 1 Atomic Theory 1.0 You are expected to be already familiar with. Ionic nomenclature (binary, polyatomic, multivalency) Covalent nomenclature Writing chemical formulas for ionic and covalent compounds

More information

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories Lecture Presentation Chapter 9 Geometry James F. Kirby Quinnipiac University Hamden, CT Shapes Lewis Structures show bonding and lone pairs, but do not denote shape. However, we use Lewis Structures to

More information

Covalent Bonding. Chapter 8. Diatomic elements. Covalent bonding. Molecular compounds. 1 and 7

Covalent Bonding. Chapter 8. Diatomic elements. Covalent bonding. Molecular compounds. 1 and 7 hapter 8 ovalent bonding ovalent Bonding A metal and a nonmetal transfer An ionic bond Two metals just mix and don t react An alloy What do two nonmetals do? Neither one will give away an electron So they

More information

8.1 Types of Chemical Bonds List and define three types of bonding. chapter 8 Bonding General Concepts.notebook. September 10, 2015

8.1 Types of Chemical Bonds List and define three types of bonding. chapter 8 Bonding General Concepts.notebook. September 10, 2015 chapter 8 Bonding General Concepts.notebook Chapter 8: Bonding: General Concepts Mar 13 11:15 AM 8.1 Types of Chemical Bonds List and define three types of bonding. Bonds are forces that hold groups of

More information

CHAPTER 12 CHEMICAL BONDING

CHAPTER 12 CHEMICAL BONDING CHAPTER 12 CHEMICAL BONDING Core electrons are found close to the nucleus, whereas valence electrons are found in the most distant s and p energy subshells. The valence electrons are responsible for holding

More information

Chapter 7. Chemical Bonding I: Basic Concepts

Chapter 7. Chemical Bonding I: Basic Concepts Chapter 7. Chemical Bonding I: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

Carbon and Its Compounds

Carbon and Its Compounds Chapter 1 Carbon and Its Compounds Copyright 2018 by Nelson Education Limited 1 1.2 Organic Molecules from the Inside Out I: The Modelling of Atoms Copyright 2018 by Nelson Education Limited 2 s orbitals:

More information

Valence Bond Model and Hybridization

Valence Bond Model and Hybridization Valence Bond Model and ybridization APPENDIX 4 1 Concepts The key ideas required to understand this section are: Concept Book page reference VSEPR theory 65 More advanced ideas about electronic structure

More information

Chapter 8. Chemical Bonding: Basic Concepts

Chapter 8. Chemical Bonding: Basic Concepts Chapter 8. Chemical Bonding: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

Review questions CHAPTER 5. Practice exercises 5.1 F F 5.3

Review questions CHAPTER 5. Practice exercises 5.1 F F 5.3 CHAPTER 5 Practice exercises 5.1 S 5.3 5.5 Ethane is symmetrical, so does not have a dipole moment. However, ethanol has a polar H group at one end and so has a dipole moment. 5.7 xygen has the valence

More information

Covalent Bonds & Shapes of Molecules

Covalent Bonds & Shapes of Molecules ovalent Bonds & Shapes of Molecules hapter 1 1 rganic hemistry The study of the compounds of carbon. ver 10 million compounds have been identified. About 1000 new ones are identified each day! is a small

More information

Covalent Bonding & Molecular Structure

Covalent Bonding & Molecular Structure ovalent Bonding & Molecular Structure I. Electronic onfiguration and e! sharing. A. The Periodic Table s shape helps you understand outer- (and inner-) shell e! configuration. Which e! were of greatest

More information

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model.

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Determine whether a molecule is polar or nonpolar based

More information

Unit Six --- Ionic and Covalent Bonds

Unit Six --- Ionic and Covalent Bonds Unit Six --- Ionic and Covalent Bonds Electron Configuration in Ionic Bonding Ionic Bonds Bonding in Metals Valence Electrons Electrons in the highest occupied energy level of an element s atoms Examples

More information

Organic Chemistry I Dr Alex Roche Organic chemistry is the chemistry of Carbon and its compounds. Organic molecules constitute the essence of life (fats, sugars, proteins, DNA), and also permeate our everyday

More information

Molecular Geometry and intermolecular forces. Unit 4 Chapter 9 and 11.2

Molecular Geometry and intermolecular forces. Unit 4 Chapter 9 and 11.2 1 Molecular Geometry and intermolecular forces Unit 4 Chapter 9 and 11.2 2 Unit 4.1 Chapter 9.1-9.3 3 Review of bonding Ionic compound (metal/nonmetal) creates a lattice Formula doesn t tell the exact

More information

What is Bonding? The Octet Rule. Getting an Octet. Chemical Bonding and Molecular Shapes. (Chapter Three, Part Two)

What is Bonding? The Octet Rule. Getting an Octet. Chemical Bonding and Molecular Shapes. (Chapter Three, Part Two) Chemical Bonding and Molecular Shapes (Chapter Three, Part Two) What is Bonding? Bonding describes how atoms interact with each other in an attractive sense. There are three types of bonding: Ionic bonding

More information

CHEM 3013 ORGANIC CHEMISTRY I LECTURE NOTES

CHEM 3013 ORGANIC CHEMISTRY I LECTURE NOTES M 3013 OAI MIST I LTU OTS 1 APT 1 1. Atomic orbitals a. eisenberg Uncertainty Principle The exact position of an electron cannot be specified; only the probability that it occupies a certain position of

More information

Lesmahagow High School CfE Advanced Higher Chemistry. Unit 2 Organic Chemistry and Instrumental Analysis. Molecular Orbitals and Structure

Lesmahagow High School CfE Advanced Higher Chemistry. Unit 2 Organic Chemistry and Instrumental Analysis. Molecular Orbitals and Structure Lesmahagow High School CfE Advanced Higher Chemistry Unit 2 Organic Chemistry and Instrumental Analysis Molecular Orbitals and Structure 1 Molecular Orbitals Orbitals can be used to explain the bonding

More information

Wold of Chemistry Notes for Students [Chapter 12, page 1] Chapter 12 Chemical Bonding

Wold of Chemistry Notes for Students [Chapter 12, page 1] Chapter 12 Chemical Bonding Wold of Chemistry Notes for Students [Chapter 12, page 1] Chapter 12 Chemical Bonding 1) The History of the Development of the Period Table (Not in the book!) Similarities between the chemical and physical

More information

Covalent Bonding 10/29/2013

Covalent Bonding 10/29/2013 Bond Energies or Bond Dissociation Energies Tables 8.4 and 8.5 on page 72 gives a list of the energy required to dissociate or break bonds. This value is used to determine whether covalent bonds will form

More information

Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules

Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules Fructose Water Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules Carbon Dioxide Ammonia Title and Highlight TN Ch 10.1 Topic: EQ: Right Side NOTES

More information

Bonding. Honors Chemistry 412 Chapter 6

Bonding. Honors Chemistry 412 Chapter 6 Bonding Honors Chemistry 412 Chapter 6 Chemical Bond Mutual attraction between the nuclei and valence electrons of different atoms that binds them together. Types of Bonds Ionic Bonds Force of attraction

More information

Subtopic 4.2 MOLECULAR SHAPE AND POLARITY

Subtopic 4.2 MOLECULAR SHAPE AND POLARITY Subtopic 4.2 MOLECULAR SHAPE AND POLARITY 1 LEARNING OUTCOMES (covalent bonding) 1. Draw the Lewis structure of covalent molecules (octet rule such as NH 3, CCl 4, H 2 O, CO 2, N 2 O 4, and exception to

More information

A Simple Model for Chemical Bonds

A Simple Model for Chemical Bonds A Simple Model for hemical Bonds Multiple hoice 1. Modern organic chemistry a. is the study of carbon-containing compounds. b. is the study of compounds from living organisms. c. deals exclusively with

More information

CHEMICAL BONDS. Electrical forces. Reflect a balance in the attractive and repulsive forces between electrically charged particles

CHEMICAL BONDS. Electrical forces. Reflect a balance in the attractive and repulsive forces between electrically charged particles CHEMICAL BONDS Chemical Bonds: Electrical forces. Reflect a balance in the attractive and repulsive forces between electrically charged particles Lewis Theory of Bonding: Electrons play a fundamental role

More information

Chapter 2 Polar Covalent Bonds; Acids and Bases SAMPLE. Chapter Outline

Chapter 2 Polar Covalent Bonds; Acids and Bases SAMPLE. Chapter Outline Chapter 2 Polar Covalent Bonds; Acids and Bases Chapter utline I. Polar covalent bonds (Sections 2.1 2.3). A. Electronegativity (Section 2.1). 1. Although some bonds are totally ionic and some are totally

More information

CHEMICAL BONDING. Chemical Bonds. Ionic Bonding. Lewis Symbols

CHEMICAL BONDING. Chemical Bonds. Ionic Bonding. Lewis Symbols CHEMICAL BONDING Chemical Bonds Lewis Symbols Octet Rule whenever possible, valence electrons in covalent compounds distribute so that each main-group element is surrounded by 8 electrons (except hydrogen

More information

Carbon Compounds. Chemical Bonding Part 1b

Carbon Compounds. Chemical Bonding Part 1b Carbon Compounds Chemical Bonding Part 1b Board Notes Introduction to VSEPR Organic Formulas Various Representations " dimethyl ether C 2 H 6 O " propyl alcohol C 3 H 8 O 3D representations " Wedges and

More information

Name Date Class MOLECULAR COMPOUNDS. Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides

Name Date Class MOLECULAR COMPOUNDS. Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides 8.1 MOLECULAR COMPOUNDS Section Review Objectives Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides Vocabulary covalent bond molecule diatomic molecule

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

CHAPTER 6: CHEMICAL NAMES AND FORMULAS CHAPTER 16: COVALENT BONDING

CHAPTER 6: CHEMICAL NAMES AND FORMULAS CHAPTER 16: COVALENT BONDING CHAPTER 6: CHEMICAL NAMES AND FORMULAS CHAPTER 16: COVALENT BONDING 6.1 Introduction to Chemical Bonding A chemical bond is a mutual electrical attraction between the nuclei and valence electrons of different

More information

Question 1. Electron Configurations Noble Gases and The Rule of Eight. Chapter 1. What is the electronic configuration of carbon?

Question 1. Electron Configurations Noble Gases and The Rule of Eight. Chapter 1. What is the electronic configuration of carbon? hapter ~. nm Electronic Structure and Bonding Anders Jöns Ångström (84-874) Å = picometers =. nanometers = -4 microns = -8 centimeters Acids and Bases nm = Å An atom vs. a nucleus ~, x larger ucleus =

More information

Orbital Shapes Carbon: Electron configuration Carbon: Full. Short form. Orbital energy diagram. Orbital energy levels diagram

Orbital Shapes Carbon: Electron configuration Carbon: Full. Short form. Orbital energy diagram. Orbital energy levels diagram rganic hemistry involves mostly NPS and the halogens. rganic compounds use valence shell electrons to bond. Usually only in the s and p orbitals. rbital Shapes arbon: z y z y z y z y z y x x x x x 1s n=1

More information

Chapter Molecules are 3D. Shapes and Bonds. Chapter 9 1. Chemical Bonding and Molecular Structure

Chapter Molecules are 3D. Shapes and Bonds. Chapter 9 1. Chemical Bonding and Molecular Structure Chapter 9 Chemical Bonding and Molecular Structure 1 Shape 9.1 Molecules are 3D Angle Linear 180 Planar triangular (trigonal planar) 120 Tetrahedral 109.5 2 Shapes and Bonds Imagine a molecule where the

More information

Name Date Class STUDY GUIDE FOR CONTENT MASTERY. covalent bond molecule sigma bond exothermic pi bond

Name Date Class STUDY GUIDE FOR CONTENT MASTERY. covalent bond molecule sigma bond exothermic pi bond Covalent Bonding Section 9.1 The Covalent Bond In your textbook, read about the nature of covalent bonds. Use each of the terms below just once to complete the passage. covalent bond molecule sigma bond

More information

Section 6.2 1/13/2014. Most Chemical Compounds. Molecular (or Covalent) Compound. Covalent Bonding and Molecular Compounds

Section 6.2 1/13/2014. Most Chemical Compounds. Molecular (or Covalent) Compound. Covalent Bonding and Molecular Compounds Section 6.2 Covalent Bonding and Molecular Compounds Most Chemical Compounds Are molecules, a neutral group of atoms that are held together by covalent bonds. It is a single unit capable of existing on

More information

Introduction to Chemical Bonding

Introduction to Chemical Bonding Chemical Bonding Introduction to Chemical Bonding Chemical bond! is a mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together Why are most

More information

Valence Bond Theory. Localized Electron Model. Hybridize the Orbitals! Overlap and Bonding. Atomic Orbitals are. mmmkay. Overlap and Bonding

Valence Bond Theory. Localized Electron Model. Hybridize the Orbitals! Overlap and Bonding. Atomic Orbitals are. mmmkay. Overlap and Bonding Valence Bond Theory Atomic Orbitals are bad mmmkay Overlap and Bonding Lewis taught us to think of covalent bonds forming through the sharing of electrons by adjacent atoms. In such an approach this can

More information

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure Cartoon courtesy of NearingZero.net Chemical Bonding and Molecular Structure Chemical Bonds Forces that hold groups of atoms together and make them function as a unit. 3 Major Types: Ionic bonds transfer

More information

Chapter 13: Phenomena

Chapter 13: Phenomena Chapter 13: Phenomena Phenomena: Scientists measured the bond angles of some common molecules. In the pictures below each line represents a bond that contains 2 electrons. If multiple lines are drawn together

More information

: Bond Order = 1.5 CHAPTER 5. Practice Questions

: Bond Order = 1.5 CHAPTER 5. Practice Questions CAPTER 5 Practice Questions 5.1 5.3 S 5.5 Ethane is symmetrical, so does not have a dipole moment. owever, ethanol has a polar group at one end and so has a dipole moment. 5.7 xygen has the valence electron

More information

Chapter 2 Polar Covalent Bonds; Acids and Bases. Chapter Outline

Chapter 2 Polar Covalent Bonds; Acids and Bases. Chapter Outline rganic Chemistry 9th Edition McMurry SLUTINS MANUAL Full clear download at: https://testbankreal.com/download/organic-chemistry-9th-edition-mcmurrysolutions-manual/ rganic Chemistry 9th Edition McMurry

More information

Bonding. Polar Vs. Nonpolar Covalent Bonds. Ionic or Covalent? Identifying Bond Types. Solutions + -

Bonding. Polar Vs. Nonpolar Covalent Bonds. Ionic or Covalent? Identifying Bond Types. Solutions + - Chemical Bond Mutual attraction between the nuclei and valence electrons of different atoms that binds them together. Bonding onors Chemistry 412 Chapter 6 Types of Bonds Ionic Bonds Force of attraction

More information

Valence Bond Theory - Description

Valence Bond Theory - Description Bonding and Molecular Structure - PART 2 - Valence Bond Theory and Hybridization 1. Understand and be able to describe the Valence Bond Theory description of covalent bond formation. 2. Understand and

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories PART I Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

8.3 Bonding Theories > Chapter 8 Covalent Bonding. 8.3 Bonding Theories. 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding

8.3 Bonding Theories > Chapter 8 Covalent Bonding. 8.3 Bonding Theories. 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding Chapter 8 Covalent Bonding 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding 8.3 Bonding Theories 8.4 Polar Bonds and Molecules 1 Copyright Pearson Education, Inc., or its affiliates. All Rights

More information

4 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

4 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. CHEMISTRY & YOU Chapter 8 Covalent Bonding 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding 8.3 Bonding Theories 8.4 Polar Bonds and Molecules 1 Copyright Pearson Education, Inc., or its affiliates.

More information

Bonding Chapter 7. Bond an attractive force that holds two atoms together. Atoms bond to obtain a more stable electronic configuration.

Bonding Chapter 7. Bond an attractive force that holds two atoms together. Atoms bond to obtain a more stable electronic configuration. Bonding Chapter 7 Bond an attractive force that holds two atoms together. Atoms bond to obtain a more stable electronic configuration. Ionic bonds attraction between oppositely charged atoms/molecules

More information

Definition: An Ionic bond is the electrostatic force of attraction between oppositely charged ions formed by electron transfer.

Definition: An Ionic bond is the electrostatic force of attraction between oppositely charged ions formed by electron transfer. 3 Bonding Definition An Ionic bond is the electrostatic force of attraction between oppositely charged ions formed by electron transfer. Metal atoms lose electrons to form +ve ions. on-metal atoms gain

More information

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 7 CHEMICAL BONDING & MOLECULAR STRUCTURE INSTR : FİLİZ ALSHANABLEH

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 7 CHEMICAL BONDING & MOLECULAR STRUCTURE INSTR : FİLİZ ALSHANABLEH C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 7 CHEMICAL BONDING & MOLECULAR STRUCTURE 0 1 INSTR : FİLİZ ALSHANABLEH CHAPTER 7 CHEMICAL BONDING & MOLECULAR STRUCTURE The Ionic Bond Formation of Ions The

More information

Hybridization and Molecular Orbital (MO) Theory

Hybridization and Molecular Orbital (MO) Theory ybridization and Molecular Orbital (MO) Theory Chapter 10 istorical Models G.N.Lewis and I. Langmuir (~1920) laid out foundations Ionic species were formed by electron transfer Covalent molecules arise

More information

For more info visit Chemical bond is the attractive force which holds various constituents together in a molecule.

For more info visit  Chemical bond is the attractive force which holds various constituents together in a molecule. Chemical bond:- Chemical bond is the attractive force which holds various constituents together in a molecule. There are three types of chemical bonds: Ionic Bond, Covalent Bond, Coordinate Bond. Octet

More information

Chapter 7. Ionic & Covalent Bonds

Chapter 7. Ionic & Covalent Bonds Chapter 7 Ionic & Covalent Bonds Ionic Compounds Covalent Compounds 7.1 EN difference and bond character >1.7 = ionic 0.4 1.7 = polar covalent 1.7 Electrons not shared at

More information

Learning Guide for Chapter 1 - Atoms and Molecules

Learning Guide for Chapter 1 - Atoms and Molecules Learning Guide for hapter 1 - Atoms and Molecules I. Introduction to organic chemistry - p 1 II. Review of atomic structure - p 3 Elementary particles Periodic Table of Elements Electronegativity Atomic

More information

Periodic Trends. Homework: Lewis Theory. Elements of his theory:

Periodic Trends. Homework: Lewis Theory. Elements of his theory: Periodic Trends There are various trends on the periodic table that need to be understood to explain chemical bonding. These include: Atomic/Ionic Radius Ionization Energy Electronegativity Electron Affinity

More information

Chapter 10. Structure Determines Properties! Molecular Geometry. Chemical Bonding II

Chapter 10. Structure Determines Properties! Molecular Geometry. Chemical Bonding II Chapter 10 Chemical Bonding II Structure Determines Properties! Properties of molecular substances depend on the structure of the molecule The structure includes many factors, including: the skeletal arrangement

More information

Chapter 10: Chemical Bonding II. Bonding Theories

Chapter 10: Chemical Bonding II. Bonding Theories Chapter 10: Chemical Bonding II Dr. Chris Kozak Memorial University of Newfoundland, Canada Bonding Theories Previously, we saw how the shapes of molecules can be predicted from the orientation of electron

More information

5 Polyatomic molecules

5 Polyatomic molecules s manual for Burrows et.al. Chemistry 3 Third edition 5 Polyatomic molecules Answers to worked examples WE 5.1 Formal charges in N 2 (on p. 221 in Chemistry 3 ) Use formal charges to decide whether oxygen

More information

Chapter 6. Preview. Objectives. Molecular Compounds

Chapter 6. Preview. Objectives. Molecular Compounds Section 2 Covalent Bonding and Molecular Compounds Preview Objectives Molecular Compounds Formation of a Covalent Bond Characteristics of the Covalent Bond The Octet Rule Electron-Dot Notation Lewis Structures

More information

Chemical Bonding. Section 1 Introduction to Chemical Bonding. Section 2 Covalent Bonding and Molecular Compounds

Chemical Bonding. Section 1 Introduction to Chemical Bonding. Section 2 Covalent Bonding and Molecular Compounds Chemical Bonding Table of Contents Section 1 Introduction to Chemical Bonding Section 2 Covalent Bonding and Molecular Compounds Section 3 Ionic Bonding and Ionic Compounds Section 4 Metallic Bonding Section

More information

Chapter 8 : Covalent Bonding. Section 8.1: Molecular Compounds

Chapter 8 : Covalent Bonding. Section 8.1: Molecular Compounds Chapter 8 : Covalent Bonding Section 8.1: Molecular Compounds What is a molecule? A molecular compound? A molecule is a neutral group of atoms joined together by covalent bonds A molecular compound is

More information

Unit 6: Molecular Geometry

Unit 6: Molecular Geometry Unit 6: Molecular Geometry Molecular Geometry [6-5] the polarity of each bond, along with the geometry of the molecule determines Molecular Polarity. To predict the geometries of more complicated molecules,

More information

Chapter 8 Covalent Boding

Chapter 8 Covalent Boding Chapter 8 Covalent Boding Molecules & Molecular Compounds In nature, matter takes many forms. The noble gases exist as atoms. They are monatomic; monatomic they consist of single atoms. Hydrogen chloride

More information

Chapter Nine. Chapter Nine. Chemical Bonds: A Preview. Chemical Bonds. Electrostatic Attractions and Repulsions. Energy of Interaction

Chapter Nine. Chapter Nine. Chemical Bonds: A Preview. Chemical Bonds. Electrostatic Attractions and Repulsions. Energy of Interaction 1 Chemical Bonds: A Preview 2 Chemical Bonds Forces called chemical bonds hold atoms together in molecules and keep ions in place in solid ionic compounds. Chemical bonds are electrostatic forces; they

More information

1. It can help us decide which of several Lewis dot structures is closest to representing the properties of the real compound.

1. It can help us decide which of several Lewis dot structures is closest to representing the properties of the real compound. Molecular Structure Properties The electron was discovered in the year of 1900, and it took about twenty years for the electronic nature of the chemical bond to come into wide acceptance. Particle-based

More information

Chapter 10: Molecular Structure and Bonding Theories

Chapter 10: Molecular Structure and Bonding Theories hapter 10: Molecular Structure and Bonding Theories 10.1 See Section 10.1. The main premise of the VSEPR model is that the electron pairs within the valence shell of an atom repel each other and determine

More information

CHAPTER 8 BONDING: GENERAL CONCEPTS Ionic solids are held together by strong electrostatic forces that are omnidirectional.

CHAPTER 8 BONDING: GENERAL CONCEPTS Ionic solids are held together by strong electrostatic forces that are omnidirectional. CAPTER 8 BDIG: GEERAL CCEPTS 1 CAPTER 8 BDIG: GEERAL CCEPTS Questions 15. a. This diagram represents a polar covalent bond as in. In a polar covalent bond, there is an electron rich region (indicated by

More information

Homework Assignment #2 Key

Homework Assignment #2 Key Homework Assignment #2 Key Chapter 5 21. (a) 16 protons 18 neutrons 15 electrons (b) 41 protons 52 neutrons 41 electrons (c) 13 protons 14 neutrons 13 electrons (d) 29 protons 34 neutrons 28 electrons

More information

Lewis Structure and Electron Dot Models

Lewis Structure and Electron Dot Models Lewis Structure and Electron Dot Models The Lewis Structure is a method of displaying the electrons present in any given atom or compound. Steps: 1. Make a skeleton structure 2. Count all e- available

More information

CHAPTER 6 CHEMICAL BONDING SHORT QUESTION WITH ANSWERS Q.1 Dipole moments of chlorobenzene is 1.70 D and of chlorobenzene is 2.5 D while that of paradichlorbenzene is zero; why? Benzene has zero dipole

More information