Basics of Scientific Writing

Size: px
Start display at page:

Download "Basics of Scientific Writing"

Transcription

1 Basics of Scientific Writing Review Parts A-B of the writing guidelines from CHEM 8L (available online). Students are expected to follow the general writing style described therein. Part C of the writing guidelines does not apply to 8M students, as there are no abstracts in this class. CHEM 8M Day 1 Activity (4% of grade): Read the guidelines below and procedure on the next page to complete the worksheet (page 3). Use the content of the worksheet and structure/style of the sample experimental section (page 4) to write the Exp 3 Experimental Methods and Compound Characterization section. Lastly, complete the lab map on page 6. Part D: Experimental Methods and Compound Characterization Experimental methods and compound characterization are found at the end of scientific journal articles, dissertations, and other technical documents. This gives the reader instructions on how to recreate the experiment and confirm the structure of the newly synthesized compounds. The format and general content differs depending on the field. Students will include this section at the end of several lab reports using the generally accepted guidelines followed by synthetic organic chemists: one General Methods paragraph followed by one additional paragraph per compound synthesized. A sample Experimental Methods section is attached and contains much more information than CHEM 8M students are expected to include. Use passive voice and past tense. General Methods Reagents and by-products do not get full descriptions but are mentioned in the General Methods section with the following statement: All reagents were commercially available, unless otherwise stated. Typically researchers would then describe how reagents and solvents were purified, but this does not apply to 8M students. Next, define the abbreviations and list the specifications for IR (medium for analysis, such as salt plates or Teflon) only if used in the experiment. Experimental Methods & Characterization Following general methods, each organic compound or reaction gets its own paragraph (one paragraph per reaction/compound). Some or all of the following should be included in the experimental methods and compound characterization section. This is based on experimental techniques students utilized in the lab. Reaction scheme - including reactants, reagents, products, solvent(s), and % yield (structures and reaction schemes can be hand-written) Full chemical name of product in bold (common and/or IUPAC) Brief description of reaction set up and workup including o Names and amounts of each reactant and reagent (mmol and ml or mg) o Name and amount of solvent (ml) o o Order of addition, if pertinent, and reaction conditions (time, temperature) Description, name, and amount of product obtained and % yield: Ex. Benzhydrol was obtained as a clear liquid (1.00 g, 87% yield). Characterization follows in the same paragraph (after reporting the yield) and includes some or all of the following. There is no characterization for the dyes lab. Melting point or boiling point Distinctive IR stretch(es) one or two distinguishing peaks, such as carbonyl or O-H stretches 1

2 Oxidation of Benzhydrol (Exp 3) Consider the reaction below. Read the procedure then use the worksheet that follows to write the experimental methods section for Exp 3. Refer to the sample that follows. OH O Benzhydrol NaClO, Bu 4 NHSO 4 EtOAc (ethyl acetate) Benzophenone EXPERIMENTAL PROCEDURE Reaction Preparation and Set-up: TLC will be used to monitor reaction progress. Prepare TLC standards and plates before setting up the reaction. Make solutions of the standards (benzhydrol and benzophenone) in small test tubes. This does not require careful measuring, but do be conservative. Dissolve a small amount of the compound (microspatula tip) in ethyl acetate (EtOAc, 1 ml). Obtain three TLC plates, carefully handling by the edges without bending, and gently spot the plate at the origin with a capillary tube (not a melting point capillary). Create one lane for benzhydrol or benzhydrol and leave a space for the reaction mixture to be spotted later (2 spots per plate). In a 25-mL Erlenmeyer flask equipped with a magnetic stir bar, add 0.37 g (± 0.01 g) of benzhydrol, 5 ml of commercial bleach (approximately 0.7 M NaClO), 5 ml of ethyl acetate (EtOAc), and 40 mg (± 5 mg) * of tetrabutylammonium hydrogen sulfate (Q + X - or Bu 4 N + HSO 4 - ). Secure the flask to a ring stand, loosely stopper, and stir vigorously on a stir plate without heat. Increase the stir speed if two layers are observed. Monitoring Reaction Progress: After about 10 minutes, stop stirring to allow phase separation and remove a small aliquot of the upper layer of the reaction by touching the tip of a capillary tube to the top of the reaction solvent. Spot the TLC plate with this aliquot using a capillary tube alongside the standards. Run the TLC plate using the chambers provided in the fume hood (4:1 cyclohexane / ethyl acetate). Do not remove the chambers from the fume hood! Develop the plate with a UV or fluorescence light after evaporating the solvent from the plate in the fume hood. If starting material is still present in the reaction, continue stirring for another 10 minutes and take another TLC aliquot. A faint spot for benzhydrol may still appear on a visualized plate, even when the reaction is complete. When there is no dark spot for benzhydrol in the reaction mixture, you may consider the reaction to be complete. The 10 minutes is counted from the first aliquot (20 min total). By the time you run the first TLC plate, it s probably time to run the second! Continue taking aliquots at 10-minute intervals until the reaction is complete. If the reaction is taking longer than 40 minutes, stop the reaction and proceed to Reaction Work-Up. Reaction Work-Up: Transfer the completed reaction mixture to a screw-cap test tube and remove the aqueous layer with a pipet. Wash the organic layer with 3 ml of brine (sat. NaCl) followed by a wash with 2 ml of water mix, invert, then remove the aqueous layer after each portion of brine or water is added. Dry the organic layer over MgSO 4, gravity filter using a pipet with cotton plug, and collect the filtrate in a pre-weighed 25-mL round-bottom flask (RBF). Concentrate using a rota-vap and weigh the product. Pro-tip: the product rarely crystallizes in the rota-vap bath. When the solvent appears to have evaporated, take the flask off the rota-vap and swirl in the ice bath to crystallize. You can still proceed with the product in liquid form. Analysis: Obtain the IR of the product. Record the identifying peaks in your notebook. Sketch the final TLC plate into your notebook and calculate the R f values for each spot. 2

3 Experimental Methods Worksheet General Methods: All students will have the following sentence as the entirety of the General Methods section for the Exp 3 report All reagents were commercially available. IR spectra were carried out on NaCl plates with v max in inverse centimeters. Experimental Methods - specific to each reaction. In future experiments, there will be multiple reactions to report in separate paragraphs. - What glassware and equipment was used for this reaction (aside from chemicals)? - How much benzhydrol was used? Convert mass to mmol and report both (xx g, xx mmol). - How much bleach (NaClO) was used and what was the concentration (xx M, xx ml)? Since the chemical is a solution in water, the molarity must be included and moles are not necessary. - How much tert-butylammonium hydrogen sulfate (Bu 4 NHSO 4 ) was used (xx g)? This is a catalyst include only mass not mmol. - What solvent was used and in what volume? - Was the reaction heated, cooled, or room temperature (25 C)? What was the reaction time? Was the reaction stirred, refluxed, or standing? - How was the reaction monitored for completion? What solvent(s) were used during this analysis? - List the identity and quantities of the chemical(s) (xx ml) were used in the reaction work-up. - How much product was isolated (xx g, xx mmol, xx % yield)? Convert product mass to mmol. Calculate the theoretical yield to determine % yield. Only % yield should be reported. Sample data: 0.30 g of product Incorporate this content into complete, concise sentences to write the experimental methods section (not necessarily in the order as the items above). Use the same format and writing style as in the Sample Experimental Methods on the following page. Show this to your TA, who will provide feedback and likely send you back for a re-write. 3

4 Excerpts of Dr. B s dissertation: Novel (-)-β-pinene-derived Amino Alcohols as Asymmetric Directors for the Addition of Organozinc Reagents to Aldehydes UC Santa Cruz, EXPERIMENTAL METHODS AND COMPOUND CHARACTERIZATION General Methods. All reagents were commercially available, unless otherwise stated. All air and moisture sensitive reactions were carried out under argon atmosphere using flame- or oven-dried glassware and standard syringe technique. Tetrahydrofuran (THF), dichloromethane (DCM), cyclohexane, triethylamine (Et 3 N), morpholine, tert-butanol (t-buoh), and dimethyl sulfoxide (DMSO) were distilled over CaH 2. Oxalyl chloride was distilled without drying agent prior to use. Column chromatography was carried out with Silica Gel 60. Proton ( 1 H NMR) and carbon ( 13 C NMR) nuclear magnetic resonance spectra were carried out at 300, 500, or 600 MHz. Chemical shifts are reported relative to TMS (δ=0 ppm), CHCl 3 (δ=7.27 ppm) or DMSO (δ=2.54 ppm) for 1 H NMR and CHCl 3 (δ=77 ppm) for 13 C NMR. The following abbreviations were used to describe peak patterns where appropriate: br=broad, s=singlet, d=doublet, t=triplet, q=quartet, app=apparent, sep=septet, and m=multiplet. IR spectra were carried out on NaCl plates with ν max in inverse centimeters. Optical rotations were obtained on a digital polarimeter at 20 C. High resolution mass measurements were obtained on a benchtop ESITOF mass spectrometer. RuCl 3 -H 2 O (1.7 mol%) NaIO 4 (2 equiv) H 2 O, CH 3 CN, CCl 4 r.t., 24 h, 59% (+)-Nopinone. NaIO 4 (44.96 g, 210 mmol) was added to a 2-L round-bottom flask equipped with a magnetic stir bar and dissolved in water (300 ml), CCl 4 (200 ml), and CH 3 CN (200 ml). ( )-β- Pinene (13.88 g, mmol) was added followed by RuCl 3-3H 2 O (457 mg, 1.7 mmol). The reaction was stirred overnight while open to the atmosphere (24 h). The crude reaction mixture was filtered through a pad of celite and rinsed with DCM, creating two distinct layers. The aqueous layer was extracted with DCM (3 x 100 ml). The combined organic extracts were washed with water (2 x 30 ml), dried (MgSO 4 ), filtered, and concentrated in vacuo to a black liquid. This was purified by column chromatography (500 ml SiO 2, 100% hexane to elute β-pinene, 4:1 Hexane/EtOAc to elute nopinone) and the nopinone fractions were concentrated to a clear oil (8.3 g, 59% yield). 1 H NMR (CDCl 3, 600 MHz) δ (ppm): 2.60 (m, 1H), 2.57 (m, 1H), 2.53 (m, 1H), 2.35 (ddd, J=19.2 Hz, J=9.6 Hz, J=1.8 Hz, 1H), 2.24 (tt, J=6.6 Hz, J=1.8 Hz, 1H), 2.05 (dddd, J=13.2 Hz, J=9.0 Hz, J=3.6 Hz, J=1.8 Hz, 1H), 1.95 (m, 1H), 1.58 (d, J=10.2 Hz, 1H), 1.33 (s, 3H), 0.86 (s, 3H). 13 C NMR (CDCl 3, 500 MHz) δ (ppm): 215.3, 58.0, 41.3, 40.4, 32.8, 25.9, 25.3, 22.2, bp C (2 mm Hg), [α] D (c 4, MeOH), IR (neat) 1714 cm -1. O 4

5 Part E. Format for Literature References There is a standard A.C.S. (American Chemical Society) format for listing references in the chemical literature that you are required to follow ( This format, illustrated below, must be used in the reference section of your report, if appropriate. Be sure to document all assertions and past work described in your reports with a footnote. Footnotes can be referred to more than once. Use superscripts with corresponding numbered references at the bottom of the page or at the end of the report. BOOKS Author's last name, first initial, Title of Book, Publisher: City of publication, Year of pub.; pages used. Examples Crews, P.; Rodríguez, J.; Jaspars, M. Organic Structure Analysis, 2 nd Ed.; Oxford: New York, 2010; pp Palleros, D.R., Experimental Organic Chemistry; Wiley: New York, 2000; pp JOURNALS Author's last name, initials.; 2nd author's last name, initials.; (continue for each author). Journal abbrev. Year, Vol., first to last page of article. *Proper journal abbreviation used in italics, year in bold, volume in italics, no issue number Examples Tansakul, C.; Lilie, E.; Walter, E. D.; Rivera III, F.; Wolcott, A.; Zhang, J. Z.; Millhauser, G. L.; R. Braslau, R. J. Phys. Chem. C, 2010, 114, Sanchez, L. M.; Lopez, D.; Vesely, B. A.; Della Togna, G.; Gerwick, W. H.; Kyle, D. E.; Linington, R. G. J. Med. Chem., 2010, 53, Woehrmann, M. H., Gassner, N. C., Bray, W. M.; Stuart, J. M.; Lokey, S. J. Biomol. Screen. 2010, 15, WEB SITES Use full website addresses to allow the reader to locate referenced material on the web. Be wary of the content. The info on the web is usually not peer reviewed, and can be erroneous! If you do cite a website, include the date the website was accessed. Example accessed

6 LAB MAP, Thimann Labs, Room All students must show the TA the completed safety activity from CHEM 8L. Get familiar with the new lab space by adding the locations of items to make a map by number (1-26). This is not necessary if this is the name room you had in 8L, assuming you have the safety activity with you in lab. Always refer to this map in future labs before asking where something is! Refer to the safety activity from 8L for item numbers. HALLWAY DOOR 6

Exp 1 Column Chromatography for the Isolation of Excedrin Components. Reading Assignment: Column Chromatography, TLC (Chapter 18)

Exp 1 Column Chromatography for the Isolation of Excedrin Components. Reading Assignment: Column Chromatography, TLC (Chapter 18) Exp 1 Column Chromatography for the Isolation of Excedrin Components Reading Assignment: Column Chromatography, TLC (Chapter 18) Column chromatography separation can be achieved if the compounds have different

More information

Sodium Borohydride Reduction of Benzoin

Sodium Borohydride Reduction of Benzoin Sodium Borohydride Reduction of Benzoin Introduction The most common and useful reducing agents for reducing aldehydes, ketones, and other functional groups are metal hydride reagents. The two most common

More information

Writing an Experimental Procedure (For a synthetic preparation)

Writing an Experimental Procedure (For a synthetic preparation) Writing an Experimental Procedure (For a synthetic preparation) The Experimental Section has a well defined, formal, almost cryptic, style that varies depending upon the exact type of experiment performed.

More information

5.37 Introduction to Organic Synthesis Laboratory

5.37 Introduction to Organic Synthesis Laboratory MIT pencourseware http://ocw.mit.edu 5.37 Introduction to rganic Synthesis Laboratory Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. URIECA

More information

How to build and race a fast nanocar Synthesis Information

How to build and race a fast nanocar Synthesis Information How to build and race a fast nanocar Synthesis Information Grant Simpson, Victor Garcia-Lopez, Phillip Petemeier, Leonhard Grill*, and James M. Tour*, Department of Physical Chemistry, University of Graz,

More information

Experiment 3 Two-Step Synthesis of Ionones

Experiment 3 Two-Step Synthesis of Ionones Experiment 3 Two-Step Synthesis of Ionones Reading: Mohrig Section 24 (UV-vis Spectroscopy), Palleros p. E23B.1-3 (included here) * Students will work with one lab partner (no groups of three) Notebook

More information

Formal Total Synthesis of Optically Active Ingenol via Ring-Closing Olefin Metathesis

Formal Total Synthesis of Optically Active Ingenol via Ring-Closing Olefin Metathesis Formal Total Synthesis of Optically Active Ingenol via Ring-Closing Olefin Metathesis Kazushi Watanabe, Yuto Suzuki, Kenta Aoki, Akira Sakakura, Kiyotake Suenaga, and Hideo Kigoshi* Department of Chemistry,

More information

Tetrahydrofuran (THF) was distilled from benzophenone ketyl radical under an argon

Tetrahydrofuran (THF) was distilled from benzophenone ketyl radical under an argon SUPPLEMENTARY METHODS Solvents, reagents and synthetic procedures All reactions were carried out under an argon atmosphere unless otherwise specified. Tetrahydrofuran (THF) was distilled from benzophenone

More information

An Efficient Total Synthesis and Absolute Configuration. Determination of Varitriol

An Efficient Total Synthesis and Absolute Configuration. Determination of Varitriol An Efficient Total Synthesis and Absolute Configuration Determination of Varitriol Ryan T. Clemens and Michael P. Jennings * Department of Chemistry, University of Alabama, 500 Campus Dr. Tuscaloosa, AL

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Supporting Information TEMPO-catalyzed Synthesis of 5-Substituted Isoxazoles from Propargylic

More information

Supplementary Information (Manuscript C005066K)

Supplementary Information (Manuscript C005066K) Supplementary Information (Manuscript C005066K) 1) Experimental procedures and spectroscopic data for compounds 6-12, 16-19 and 21-29 described in the paper are given in the supporting information. 2)

More information

CHEMISTRY Organic Chemistry Laboratory II Spring 2019 Lab #1: Oxidation of Alcohols to Ketones - Borneol Oxidation (2 weeks)

CHEMISTRY Organic Chemistry Laboratory II Spring 2019 Lab #1: Oxidation of Alcohols to Ketones - Borneol Oxidation (2 weeks) CHEMISTRY 244 - Organic Chemistry Laboratory II Spring 2019 Lab #1: Oxidation of Alcohols to Ketones - Borneol Oxidation (2 weeks) Purpose. In this lab you will learn about oxidation reactions in organic

More information

SYNTHESIS OF A 3-THIOMANNOSIDE

SYNTHESIS OF A 3-THIOMANNOSIDE Supporting Information SYNTHESIS OF A 3-THIOMANNOSIDE María B Comba, Alejandra G Suárez, Ariel M Sarotti, María I Mangione* and Rolando A Spanevello and Enrique D V Giordano Instituto de Química Rosario,

More information

Supporting Information

Supporting Information Supporting Information Organocatalytic Enantioselective Formal Synthesis of Bromopyrrole Alkaloids via Aza-Michael Addition Su-Jeong Lee, Seok-Ho Youn and Chang-Woo Cho* Department of Chemistry, Kyungpook

More information

Supporting Information. Table of Contents. 1. General Notes Experimental Details 3-12

Supporting Information. Table of Contents. 1. General Notes Experimental Details 3-12 Supporting Information Table of Contents page 1. General Notes 2 2. Experimental Details 3-12 3. NMR Support for Timing of Claisen/Diels-Alder/Claisen 13 4. 1 H and 13 C NMR 14-37 General Notes All reagents

More information

HY Kemian laitos Orgaanisen kemian laboratorio. Orgaanisen kemian työt II. Organiska kemiarbeten II

HY Kemian laitos Orgaanisen kemian laboratorio. Orgaanisen kemian työt II. Organiska kemiarbeten II HY Kemian laitos Orgaanisen kemian laboratorio Orgaanisen kemian työt II Organiska kemiarbeten II 18.11. 2015 2 Contents 4-Bromoacetanilide. 3 4-Bromoaniline 5 Benzhydrol.... 6 Benzophenone.....8 1-Phenyl-1-penten-3-one

More information

CHEMISTRY Organic Chemistry Laboratory II Spring 2019 Lab #2: Grignard Reaction: Preparation of Triphenylmethanol

CHEMISTRY Organic Chemistry Laboratory II Spring 2019 Lab #2: Grignard Reaction: Preparation of Triphenylmethanol CHEMISTRY 244 - Organic Chemistry Laboratory II Spring 2019 Lab #2: Grignard Reaction: Preparation of Triphenylmethanol Purpose. In this lab you will use the Grignard Reaction, a classic reaction in organic

More information

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003 Supporting Information for Angew. Chem. Int. Ed. Z53001 Wiley-VCH 2003 69451 Weinheim, Germany 1 Ordered Self-Assembly and Electronic Behavior of C 60 -Anthrylphenylacetylene Hybrid ** Seok Ho Kang 1,

More information

Supporting Information

Supporting Information Supporting Information Total Synthesis of (±)-Grandilodine B Chunyu Wang, Zhonglei Wang, Xiaoni Xie, Xiaotong Yao, Guang Li, and Liansuo Zu* School of Pharmaceutical Sciences, Tsinghua University, Beijing,

More information

Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A

Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A Fuerst et al. Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A S1 Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers:

More information

GRIGNARD REACTION Synthesis of Benzoic Acid

GRIGNARD REACTION Synthesis of Benzoic Acid 1 GRIGNARD REACTION Synthesis of Benzoic Acid In the 1920 s, the first survey of the acceleration of chemical transformations by ultrasound was published. Since then, many more applications of ultrasound

More information

Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain

Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain rganic Lett. (Supporting Information) 1 Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain Charles Kim, Richard Hoang and Emmanuel A. Theodorakis* Department of Chemistry

More information

The First Asymmetric Total Syntheses and. Determination of Absolute Configurations of. Xestodecalactones B and C

The First Asymmetric Total Syntheses and. Determination of Absolute Configurations of. Xestodecalactones B and C Supporting Information The First Asymmetric Total Syntheses and Determination of Absolute Configurations of Xestodecalactones B and C Qiren Liang, Jiyong Zhang, Weiguo Quan, Yongquan Sun, Xuegong She*,,

More information

Supporting Information for

Supporting Information for Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017 Supporting Information for

More information

SYNTHESIS OF AN AZO DYE revisited (1 or 2 credits)

SYNTHESIS OF AN AZO DYE revisited (1 or 2 credits) SYNTHESIS OF AN AZO DYE revisited (1 or 2 credits) This lab you can revisit the fist experiment of this quarter and synthesize more azo dyes of your choice. The old procedure is given below followed by

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2012 69451 Weinheim, Germany Concise Syntheses of Insect Pheromones Using Z-Selective Cross Metathesis** Myles B. Herbert, Vanessa M. Marx, Richard L. Pederson, and Robert

More information

Experiment DE: Part II Fisher Esterification and Identification of an Unknown Alcohol

Experiment DE: Part II Fisher Esterification and Identification of an Unknown Alcohol Experiment DE: Part II Fisher Esterification and Identification of an Unknown Alcohol Fisher Esterification of an Alcohol (Fraction A) On the Chem 113A website, under "Techniques" and "Videos" review the

More information

PREPARATIVE TASK GRAND PRIX CHIMIQUE PETNICA SCIENCE CENTER, VALJEVO, SERBIA 9 TH -14 TH OCTOBER 2017

PREPARATIVE TASK GRAND PRIX CHIMIQUE PETNICA SCIENCE CENTER, VALJEVO, SERBIA 9 TH -14 TH OCTOBER 2017 GRAND PRIX CHIMIQUE PETNICA SCIENCE CENTER, VALJEVO, SERBIA 9 TH -14 TH OCTOBER 2017 PREPARATIVE TASK Preparation of p-nitroacetanilide Preparation of vanillyl alcohol SUPPORTED BY Serbian Chemical Society

More information

Experiment 3 Oxidation of Benzhydrol

Experiment 3 Oxidation of Benzhydrol Experiment 3 xidation of Benzhydrol eading Assignment: 1 NM (Mohrig hapter 22.1-22.7 or McMurry 13.1-3, 13.8-10) eview Topics: Mohrig h 10 (Extraction) & 18 (TL); McMurry 17.7 (oxidation of alcohols) In

More information

Straightforward Synthesis of Enantiopure (R)- and (S)-trifluoroalaninol

Straightforward Synthesis of Enantiopure (R)- and (S)-trifluoroalaninol S1 Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010 Straightforward Synthesis of Enantiopure (R)- and (S)-trifluoroalaninol Julien

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Method Synthesis of 2-alkyl-MPT(R) General information (R) enantiomer of 2-alkyl (18:1) MPT (hereafter designated as 2-alkyl- MPT(R)), was synthesized as previously described 1, with some

More information

Efficient Pd-Catalyzed Amination of Heteroaryl Halides

Efficient Pd-Catalyzed Amination of Heteroaryl Halides 1 Efficient Pd-Catalyzed Amination of Heteroaryl Halides Mark D. Charles, Philip Schultz, Stephen L. Buchwald* Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 Supporting

More information

Lab #3 Reduction of 3-Nitroacetophenone

Lab #3 Reduction of 3-Nitroacetophenone Lab #3 Reduction of 3-Nitroacetophenone Introduction: Extraction: This method uses a different technique in which the two chemical compounds being separated are in immiscible solvents, also known as phases.

More information

Chemistry 283g Experiment 4

Chemistry 283g Experiment 4 Chemistry 283g xperiment 4 XPRIMNT 4: lectrophilic Aromatic Substitution: A Friedel-Craft Acylation Reaction Relevant sections in the text: Fox & Whitesell, 3 rd d. Chapter 11, especially pg. 524-526,

More information

Experiment 1: Extraction and Thin Layer Chromatography

Experiment 1: Extraction and Thin Layer Chromatography Experiment 1: Extraction and Thin Layer Chromatography Introduction: Chromatography is a useful tool in chemistry and can be very helpful in determining the composition of an unknown sample. In chromatography

More information

Synthesis of borinic acids and borinate adducts using diisopropylaminoborane

Synthesis of borinic acids and borinate adducts using diisopropylaminoborane Synthesis of borinic acids and borinate adducts using diisopropylaminoborane Ludovic Marciasini, Bastien Cacciuttolo, Michel Vaultier and Mathieu Pucheault* Institut des Sciences Moléculaires, UMR 5255,

More information

Experiment 12: Grignard Synthesis of Triphenylmethanol

Experiment 12: Grignard Synthesis of Triphenylmethanol 1 Experiment 12: Grignard Synthesis of Triphenylmethanol Reactions that form carbon-carbon bonds are among the most useful to the synthetic organic chemist. In 1912, Victor Grignard received the Nobel

More information

Supporting Information

Supporting Information Supporting Information Precision Synthesis of Poly(-hexylpyrrole) and its Diblock Copolymer with Poly(p-phenylene) via Catalyst-Transfer Polycondensation Akihiro Yokoyama, Akira Kato, Ryo Miyakoshi, and

More information

Reactions. James C. Anderson,* Rachel H. Munday. School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK

Reactions. James C. Anderson,* Rachel H. Munday. School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK Vinyl-dimethylphenylsilanes as Safety Catch Silanols in Fluoride free Palladium Catalysed Cross Coupling Reactions. James C. Anderson,* Rachel H. Munday School of Chemistry, University of Nottingham, Nottingham,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Synthetic chemistry ML5 and ML4 were identified as K P.(TREK-) activators using a combination of fluorescence-based thallium flux and automated patch-clamp assays. ML5, ML4, and ML5a were synthesized using

More information

Supporting Material. 2-Oxo-tetrahydro-1,8-naphthyridine-Based Protein Farnesyltransferase Inhibitors as Antimalarials

Supporting Material. 2-Oxo-tetrahydro-1,8-naphthyridine-Based Protein Farnesyltransferase Inhibitors as Antimalarials Supporting Material 2-Oxo-tetrahydro-1,8-naphthyridine-Based Protein Farnesyltransferase Inhibitors as Antimalarials Srinivas Olepu a, Praveen Kumar Suryadevara a, Kasey Rivas b, Christophe L. M. J. Verlinde

More information

Page 2. Name. 1 2 (racemate) 3 4 (racemate) Answer: lowest R f. highest R f % completion solvent front. 50% completion

Page 2. Name. 1 2 (racemate) 3 4 (racemate) Answer: lowest R f. highest R f % completion solvent front. 50% completion Page 2. Name I. (4 points) In connection with our research directed at probing the molecular mechanism of chemical carcinogenesis, we carried out a series of synthetic reactions shown below. Arrange these

More information

Supporting Information

Supporting Information 1 A regiodivergent synthesis of ring A C-prenyl flavones Alberto Minassi, Anna Giana, Abdellah Ech-Chahad and Giovanni Appendino* Dipartimento di Scienze Chimiche, Alimentari, Farmaceutiche e Farmacologiche

More information

Supporting Information

Supporting Information Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2012 Subcellular Localization and Activity of Gambogic Acid Gianni Guizzunti,* [b] Ayse Batova, [a] Oraphin Chantarasriwong,

More information

Supporting Information

Supporting Information Supporting Information (Tetrahedron. Lett.) Cavitands with Inwardly and Outwardly Directed Functional Groups Mao Kanaura a, Kouhei Ito a, Michael P. Schramm b, Dariush Ajami c, and Tetsuo Iwasawa a * a

More information

Experimental details

Experimental details Supporting Information for A scalable synthesis of the (S)-4-(tert-butyl)-2-(pyridin-2-yl)-4,5-dihydrooxazole ((S)-t-BuPyx) ligand Hideki Shimizu 1,2, Jeffrey C. Holder 1 and Brian M. Stoltz* 1 Address:

More information

REACTIONS: Reduction of a ketone, acetylation of an alcohol, and a kinetic resolution using a lipase.

REACTIONS: Reduction of a ketone, acetylation of an alcohol, and a kinetic resolution using a lipase. CHEM 51LD EXP #2 FALL 2013 SYNTHESIS F ENANTIPURE ALCHLS AND ESTERS USING A LIPASE-BASED KINETIC RESLUTIN REACTINS: Reduction of a ketone, acetylation of an alcohol, and a kinetic resolution using a lipase.

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Micro- and mesoporous poly(schiff-base)s

More information

Kinetics experiments were carried out at ambient temperature (24 o -26 o C) on a 250 MHz Bruker

Kinetics experiments were carried out at ambient temperature (24 o -26 o C) on a 250 MHz Bruker Experimental Materials and Methods. All 31 P NMR and 1 H NMR spectra were recorded on 250 MHz Bruker or DRX 500 MHz instruments. All 31 P NMR spectra were acquired using broadband gated decoupling. 31

More information

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012 Ring Expansion of Alkynyl Cyclopropanes to Highly substituted Cyclobutenes via a N-Sulfonyl-1,2,3-Triazole Intermediate Renhe Liu, Min Zhang, Gabrielle Winston-Mcerson, and Weiping Tang* School of armacy,

More information

Nucleophilic displacement - Formation of an ether by an S N 2 reaction The Williamson- Ether Synthesis

Nucleophilic displacement - Formation of an ether by an S N 2 reaction The Williamson- Ether Synthesis Nucleophilic displacement - Formation of an ether by an S N 2 reaction The Williamson- Ether Synthesis Bond formation by use of an S N 2 reaction is very important for organic and biological synthesis.

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 25 69451 Weinheim, Germany Direct Asymmetric α-fluorination of Aldehydes [**] Derek D. Steiner, Nobuyuki Mase, Carlos F. Barbas III* [*] Prof. Dr. C. F. Barbas III, Derek

More information

Fast and Flexible Synthesis of Pantothenic Acid and CJ-15,801.

Fast and Flexible Synthesis of Pantothenic Acid and CJ-15,801. Fast and Flexible Synthesis of Pantothenic Acid and CJ-15,801. Alan L. Sewell a, Mathew V. J. Villa a, Mhairi Matheson a, William G. Whittingham b, Rodolfo Marquez a*. a) WestCHEM, School of Chemistry,

More information

Supporting Information. Enantioselective Organocatalyzed Henry Reaction with Fluoromethyl Ketones

Supporting Information. Enantioselective Organocatalyzed Henry Reaction with Fluoromethyl Ketones Supporting Information Enantioselective Organocatalyzed Henry Reaction with Fluoromethyl Ketones Marco Bandini,* Riccardo Sinisi, Achille Umani-Ronchi* Dipartimento di Chimica Organica G. Ciamician, Università

More information

Scheme 1. Outline in the acid-base extraction of Bengay, hydrolysis to salicylic acid, and esterification to synthesize aspirin.

Scheme 1. Outline in the acid-base extraction of Bengay, hydrolysis to salicylic acid, and esterification to synthesize aspirin. Experiment 6 Synthesis of Aspirin, Lab Practical Exam Preparation Students come to lab with a pen/pencil, calculator, and pre-lab questions (no notebook). Students will carry out the experiment individually;

More information

Synthesis of fluorophosphonylated acyclic nucleotide analogues via Copper (I)- catalyzed Huisgen 1-3 dipolar cycloaddition

Synthesis of fluorophosphonylated acyclic nucleotide analogues via Copper (I)- catalyzed Huisgen 1-3 dipolar cycloaddition Synthesis of fluorophosphonylated acyclic nucleotide analogues via Copper (I)- catalyzed Huisgen 1-3 dipolar cycloaddition Sonia Amel Diab, Antje Hienzch, Cyril Lebargy, Stéphante Guillarme, Emmanuel fund

More information

Title of experiment and short description of the purpose of the experiment.

Title of experiment and short description of the purpose of the experiment. The Laboratory Notebook for Chem 267 and 268. Use only the required notebook, one that allows a copy of each page to be made and torn out. The copy is given to the TA for grading and the original is kept

More information

2017 Reaction of cinnamic acid chloride with ammonia to cinnamic acid amide

2017 Reaction of cinnamic acid chloride with ammonia to cinnamic acid amide 217 Reaction of cinnamic acid chloride with ammonia to cinnamic acid amide O O Cl NH 3 NH 2 C 9 H 7 ClO (166.6) (17.) C 9 H 9 NO (147.2) Classification Reaction types and substance classes reaction of

More information

Supporting Information. (1S,8aS)-octahydroindolizidin-1-ol.

Supporting Information. (1S,8aS)-octahydroindolizidin-1-ol. SI-1 Supporting Information Non-Racemic Bicyclic Lactam Lactones Via Regio- and cis-diastereocontrolled C H insertion. Asymmetric Synthesis of (8S,8aS)-octahydroindolizidin-8-ol and (1S,8aS)-octahydroindolizidin-1-ol.

More information

Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed. Cascade Trifluoromethylation/Cyclization of. 2-(3-Arylpropioloyl)benzaldehydes

Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed. Cascade Trifluoromethylation/Cyclization of. 2-(3-Arylpropioloyl)benzaldehydes Supporting Information to Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed Cascade Trifluoromethylation/Cyclization of 2-(3-Arylpropioloyl)benzaldehydes Yan Zhang*, Dongmei Guo, Shangyi

More information

CHEM51LC PROJECT DETERMINATION OF DIASTEREOSELCTIVITY USING THERMODYNAMIC VERSUS KINETIC CONTROLLED REDUCTION PROCEDURES: A REDUCTION

CHEM51LC PROJECT DETERMINATION OF DIASTEREOSELCTIVITY USING THERMODYNAMIC VERSUS KINETIC CONTROLLED REDUCTION PROCEDURES: A REDUCTION CHEM51LC PROJECT DETERMINATION OF DIASTEREOSELCTIVITY USING THERMODYNAMIC VERSUS KINETIC CONTROLLED REDUCTION PROCEDURES: A REDUCTION of 4-tert-BUTYLCYCLOHEXANONE REACTION: Oxidation of an Alcohol, Reductions

More information

Reduction-free synthesis of stable acetylide cobalamins. Table of Contents. General information. Preparation of compound 1

Reduction-free synthesis of stable acetylide cobalamins. Table of Contents. General information. Preparation of compound 1 Electronic Supporting Information Reduction-free synthesis of stable acetylide cobalamins Mikołaj Chromiński, a Agnieszka Lewalska a and Dorota Gryko* a Table of Contents General information Numbering

More information

BO group Writing Manuscripts

BO group Writing Manuscripts 1. Manuscript text Writing Manuscripts One important feature of the PhD training is to learn how to write scientific papers. Each student will thus, with time, get increasing responsibility to write their

More information

18 Macroscale and Microscale Organic Experiments

18 Macroscale and Microscale Organic Experiments 360465-P01[01-024] 10/17/02 16:16 Page 18 Sahuja Ahuja_QXP_03:Desktop Folder:17/10/02: 18 Macroscale and Microscale Organic Experiments Preparing a Laboratory Record Use the following steps to prepare

More information

SYNTHESIS OF AN AZO DYE revisited (1 or 2 credits)

SYNTHESIS OF AN AZO DYE revisited (1 or 2 credits) SYNTHESIS OF AN AZO DYE revisited (1 or 2 credits) This lab you can revisit the fist experiment of this quarter and synthesize more azo dyes of your choice. The old procedure is given below followed by

More information

REACTIONS: Reduction of a ketone, acetylation of an alcohol, and a kinetic resolution using a lipase.

REACTIONS: Reduction of a ketone, acetylation of an alcohol, and a kinetic resolution using a lipase. CHEM 51LD EXPERIMENT 2 SYNTHESIS F ENANTIPURE ALCHLS AND ESTERS USING A LIPASE-BASED KINETIC RESLUTIN REACTINS: Reduction of a ketone, acetylation of an alcohol, and a kinetic resolution using a lipase.

More information

Synthesis and Use of QCy7-derived Modular Probes for Detection and. Imaging of Biologically Relevant Analytes. Supplementary Methods

Synthesis and Use of QCy7-derived Modular Probes for Detection and. Imaging of Biologically Relevant Analytes. Supplementary Methods Synthesis and Use of QCy7-derived Modular Probes for Detection and Imaging of Biologically Relevant Analytes Supplementary Methods Orit Redy a, Einat Kisin-Finfer a, Shiran Ferber b Ronit Satchi-Fainaro

More information

Exp t 125. Oxidation of Borneol to Camphor. Reduction. Camphor. Borneol. Isoborneol

Exp t 125. Oxidation of Borneol to Camphor. Reduction. Camphor. Borneol. Isoborneol Exp t 125 Oxidation of Borneol to Camphor Adapted by and R. Minard (Penn State Univ.) from Introduction to Organic Laboratory Techniques: A Microscale Approach, Pavia, Lampman, Kriz & Engel, 1989. Revised

More information

Supplementary Note 1 : Chemical synthesis of (E/Z)-4,8-dimethylnona-2,7-dien-4-ol (4)

Supplementary Note 1 : Chemical synthesis of (E/Z)-4,8-dimethylnona-2,7-dien-4-ol (4) Supplementary Note 1 : Chemical synthesis of (E/Z)-4,8-dimethylnona-2,7-dien-4-ol (4) A solution of propenyl magnesium bromide in THF (17.5 mmol) under nitrogen atmosphere was cooled in an ice bath and

More information

Supporting Information

Supporting Information Supporting Information Divergent Reactivity of gem-difluoro-enolates towards Nitrogen Electrophiles: Unorthodox Nitroso Aldol Reaction for Rapid Synthesis of -Ketoamides Mallu Kesava Reddy, Isai Ramakrishna,

More information

CHEMISTRY Organic Chemistry Laboratory II Spring 2019 Lab #3: Friedel-Crafts Acylation

CHEMISTRY Organic Chemistry Laboratory II Spring 2019 Lab #3: Friedel-Crafts Acylation CHEMISTRY 244 - Organic Chemistry Laboratory II Spring 2019 Lab #3: Friedel-Crafts Acylation Purpose: In this lab you will predict and experimentally test the directing effects of substituent groups in

More information

Light irradiation experiments with coumarin [1]

Light irradiation experiments with coumarin [1] Materials and instruments All the chemicals were purchased from commercial suppliers and used as received. Thin-layer chromatography (TLC) analysis was carried out on pre-coated silica plates. Column chromatography

More information

Indium Triflate-Assisted Nucleophilic Aromatic Substitution Reactions of. Nitrosobezene-Derived Cycloadducts with Alcohols

Indium Triflate-Assisted Nucleophilic Aromatic Substitution Reactions of. Nitrosobezene-Derived Cycloadducts with Alcohols Supporting Information Indium Triflate-Assisted ucleophilic Aromatic Substitution Reactions of itrosobezene-derived Cycloadducts with Alcohols Baiyuan Yang and Marvin J. Miller* Department of Chemistry

More information

Green Chemistry in the Undergraduate Organic Laboratory: Microwave-Assisted Synthesis of a Natural Insecticide on Basic Montmorillonite K10 Clay

Green Chemistry in the Undergraduate Organic Laboratory: Microwave-Assisted Synthesis of a Natural Insecticide on Basic Montmorillonite K10 Clay LAB PRCEDURE: Green Chemistry in the Undergraduate rganic Laboratory: Microwave-Assisted Synthesis of a Natural Insecticide on Basic Montmorillonite K10 Clay Matthew R. Dintzner*, Paul R. Wucka and Thomas

More information

Synthesis of Glaucogenin D, a Structurally Unique. Disecopregnane Steroid with Potential Antiviral Activity

Synthesis of Glaucogenin D, a Structurally Unique. Disecopregnane Steroid with Potential Antiviral Activity Supporting Information for Synthesis of Glaucogenin D, a Structurally Unique Disecopregnane Steroid with Potential Antiviral Activity Jinghan Gui,* Hailong Tian, and Weisheng Tian* Key Laboratory of Synthetic

More information

Effect of Conjugation and Aromaticity of 3,6 Di-substituted Carbazole On Triplet Energy

Effect of Conjugation and Aromaticity of 3,6 Di-substituted Carbazole On Triplet Energy Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2018 Electronic Supporting Information (ESI) for Effect of Conjugation and Aromaticity of 3,6 Di-substituted

More information

Why Keep a Notebook? A. Primary source of scientific information B. Unambiguous statements of the truth

Why Keep a Notebook? A. Primary source of scientific information B. Unambiguous statements of the truth The Laboratory Notebook: Transcribed from the class-notes of S. E. Denmark I. References Writing the Laboratory Notebook H. M. Kanare, American Chemical Society; Washington D. C., 1985. Organic Chemistry

More information

Exp 2 Acid-Base Extraction and Isolation of Excedrin Components

Exp 2 Acid-Base Extraction and Isolation of Excedrin Components Exp 2 Acid-Base Extraction and Isolation of Excedrin Components Reading Assignment Mohrig Sections 10 & 18 (Extraction & Thin-Layer Chromatography, TLC) The solubility of organic compounds is primarily

More information

The Synthesis of Triphenylmethano. will synthesize Triphenylmethanol, a white crystalline aromatic

The Synthesis of Triphenylmethano. will synthesize Triphenylmethanol, a white crystalline aromatic HEM 333L rganic hemistry Laboratory Revision 2.0 The Synthesis of Triphenylmethano ol In this laboratory exercise we will synthesize Triphenylmethanol, a white crystalline aromatic compound. Triphenylmethanol

More information

Supporting Information

Supporting Information Supporting Information A Teflon microreactor with integrated piezoelectric actuator to handle solid forming reactions Simon Kuhn, a Timothy oёl, b Lei Gu, a Patrick L. eider a and Klavs F. Jensen a* a

More information

1G (bottom) with the phase-transition temperatures in C and associated enthalpy changes (in

1G (bottom) with the phase-transition temperatures in C and associated enthalpy changes (in Supplementary Figure 1. Optical properties of 1 in various solvents. UV/Vis (left axis) and fluorescence spectra (right axis, ex = 420 nm) of 1 in hexane (blue lines), toluene (green lines), THF (yellow

More information

Supplementry Information for

Supplementry Information for Supplementry Information for Cyclopropenium ion catalysed Beckmann rearrangement Vishnu P. Srivastava, Rajesh Patel, Garima and Lal Dhar S. Yadav* Department of Chemistry, University of Allahabad, Allahabad,

More information

Supporting Information

Supporting Information An Improved ynthesis of the Pyridine-Thiazole Cores of Thiopeptide Antibiotics Virender. Aulakh, Marco A. Ciufolini* Department of Chemistry, University of British Columbia 2036 Main Mall, Vancouver, BC

More information

Supporting Information for Sonogashira Hagihara reactions of halogenated glycals. Experimental procedures, analytical data and NMR spectra

Supporting Information for Sonogashira Hagihara reactions of halogenated glycals. Experimental procedures, analytical data and NMR spectra Supporting Information for Sonogashira Hagihara reactions of halogenated glycals Dennis C. Koester and Daniel B. Werz* Address: Institut für Organische und Biomolekulare Chemie, Georg-August-Universität

More information

Metal-free general procedure for oxidation of secondary amines to nitrones

Metal-free general procedure for oxidation of secondary amines to nitrones S1 Supporting information Metal-free general procedure for oxidation of secondary amines to nitrones Carolina Gella, Èric Ferrer, Ramon Alibés, Félix Busqué,* Pedro de March, Marta Figueredo,* and Josep

More information

Supporting Information:

Supporting Information: Enantioselective Synthesis of (-)-Codeine and (-)-Morphine Barry M. Trost* and Weiping Tang Department of Chemistry, Stanford University, Stanford, CA 94305-5080 1. Aldehyde 7. Supporting Information:

More information

Supplementary Table S1: Response evaluation of FDA- approved drugs

Supplementary Table S1: Response evaluation of FDA- approved drugs SUPPLEMENTARY DATA, FIGURES AND TABLE BIOLOGICAL DATA Spheroids MARY-X size distribution, morphology and drug screening data Supplementary Figure S1: Spheroids MARY-X size distribution. Spheroid size was

More information

Working with Hazardous Chemicals

Working with Hazardous Chemicals A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training

More information

CHEM 108M, Binder. Experiment 1 - Separation of Carvone and Limonene

CHEM 108M, Binder. Experiment 1 - Separation of Carvone and Limonene Experiment 1 - Separation of Carvone and Limonene Reading Assignment Mohrig Chapter 18 (Column Chromatography) Terpenes encompass a large family of organic compounds widespread in nature and occurring

More information

Thin Layer Chromatography

Thin Layer Chromatography Thin Layer Chromatography Thin-layer chromatography involves the same principles as column chromatography, it also is a form of solid-liquid adsorption chromatography. In this case, however, the solid

More information

Efficient Mono- and Bis-Functionalization of 3,6-Dichloropyridazine using (tmp) 2 Zn 2MgCl 2 2LiCl ** Stefan H. Wunderlich and Paul Knochel*

Efficient Mono- and Bis-Functionalization of 3,6-Dichloropyridazine using (tmp) 2 Zn 2MgCl 2 2LiCl ** Stefan H. Wunderlich and Paul Knochel* Efficient Mono- and Bis-Functionalization of 3,6-Dichloropyridazine using (tmp) 2 Zn 2Mg 2 2Li ** Stefan H. Wunderlich and Paul Knochel* Ludwig Maximilians-Universität München, Department Chemie & Biochemie

More information

EXPERIMENT #1 SEPARATION AND RECOVERY OF ORGANIC COMPOUNDS, THIN LAYER CHROMATOGRAPHY, COLUMN CHROMATOGRAPHY, CRYSTALLIZATION AND MELTING POINTS

EXPERIMENT #1 SEPARATION AND RECOVERY OF ORGANIC COMPOUNDS, THIN LAYER CHROMATOGRAPHY, COLUMN CHROMATOGRAPHY, CRYSTALLIZATION AND MELTING POINTS EXPERIMENT #1 SEPARATION AND RECOVERY OF ORGANIC COMPOUNDS, THIN LAYER CHROMATOGRAPHY, COLUMN CHROMATOGRAPHY, CRYSTALLIZATION AND MELTING POINTS Overview In the first few weeks of this semester you will

More information

Scalable Synthesis of Fmoc-Protected GalNAc-Threonine Amino Acid and T N Antigen via Nickel Catalysis

Scalable Synthesis of Fmoc-Protected GalNAc-Threonine Amino Acid and T N Antigen via Nickel Catalysis Scalable Synthesis of Fmoc-Protected GalNAc-Threonine Amino Acid and T N Antigen via Nickel Catalysis Fei Yu, Matthew S. McConnell, and Hien M. Nguyen* Department of Chemistry, University of Iowa, Iowa

More information

Prelab Reading Assignment: Laboratory Techniques in Organic Chemistry, 4 th Ed. Chapter 19

Prelab Reading Assignment: Laboratory Techniques in Organic Chemistry, 4 th Ed. Chapter 19 CHEM 213 Technique Experiments Experiment 5: Column Chromatography Number of labs - one Reactions performed None Chemicals used: Fluorene-fluorenone mixture, hexanes, methylene chloride, silica gel Supplies

More information

EXPERIMENT 3: WEEKS 9-11 (3/24/2015 4/11/2015)

EXPERIMENT 3: WEEKS 9-11 (3/24/2015 4/11/2015) CHEM 135: EXPERIMENTAL SYNTHETIC CHEMISTRY SPRING 2015 EXPERIMENT 3: WEEKS 9-11 (3/24/2015 4/11/2015) (1) SYNTHESIS F AMIDE DERIVATIVES F PSEUDEPHENAMINE (2) DIASTERESELECTIVE ALKYLATIN F PSEUDEPHENAMINE

More information

Supporting Information

Supporting Information Supporting Information Silver-Mediated Oxidative Trifluoromethylation of Alcohols to Alkyl Trifluoromethyl Ethers Jian-Bo Liu, Xiu-Hua Xu, and Feng-Ling Qing Table of Contents 1. General Information --------------------------------------------------------------------------2

More information

Disubstituted Imidazolium-2-Carboxylates as Efficient Precursors to N-Heterocylic Carbene Complexes of Rh, Ir and Pd

Disubstituted Imidazolium-2-Carboxylates as Efficient Precursors to N-Heterocylic Carbene Complexes of Rh, Ir and Pd J. Am. Chem. Soc. Supporting Information Page S1 Disubstituted Imidazolium-2-Carboxylates as Efficient Precursors to N-Heterocylic Carbene Complexes of Rh, Ir and Pd Adelina Voutchkova, Leah N. Appelhans,

More information

Chemistry 283g- Experiment 3

Chemistry 283g- Experiment 3 EXPERIMENT 3: xidation of Alcohols: Solid-Supported xidation and Qualitative Tests Relevant sections in the text: Fox & Whitesell, 3 rd Ed. pg. 448-452. A portion of this experiment is based on a paper

More information

Supporting Information For:

Supporting Information For: Supporting Information For: Peptidic α-ketocarboxylic Acids and Sulfonamides as Inhibitors of Protein Tyrosine Phosphatases Yen Ting Chen, Jian Xie, and Christopher T. Seto* Department of Chemistry, Brown

More information

Supporting Information for: Direct Conversion of Haloarenes to Phenols under Mild, Transition-Metal-Free Conditions

Supporting Information for: Direct Conversion of Haloarenes to Phenols under Mild, Transition-Metal-Free Conditions Supporting Information for: Direct Conversion of Haloarenes to Phenols under Mild, Transition-Metal-Free Conditions Patrick S. Fier* and Kevin M. Maloney* S1 General experimental details All reactions

More information