CHEMISTRY Organic Chemistry Laboratory II Spring 2019 Lab #3: Friedel-Crafts Acylation

Size: px
Start display at page:

Download "CHEMISTRY Organic Chemistry Laboratory II Spring 2019 Lab #3: Friedel-Crafts Acylation"

Transcription

1 CHEMISTRY Organic Chemistry Laboratory II Spring 2019 Lab #3: Friedel-Crafts Acylation Purpose: In this lab you will predict and experimentally test the directing effects of substituent groups in an Electrophilic Aromatic Substitution (EAS) reaction between 2-chlorotoluene and acetylchloride. A series of reactions will yield one of four possible EAS products. You will first use your organic chemistry background to predict the major EAS product. Then, based on your lab skills in product isolation, purification and melting point determination, identify which one of the four possible EAS products was obtained. Important Notes: 1) You must have lab goggles and your Hayden-McNeil Lab Notebook as specified in the lab syllabus. The format for writing in your notebook is outlined below. 2) This is a two-week lab and your notebook pages will be submitted at the conclusion of Part II. 3) Format your lab notebook items I - IV as outlined below. I. Your name, the name of your lab instructor, the name of your lab partner. II. Title of the experiment and date. III. Table of Reagents (Parts I & II). Synthesis experiments require a table with the first column listing the Chemical Name of all reagents, roughly in the order in which they are used in the experimental procedure. That is followed by a column with the Chemical Formula, and a column of the Purpose of the reagent (i.e., reactant, drying agent, solvent, etc.). For everything you identified as Reactant, Product, or Solvent, you will also need columns for: structure, molecular weight, and physical properties (melting point, boiling point, density). Copy the sample table below into your notebook, and fill in the required information. Refer back to your previous reagent tables for assistance. Chemical Name Purpose chemical formula structure molecular (g/mole) melting point ( o C) boiling point ( o C) density (liquids) (g/ml) Methylene chloride N/A N/A 2-chloro toluene N/A Acetyl chloride N/A Aluminum trichloride N/A N/A N/A N/A Water N/A N/A Hydrochloric acid N/A N/A N/A N/A N/A Sodium carbonate N/A N/A N/A N/A N/A Ethanol N/A N/A Sodium hypochlorite N/A N/A N/A N/A N/A acetone N/A N/A Sodium hydroxide N/A N/A N/A N/A N/A IV. Background information and notes from the pre-lab assignment. You are expected to read this lab handout, prepare this notebook section with the following content, and review this information to prepare for a prelab quiz. 1) Goals. Based on your reading, what are the Experimental Goals for Parts I & II of this experiment? 2) Lab Safety Parts I & II. Copy the table outlined below into your lab notebook. Read over the experimental procedure for Parts I & II, then complete the table so that you have a thorough list of key lab safety topics specific to this lab. Parts of the table have been completed for you. Common Risk factors in the organic chemistry lab (cross out those that are not applicable to this lab) Hot plate What is the associated Hazard? (burn, sharp/cuts, solvent vapor, skin irritant, eye irritant, etc.) How will you limit Exposure to the hazard? SDS Section 2 summary SDS Section 8 summary

2 Hazardous chemicals Strong acids and/or bases Volatile solvents Glassware Melting point capillary tube Electrical equipment Vacuum filtration InfraRed Light Methylene chloride Health & Safety (look up SDS at Flinn website) Chemical exposure may result in irritation and or illness Cuts from broken glass Glassware implodes under vacuum Keep solvent covered; use in hood Look for frayed power cords; avoid spilling water 3) Reaction Equation. Under your reagent table draw the overall reaction based on the scheme detailed in this handout. 4) In Part I, you will conduct a Friedel-Crafts acylation reaction between 2-chlorotoluene and acetylchloride yielding one of four possible EAS products. In Part II, you will oxidize this EAS product into a solid carboxylic acid. The procedure gives reagent amounts in moles, so you need to covert to grams (solid reagents), and grams and ml (liquids). Record the calculation(s) and value(s). 5) The general structure of mono-substituted benzene is drawn to the right ( sub = substituent group). Look up the definition of the ortho, meta and para positions on a benzene ring, and/or watch this You Tube video: Draw this general structure in your notebook and label the 5 remaining positions as ortho, meta, and para (relative to the substituent). 6) Product Structures. In EAS reactions (Electrophilic Aromatic Substitution) you are adding an electrophile to a benzene ring. In this lab the electrophile is the acyl group that is added in Part I giving you a liquid product. The acyl group is then oxidized into a carboxylic acid group in Part II to give a solid product for melting point determination. In the reaction schemes given in this handout, the electrophile could go to one of the four possible open positions of 2-chloro toluene. Your challenge is to (1) PREDICT the product, and (2) run the reaction to see if your prediction was correct. Using the given chemical equations as a guide, draw the complete structures of the four possible products for Parts I & II. 7) In class we will cover how substituents can direct an electrophile to the ortho, meta and/or para positions in an EAS reaction. With one substituent on a benzene ring this is easy to predict, but more challenging with two substituents as in 2- chloro toluene. Your goal is to predict the products in Parts I & II from the structures you drew in question (6). As a general guide, the methyl group will increase the rate of electrophile addition, while the chloro group will decrease the rate of addition. The rate factors are summarized in the table below: Rate factors that activate (+) or deactivate (-) electrophilic addition to the ortho, meta and para positions for the methyl and chloro substituents of 2-chloro toluene. Substituent ortho meta para -CH 3 (+)25 (+)10 (+)700 -Cl (-)10000 (-)10000 (-)100 Copy this table into your lab notebook, and the structure of 2-chlorotolune drawn above. Based on the data in the table, label each of the four open positions with the proper rate factors for CH 3 and Cl. For example, the ring carbon with the dot is ortho to the CH 3 (+25), and meta to the Cl (-10000). Note that the net rate factor for that position is (-)9975. After you have labeled all four open positions with the rate factors, the one with the most positive net rate factor is most likely to add the electrophile. Look at the products you drew for Parts I & II and CIRCLE the one product for each that you PREDICT will be the major product. You do not need to justify your choice at this time. Your notebook is now prepared to start the lab period. Be sure to leave space in your notebook to take notes during the recitation period.

3 Reaction for Part I: Reaction for Part II: Qualitative Observations. You are expected to record detailed observations for all steps in this experiment. You will be graded on the accuracy and completeness of these observations, which you will use to answer post-lab questions. Experimental Procedure Part I. Add a circular stir bar to a DRY 10 ml round bottom flask followed by 2 ml of methylene chloride (CH 2Cl 2). While stirring, add (in this order) mole of 2-chlorotoluene (liquid), mole of acetyl chloride (liquid), and mole of DRY AlCl 3 (solid). Cap the reaction mixture and stir at room temperature for 90 minutes. If no red-orange color appears after 30 minutes, try adding an additional mole of AlCl 3. If this does not yield a reddish color, your instructor may have you start the reaction over. While you are waiting start work on the tables for the Quantitative Observation. CAUTION: Be careful when opening the reaction vial at any time as HCl(g) is a by-product and can exist as a corrosive vapor. Always open the reaction vial in the hood if you have to add more AlCl 3. Cool the reaction in an ice-water bath and slowly add 3 ml of ice-cold water. Again, be careful in case there are any corrosive vapors. Stir this mixture with a glass rod, and add one ml of concentrated HCl to dissolve any aluminum salts which may have precipitated. Mix thoroughly, then remove the aqueous layer and wash the CH 2Cl 2 layer with 5 ml of water, followed by 5 ml of 5% Na 2CO 3 solution, and then twice more with water. Do your best to remove any remaining water as it will affect your crude yield in Part I. Transfer the CH 2Cl 2 solution to a pre-weighted 25 ml Erlenmeyer flask, and evaporate the solvent at approximately C in the solvent evaporation station. You should obtain your Part I product as a crude yellow oil. Determine the of this crude material, then cover your product and leave in your lab drawer for next week. Complete the information needed for Section V of Part I and ask your instructor to briefly look at your notebook. V. Quantitative Observations. Using the suggested format below, build Data, Result and IR tables in your lab notebook. Immediately after your tables show all calculations with clearly labeled headings. These tables will be completed in Parts I & II. Data Table for Lab #3 Part I Friedel Crafts Molecular Sample (g/mole) 2-chlorotoluene acetylchloride Aluminum trichloride (total amt) Crude product (Part I) Exact (grams) Volume (ml) Moles Limiting reagent? (place an X) Calculations:

4 Data Table for Lab #3 Part II Friedel Crafts Molecular Sample (g/mole) Crude product (Part I) Sodium hypochlorite (NaOCl) Dry, purified product (Part II) Exact (grams) Volume (ml) Moles Limiting reagent? (place an X) Calculations: Results Table for Lab #3 Parts I & II Friedel Crafts Theoretical Sample yield (grams) Crude product (Part I) Dry, purified product (Part II) Theoretical yield (moles) % Recovery % Yield Melting point range ( o C) Literature melting range ( o C) Calculations: IR Data Table for Lab #3 Part II Friedel Crafts (Complete after Part II of this lab). Sample Structure Key functional groups and IR bands (predicted or observed) 2-chlorotoluene (Predicted IR) (Predicted) Part I Product (Predicted IR) Part II Product (Predicted IR) Part II Product (Observed IR) (Predicted) (Predicted) (Observed) Post-Lab Questions for Part I. (1) Which step in the Part I procedure gave you the most trouble and why? (2) Using complete sentences and your observations, data and results, discuss your evidence that a reaction occurred which produced a neutral organic compound. (3) % Yield is calculated by taking the or moles of product, divided by the theoretical or moles of product (x100). What type of useful information can you get from the % Yield? Lets assume that your Part I % Yield was 117%. What is this result telling you about the Part I product? (4) Read over Part II of this lab. You will not tear out your notebook pages for Part I. However, before you leave lab you must have your lab instructor check your notebook and initial the last page.

5 CHEMISTRY Organic Chemistry Laboratory II Spring 2019 Lab #3 (Part II): Friedel-Crafts Acylation Purpose: In this lab you will predict and experimentally test the directing effects of substituent groups in an Electrophilic Aromatic Substitution (EAS) reaction between 2-chlorotoluene and acetylchloride. A series of reactions will yield one of four possible EAS products. You will first use your organic chemistry background to predict the major EAS product. Then, based on your lab skills in product isolation, purification and melting point determination, identify which one of the four possible EAS products was obtained. Important Notes: 1) You must have lab goggles and your Hayden-McNeil Lab Notebook as specified in the lab syllabus. Note that there is no pre-lab work for Part II. 2) This is a two-week lab and your notebook pages will be submitted at the conclusion of Part II. 3) Format your lab notebook items I - IV as outlined below. I. Your name, the name of your lab instructor, the name of your lab partner. II. Title of the experiment and date. III. Table of Reagents. (Just review your Part I table) IV. Background information and notes from the pre-lab assignment. You are expected to read this lab handout. There is no other pre-lab preparation for Part II. Experimental Procedure Part II: The Haloform Reaction. The purpose of this Part II reaction is to oxidize the acyl (ketone) substituent group of your crude product from Part I to a carboxylic acid substituent group. This also converts the Part I product from a liquid into a solid, making it easier to purify and to identify based on its melting point. Qualitative Observations. You are expected to record detailed observations for all steps in this experiment. You will be graded on the accuracy and completeness of these observations, which you will use to answer post-lab questions. Dissolve the yellow oil from Part I in 5 ml of ethanol, add a stir bar, and then slowly add mole of 6.50% NaOCl (Clorox bleach, 6.50 g/100ml) over the course of one minute. Then stir the mixture at 50 o C for 2 minutes to complete the Haloform reaction. At this point, the reaction should be finished, but you probably have excess ClO -. Add 1 ml of acetone and stir the mixture at 50 o C for 2 more minutes to destroy the excess ClO-. Be sure to record observations in your notebook throughout the steps. You have now transformed the Friedel-Crafts acylation product into a water soluble carboxylate salt. Acidification of this aqueous reaction mixture will precipitate one of the four Part II carboxylic acid products, which will be isolated and purified. Cool the reaction mixture on ice and SLOWLY and carefully add 3 ml of concentrated HCl (CAUTION STRONG ACID!) to your reaction mixture. You should observe the formation of a precipitate. Record your observations! This crude product should be isolated by vacuum filtration, and washed with 1-2 ml of ice-cold water. The wet solid is transferred to a 5 ml reaction vial and dissolved in 1-2 ml of 1 M NaOH. Not all of the solid will dissolve, but what does dissolve is the conjugate base of your product. Any remaining solid that you observe is mostly by-product and needs to be removed by pipet filtration. Make a pipet filter by pushing a pinch of cotton into a short-stem Pasteur pipette, using a long-tip pipette to gently push in the cotton. This will act as a crude, but effective filter. Use the long-tip pipet to add the cloudy reaction solution into the pipet filter and allow the filtrate to drip into a clean 25 ml Erlenmeyer flask. You can use a pipet bulb to force the liquid through the cotton. When all of the reaction solution has passed through the filter, rinse the pipet filter with 1 ml of water and add this to the filtrate. You now need to convert the water-soluble carboxylate salt into its insoluble acid form. Cool the filtrate in ice, then acidify with concentrated HCl by carefully adding 5 drops at a time and checking the ph of the water layer to see if it is acidic. You should get a white precipitate of pure product.

6 Cool the mixture in an ice-water bath for 10 minutes, collect your product by vacuum filtration on a Hirsh funnel, and wash with 2 ml of ice-cold water. Scrape your product onto a pre-weighed watch glass and dry at 100 o C for minutes. Determine the of your dried product, an accurate melting point, and IR spectrum. The melting points for the four possible Part II products are listed below: 2-chloro-3-methyl benzoic acid (141 o C) 3-chloro-4-methyl benzoic acid (201 o C) 4-chloro-3-methyl benzoic acid (209 o C) 3-chloro-2-methyl benzoic acid (159 o C) V. Quantitative Observations. Complete the Data, Result and IR tables you started in Part I of this lab. Don t forget to show all calculations with clearly labeled headings. Post-Lab Questions for Part II. (1) Using complete sentences and your observations, data and results, discuss your evidence that the product you synthesized is a pure compound. (2) % Recovery is calculated by taking the of pure product, divided by the of crude product (x100). What type of useful information can you get from the % Recovery? Based on that answer, what is your % Recovery telling you? (3) % Yield is calculated by taking the or moles of product, divided by the theoretical or moles of product (x100). What type of useful information can you get from the % Yield? Based on that answer, what is your % Yield telling you? Use the data in the Part II table to calculate to % Yield for Part II. (4) Draw the structure of your predicted product and of the actual product based on your melting point. Did you successfully predict the actual product structure? Discuss whether the IR spectrum is consistent with your Part II product structure, and staple the IR to your report.

CHEMISTRY Organic Chemistry Laboratory II Spring 2019 Lab #1: Oxidation of Alcohols to Ketones - Borneol Oxidation (2 weeks)

CHEMISTRY Organic Chemistry Laboratory II Spring 2019 Lab #1: Oxidation of Alcohols to Ketones - Borneol Oxidation (2 weeks) CHEMISTRY 244 - Organic Chemistry Laboratory II Spring 2019 Lab #1: Oxidation of Alcohols to Ketones - Borneol Oxidation (2 weeks) Purpose. In this lab you will learn about oxidation reactions in organic

More information

CHEMISTRY Organic Chemistry Laboratory II Spring 2019 Lab #2: Grignard Reaction: Preparation of Triphenylmethanol

CHEMISTRY Organic Chemistry Laboratory II Spring 2019 Lab #2: Grignard Reaction: Preparation of Triphenylmethanol CHEMISTRY 244 - Organic Chemistry Laboratory II Spring 2019 Lab #2: Grignard Reaction: Preparation of Triphenylmethanol Purpose. In this lab you will use the Grignard Reaction, a classic reaction in organic

More information

2. Synthesis of Aspirin

2. Synthesis of Aspirin This is a two-part laboratory experiment. In part one, you will synthesize (make) the active ingredient in aspirin through a reaction involving a catalyst. The resulting product will then be purified through

More information

GRIGNARD REACTION Synthesis of Benzoic Acid

GRIGNARD REACTION Synthesis of Benzoic Acid 1 GRIGNARD REACTION Synthesis of Benzoic Acid In the 1920 s, the first survey of the acceleration of chemical transformations by ultrasound was published. Since then, many more applications of ultrasound

More information

Expt 10: Friedel-Crafts Alkylation of p-xylene

Expt 10: Friedel-Crafts Alkylation of p-xylene Expt 10: Friedel-Crafts Alkylation of p-xylene INTRODUCTION The Friedel-Crafts alkylation reaction is one of the most useful methods for adding alkyl substituents to an aromatic ring. Mechanistically,

More information

Expt 9: The Aldol Condensation

Expt 9: The Aldol Condensation Expt 9: The Aldol Condensation INTRDUCTIN Reactions that form carbon-carbon bonds are particularly important in organic chemistry as they allow the synthesis of more complex structures from simpler molecules.

More information

Lab 2. Go Their Separate Ways: Separation of an Acid, Base, and Neutral Substance by Acid-Base Extraction

Lab 2. Go Their Separate Ways: Separation of an Acid, Base, and Neutral Substance by Acid-Base Extraction Lab 2. Go Their Separate Ways: Separation of an Acid, Base, and Neutral Substance by Acid-Base Extraction How can I use an acid-base reaction to separate an acid-base-neutral mixture? Objectives 1. use

More information

Chemistry 283g Experiment 4

Chemistry 283g Experiment 4 Chemistry 283g xperiment 4 XPRIMNT 4: lectrophilic Aromatic Substitution: A Friedel-Craft Acylation Reaction Relevant sections in the text: Fox & Whitesell, 3 rd d. Chapter 11, especially pg. 524-526,

More information

2 (CH 3 CH 2 ) 2 NH diethylamine

2 (CH 3 CH 2 ) 2 NH diethylamine Experiment: (Part B) Preparation of Lidocaine from α-chloro-2,6-dimethylacetanilide and Diethylamine ITRDUCTI This step of the synthesis involves the reaction of α-chloro-2, 6- dimethylacetanilide, prepared

More information

SYNTHESIS OF AN AZO DYE revisited (1 or 2 credits)

SYNTHESIS OF AN AZO DYE revisited (1 or 2 credits) SYNTHESIS OF AN AZO DYE revisited (1 or 2 credits) This lab you can revisit the fist experiment of this quarter and synthesize more azo dyes of your choice. The old procedure is given below followed by

More information

Chemical Reactions: The Copper Cycle

Chemical Reactions: The Copper Cycle 1 Chemical Reactions: The Copper Cycle ORGANIZATION Mode: pairs assigned by instructor Grading: lab notes, lab performance and post-lab report Safety: Goggles, closed-toe shoes, lab coat, long pants/skirts

More information

Experiment 7: The Synthesis of Artificial Hyacinth Odor (1-bromo-2-phenylethene), Part I

Experiment 7: The Synthesis of Artificial Hyacinth Odor (1-bromo-2-phenylethene), Part I Experiment 7: The Synthesis of Artificial Hyacinth Odor (1-bromo-2-phenylethene), Part I This two-step synthesis involves the following conversion: trans-cinnamic acid 2,3- dibromocinnamic acid 1-bromo-2-phenylethene

More information

Synthesis of Benzoic Acid

Synthesis of Benzoic Acid E x p e r i m e n t 5 Synthesis of Benzoic Acid Objectives To use the Grignard reagent in a water free environment. To react the Grignard reagent with dry ice, CO 2(s). To assess the purity of the product

More information

SYNTHESIS OF AN AZO DYE revisited (1 or 2 credits)

SYNTHESIS OF AN AZO DYE revisited (1 or 2 credits) SYNTHESIS OF AN AZO DYE revisited (1 or 2 credits) This lab you can revisit the fist experiment of this quarter and synthesize more azo dyes of your choice. The old procedure is given below followed by

More information

Experiment 7 - Preparation of 1,4-diphenyl-1,3-butadiene

Experiment 7 - Preparation of 1,4-diphenyl-1,3-butadiene Experiment 7 - Preparation of 1,4-diphenyl-1,3-butadiene OBJECTIVE To provide experience with the Wittig Reaction, one of the most versatile reactions available for the synthesis of an alkene. INTRODUCTION

More information

To understand concept of limiting reagents. To learn how to do a vacuum filtration. To understand the concept of recrystallization.

To understand concept of limiting reagents. To learn how to do a vacuum filtration. To understand the concept of recrystallization. E x p e r i m e n t Synthesis of Aspirin Experiment : http://genchemlab.wordpress.com/-aspirin/ objectives To synthesize aspirin. To understand concept of limiting reagents. To determine percent yield.

More information

Iodination of Salicylamide

Iodination of Salicylamide Iodination of Salicylamide lectrophilic Aromatic Substitution Aromatic compounds are unusually stable because of the delocalization of their electrons. Given that the cloud is so stable, aromatic compounds

More information

Expt 8: Preparation of Lidocaine, Part 2, from α- Chloro-2,6-dimethylacetanilide and Diethylamine

Expt 8: Preparation of Lidocaine, Part 2, from α- Chloro-2,6-dimethylacetanilide and Diethylamine Expt 8: Preparation of Lidocaine, Part 2, from α- Chloro-2,6-dimethylacetanilide and Diethylamine ITRDUCTI This step of the synthesis involves the reaction of α-chloro-2, 6-dimethylacetanilide, prepared

More information

Exp t 111 Structure Determination of a Natural Product

Exp t 111 Structure Determination of a Natural Product Exp t 111 Adapted by R. Minard, K. Smereczniak and Jon Landis (Penn State Univ.) from a microscale procedure used by the University of California, Irvine, in its undergraduate labs. The procedure is based

More information

The Friedel-Crafts Reaction: 2-(4-methylbenzoyl)benzoic acid

The Friedel-Crafts Reaction: 2-(4-methylbenzoyl)benzoic acid The Friedel-Crafts Reaction: 2-(4-methylbenzoyl)benzoic acid Exp t 63 from K. L. Williamson, Macroscale and Microscale rganic Experiments, 2nd Ed. 1994, Houghton Mifflin, Boston. p449 revised 10/13/98

More information

Friedel-Crafts Reaction

Friedel-Crafts Reaction OpenStax-CNX module: m15260 1 Friedel-Crafts Reaction Mary McHale This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0 1 Lab 4: Friedel-Crafts Reaction:

More information

Experiment 3: Acid/base Extraction and Separation of Acidic and Neutral Substances

Experiment 3: Acid/base Extraction and Separation of Acidic and Neutral Substances Experiment 3: Acid/base Extraction and Separation of Acidic and Neutral Substances Introduction Your task in this lab is to separate two compounds by taking advantage of differences in their acidity, and

More information

Experiment 17. Synthesis of Aspirin. Introduction

Experiment 17. Synthesis of Aspirin. Introduction Experiment 17 Introduction Synthesis of Aspirin Aspirin (acetylsalicylic acid) is a synthetic organic derived from salicylic acid. Salicylic acid is a natural product found in the bark of the willow tree

More information

Scientific Observations and Reaction Stoichiometry: The Qualitative Analysis and Chemical Reactivity of Five White Powders

Scientific Observations and Reaction Stoichiometry: The Qualitative Analysis and Chemical Reactivity of Five White Powders Scientific Observations and Reaction Stoichiometry: The Qualitative Analysis and Chemical Reactivity of Five White Powders Objectives Part 1: To determine the limiting reagent and percent yield of CuCO

More information

12BL Experiment 7: Vanillin Reduction

12BL Experiment 7: Vanillin Reduction 12BL Experiment 7: Vanillin Reduction Safety: Proper lab goggles/glasses must be worn (even over prescription glasses). WEAR GLOVES and please handle the following chemicals with care: Hydrochloric acid

More information

Ascorbic Acid Titration of Vitamin C Tablets

Ascorbic Acid Titration of Vitamin C Tablets Ascorbic Acid Titration of Vitamin C Tablets Part A. Preparation of Vitamin C Tablet Solutions 1. Obtain two vitamin C tablets. Place a plastic weighing boat on the balance, and press zero to tare the

More information

18 Macroscale and Microscale Organic Experiments

18 Macroscale and Microscale Organic Experiments 360465-P01[01-024] 10/17/02 16:16 Page 18 Sahuja Ahuja_QXP_03:Desktop Folder:17/10/02: 18 Macroscale and Microscale Organic Experiments Preparing a Laboratory Record Use the following steps to prepare

More information

Scheme 1. Outline in the acid-base extraction of Bengay, hydrolysis to salicylic acid, and esterification to synthesize aspirin.

Scheme 1. Outline in the acid-base extraction of Bengay, hydrolysis to salicylic acid, and esterification to synthesize aspirin. Experiment 6 Synthesis of Aspirin, Lab Practical Exam Preparation Students come to lab with a pen/pencil, calculator, and pre-lab questions (no notebook). Students will carry out the experiment individually;

More information

Experiment 8 Synthesis of Aspirin

Experiment 8 Synthesis of Aspirin Experiment 8 Synthesis of Aspirin Aspirin is an effective analgesic (pain reliever), antipyretic (fever reducer) and anti-inflammatory agent and is one of the most widely used non-prescription drugs. The

More information

Review Experiments Formation of Polymers Reduction of Vanillin

Review Experiments Formation of Polymers Reduction of Vanillin Review Experiments Formation of Polymers What is a polymer? What is polymerization? What is the difference between an addition polymerization and a condensation polymerization? Which type of polymerization

More information

Lab #6: CARBOXYLIC ACIDS LAB

Lab #6: CARBOXYLIC ACIDS LAB lab Lab #6: CARBOXYLIC ACIDS LAB Name PART I: Preparation of Carboxylic Acids (a) Oxidation of an Aldehyde by Oxygen from the Air: Benzaldehyde is an aromatic aldehyde with a familiar odor. On a clean,

More information

Name Period Date. Lab 9: Analysis of Commercial Bleach

Name Period Date. Lab 9: Analysis of Commercial Bleach Name Period Date Lab 9: Analysis of Commercial Bleach Introduction Many common products are effective because they contain oxidizing agents. Some products, which contain oxidizing agents, are bleaches,

More information

Sodium Borohydride Reduction of Benzoin

Sodium Borohydride Reduction of Benzoin Sodium Borohydride Reduction of Benzoin Introduction The most common and useful reducing agents for reducing aldehydes, ketones, and other functional groups are metal hydride reagents. The two most common

More information

Week 10 Chemical Synthesis

Week 10 Chemical Synthesis Week 10 Chemical Synthesis The meeting of two personalities is like the contact of two chemical substances; if there is any reaction, both are transformed. Carl Gustav Jung Psychiatrist and Philosopher

More information

Lab #3 Reduction of 3-Nitroacetophenone

Lab #3 Reduction of 3-Nitroacetophenone Lab #3 Reduction of 3-Nitroacetophenone Introduction: Extraction: This method uses a different technique in which the two chemical compounds being separated are in immiscible solvents, also known as phases.

More information

25. Qualitative Analysis 2

25. Qualitative Analysis 2 25. Qualitative Analysis 2 This experiment uses a series of wet chemistry analytical tests to determine the functional group present in a series of known and an unknown compound. Each student receives

More information

6. Extraction. A. Background. (a) (b) (c) Figure 1. Mixing of Solvents

6. Extraction. A. Background. (a) (b) (c) Figure 1. Mixing of Solvents 6. Extraction A. Background Extraction is a frequently used technique to selectively transfer a compound of interested from one solvent to another. Extraction is based on solubility characteristics of

More information

Nucleophilic displacement - Formation of an ether by an S N 2 reaction The Williamson- Ether Synthesis

Nucleophilic displacement - Formation of an ether by an S N 2 reaction The Williamson- Ether Synthesis Nucleophilic displacement - Formation of an ether by an S N 2 reaction The Williamson- Ether Synthesis Bond formation by use of an S N 2 reaction is very important for organic and biological synthesis.

More information

6. Extraction. A. Background. (a) (b) (c) Figure 1. Mixing of Solvents

6. Extraction. A. Background. (a) (b) (c) Figure 1. Mixing of Solvents 6. Extraction A. Background Extraction is a frequently used technique to selectively transfer a compound of interested from one solvent to another. Extraction is based on solubility characteristics of

More information

Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise.

Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise. Experiment 10 Stoichiometry- Gravimetric Analysis Pre-lab Assignment Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise. Purpose The purpose this experiment

More information

Experiment 9: Synthesis and Isolation of Optical Isomers of a Cobalt (III) Compound CH3500: Inorganic Chemistry, Plymouth State University

Experiment 9: Synthesis and Isolation of Optical Isomers of a Cobalt (III) Compound CH3500: Inorganic Chemistry, Plymouth State University Experiment 9: Synthesis and Isolation of Optical Isomers of a Cobalt (III) Compound CH3500: Inorganic Chemistry, Plymouth State University Adapted from GS Girolami, TB Rauchfuss, RJ Angelici, "Experiment

More information

Acid-Base Extraction

Acid-Base Extraction Experiment: Acid-Base Extraction Background information on the theory of extraction is covered extensively online and will also be covered in your discussion The information here pertains specifically

More information

EXPERIMENT #1 SEPARATION AND RECOVERY OF ORGANIC COMPOUNDS, THIN LAYER CHROMATOGRAPHY, COLUMN CHROMATOGRAPHY, CRYSTALLIZATION AND MELTING POINTS

EXPERIMENT #1 SEPARATION AND RECOVERY OF ORGANIC COMPOUNDS, THIN LAYER CHROMATOGRAPHY, COLUMN CHROMATOGRAPHY, CRYSTALLIZATION AND MELTING POINTS EXPERIMENT #1 SEPARATION AND RECOVERY OF ORGANIC COMPOUNDS, THIN LAYER CHROMATOGRAPHY, COLUMN CHROMATOGRAPHY, CRYSTALLIZATION AND MELTING POINTS Overview In the first few weeks of this semester you will

More information

Experiment 3: Preparation of Lidocaine

Experiment 3: Preparation of Lidocaine Experiment 3: Preparation of Lidocaine This two-step synthesis involves the following conversion: 2,6-dimethylaniline α- chloro-2, 6-dimethylacetanilide Lidocaine. This synthetic scheme is shown in equation

More information

5: SYNTHESIS OF TRIS(ETHYLENEDIAMINE)NICKEL(II) CHLORIDE

5: SYNTHESIS OF TRIS(ETHYLENEDIAMINE)NICKEL(II) CHLORIDE Experiment 5: SYNTHESIS OF TRIS(ETHYLENEDIAMINE)NICKEL(II) CHLORIDE Purpose: Synthesize a nickel(ii) complex and apply reaction stoichiometry to determine the percent yield Performance Goals: Prepare a

More information

Experiment 17 Preparation of Methyl Orange

Experiment 17 Preparation of Methyl Orange Experiment 17 Preparation of Methyl range In this experiment you will prepare methyl orange, an azo dye that forms beautiful orange crystals and is used as an acid-base indicator (Figure 17.1). The anion

More information

Substances and Mixtures:Separating a Mixture into Its Components

Substances and Mixtures:Separating a Mixture into Its Components MiraCosta College Introductory Chemistry Laboratory Substances and Mixtures:Separating a Mixture into Its Components EXPERIMENTAL TASK To separate a mixture of calcium carbonate, iron and sodium chloride

More information

EXPERIMENT: LIMITING REAGENT. NOTE: Students should have moles of reactants in DATASHEET converted into masses in grams prior to the lab period.

EXPERIMENT: LIMITING REAGENT. NOTE: Students should have moles of reactants in DATASHEET converted into masses in grams prior to the lab period. Revised 12/2015 EXPERIMENT: LIMITING REAGENT Chem 1104 Lab NOTE: Students should have moles of reactants in DATASHEET converted into masses in grams prior to the lab period. INTRODUCTION Limiting reactant

More information

Experiment 1: The Borohydride Reduction of 9-Fluorenone to 9-Fluorenol

Experiment 1: The Borohydride Reduction of 9-Fluorenone to 9-Fluorenol Experiment 1: The Borohydride Reduction of 9-Fluorenone to 9-Fluorenol Background: In this week s experiment, a metal hydride will be used as a reducing agent. Metal hydrides can be quite reactive, and

More information

Nitration of Methyl Benzoate

Nitration of Methyl Benzoate Nitration of Methyl Benzoate Johnson, Chad Philip; T/Th Lab, 8:00am Submitted February 23 rd, 2012 Introduction Benzene containing compounds are known to have special properties that cause them to react

More information

CHEM51LC PROJECT DETERMINATION OF DIASTEREOSELCTIVITY USING THERMODYNAMIC VERSUS KINETIC CONTROLLED REDUCTION PROCEDURES: A REDUCTION

CHEM51LC PROJECT DETERMINATION OF DIASTEREOSELCTIVITY USING THERMODYNAMIC VERSUS KINETIC CONTROLLED REDUCTION PROCEDURES: A REDUCTION CHEM51LC PROJECT DETERMINATION OF DIASTEREOSELCTIVITY USING THERMODYNAMIC VERSUS KINETIC CONTROLLED REDUCTION PROCEDURES: A REDUCTION of 4-tert-BUTYLCYCLOHEXANONE REACTION: Oxidation of an Alcohol, Reductions

More information

Spring Renan Gongora Week Two: Extraction

Spring Renan Gongora Week Two: Extraction Spring 2017 Renan Gongora Week Two: Extraction Disclaimer The information provided here is to help facilitate learning and a smoother in-lab experience but you need to read all procedures!!! Furthermore,

More information

Experiment V: Multistep Convergent Synthesis: Synthesis of Hexaphenylbenzene

Experiment V: Multistep Convergent Synthesis: Synthesis of Hexaphenylbenzene Experiment V: Multistep Convergent Synthesis: Synthesis of Hexaphenylbenzene 1) Introduction CH H Thiamine HCl (V-02) ah (aq) Cu(Ac) 2 H 4 3 HAc V-01 V-03 V-04 Me 3 + H - V-05 V-06 Tetraphenylcyclopentadieneone

More information

Experiment 12: Grignard Synthesis of Triphenylmethanol

Experiment 12: Grignard Synthesis of Triphenylmethanol 1 Experiment 12: Grignard Synthesis of Triphenylmethanol Reactions that form carbon-carbon bonds are among the most useful to the synthetic organic chemist. In 1912, Victor Grignard received the Nobel

More information

12AL Experiment 9: Markovnikov s Rule

12AL Experiment 9: Markovnikov s Rule 12AL Experiment 9: Markovnikov s Rule Safety: Proper lab goggles/glasses must be worn (even over prescription glasses). WEAR GLOVES this lab utilizes hydrogen peroxide which can burn your skin and multiple

More information

Synthesizing Alum Reaction yields and green chemistry

Synthesizing Alum Reaction yields and green chemistry Synthesizing Alum Reaction yields and green chemistry Introduction Aluminum cans are often recycled to make more aluminum products. In this experiment, you will synthesize a compound called alum, starting

More information

CHEM 344 Fall 2015 Final Exam (100 pts)

CHEM 344 Fall 2015 Final Exam (100 pts) CHEM 344 Fall 2015 Final Exam (100 pts) Name: TA Name: DO NOT REMOVE ANY PAGES FROM THIS EXAM PACKET. Have a swell winter break. Directions for drawing molecules, reactions, and electron-pushing mechanisms:

More information

Experiment 3 Two-Step Synthesis of Ionones

Experiment 3 Two-Step Synthesis of Ionones Experiment 3 Two-Step Synthesis of Ionones Reading: Mohrig Section 24 (UV-vis Spectroscopy), Palleros p. E23B.1-3 (included here) * Students will work with one lab partner (no groups of three) Notebook

More information

Experiment 2: Analysis of Commercial Bleach Solutions

Experiment 2: Analysis of Commercial Bleach Solutions Experiment 2: Analysis of Commercial Bleach Solutions I. Introduction The ability of household bleach to remove stains is related to the amount of oxidizing agent in it. The oxidizing agent in bleach is

More information

SYNTHESIS: TECHNIQUES FOR MAKING AND ISOLATING COMPOUNDS rev 10/12

SYNTHESIS: TECHNIQUES FOR MAKING AND ISOLATING COMPOUNDS rev 10/12 EXPERIMENT 5 SYNTESIS: TENIQUES FR MAKING AND ISLATING MPUNDS rev 10/12 GAL In this experiment you will synthesize two compounds and gain experience with simple glassware and laboratory techniques. INTRDUTIN

More information

Aspirin Lab By Maya Parks Partner: Ben Seufert 6/5/15, 6/8/15

Aspirin Lab By Maya Parks Partner: Ben Seufert 6/5/15, 6/8/15 Aspirin Lab By Maya Parks Partner: Ben Seufert 6/5/15, 6/8/15 Abstract: This lab was performed to synthesize acetyl salicylic acid or aspirin from a carboxylic acid and an alcohol. We had learned in class

More information

AP Chemistry Lab #5- Synthesis and Analysis of Alum (Big Idea 1 & 2)

AP Chemistry Lab #5- Synthesis and Analysis of Alum (Big Idea 1 & 2) www.pedersenscience.com AP Chemistry Lab #5- Synthesis and Analysis of Alum (Big Idea 1 & 2) 1.A.1: Molecules are composed of specific combinations of atoms; different molecules are composed of combinations

More information

Chem 1B Saddleback College Dr. White 1. Experiment 5: Separation and Identification of Group I Cations (The Chloride Group: Ag +, Pb 2+, and Hg 2

Chem 1B Saddleback College Dr. White 1. Experiment 5: Separation and Identification of Group I Cations (The Chloride Group: Ag +, Pb 2+, and Hg 2 Chem 1B Saddleback College Dr. White 1 Experiment 5: Separation and Identification of Group I Cations (The Chloride Group: Ag +, Pb 2+, and Hg 2 2+) Objective To understand the chemical reactions involved

More information

R R CH. Some reactions of alcohols vary depending on their classification as 1º, 2º, or 3º alcohols.

R R CH. Some reactions of alcohols vary depending on their classification as 1º, 2º, or 3º alcohols. Experiment: Alcohol Reactions Alcohols are important organic molecules characterized by an alkyl group covalently bonded to a hydroxyl group. They may be classified as primary, secondary, or tertiary,

More information

ORGANIC SYNTHESIS: MICROWAVE-ASSISTED FISCHER ESTERIFICATION

ORGANIC SYNTHESIS: MICROWAVE-ASSISTED FISCHER ESTERIFICATION EXPERIMENT 7 ORGANIC SYNTHESIS: MICROWAVE-ASSISTED FISCHER ESTERIFICATION Materials Needed 1.0-2.0 ml of an alcohol to be chosen from the following: 3-methyl 1-butanol (isoamyl alcohol, isopentyl alcohol),

More information

If you need to reverse a reaction, the enthalpy is negated:

If you need to reverse a reaction, the enthalpy is negated: In the previous experiment you explored the heat of solution of potassium hydroxide. Using Hess s law, you will now use those results in conjunction with the data collected in this experiment to determine

More information

Experiment 1: Preparation of Vanillyl Alcohol

Experiment 1: Preparation of Vanillyl Alcohol Experiment 1: Preparation of Vanillyl Alcohol INTRDUCTIN A common method for preparing alcohols is the reduction of aldehydes to form primary alcohols [equation (1)] or of ketones to produce secondary

More information

PHYSICAL CONSTANTS: MELTING POINTS, BOILING POINTS, DENSITY

PHYSICAL CONSTANTS: MELTING POINTS, BOILING POINTS, DENSITY CRYSTALLIZATION: PURIFICATION OF SOLIDS ANSWERS TO PROBLEMS: 1. (a) (b) (c) (d) A plot similar to line A in Figure 5.1 on page 559 will be obtained. The line will be slightly curved. All of the substance

More information

Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts

Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts Pre-lab Assignment: Reading: 1. Chapter sections 3.3, 3.4, 3.7 and 4.2 in your course text. 2. This lab handout. Questions:

More information

Qualitative Analysis I - Cations

Qualitative Analysis I - Cations 1 Qualitative Analysis I - Cations Purpose: To separate and identify several metal cations from a mixture of cations, and to analyze an unknown sample of cations Introduction Qualitative analysis is the

More information

Title of experiment and short description of the purpose of the experiment.

Title of experiment and short description of the purpose of the experiment. The Laboratory Notebook for Chem 267 and 268. Use only the required notebook, one that allows a copy of each page to be made and torn out. The copy is given to the TA for grading and the original is kept

More information

EXPERIMENT 6 Empirical Formula of a Compound

EXPERIMENT 6 Empirical Formula of a Compound EXPERIMENT 6 Empirical Formula of a Compound INTRODUCTION Chemical formulas indicate the composition of compounds. A formula that gives only the simplest ratio of the relative number of atoms in a compound

More information

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield EXPERIMENT 7 Reaction Stoichiometry and Percent Yield INTRODUCTION Stoichiometry calculations are about calculating the amounts of substances that react and form in a chemical reaction. The word stoichiometry

More information

EXPERIMENT 7: THE LIMITING REACTANT

EXPERIMENT 7: THE LIMITING REACTANT EXPERIMENT 7: THE LIMITING REACTANT PURPOSE To find the ratio of moles of a reactant to moles of a product of a chemical reaction. To relate this ratio to the coefficients of these substances in the balanced

More information

Part II. Cu(OH)2(s) CuO(s)

Part II. Cu(OH)2(s) CuO(s) The Copper Cycle Introduction In this experiment, you will carry out a series of reactions starting with copper metal. This will give you practice handling chemical reagents and making observations. It

More information

Acid-Base Extraction. 1

Acid-Base Extraction. 1 Acid-Base Extraction. 1 Extraction involves dissolving a compound or compounds either (1) from a solid into a solvent or (2) from a solution into another solvent. A familiar example of the first case is

More information

Thermodynamics and the Solubility of Sodium Tetraborate Decahydrate

Thermodynamics and the Solubility of Sodium Tetraborate Decahydrate Thermodynamics and the Solubility of Sodium Tetraborate Decahydrate In this experiment you, as a class, will determine the solubility of sodium tetraborate decahydrate (Na 2 B 4 O 7 10 H 2 O or Na 2 [B

More information

CHEM 304 Experiment Prelab Coversheet

CHEM 304 Experiment Prelab Coversheet CHEM 304 Experiment Prelab Coversheet Name: Justin Arthur Student Date: 08/27/2014 Exp. #: JAS-11 Title: Isolation of Eugenol from the Steam Distillation of Cloves Purpose: To isolate eugenol from cloves

More information

Expt 7: Preparation of Isobutyl Propionate (or Isobutyl Propanoate)

Expt 7: Preparation of Isobutyl Propionate (or Isobutyl Propanoate) Expt 7: Preparation of Isobutyl Propionate (or Isobutyl Propanoate) INTRDUCTIN Esters are an important class of carbonyl compounds that are formally derived by combining a carboxylic acid and an alcohol.

More information

The Synthesis and Analysis of Aspirin

The Synthesis and Analysis of Aspirin The Synthesis and Analysis of Aspirin Computer 22 Aspirin, the ubiquitous pain reliever, goes by the chemical name acetylsalicylic acid. One of the compounds used in the synthesis of aspirin is salicylic

More information

12BL Experiment 8: Green Chem: Solvent-Free Aldol Condensation-Dehydration

12BL Experiment 8: Green Chem: Solvent-Free Aldol Condensation-Dehydration 12BL Experiment 8 Green Chem Solvent-Free Aldol Condensation-Dehydration Safety Proper lab goggles/glasses must be worn (even over prescription glasses). As always, ask where organic waste containers are

More information

R C OR' H 2 O carboxylic acid alcohol ester water side product

R C OR' H 2 O carboxylic acid alcohol ester water side product EXPERIMENT 7 SYNTHESIS OF ESTERS USING ACETIC ANHYDRIDE 1 Materials Needed 2.0 ml of an alcohol to be chosen from the following: 1-propanol (n-propyl alcohol), 3-methyl 1-butanol (isoamyl alcohol, isopentyl

More information

Aspirin Synthesis H 3 PO 4

Aspirin Synthesis H 3 PO 4 Aspirin Synthesis Experiment 10 Aspirin is the common name for the compound acetylsalicylic acid, widely used as a fever reducer and as a pain killer. Salicylic acid, whose name comes from Salix, the willow

More information

Chemistry 151 Last Updated Dec Lab 8: Precipitation Reactions and Limiting Reagents

Chemistry 151 Last Updated Dec Lab 8: Precipitation Reactions and Limiting Reagents Chemistry 151 Last Updated Dec. 2013 Lab 8: Precipitation Reactions and Limiting Reagents Introduction In this lab you will perform a simple precipitation reaction between strontium nitrate and potassium

More information

EXPERIMENT A4: PRECIPITATION REACTION AND THE LIMITING REAGENT. Learning Outcomes. Introduction

EXPERIMENT A4: PRECIPITATION REACTION AND THE LIMITING REAGENT. Learning Outcomes. Introduction 1 EXPERIMENT A4: PRECIPITATION REACTION AND THE LIMITING REAGENT Learning Outcomes Upon completion of this lab, the student will be able to: 1) Demonstrate the formation of a precipitate in a chemical

More information

Minneapolis Community and Technical College. Separation of Components of a Mixture

Minneapolis Community and Technical College. Separation of Components of a Mixture Minneapolis Community and Technical College Chemistry Department Chem1020 Separation of Components of a Mixture Objectives: To separate a mixture into its component pure substances. To calculate the composition

More information

Lab #14: Qualitative Analysis of Cations and Anions

Lab #14: Qualitative Analysis of Cations and Anions Lab #14: Qualitative Analysis of Cations and Anions Objectives: 1. To understand the rationale and the procedure behind the separation for various cations and anions. 2. To perform qualitative analysis

More information

Experiment 6 Alcohols and Phenols

Experiment 6 Alcohols and Phenols Experiment 6 Alcohols and Phenols Alcohols are organic molecules that contain a hydroxyl (-) group. Phenols are molecules that contain an group that is directly attached to a benzene ring. Alcohols can

More information

Supernatant: The liquid layer lying above the solid layer after a precipitation reaction occurs.

Supernatant: The liquid layer lying above the solid layer after a precipitation reaction occurs. Limiting Reagent Introduction The quantities of substances involved in a chemical reaction represented by a balanced equation are often referred to as stoichiometric amounts. Solution stoichiometry is

More information

Honors Cup Synthetic Proposal

Honors Cup Synthetic Proposal onors Cup Synthetic Proposal Section: 270-V Group Members: Azhar Carim, Ian Cross, Albert Tang Title: Synthesis of indigo from -(2-bromoethyl)-2-nitrobenzamide Introduction: Indigo has been used as a dye

More information

Extraction. weak base pk a = 4.63 (of ammonium ion) weak acid pk a = 4.8. weaker acid pk a = 9.9. not acidic or basic pk a = 43

Extraction. weak base pk a = 4.63 (of ammonium ion) weak acid pk a = 4.8. weaker acid pk a = 9.9. not acidic or basic pk a = 43 Extraction Background Extraction is a technique that separates compounds (usually solids) based on solubility. Depending on the phases involved, extractions are either liquid-solid or liquid-liquid. If

More information

36B-BioOrganic Modifications for Technique Experiments. Technique of Thin-Layer Chromatography

36B-BioOrganic Modifications for Technique Experiments. Technique of Thin-Layer Chromatography 36B-BioOrganic Modifications for Technique Experiments Technique of Thin-Layer Chromatography Experiment Title: Applying TLC As A Method to Monitor the Multistep Synthesis of Aspirin You will be using

More information

Prelab Assignmet Date, Title, Introduction. You will complete the procedures during the lab period as you plan for each test.

Prelab Assignmet Date, Title, Introduction. You will complete the procedures during the lab period as you plan for each test. 1 Qualitative Analysis Prelab Assignmet Date, Title, Introduction. You will complete the procedures during the lab period as you plan for each test. Introduction In this experiment you will be determining

More information

18. Arene Diazonium Ion Reactions

18. Arene Diazonium Ion Reactions 18. Arene Diazonium Ion Reactions A. Introduction In the previous laboratory experiment, you explored the functionalization of benzene via electrophilic aromatic substitution reactions. In these reactions,

More information

Chem 2115 Experiment #10. Acids, Bases, Salts, and Buffers

Chem 2115 Experiment #10. Acids, Bases, Salts, and Buffers Chem 2115 Experiment #10 Acids, Bases, Salts, and Buffers OBJECTIVE: The goal of this series of experiments is to investigate the characteristics of acidic and basic solutions. We will explore the neutralization

More information

Limiting Reactants An analogy and learning cycle approach

Limiting Reactants An analogy and learning cycle approach Limiting Reactants An analogy and learning cycle approach Introduction This lab builds on the previous one on conservation of mass by looking at a chemical reaction in which there is a limiting reactant.

More information

Experiment: Synthesis of Aspirin

Experiment: Synthesis of Aspirin Experiment: Synthesis of Aspirin Background Aspirin, which ranks as the most widely used drug in the United States, is one of a series of salicylic acid esters that has been known since antiquity to have

More information

5. SEPARATION OF MIXTURES, PURIFICATION OF SOLIDS Objectives

5. SEPARATION OF MIXTURES, PURIFICATION OF SOLIDS Objectives Name: Date:.. 5. SEPARATION OF MIXTURES, PURIFICATION OF SOLIDS Objectives Introduction to basic chemical laboratory operations: grinding, dissolving, decanting, centrifuging, filtration, crystallization.

More information

The Thermodynamics of the Solubility of Borax

The Thermodynamics of the Solubility of Borax Experiment 10 Pre-Lab Assignment Before coming to lab: Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise. The questions should be answered on a separate

More information

Aldol Condensation Notes

Aldol Condensation Notes Reminder: These notes are meant to supplement, not replace, the laboratory manual. Aldol Condensation Notes History and Application Condensation reactions are molecular transformations that join together

More information