REACTION KINETICS OF CORROSION OF MILD STEEL IN PHOSPHORIC ACID

Size: px
Start display at page:

Download "REACTION KINETICS OF CORROSION OF MILD STEEL IN PHOSPHORIC ACID"

Transcription

1 Journal of the University Aprael of S. Chemical Yaro, Rafal Technology K. Wael, Anees and Metallurgy, A. Khadom45, 4, 010, REACTION KINETICS OF CORROSION OF MILD STEEL IN PHOSPHORIC ACID Aprael S. Yaro, Rafal K. Wael, Anees A. Khadom Department of Chemical Engineering, College of Engineering, Baghdad University, Baghdad, Iraq Received 14 June 010 Accepted 1 November 010 ABSTRACT The effect of different temperatures and acid concentrations on the corrosion of mild steel in phosphoric acid were studied in this work. The effect of temperature was explained by application of Arrhenius equation and transition state theory, while the acid concentration effect was explained using reaction kinetic equations. The combined effect of temperature and acid concentration was modeled using a nonlinear regression method. A detail of thermodynamic parameters of activation (E, ÄH * and ÄS * ) and kinetic studies for the corrosion reaction were obtained. Nonlinear corrosion rates as a function of temperature and acid concentration were estimated with a good prediction of the corrosion rates values. The values of activation energy E and enthalpy of activation ÄH * decrease with increase of acid concentration indicating the increasing in reaction rate. Entropy of activation ÄS * tends to lower values with increasing of acid concentration which indicates that the activated complex is more orderly relative to the initial state. The observed corrosion rate values from the experimental data were in a good agreement with those predicted by the mathematical equation. Keywords: reaction kinetics, activation parameters, phosphoric acid, corrosion, mild steel. INTRODUCTION Corrosive environments have received a considerable amount of attention because of their attack on materials. One of these environments are the acid solutions which often used in industry for cleaning, descaling and pickling of steel structures, processes which are normally accompanied by considerable dissolution of the metal. The information about corrosion rate and kinetic parameters may be helpful in the corrosion control. Activation parameters for some systems can be estimated either from the Arrhenius equation (eq. 1) or from transition state theory (eq. ) [1]: E k= A Exp (1) RT * * RT H S k = exp exp Nh RT R () where k is reaction rate, A - modified frequency factor (pre-exponential factor), E - activation energy (J mol -1 ), R - gas constant (8.314 J mol -1 K), T - absolute temperature (K), ÄH * - enthalpy of activation, DS * - entropy of activation, N - Avogadro s number (6.0x10 3 molecule.mol -1 ), h - Plank s constant (6.66x10-34 J sec mol -1 ). A comparison of eq. with Arrhenius equation indicates that the energy of activation E is related to the enthalpy of activation ÄH *. The pre-exponential factor (A) is now RT S exp Nh R. Chemical kinetics is the study of rates of chemical processes. Chemical kinetics includes investigations of how different experimental conditions can influence the rate of a chemical reaction and yields information about the reaction mechanism, as well as the construc- 443

2 Journal of the University of Chemical Technology and Metallurgy, 45, 4, 010 tion of mathematical models that can describe the characteristics of a chemical reaction. In corrosion reactions like almost all chemical reactions, normally as the concentration of a corrosive acid media is increased, the corrosion rate likewise increases. This is primarily due to the fact that the amounts of hydrogen ions, which are the active species, are increased as the acid concentration is increased []. Corrosion rate data as a function of acid concentration can be used to show the rate dependence of hydrochloric acid concentration. The first model proposed by Mathur and Vasudevan [3] are described by the following eq. 3: r BC = (3) ke where C is the acid concentration, B - constant for the reaction studies. This model can be compared with the conventional equation of chemical reaction kinetics: r n = (4) kc where n is the order of reaction. The aim of this research is to study the effect of temperature and acid concentration using Arrhenius equation, transition state equation and reaction rate kinetic equations for the corrosion of mild steel in H 3 acid. EXPERIMENTAL Mild steel specimens were used as working electrodes throughout the study. The composition (wt.%) of the mild steel was: Fe ; C ; Si ; Mn ; Al ; Cr ; Cu ; Ti ; V ; Ni ; Co ; Mo - log (Corrosion Rate) (gmd) and Pb The exposed area of the specimens was 10.8 cm. The specimens were cleaned according to ASTM standard G1-03 [4]. The specimens were fully immersed for two hours in 50 cm 3 corrosive solutions of 0.5, 1.0, 1.5 and.0 M H 3 at 30, 40, 50 and 60 o C. RESULTS AND DISCUSSION Table 1 shows 16 runs of weight loss experimental results of mild steel corrosion in 0.5, 1.0, 1.5, and.0 M H 3 acid solutions as function of temperature. As shown in Table 1, the corrosion rate increases with increasing the acid concentration and temperature. The values of activation energies and frequency factors are evaluated using Eq. 1, by plotting 1 ln( Corr.Rate) Vs. T 1/T (K -1 ) 0.5 M H 3 PO Fig. 1. Arrhenius plot for the corrosion of mild steel at different concentration of H 3. as shown in Fig. 1 and these values are listed in Table. Eq. can be rearranged in the form of straight line Table 1. Effect of temperature and H 3 acid concentration on the corrosion rate (g/m d) of mild steel. H 3 conc.(m) Temperature ( C)

3 Aprael S. Yaro, Rafal K. Wael, Anees A. Khadom ln (Corrosion Rate/T) (gmd/k) /T (K -1 ) 0.5 M H 3 PO Fig.. Transition state plot for the corrosion of mild steel at different concentratio of H 3. ln (Corrosion rate) (gmd o C C (M) Fig. 3. Rate equation as a function of acid concentration at different temperatures. equation in order to find the values of enthalpy and entropy of activations. The rearranged equation is: * * k R S H ln = ln + (5) T Nh R RT Eq. 5 can be drawn as shown in Fig. as K 1 ln Vs. T T. The values of enthalpy of activation and entropy of activation can be evaluated from the slope and intercept, which are also given in Table. The values of DH * was (kj mol -1 ) at 0.5 M acid concentration. This value decreases with increasing the acid concentration, which indicates that the reaction needs low energy to occur with increasing the acid concentration. This means that the energy barrier of corrosion reaction decreases as the concentration of phosphoric acid increases and activated complex or transition state complex can be formed faster with the acid concentration increasing. The positive sign of DH * reflects the endothermic nature of the steel dissolution process. The values of DS * are negative at all acid concentrations. The negative values decrease with increasing the acid concentration. The corrosion of iron in acid solutions takes place with hydrogen depolarization. The spontaneous dissolution of iron can be described by anodic dissolution reaction ++ Fe = Fe + e accompanied by the corresponding cathodic reaction H + + e = H [5]. According to Abiola [6], the corrosion of metals in acidic solutions is cathodically controlled by the hydrogen evolution reaction which occurs in two steps: H + + e H ads (6) H ads +Hads H (7) Table. Values of enthalpy of activation, entropy of activation, activation energy and frequency factor at different acid concentrations. Arrhenius model (eq. 1) Transition state model (eq. ) C (M) A, d -1 E, kj mol -1 R ÄH *, kj mol -1 * ÄS J mol -1 K Average R 445

4 Journal of the University of Chemical Technology and Metallurgy, 45, 4, 010 ln (Corrosion rate) (gmd) o C ln C (M) Fig. 4. Conventional chemical reaction rate as a function of acid concentration at different temperatures. predicted corrosion rate (gmd) line equation Y = *x observed corrosion rate (gmd) Fig. 5. Observed Vs predicted corrosion rates of mild steel in H 3 obtained using combined influence model. The rate-determining step for the hydrogen evolution reaction is the recombination of adsorbed hydrogen atoms to form hydrogen molecules (eq. 7). The transition state of the rate determining recombination step represents high orderly arrangement relative to initial state and hence a negative value for the entropy of activation was obtained. In other words, these indicate that the activated complex is more orderly relative to the initial state. From eq. 1, it can be seen that at given temperature, the value of corrosion rate is jointly determined by the activation energy and pre-exponential factor. Values of E vary in the same way as the values of DH *.The values of E, approximately, agree with the literature data of E for iron and steel in phosphoric acid [7, 8]. The kinetic constants can be obtained by rearranging eq. 3 and eq. 4; these equations can be rewrite in a linear form: ln r = ln k + BC (8) By plotting ln r vs. C, as shown in Fig. 3, the values of B and k can be obtained from the slopes and intercepts of these lines. The second kinetic equation can be written as: ln r = ln k + n ln C (9) and can be drawn as shown in Fig. 4. The values of n and k can also be obtained from the slopes and intercepts of these lines. Table 3 shows the values of the kinetic parameters. The changes in temperature have great effect when the rate-determining step is the activation process. In general, if the diffusion rates are doubled for a certain increase in temperature, activation process may be increased by times depending on the magnitude of the activation energy. The values of the rate constants k increase with increasing of temperature and this is observed from both models by Jianguo et al. [9], who study the corrosion of low carbon steel in acid media at different concentrations. The value of slope B is constant up to 1.5 M acid concentration and then it reduced to a lower value for acid concentration greater than 1.5 M. The change in slope (value of B) may be due to the formation of a tightly adsorbed more protective layer of corrosion products on the metal surface at high acid concentration [3]. In this study, the values of B increase with temperature increase indicating that the mechanism of corrosion reaction is changed at different acid concentrations. The first model was more suitable to represent the corrosion reaction process of mild steel in phosphoric acid, with higher values of correlation coefficients (R ), as compared with the values obtained with the second model. This is due to high increase in corrosion rate with acid concentration increasing, thus the exponential representation of the corrosion rate data is better than the linear one. Mathur [3] states that the conventional rate eq. 4 differs from the present rate eq. 3 in the concentration term. If BC<<1, the exponential term (e BC ) can be expanded and eq. 3 can be written as: 446

5 Aprael S. Yaro, Rafal K. Wael, Anees A. Khadom Table 3. Kinetics parameters of the first model and second conventional reaction model T ( o C) Mathur and Vasudevan model (eq. 3) Conventional reaction model (eq. 4) k, gmd B, gmd M -1 R k, gmd n R Average r = k( 1+ BC) (10) Relation (8) indicates that r varies linearly with concentration C only in very low concentration of electrolyte solutions, as in conventional rate eq. 4. Hence, eq. 4 is only special case of the more general eq. 3. Also, eq. 3 appears to be more valid than the linear rate eq. 4 at high acids concentration. Combined influence of temperature and acid concentration The combined effect of temperature and acid concentration on the corrosion of mild steel in phosphoric acid can be evaluated using Arrhenius equation eq. 1 and eq. 3, since both equations are more suitable in representing the corrosion rate data than transition state theory (eq. ) and conventional equation of chemical reaction (eq. 4) depending on the values of correlation coefficients. Therefore, the combined equation can be obtained by substituting eq. 1 in eq. 3, so that: E r = Aexp( )exp(bc) (11) RT The values of A, E and B were defined previously. These values can be non-linearly estimated using Levenberg-Marquardt estimation method using STATISTICA 7 software. Eq. 11 is suitable for representing the combined effect of temperature and acid concentration on the corrosion rates with a correlation coefficient of The estimated equation can be written in the form of: r = exp( ) exp(0.45c) (1) T The coefficient 1.697x10 10, which appears in eq. 1 is in the same order of the frequency factor values which shown in Table, with average value of The acid concentration coefficient (B), of value equal to 0.45, is in a good agreement with the values of B shown in Table 3, with average B values equal to The temperature coefficient of value E R = K E = kj mol , is in agreement with the average values of activation energy (E=46.3 kj mol -1 ) shown in Table. The observed corrosion rate data from the experiments and the predicted corrosion rate data by eq. 1 are shown in Fig. 5, with a line slope of 0.966, indicating a good correlation between the two values. Wang et al. [10] and Morad [11] use Arrhenius equation and eq. 4 separately to evaluate the kinetic parameter for the corrosion of carbon steel in acid graphically, in which they obtained the value of k and B from the plot of ln r against C and the values E and A were calculated from a plot of ln r against 1, while in T our combination model, these parameters can be calculated using eq. 11. Ehteram and Al-Moubaraki [1] studied the corrosion behavior of mild steel in hydrochloric acid solutions. They related the corrosion rate r with the acid concentration by the following equation: log r = log k + B log C and concluded that the mild steel studied corrodes in HCl solutions with a first order reaction and the corrosion rate increases with the increase in acid concentration, with good correlation coefficient of The estimated B values are 0.56, which is in a good agreement with the obtained results.. 447

6 Journal of the University of Chemical Technology and Metallurgy, 45, 4, 010 CONCLUSIONS Both Arrhenius equation and transition state theory are suitable to represent the effect of temperature on the corrosion rates of mild steel in phosphoric acid solutions. Present rate equation used in this study is more suitable than the conventional equation of chemical reactions. The combined temperature and acid concentration model is suggested using nonlinear estimation method and this model is suitable to represent the combined effect on corrosion rate data of low carbon steel in phosphoric acid. Acknowledgements This work was supported by Baghdad University, Chemical Engineering Department, which is gratefully acknowledged. REFERENCES 1. A. A. Khadom, A. S. Yaro, A. S. AlTaie, A. A. H. Kadum, Portugaliae Electrochimica Acta, 7, 009, A. A. Khadom, A. S. Yaro, A. H. Kadum, A. S. AlTaie and A. Y. Musa, American Journal of Applied Sciences, 6, 009, P.B. Mathur, T. Vasudevan, Corrosion, 38, 198, ASTM G1-3, Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens (003). 5. A.Popova, S. Veleva, S. Raicheva, Reaction kinetic and catalyst letters, 85, 005, O.K. Abiola, J. Chil. Chem. Soc., 50, 005, M. Benabdellah, R. Touzani, A. Dafali, B. Hammouti, S. El Kadiri, Materials Letters, 61, 007, E.A. Noor, Corrosion Science, 47, 005, Y. Jianguo, W. Lin, V. Otieno, D.P. Schweinsberg, Corrosion Science, 37, 1995, L. Wang, G.J. Yin and J.G. Yin, Corrosion Science, 43, 001, M.S. Morad, Mater. Chem. Phys., 60, 1999, A. Ehteram, A.H. Al-Moubaraki, Int. J. Electrochem. Sci., 3, 008,

EVALUATION OF THE PERFORMANCE OF SOME CHEMICAL INHIBITORS ON CORROSION INHIBITION OF COPPER IN ACID MEDIA

EVALUATION OF THE PERFORMANCE OF SOME CHEMICAL INHIBITORS ON CORROSION INHIBITION OF COPPER IN ACID MEDIA EVALUATION OF THE PERFORMANCE OF SOME CHEMICAL INHIBITORS ON CORROSION INHIBITION OF COPPER IN ACID MEDIA Dr. Aprael S. Yaro University of Baghdad College of Engineering Chemical Eng. Department Anees

More information

Corrosion inhibition of carbon steel in 1M HCl solution by Ruta graveolens extract

Corrosion inhibition of carbon steel in 1M HCl solution by Ruta graveolens extract Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2014, 6(5): 996-1001 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Corrosion inhibition of carbon steel in 1M HCl

More information

The Inhibition of Mild Steel Corrosion in Acidic Solution by Amine Melamine Chloral Resin

The Inhibition of Mild Steel Corrosion in Acidic Solution by Amine Melamine Chloral Resin Abdel-Amir Hussain Taobi The Inhibition of Mild. The Inhibition of Mild Steel Corrosion in Acidic Solution by Amine Melamine Chloral Resin Abdel-Amir Hussain Taobi Chemistry Department, College of Science,

More information

J. Environ. Res. Develop. Journal of Environmental Research And Development Vol. 9 No. 02, October-December 2014

J. Environ. Res. Develop. Journal of Environmental Research And Development Vol. 9 No. 02, October-December 2014 ANISIDINE ISOMERS AS CORROSION INHIBITORS FOR ZINC IN HYDROCHLORIC ACID Vashi R. T.* and Desai Krunal Department of Chemistry, Navyug Science College, Surat (INDIA) Received July 10, 2014 Accepted December

More information

Ethoxylated fatty amines as corrosion inhibitors for carbon steel in hydrochloric acid solutions

Ethoxylated fatty amines as corrosion inhibitors for carbon steel in hydrochloric acid solutions Int. J. Corros. Scale Inhib., 2013, 2, no. 2, 82 91 Ethoxylated fatty amines as corrosion inhibitors for carbon steel in hydrochloric acid solutions I. A. Zaafarany 1* and Hamza A. Ghulman 2 1 Chemistry

More information

Aniline as Corrosion Inhibitor for Zinc in Phosphoric acid.

Aniline as Corrosion Inhibitor for Zinc in Phosphoric acid. International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol. 3, No.2, pp 864-869, April-June 2011 Aniline as Corrosion Inhibitor for Zinc in Phosphoric acid. R. T. Vashi 1 * and

More information

Corrosion and Inhibition of 316L stainless steel in neutral medium by 2-Mercaptobenzimidazole

Corrosion and Inhibition of 316L stainless steel in neutral medium by 2-Mercaptobenzimidazole Int. J. Electrochem. Sci., 1(2006)80-91 www.electrochemsci.org Corrosion and Inhibition of 316L stainless steel in neutral medium by 2-Mercaptobenzimidazole S. A. M. Refaey*, F. Taha and A. M. Abd El-Malak

More information

Corrosion Inhibition of Copper-nickel Alloy: Experimental and Theoretical Studies

Corrosion Inhibition of Copper-nickel Alloy: Experimental and Theoretical Studies Journal of the Korean Chemical Society Printed in the Republic of Korea http://dx.doi.org/10.501/jkcs.01.56.4.406 Corrosion Inhibition of Copper-nickel Alloy: Experimental and Theoretical Studies Anees

More information

Apricot juice as green corrosion inhibitor of mild steel in phosphoric acid

Apricot juice as green corrosion inhibitor of mild steel in phosphoric acid Alexandria Engineering Journal (2013) 52, 129 135 Alexandria University Alexandria Engineering Journal www.elsevier.com/locate/aej www.sciencedirect.com ORIGINAL ARTICLE Apricot juice as green corrosion

More information

Corrosion Inhibition and Adsorption Properties of 1-Methyl Imidazole on Mild Steel in Binary Acid Mixture of (HNO3+HCl)

Corrosion Inhibition and Adsorption Properties of 1-Methyl Imidazole on Mild Steel in Binary Acid Mixture of (HNO3+HCl) www.ijapbc.com IJAPC Vol. 3(3), July - Sep, 2014 ISSN: 2277-4688 INTERNATIONAL JOURNAL OF ADVANCES IN PHARMACY, IOLOGY AND CHEMISTRY Research Article Corrosion Inhibition and Adsorption Properties of 1-Methyl

More information

Pyrazole Derivatives as Corrosion Inhibitors for Steel in Hydrochloric Acid

Pyrazole Derivatives as Corrosion Inhibitors for Steel in Hydrochloric Acid Portugaliae Electrochimica Acta 26 (2008) 211-220 PORTUGALIAE ELECTROCHIMICA ACTA Pyrazole Derivatives as Corrosion Inhibitors for Steel in Hydrochloric Acid L. Herrag, A. Chetouani, S. Elkadiri, B. Hammouti,

More information

Inhibition of acidic corrosion of iron by some Carrageenan compounds

Inhibition of acidic corrosion of iron by some Carrageenan compounds Current World Environment Vol. 1(2), 101-108 (2006) Inhibition of acidic corrosion of iron by some Carrageenan compounds I. ZAAFARANY Department of Chemistry, Faculty of Applied Sciences, Umm Al- Qura

More information

Hexamine as Corrosion Inhibitors for Zinc in Phosphoric Acid

Hexamine as Corrosion Inhibitors for Zinc in Phosphoric Acid http://www.e-journals.net ISS: 0973-4945; CODE ECJHAO E- Chemistry 2010, 7(S1), S1-S6 Hexamine as Corrosion Inhibitors for Zinc in Phosphoric Acid R. T. VASHI * and DIKSHA AIK * Department of Chemistry,

More information

Inhibition of mild steel corrosion in formic and acetic acid solutions

Inhibition of mild steel corrosion in formic and acetic acid solutions Indian Journal of Chemical Technology Vol. 11, May 2004, pp 331-336 Inhibition of mild steel corrosion in formic and acetic acid solutions M A Quraishi*& H K Sharma Corrosion Research Laboratory, Department

More information

Electrochemical, Activations and Adsorption Studies for the Corrosion Inhibition of Low Carbon Steel in Acidic Media

Electrochemical, Activations and Adsorption Studies for the Corrosion Inhibition of Low Carbon Steel in Acidic Media Portugaliae Electrochimica Acta 2009, 27(6), 699-712 DOI: 10.4152/pea.200906699 PORTUGALIAE ELECTROCHIMICA ACTA ISSN 1647-1571 Electrochemical, Activations and Adsorption Studies for the Corrosion Inhibition

More information

Exam3Fall2009thermoelectro

Exam3Fall2009thermoelectro Exam3Fall2009thermoelectro Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Thermodynamics can be used to determine all of the following EXCEPT

More information

The Inhibition Effect of Succinic Acid on Corrosion of Low Carbon Steel in Hydrochloric Acid at Different Temperatures

The Inhibition Effect of Succinic Acid on Corrosion of Low Carbon Steel in Hydrochloric Acid at Different Temperatures The Inhibition Effect of Succinic Acid on Corrosion of Low Carbon Steel in Hydrochloric Acid at Different Temperatures Ahlam Al Jouja * Mohammad Ali Al Shaikh Ahmad Al Yousuf Department of Chemistry, Faculty

More information

THE USE OF SOME 4-PHENYLTHIOSEMICARBAZONE DERIVATIVES AS CORROSION INHIBITORS FOR COPPER IN NITRIC ACID SOLUTION" H.A.

THE USE OF SOME 4-PHENYLTHIOSEMICARBAZONE DERIVATIVES AS CORROSION INHIBITORS FOR COPPER IN NITRIC ACID SOLUTION H.A. THE USE OF SOME 4-PHENYLTHIOSEMICARBAZONE DERIVATIVES AS CORROSION INHIBITORS FOR COPPER IN NITRIC ACID SOLUTION" H.A. Mostafa Department of Chemistry, Faculty ofscicnce, El-Mansoura University, El-Mansoura,

More information

B. HAMMOUTI¹*, A. ZARROUK¹, S.S. AL-DEYAB² and I. WARAD²

B. HAMMOUTI¹*, A. ZARROUK¹, S.S. AL-DEYAB² and I. WARAD² ISSN: 0970-020 X; CODEN: OJCHEG Oriental Journal of Chemistry 2011, Vol. 27, No. (1): Pg. 23-31 http://www.orientjchem.org Temperature Effect, Activation Energies and Thermodynamics of Adsorption of ethyl

More information

8. ELECTROCHEMICAL CELLS. n Electrode Reactions and Electrode Potentials a. H 2 2H + + 2e. Cl 2 + 2e 2Cl. H 2 + Cl 2 2H + + 2Cl ; z = 2

8. ELECTROCHEMICAL CELLS. n Electrode Reactions and Electrode Potentials a. H 2 2H + + 2e. Cl 2 + 2e 2Cl. H 2 + Cl 2 2H + + 2Cl ; z = 2 8. ELECTROCHEMICAL CELLS n Electrode Reactions and Electrode Potentials 8.1. a. H H + + e Cl + e Cl H + Cl H + + Cl ; z = E = E RT F ln ( a H +a Cl ) b. Hg(l)+ Cl Hg Cl + e H + + e H Hg + H + + Cl Hg Cl

More information

Corrosion Inhibition of Steel by Various Parts of Rotula Aquatica Plant Extracts in H 2 SO 4 Solutions

Corrosion Inhibition of Steel by Various Parts of Rotula Aquatica Plant Extracts in H 2 SO 4 Solutions Portugaliae Electrochimica Acta 214, 32(6), 395-43 DOI: 1.4152/pea.2146395 PORTUGALIAE ELECTROCHIMICA ACTA ISSN 1647-1571 Corrosion Inhibition of Steel by Various Parts of Rotula Aquatica Plant Extracts

More information

Chemistry 12. Resource Exam B. Exam Booklet

Chemistry 12. Resource Exam B. Exam Booklet Chemistry 12 Resource Exam B Exam Booklet Contents: 21 pages Examination: 2 hours 50 multiple-choice questions in the Exam Booklet Additional Time Permitted: 60 minutes Province of British Columbia PART

More information

Corrosion Inhibition and Adsorption Behavior of Clove Oil on Iron in Acidic Medium

Corrosion Inhibition and Adsorption Behavior of Clove Oil on Iron in Acidic Medium ISSN: 0973-4945; CODEN ECJHAO E- Chemistry http://www.ejchem.net 2012, 9(4), 2044-2051 Corrosion Inhibition and Adsorption Behavior of Clove Oil on Iron in Acidic Medium ARCHANA SAXENA* 1, ANURAG SHARMA

More information

concentrations (molarity) rate constant, (k), depends on size, speed, kind of molecule, temperature, etc.

concentrations (molarity) rate constant, (k), depends on size, speed, kind of molecule, temperature, etc. #80 Notes Ch. 12, 13, 16, 17 Rates, Equilibriums, Energies Ch. 12 I. Reaction Rates NO 2(g) + CO (g) NO (g) + CO 2(g) Rate is defined in terms of the rate of disappearance of one of the reactants, but

More information

9/19/2018. Corrosion Thermodynamics 2-3. Course Outline. Guiding Principles. Why study thermodynamics? Guiding Principles

9/19/2018. Corrosion Thermodynamics 2-3. Course Outline. Guiding Principles. Why study thermodynamics? Guiding Principles Kwame Nkrumah University of Science & Technology, Kumasi, Ghana Week 1 Course Outline Topic Introduction: Reactivity types, corrosion definition, atmospheric corrosion, classification, effects, costs,

More information

Anodic Corrosion of Copper in Presence of Polymers

Anodic Corrosion of Copper in Presence of Polymers International Journal of Engineering and Technical Research (IJETR) ISSN: 232-869, Volume-2, Issue-, November 24 Anodic Corrosion of Copper in Presence of Polymers A.M. Ahmed, Y.A. Aggour, M.A. Shreadah,

More information

Aniline as Corrosion Inhibitor for Zinc in Hydrochloric Acid

Aniline as Corrosion Inhibitor for Zinc in Hydrochloric Acid Chem Sci Trans., 2013, 2(2), 670-676 Chemical Science Transactions DOI:10.7598/cst2013.423 ISSN/E-ISSN: 2278-3458/2278-3318 RESEARCH ARTICLE Aniline as Corrosion Inhibitor for Zinc in Hydrochloric Acid

More information

Solutions to Thermodynamics Problems

Solutions to Thermodynamics Problems Solutions to Thermodynamics Problems Chem03 Final Booklet Problem 1. Solution: Moles of AgNO3 = 0.050 L x 0.100 M = 0.05 moles AgNO3 = 0.05 moles Moles of HCl = 0.050 L x 0.100 M = 0.05 moles HCl = 0.05

More information

Exam3Fall2009thermoelectro

Exam3Fall2009thermoelectro Exam3Fall2009thermoelectro Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Thermodynamics can be used to determine all of the following EXCEPT

More information

It must be determined from experimental data, which is presented in table form.

It must be determined from experimental data, which is presented in table form. Unit 10 Kinetics The rate law for a reaction describes the dependence of the initial rate of a reaction on the concentrations of its reactants. It includes the Arrhenius constant, k, which takes into account

More information

BCIT Winter Chem Final Exam

BCIT Winter Chem Final Exam BCIT Winter 2017 Chem 0012 Final Exam Name: Attempt all questions in this exam. Read each question carefully and give a complete answer in the space provided. Part marks given for wrong answers with partially

More information

Investigation of the inhibition of copper corrosion in nitric acid solutions by organic sulphide compound

Investigation of the inhibition of copper corrosion in nitric acid solutions by organic sulphide compound Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 2012, 3 (3):1749-1756 ISSN: 0976-8610 CODEN (USA): AASRFC Investigation of the inhibition of copper corrosion in

More information

CHEM J-14 June 2014

CHEM J-14 June 2014 CHEM1101 2014-J-14 June 2014 An electrochemical cell consists of an Fe 2+ /Fe half cell with unknown [Fe 2+ ] and a Sn 2+ /Sn half-cell with [Sn 2+ ] = 1.10 M. The electromotive force (electrical potential)

More information

Adsorption Kinetics of 4-Amino-5-Phenyl-4H-1, 2, 4- Triazole-3-Thiol on Mild Steel Surface

Adsorption Kinetics of 4-Amino-5-Phenyl-4H-1, 2, 4- Triazole-3-Thiol on Mild Steel Surface Portugaliae Electrochimica Acta 2010, 28(4), 221-230 DOI: 10.4152/pea.201004221 PORTUGALIAE ELECTROCHIMICA ACTA ISSN 1647-1571 Adsorption Kinetics of 4-Amino-5-Phenyl-4H-1, 2, 4- Triazole-3-Thiol on Mild

More information

2/18/2013. Spontaneity, Entropy & Free Energy Chapter 16. The Dependence of Free Energy on Pressure Sample Exercises

2/18/2013. Spontaneity, Entropy & Free Energy Chapter 16. The Dependence of Free Energy on Pressure Sample Exercises Spontaneity, Entropy & Free Energy Chapter 16 16.7 The Dependence of Free Energy on Pressure Why is free energy dependent on pressure? Isn t H, enthalpy independent of pressure at constant pressure? No

More information

CHAPTER 12. Practice exercises

CHAPTER 12. Practice exercises CHAPTER 12 Practice exercises 12.1 2Al(s) + 3Cl 2 (g) 2AlCl 3 (aq) Aluminium is oxidised and is therefore the reducing agent. Chlorine is reduced and is therefore the oxidising agent. 12.3 First the oxidation

More information

CHAPTER 6 Modern Theory Principles LECTURER SAHEB M. MAHDI

CHAPTER 6 Modern Theory Principles LECTURER SAHEB M. MAHDI CHAPTER 6 Modern Theory Principles LECTURER SAHEB M. MAHDI Modern Theory principles in Corrosion and their applications :- Corrosion studies can be carried-out by two methods 1 Thermodynamics. or 2 By

More information

CHEMISTRY 123 FALL 2010 Midterm #2

CHEMISTRY 123 FALL 2010 Midterm #2 CHEMISTRY 123 FALL 2010 Midterm #2 Test Booklet A - For Question 1 Your name: Your Student ID number: Your TA: This packet MUST be turned in following the exam There are multiple versions of the exam.

More information

Chemistry 102 Chapter 19 OXIDATION-REDUCTION REACTIONS

Chemistry 102 Chapter 19 OXIDATION-REDUCTION REACTIONS OXIDATION-REDUCTION REACTIONS Some of the most important reaction in chemistry are oxidation-reduction (redox) reactions. In these reactions, electrons transfer from one reactant to the other. The rusting

More information

Sample Exercise 20.2 Practice Exercise 1 with feedback

Sample Exercise 20.2 Practice Exercise 1 with feedback Homework Chapter 20 Due: 11:59pm on Wednesday, November 16, 2016 You will receive no credit for items you complete after the assignment is due. Grading Policy Sample Exercise 20.2 Practice Exercise 1 with

More information

CHEM J-14 June 2014

CHEM J-14 June 2014 CHEM1101 2014-J-14 June 2014 An electrochemical cell consists of an Fe 2+ /Fe half cell with unknown [Fe 2+ ] and a Sn 2+ /Sn half-cell with [Sn 2+ ] = 1.10 M. The electromotive force (electrical potential)

More information

Copper and its alloys are good corrosion resistance in water

Copper and its alloys are good corrosion resistance in water INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL., NO. 5, AUGUST 0 Inhibition of Copper Corrosion by Acid Extracts of Gnetum africana and Musa acuminate Peel Nkuzinna Ogbonna, *

More information

Summer 2003 CHEMISTRY 115 FINAL (A) 1. The expression for the equilibrium constant depends on: A. reaction mechanism B. stoichiometry C.

Summer 2003 CHEMISTRY 115 FINAL (A) 1. The expression for the equilibrium constant depends on: A. reaction mechanism B. stoichiometry C. Summer 2003 CHEMISTRY 115 FINAL (A) 1. The expression for the equilibrium constant depends on: A. reaction mechanism B. stoichiometry C. activation barrier D. concentration of the catalyst 2. For the equilibrium

More information

Oxidation number. The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred.

Oxidation number. The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred. Oxidation number The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred. 1. Free elements (uncombined state) have an oxidation number of zero. Na,

More information

Reaction Kinetics Multiple Choice

Reaction Kinetics Multiple Choice Reaction Kinetics Multiple Choice January 1999 1. Consider the reaction: Ca (s) + 2H 2 O (l) Ca(OH) 2 (aq) + H 2 (g) At a certain temperature, 2.50 g Ca reacts completely in 30.0 seconds. The rate of consumption

More information

Chapter Nineteen. Electrochemistry

Chapter Nineteen. Electrochemistry Chapter Nineteen Electrochemistry 1 Electrochemistry The study of chemical reactions through electrical circuits. Monitor redox reactions by controlling electron transfer REDOX: Shorthand for REDuction-OXidation

More information

The Effect of Temperature on the Corrosion of Cu/HNO 3 in the Presence of Organic Inhibitor: Part-2

The Effect of Temperature on the Corrosion of Cu/HNO 3 in the Presence of Organic Inhibitor: Part-2 Int. J. Electrochem. Sci., 5 (2010) 1516-1526 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org The Effect of Temperature on the Corrosion of Cu/HNO 3 in the Presence of Organic Inhibitor:

More information

Inhibition of the Corrosion of Zinc in H 2 SO 4 by 9-deoxy-9aaza-9a-methyl-9a-homoerythromycin

Inhibition of the Corrosion of Zinc in H 2 SO 4 by 9-deoxy-9aaza-9a-methyl-9a-homoerythromycin Portugaliae Electrochimica Acta 2009, 27(1), 57-68 PORTUGALIAE ELECTROCHIMICA ACTA ISSN 1647-1571 Inhibition of the Corrosion of Zinc in H 2 SO 4 by 9-deoxy-9aaza-9a-methyl-9a-homoerythromycin A (Azithromycin)

More information

Molar heat capacity, C p J K 1 mol 1. o C

Molar heat capacity, C p J K 1 mol 1. o C CHEM1109 2009-N-2 November 2009 The thermite reaction is written below. Show that the heat released in this reaction is sufficient for the iron to be produced as molten metal. 2Al(s) + Fe 2 O 3 (s) Al

More information

Corrosion Inhibition Studies of Ecbolium Viride Extracts on Mild Steel in HCl

Corrosion Inhibition Studies of Ecbolium Viride Extracts on Mild Steel in HCl Corrosion Inhibition Studies of Ecbolium Viride Extracts on Mild Steel in HCl S. L. Ashok Kumar, P. Iniyavan, M. Saravana Kumar, A. Sreekanth* Department of Chemistry, Center of Excellence in Corrosion

More information

CHEMISTRY 112 FINAL EXAM June 24, 2013 FORM A 1. The following data was obtained for a reaction. The slope of the line is!2.8 " 10 3 K and the intercept is!0.44. What is the activation energy of the reaction?

More information

Chapter 13 - Chemical Kinetics II. Integrated Rate Laws Reaction Rates and Temperature

Chapter 13 - Chemical Kinetics II. Integrated Rate Laws Reaction Rates and Temperature Chapter 13 - Chemical Kinetics II Integrated Rate Laws Reaction Rates and Temperature Reaction Order - Graphical Picture A ->Products Integrated Rate Laws Zero Order Reactions Rate = k[a] 0 = k (constant

More information

Oxidation-reduction (redox) reactions

Oxidation-reduction (redox) reactions Oxidation-reduction (redox) reactions Reactions in which there are changes in oxidation state (oxidation number) between reactants and products 2 MnO 4- + 10 Br - + 16 H + 2 Mn 2+ + 5 Br 2 + 8 H 2 O One

More information

KOH : ; 30 wt. % KOH, %, Na 3 PO 4. ,. 40 g/ L Na 2 CO 3 25 g/ L Na 3 PO 4, 100 ma/ cm 2. 3 mol/ L H 2 SO 4.

KOH : ; 30 wt. % KOH, %, Na 3 PO 4. ,. 40 g/ L Na 2 CO 3 25 g/ L Na 3 PO 4, 100 ma/ cm 2. 3 mol/ L H 2 SO 4. 4 4 1998 11 EL ECTROCHEMISTR Y Vol 4 No 4 Nov 1998 KOH 3 3 3 ( 300071) 22 70 30 wt % KOH Ni i 0, Tafel b, 1 :40,40, Tafel 120 mv, Ea 79 88 kj/ mol, 40, 60 70 mv 55 32 kj/ mol (5 / 5 T) 1 lg i,, : ;,,,,

More information

Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics. Fall Semester Homework Problem Set Number 12 Solutions

Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics. Fall Semester Homework Problem Set Number 12 Solutions Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics Fall Semester 017 Homework Problem Set Number 1 Solutions 1. (Based on McQuarrie and Simon, 13-1.) Write balanced

More information

Inhibition of Zinc by Natural Oil in 0.5N Hydrochloric Acid and 0.5N Sulfuric Acid

Inhibition of Zinc by Natural Oil in 0.5N Hydrochloric Acid and 0.5N Sulfuric Acid Research Article Inhibition of Zinc by Natural Oil in Hydrochloric Acid and Sulfuric Acid Anurag Sharma 1 *, Anil Kumar Varshney 2, Sarita Varshney 2 Swami Keshvanand Institute of Technology, Management

More information

Exp.3 Determination of the Thermodynamic functions for the Borax Solution

Exp.3 Determination of the Thermodynamic functions for the Borax Solution Exp.3 Determination of the Thermodynamic functions for the Borax Solution Theory: The relationship between Gibb s energy (ΔG), Enthalpy (ΔH), Entropy (ΔS) and the equilibrium constant (K) for a chemical

More information

Chemistry 201: General Chemistry II - Lecture

Chemistry 201: General Chemistry II - Lecture Name Date Chemistry 201: General Chemistry II - Lecture Short-Answer Exam #3, 70 Points Total Form: A Read all directions carefully. Answers not conforming to the directions will be marked as incorrect!

More information

Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase

Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase changes Apply the second law of thermodynamics to chemical

More information

CHEM J-12 June 2013

CHEM J-12 June 2013 CHEM1101 2013-J-12 June 2013 In concentration cells no net chemical conversion occurs, however a measurable voltage is present between the two half-cells. Explain how the voltage is produced. 2 In concentration

More information

Bonus Final Exam 3. 1 Calculate the heat of reaction,δh 0 rxn, for the following reaction as written at 298 K: g 2H 2 CH 4. g CF 4.

Bonus Final Exam 3. 1 Calculate the heat of reaction,δh 0 rxn, for the following reaction as written at 298 K: g 2H 2 CH 4. g CF 4. Bonus Final Exam 3 1 Calculate the heat of reaction,δh rxn, for the following reaction as written at 298 K: CH 4 2F 2 CF 4 2H 2 substance CH 4 CF 4 ΔH f kj/mol 75 68 (A) ΔH rxn 23 kj (B) ΔH rxn 914 kj

More information

Electrochemistry & Redox. Voltaic Cells. Electrochemical Cells

Electrochemistry & Redox. Voltaic Cells. Electrochemical Cells Electrochemistry & Redox An oxidation-reduction (redox) reaction involves the transfer of electrons from the reducing agent to the oxidising agent. OXIDATION - is the LOSS of electrons REDUCTION - is the

More information

STUDYING CORROSION INHIBITORY EFFECT OF ALOE VERA JUICE ON STAINLESS STEEL USED FOR ORANGE JUICE STORAGE

STUDYING CORROSION INHIBITORY EFFECT OF ALOE VERA JUICE ON STAINLESS STEEL USED FOR ORANGE JUICE STORAGE STUDYING CORROSION INHIBITORY EFFECT OF ALOE VERA JUICE ON STAINLESS STEEL USED FOR ORANGE JUICE STORAGE *Rajesh Kumar Singh *Department of Chemistry, Jagdam College, J P University, Chapra, India, 841301

More information

Chem 209 Final Booklet Solutions

Chem 209 Final Booklet Solutions Chem09 Final Booklet Chem 09 Final Booklet Solutions 1 of 38 Solutions to Equilibrium Practice Problems Chem09 Final Booklet Problem 3. Solution: PO 4 10 eq The expression for K 3 5 P O 4 eq eq PO 4 10

More information

Chapter 17. Electrochemistry

Chapter 17. Electrochemistry Chapter 17 Electrochemistry Contents Galvanic cells Standard reduction potentials Cell potential, electrical work, and free energy Dependence of cell potential on concentration Batteries Corrosion Electrolysis

More information

AP CHEMISTRY CHAPTER 12 KINETICS

AP CHEMISTRY CHAPTER 12 KINETICS AP CHEMISTRY CHAPTER 12 KINETICS Thermodynamics tells us if a reaction can occur. Kinetics tells us how quickly the reaction occurs. Some reactions that are thermodynamically feasible are kinetically so

More information

Simulation of MEA in PEMFC and Interface of Nanometer-Sized Electrodes

Simulation of MEA in PEMFC and Interface of Nanometer-Sized Electrodes Presented at the COMSOL Conference 2010 China Simulation of MEA in PEMFC and Interface of Nanometer-Sized Electrodes Zhang Qianfan, Liu Yuwen, Chen Shengli * College of Chemistry and Molecular Science,

More information

Corrosion Inhibition Efficiency of 3-Hydroxy-2- Methylquinazoline-4-one on Mild Steel in 1 M H 2 SO 4 and 1 M HCl Acid at Different Temperatures

Corrosion Inhibition Efficiency of 3-Hydroxy-2- Methylquinazoline-4-one on Mild Steel in 1 M H 2 SO 4 and 1 M HCl Acid at Different Temperatures Portugaliae Electrochimica Acta 26 (2008) 221-233 PORTUGALIAE ELECTROCHIMICA ACTA Corrosion Inhibition Efficiency of 3-Hydroxy-2- Methylquinazoline-4-one on Mild Steel in 1 M H 2 SO 4 and 1 M HCl Acid

More information

Chapter 18. Electrochemistry

Chapter 18. Electrochemistry Chapter 18 Electrochemistry Section 17.1 Spontaneous Processes and Entropy Section 17.1 http://www.bozemanscience.com/ap-chemistry/ Spontaneous Processes and Entropy Section 17.1 Spontaneous Processes

More information

Polyethylene Glycol Compounds As Corrosion Inhibitors for Aluminium in 0.5M Hydrochloric Acid Solutions

Polyethylene Glycol Compounds As Corrosion Inhibitors for Aluminium in 0.5M Hydrochloric Acid Solutions Polyethylene Glycol Compounds As Corrosion Inhibitors for Aluminium in 0.5M Hydrochloric Acid Solutions M. Abdallah (1, 3) H.E. Megahed (1), M. A. Radwan (2) E. Abdfattah (2) 1 Chemistry Department, Faculty

More information

4. Hydrogen-oxygen fuel cells are utilized in some cities to produce electricity. The fuel cell reaction and the standard cell potential are:

4. Hydrogen-oxygen fuel cells are utilized in some cities to produce electricity. The fuel cell reaction and the standard cell potential are: Hour Exam I Page 1 1. Consider the following reactions for which the sign of the enthalpy change is given. Which of the reactions can never be spontaneous at any temperature? a. 2 H202(l) -> 2 H20(l) +

More information

Question Bank Physical Chemistry & Material of Construction (CH-4-G) 1.Thermodynamics

Question Bank Physical Chemistry & Material of Construction (CH-4-G) 1.Thermodynamics Question Bank Physical Chemistry & Material of Construction (CH-4-G) 1.Thermodynamics 1. Define the following terms and give its example I. System II. Surrounding III. Boundries IV. Homogeneous system

More information

Kinetics of the Corrosion of Mild Steel in Petroleum-Water Mixture Using Ethyl Ester of Lard as Inhibitor

Kinetics of the Corrosion of Mild Steel in Petroleum-Water Mixture Using Ethyl Ester of Lard as Inhibitor Kinetics of the Corrosion of Mild Steel in Petroleum-Water Mixture Using Ethyl Ester of Lard as Inhibitor Jerome Anguel Undiandeye, Ternenge Joseph Chior, Abubakar Mohammed and Julius Chigozie Offurum*

More information

Chem 152 Final. You will have 1 hour and 50 minutes. Do not begin the exam until you are instructed to start. Best of luck.

Chem 152 Final. You will have 1 hour and 50 minutes. Do not begin the exam until you are instructed to start. Best of luck. Chem 152 Final Section: Name: You will have 1 hour and 50 minutes. Do not begin the exam until you are instructed to start. Best of luck. Question 1 /80 Question 2 /20 Question 3 /20 Question 4 /20 Question

More information

INFLUENCE OF CASSIA ALATA LEAVES ON ALUMINIUM IN 1.0N HYDROCHLORIC ACID

INFLUENCE OF CASSIA ALATA LEAVES ON ALUMINIUM IN 1.0N HYDROCHLORIC ACID INFLUENCE OF CASSIA ALATA LEAVES ON ALUMINIUM IN 1.0N HYDROCHLORIC ACID Authors & Affiliation: A. Petchiammal, S. Selvaraj. Post graduate and Research Department of chemistry, Sri Paramakalyani College,

More information

CHEMISTRY 13 Electrochemistry Supplementary Problems

CHEMISTRY 13 Electrochemistry Supplementary Problems 1. When the redox equation CHEMISTRY 13 Electrochemistry Supplementary Problems MnO 4 (aq) + H + (aq) + H 3 AsO 3 (aq) Mn 2+ (aq) + H 3 AsO 4 (aq) + H 2 O(l) is properly balanced, the coefficients will

More information

F A 7/1/2014. No, I Do Not Drop a Grade!!!!!!! THE IDEAL GAS EQUATION PV = n R T and its APPLICATIONS. PRESSURE (force per unit area) grt VP

F A 7/1/2014. No, I Do Not Drop a Grade!!!!!!! THE IDEAL GAS EQUATION PV = n R T and its APPLICATIONS. PRESSURE (force per unit area) grt VP 7/1/014 Chem 131 Final has 115 points (similar to others) 1. 50 multiple choice questions ( pts each) 30 questions from old material {Chapters 10 14 0 questions from new material {Chap 15 17 & 0. 15 nomenclature

More information

Chemical Kinetics -- Chapter 14

Chemical Kinetics -- Chapter 14 Chemical Kinetics -- Chapter 14 1. Factors that Affect Reaction Rate (a) Nature of the reactants: molecular structure, bond polarity, physical state, etc. heterogeneous reaction: homogeneous reaction:

More information

Lecture 30 Chapter 19, Sections 3-4 Galvanic Cells Electrochemical Potential

Lecture 30 Chapter 19, Sections 3-4 Galvanic Cells Electrochemical Potential Lecture 30 Chapter 19, Sections 3-4 Galvanic Cells Electrochemical Potential Galvanic Cells Defined Standard Hydrogen Electrode Standard Reduction Potentials Redox Balancing One More Example OK, then here

More information

Inhibition Effect of Cajanus Cajan Leaves Extract on the Corrosion of Mild Steel in 1 M HCl Solution

Inhibition Effect of Cajanus Cajan Leaves Extract on the Corrosion of Mild Steel in 1 M HCl Solution Inhibition Effect of Cajanus Cajan Leaves Extract on the Corrosion of Mild Steel in 1 M HCl Solution 1 Dakeshwar Kumar Verma* 2 Fahmida Khan 3 Rajesh Kumar Sahu 3 Hetram Suryavanshi 1Department of Chemistry,

More information

CHEM 10123/10125, Exam 3

CHEM 10123/10125, Exam 3 CHEM 10123/10125, Exam 3 April 4, 2012 (50 minutes) Name (please print) Please box your answers, and remember that significant figures, phases (for chemical equations), and units do count! 1. (18 points)

More information

Homework 12 (Key) First, separate into oxidation and reduction half reactions

Homework 12 (Key) First, separate into oxidation and reduction half reactions Homework 12 (Key) 1. Balance the following oxidation/reduction reactions under acidic conditions. a. MnO 4 - + I - I 2 + Mn 2+ First, separate into oxidation and reduction half reactions Oxidation half

More information

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chapter 20. Electrochemistry 20.1 Oxidation-Reduction Reactions Oxidation-reduction reactions = chemical reactions in which the oxidation state of one or more substance changes (redox reactions). Recall:

More information

FUEL CELLS in energy technology (4)

FUEL CELLS in energy technology (4) Fuel Cells 1 FUEL CELLS in energy technology (4) Werner Schindler Department of Physics Nonequilibrium Chemical Physics TU Munich summer term 213 Fuel Cells 2 Nernst equation and its application to fuel

More information

Topics in the June 2006 Exam Paper for CHEM1901

Topics in the June 2006 Exam Paper for CHEM1901 June 006 Topics in the June 006 Exam Paper for CHEM1901 Click on the links for resources on each topic. 006-J-: 006-J-3: 006-J-4: 006-J-5: 006-J-6: 006-J-7: 006-J-8: 006-J-9: 006-J-10: 006-J-11: 006-J-1:

More information

Electrochemistry. Chapter 18. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Electrochemistry. Chapter 18. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Electrochemistry Chapter 18 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Electrochemical processes are oxidation-reduction reactions in which: the energy

More information

Laboratoire de Catalyse et de Corrosion des Matériaux (LCCM), Faculté des Sciences, Université Chouaib Doukkali, B.P. 20, M El Jadida, Morocco

Laboratoire de Catalyse et de Corrosion des Matériaux (LCCM), Faculté des Sciences, Université Chouaib Doukkali, B.P. 20, M El Jadida, Morocco Thermodynamic characterization of metal dissolution and inhibitor orption processes in mild steel / 3,5-bis(3,4-dimethoxyphenyl)-4-amino- 1,2,4-triazole / hydrochloric acid system M. Tourabi a, K. Nohair

More information

Supplementary Material. Improving cycling performance of LiMn 2 O 4 battery by. adding an ester functionalized ionic liquid to electrolyte

Supplementary Material. Improving cycling performance of LiMn 2 O 4 battery by. adding an ester functionalized ionic liquid to electrolyte 10.1071/CH15154_AC CSIRO 2015 Australian Journal of Chemistry 2015, 68 (12), 1911-1917 Supplementary Material Improving cycling performance of LiMn 2 O 4 battery by adding an ester functionalized ionic

More information

Doctor of Philosophy

Doctor of Philosophy STUDIES ON THE CORROSION INHIBITION BEHAVIOUR OF SOME AMINO ACID SURFACTANT ADDITIVES ABSTRACT SUBMITTED FOR THE AWARD OF THE DEGREE OF Doctor of Philosophy IN APPLIED CHEMISTRY By MOSARRAT PARVEEN UNDER

More information

Advanced Placement. Chemistry. Integrated Rates

Advanced Placement. Chemistry. Integrated Rates Advanced Placement Chemistry Integrated Rates 204 47.90 9.22 78.49 (26) 50.94 92.9 80.95 (262) 52.00 93.94 83.85 (263) 54.938 (98) 86.2 (262) 55.85 0. 90.2 (265) 58.93 02.9 92.2 (266) H Li Na K Rb Cs Fr

More information

Part One: Introduction. a. Chemical reactions produced by electric current. (electrolysis)

Part One: Introduction. a. Chemical reactions produced by electric current. (electrolysis) CHAPTER 19: ELECTROCHEMISTRY Part One: Introduction A. Terminology. 1. Electrochemistry deals with: a. Chemical reactions produced by electric current. (electrolysis) b. Production of electric current

More information

Chemistry 12 AUGUST Course Code = CH. Student Instructions

Chemistry 12 AUGUST Course Code = CH. Student Instructions MINISTRY USE ONLY MINISTRY USE ONLY Place Personal Education Number (PEN) here. Place Personal Education Number (PEN) here. MINISTRY USE ONLY Chemistry 12 2001 Ministry of Education AUGUST 2001 Course

More information

INDIVIDUAL EXAM INDIVIDUAL WUCT 2018

INDIVIDUAL EXAM INDIVIDUAL WUCT 2018 INDIVIDUAL EXAM WUCT 2018 60 minutes are allotted for the individual round. Questions on the individual exam will consist of multiple parts that must each be answered with numerical results or short answers.

More information

CORROSION INHIBITION OF ZINC IN HYDROCHLORIC ACID MEDIUM USING UREA INHIBITOR

CORROSION INHIBITION OF ZINC IN HYDROCHLORIC ACID MEDIUM USING UREA INHIBITOR Journal of Al-Nahrain University Vol.0(2), December, 2007, pp.3-38 Science CORROSION INHIBITION OF ZINC IN HYDROCHLORIC ACID MEDIUM USING UREA INHIBITOR Abstract Khulood AL-Saadie, Nadia Abdul Karime and

More information

chemical reactions two basic questions: 1) What is the driving force behind a chemical reaction? 2) How fast does a chemical reaction proceed?

chemical reactions two basic questions: 1) What is the driving force behind a chemical reaction? 2) How fast does a chemical reaction proceed? chemical reactions two basic questions: + + 1) What is the driving force behind a chemical reaction? 2) How fast does a chemical reaction proceed? Chemical thermodynamics - What drives a chemical reaction?

More information

BIOCHEMISTRY. František Vácha. JKU, Linz.

BIOCHEMISTRY. František Vácha. JKU, Linz. BIOCHEMISTRY František Vácha http://www.prf.jcu.cz/~vacha/ JKU, Linz Recommended reading: D.L. Nelson, M.M. Cox Lehninger Principles of Biochemistry D.J. Voet, J.G. Voet, C.W. Pratt Principles of Biochemistry

More information

Yes. Yes. Yes. Experimental data: the concentration of a reactant or product measured as a function of time. Graph of conc. vs.

Yes. Yes. Yes. Experimental data: the concentration of a reactant or product measured as a function of time. Graph of conc. vs. Experimental data: the concentration of a reactant or product measured as a function of time Graph of conc. vs. time Is graph a straigh t line? No Graph of ln[conc.] vs. time Yes System is zero order Is

More information

Oxidation-Reduction (Redox)

Oxidation-Reduction (Redox) Oxidation-Reduction (Redox) Electrochemistry involves the study of the conversions between chemical and electrical energy. Voltaic (galvanic) cells use chemical reactions to produce an electric current.

More information

Chemistry Chapter 16. Reaction Energy

Chemistry Chapter 16. Reaction Energy Chemistry Reaction Energy Section 16.1.I Thermochemistry Objectives Define temperature and state the units in which it is measured. Define heat and state its units. Perform specific-heat calculations.

More information

Pelagia Research Library

Pelagia Research Library Der Chemica Sinica, 2012, 3(5):1239-1244 ISSN: 0976-8505 CODEN (USA) CSHIA5 Evaluation of corrosion inhibition of copper in nitric acid solutions using Organic sulphide compound A. Jamal Abdul Nasser 1

More information