Applications of Radical Reactions in Asymmetric Synthesis. Brandon Meyers Michigan State University Department of Chemistry November 19, 2008

Size: px
Start display at page:

Download "Applications of Radical Reactions in Asymmetric Synthesis. Brandon Meyers Michigan State University Department of Chemistry November 19, 2008"

Transcription

1 Applications of adical eactions in Asymmetric Synthesis Brandon Meyers Michigan State University Department of Chemistry ovember 19, 2008

2 utline Introduction Importance of radical reactions Challenges of stereochemistry Methods employed to achieve asymmetric control Chiral Auxiliary Chiral Acid rganocatalysis

3 General Bond Forming Conditions Acidic (Cationic) - F 3 B! F 3 B! n Basic (Anionic) a I!! I I a eutral (adical) 3 C Br 3 C Br Clayden, J.; Greeves,.; Warren, S.; Wothers, P. rganic Chemistry. xford: University Press. 2001

4 eversal of eactivity eterolytic Cleavage I electrophilic carbocation I omolytic Cleavage I nucleophilic radical LDA LDA! nucleophilic carbanion Bu 3 Sn AIB Bu 3 Sn!Br electrophilic radical Br Giese, B.; Tetrahedron, 1985, 41, 4025

5 adicals Stabilized by Electron Donating Groups ucleophilic adical adical SM Energy nonbonding lone pairs Parsons, A.F. An Introduction to Free adical Chemistry, xford: Blackwell Science, 2000, p. 40

6 adicals Stabilized by Electron Withdrawing Groups adical SM!" Energy Electrophilic adical nonbonding lone pairs!! Parsons, A.F. An Introduction to Free adical Chemistry, xford: Blackwell Science, 2000, p. 40

7 Early Problems of Stereochemistry Synthesis of Sativene & Capocamphene Br Bu 3 Sn C 3 tbu, h! benzene X X = (37%) X = C 2 - Sativene X X = (25%) X = C 2 - Capocamphene Bakuzis, P.; Campos,..S.; Bakuzis, M.L.F. J. rg. Chem., 1976, 41, 3261

8 Methods for Asymmetric Control Chiral Auxiliary, X C X C 1 X C * 1 Chiral Acid, A C A C 1 A C 1 * rganocatalysis 1!LG * 1

9 Sultam & xazolidinone Auxiliaries S ' M * * ' Dipole-dipole control Lewis acid chelation

10 Dipole-Dipole Chiral Auxiliary Me glyoxylic oxime ether Bn S 1.0 eq. Me 3 Al Cl(C 2 ) 2 Cl reflux 0.67 eq. (1)-(+)-2,10-camphorsultam Bn S 2 90% yield S 2 Bn 5.0 eq. -I, C 2 Cl eq. Bu 3 Sn 2.0 eq. BF 3 Et eq. Et 3 B, -78 C S 2 Bn aito, T; Miyabe,.; Ushiro, C.; Ueda, M.; Yamakawa, K. J. rg. Chem., 2000, 65,

11 Mechanism Bu 3 Sn I! Bu 3 Sn!I S Bn S Bn S Bn SnBu 3 S Bn

12 Substrate Scope S 2 Bn 5.0 eq. -I, C 2 Cl eq. Bu 3 Sn 2.0 eq. BF 3 Et eq. Et 3 B, -78 C S 2 1 Bn Entry I Product Isolated Yield (%) dr of 1 1 i-pr-i 1a : 4 2 Et-I 1b : 5 3 t-bu-i 1c 83 >98 : 2 4 i-bu-i 1d : 3 5 c-ex-i 1e : 4 aito, T; Miyabe,.; Ushiro, C.; Ueda, M.; Yamakawa, K. J. rg. Chem., 2000, 65,

13 Preferred Site of Addition ote: = S Bn anti, s-cis S Bn S Bn anti, s-trans syn, s-cis syn, s-trans Bn S aito, T; Miyabe,.; Ushiro, C.; Ueda, M.; Yamakawa, K. J. rg. Chem., 2000, 65,

14 eduction of xime Ether and emoval of Chiral Auxiliary Bn 0.7 eq. Mo(C) 6 S 2 2, MeC, reflux S 2 2 = i-pr, 88% yield S Li-TF (1:4) 2 = i-pr, 88% yield Synthesis of D-Valine 55% overall yield, 4 steps aito, T; Miyabe,.; Ushiro, C.; Ueda, M.; Yamakawa, K. J. rg. Chem., 2000, 65,

15 Lewis Acid Chelation to Chiral Auxiliary C 2 Et 1. (CCl) 2, TF 2. C 2 Et n-buli, -78 C 87% yield, two steps C 2 Et i-pr!i (10 eq) Sm(Tf) 3 (1.0 eq) Bu 3 Sn (6.0 eq) C 2 Et Et 3 B (3.0 eq), 2 C 2 Cl 2 /TF (4:1), -78 C 95% yield dr = 29:1 Sibi, M.P.; Liu, P.; Ji, J.; ajra, S.; Chen, J.-X. J. rg. Chem., 2002, 67,

16 Stereoselective Model Activates!"carbon to imide carbonyl Tf Tf Sm Tf i-pr C 2 Et Blocks Si-face i-pr Sibi, M.P.; Liu, P.; Ji, J.; ajra, S.; Chen, J.-X. J. rg. Chem., 2002, 67,

17 Synthetic Application: ( )-Enterolactone Previous Synthesis: Chenevert,.; et al. 7 steps, 35% yield Key Step: Enzyme-catalyzed esterification Chenevert,.; Mohammadi-Ziarani, G.; Caron, D.; Dasser, M.; Can. J. Chem., 1999, 77, 223

18 Lewis Acid Chelation to Chiral Auxiliary Me C 2 Et Br C 3 (10 eq) Sm(Tf) 3 (1.0 eq) Bu 3 Sn (6.0 eq) Et 3 B (3.0 eq), 2 C 2 Cl 2 /TF (4:1), -78 C C 2 Et 71% yield BEt 3 2 Et 2 B Et Et C 2 Et 17% yield Sibi, M.P.; Liu, P.; Ji, J.; ajra, S.; Chen, J.-X. J. rg. Chem., 2002, 67,

19 Total Synthesis of ( )-Enterolactone Me Me Me C 2 Et 3-MeC6 4 -C 2 I amds, TF -78 C to -54 C C 2 Et Li 2 2 C2 Et 1 Me 50% yield 88% yield Me eq. B 3 /TF -15 C 2. PPTS, reflux Me 4.0 eq. BBr 3 0 C to -18 C Me 78% yield, two steps 88% yield Sibi, M.P.; Liu, P.; Ji, J.; ajra, S.; Chen, J.-X. J. rg. Chem., 2002, 67,

20 Methods for Asymmetric Control Chiral Auxiliary, X C X C 1 X C * 1 Chiral Acid, A C A C 1 A C 1 * rganocatalysis 1!LG * 1

21 Types of Chiral Acids Lewis Acids MgI 2 MgBr 2 Brønsted Acid C 3 2 P 2 Quinine, QP

22 Chiral Lewis Acid Chelation S 2 Bn 5.0 eq. -I, C 2 Cl eq. Bu 3 Sn 2.0 eq. BF 3 Et eq. Et 3 B, -78 C S 2 Bn = i-pr 80% yield, dr = 96:4 Me Bn MgBr 2 i-pr-i, Bu 3 Sn BEt 3, -78 C Me Bn 97% yield, 52% ee aito, T; Miyabe,.; Ushiro, C.; Ueda, M.; Yamakawa, K. J. rg. Chem., 2000, 65,

23 Model for Selectivity Mg Bn Me e-face open aito, T; Miyabe,.; Ushiro, C.; Ueda, M.; Yamakawa, K. J. rg. Chem., 2000, 65,

24 Chiral Brønsted Acids Quaternary Ammonium Salts of ypophosphorous Acid C 3 C 3 2 P 2 2 P 2 Quinine, QP Quinidine, QDP Cho, D.K.; Jang, D.. Chem. Commun., 2006,

25 Quinine esults Bn 2 eq. QP, 5 eq. -I 0.5 eq. BEt 3, 2 C 2 Cl 2 / 2 (1:1) 4 h, rt Bn Et Bn 1 2 2a Entry I Product Isolated Yield (%) 2a Yield (%) er of 2 : S C 3 1 i-pr-i 2b : 79 2 c-ex-i 2c : 79 3 t-bu-i 2d : > Ad-I 2e : >99 5 n-ct-i 2f : 60 2 P 2 Quinine, QP Cho, D.K.; Jang, D.. Chem. Commun., 2006,

26 Quinidine esults Bn 2 eq. QDP, 5 eq. -I 0.5 eq. BEt 3, 2 C 2 Cl 2 / 2 (1:1) 4 h, rt Bn Et Bn 1 2 2a Entry I Product Isolated Yield (%) 2a Yield (%) er of 2 : S 1 i-pr-i 2b >62 : 38 2 c-ex-i 2c 82 9 >72 : 28 3 t-bu-i 2d >99 : Ad-I 2e >99 : 1 5 n-ct-i 2f >58 : 42 C 3 Quinidine, QDP 2 P 2 Cho, D.K.; Jang, D.. Chem. Commun., 2006,

27 Model for Enantioselectivity Quinine versus Quinidine C 3 C 3 2 P 2 2 P 2 Si-face open e-face open Cho, D.K.; Jang, D.. Chem. Commun., 2006,

28 Conjugate adical Addition Enantioselective addition to α'-hydroxy enone I 0.3 eq. Chiral L.A. 2.0 eq. Bu 3 Sn 3.0 eq. Et 3 B/ 2 C 2 Cl 2, C, 24 h 66% yield, 75% ee Mg(Tf 2 ) 2 Chiral Lewis Acid Sibi, M.P.; Lee, S.; Lim, C.J.; Kim, S.; Subramaniam,.; Zimmerman, J. rg. Lett., 2006, 8,

29 Scope of α'-ydroxy Enone and Alkyl alide Substrates eq. 2 -I 0.3 eq. Chiral L.A. 2.0 eq. Bu 3 Sn 3.0 eq. Et 3 B/ 2 C 2 Cl 2, C, 24 h = C 2 C 2 2 = 1a-d 2a-d Entry 1 2 Product Isolated Yield (%) ee (%) 1 C 2 C 2 t-bu 1a C 2 C 2 i-pr 1b C 2 C 2 n-pr 1c C 2 C 2 Et 1d t-bu 2a i-pr 2b n-pr 2c Et 2d Mg(Tf 2 ) 2 Chiral Lewis Acid Sibi, M.P.; Lee, S.; Lim, C.J.; Kim, S.; Subramaniam,.; Zimmerman, J. rg. Lett., 2006, 8,

30 Model for Enantioselectivity 2 Mg X X 1 e-face open X=Tf 2 Sibi, M.P.; Lee, S.; Lim, C.J.; Kim, S.; Subramaniam,.; Zimmerman, J. rg. Lett., 2006, 8,

31 Synthetic Application: (+)-icciocarpin A Previous Synthesis: Krishe, M.; Agapiou, K. 6 steps, 14% yield Key step: Michael cycloisomerization (+)-icciocarpin A Agapiou, K.; Krishe, M. rg. Lett., 2003, 5,

32 adical Conjugate Addition MgI 2 Cl Bn Bn 5.0 eq. Cl Br 5.0 eq. Bu 3 Sn 5.0 eq. Et 3 B / 2, -78 C 84% yield, 97% ee Mg Bn icciocarpin A Sibi, M.P.; e, L. rg. Lett., 2004, 6,

33 Preparation of Aldehyde Intermediate Cl Sm(Tf) 3 C 3 Cl Bn 95% Me Bn ai Acetone I Me LiMDS -78 C to rt Me 98% Bn 97% Bn 1. Pd() 2 / 2, ex/etac, -10 C 2. TEMP, KBr, acl, std. ac 3, 0 C 76% over two steps C Me icciocarpin A Sibi, M.P.; e, L. rg. Lett., 2004, 6,

34 Synthesis of icciocarpin A Me (i-pr) 3 Ti 2.0 eq. C Solvent, -78 C 2.0 eq. s-buli 85% icciocarpin A 41% overall yield 5.7 : 1 Sibi, M.P.; e, L. rg. Lett., 2004, 6,

35 Methods for Asymmetric Control Chiral Auxiliary, X C X C 1 X C * 1 Chiral Acid, A C A C 1 A C 1 * rganocatalysis 1!LG * 1

36 MacMillan Enamine Chemistry Me 1 2 Me 1 2 SET Me 1 2 Me 1 2 Me 1 2 TMS * Beeson, T.D.; Mastracchio, A.; ong, J.B.; Ashton, K.; MacMillan, D.W.C. Science, 2007, 316,

37 Previous rganocatalytic esearch Iminium & Enamine rganocatalysis Enamine Activation M catalysis Iminium Activation LUM catalysis e - aldehyde amine catalyst These two modes of catalyst activation have provided more than 60 asymmetric metric methodologies over the past 7 years. - Dr. David MacMillan Beeson, T.D.; Mastracchio, A.; ong, J.B.; Ashton, K.; MacMillan, D.W.C. Science, 2007, 316,

38 ypothesis - SM Activation Et SET Butanal IP = 9.8 ev Pyrrolidine IP = 8.8 ev Et Enamine IP = 7.2 ev Et SM-activated Me Me Beeson, T.D.; Mastracchio, A.; ong, J.B.; Ashton, K.; MacMillan, D.W.C. Science, 2007, 316,

39 ypothesis - Enantioselectivity Density Functional Theory Model of Imidazolidinone Catalyst Me Beeson, T.D.; Mastracchio, A.; ong, J.B.; Ashton, K.; MacMillan, D.W.C. Science, 2007, 316,

40 Applications of SM-rganocatalysis α-substitution of Aldehydes Allylation Enolation * 1 xyamination Alkylation Vinylation

41 α-allylation of Aldehydes General eaction aldehyde 1 SiMe 3 CA (2.5 equiv.) ac 3, 24 h DME, -20 C 2.5 equiv. CF 3 C allylsilane 20 mol% cat. 1 product 1 CA = Ceric Ammonium itrate ( 4 ) 2 Ce( 3 ) 6 Beeson, T.D.; Mastracchio, A.; ong, J.B.; Ashton, K.; MacMillan, D.W.C. Science, 2007, 316,

42 rganocatalytic Allylation: Scope of Aldehyde Substrate 20 mol% SiMe 3 TFA CA (2.5 eq.), -20 C ac 3, DME, 24 h 81% yield, 91% ee 75% yield, 92% ee 72% yield, 87% ee Bz Boc 75% yield, 94% ee 72% yield, 95% ee 70% yield, 93% ee Beeson, T.D.; Mastracchio, A.; ong, J.B.; Ashton, K.; MacMillan, D.W.C. Science, 2007, 316,

43 rganocatalytic Allylation: Scope of Allylsilane Substrate 1 TFA 20 mol% C 6 13 SiMe 3 CA (2.5 eq.), -20 C ac 3, DME, 24 h 1 C 6 13 C 6 13 C 6 13 C 6 13 C 2 Et 88% yield, 91% ee 77% yield, 88% ee 87% yield, 90% ee 81% yield, 90% ee Beeson, T.D.; Mastracchio, A.; ong, J.B.; Ashton, K.; MacMillan, D.W.C. Science, 2007, 316,

44 α-eteroarylation & lefin Cyclization of Aldehydes C Boc 20 mol% TFA CA (2.5 eq.), -20 C ac 3, DME, 24 h Boc 85% yield 84% ee TFA 20 mol% CA (2.5 eq.), -10 C LiCl, TF, 24 h Cl 85% yield dr >8:1 95% ee Beeson, T.D.; Mastracchio, A.; ong, J.B.; Ashton, K.; MacMillan, D.W.C. Science, 2007, 316,

45 Mechanistic Investigation Bn t-bu radical Bn t-bu C 6 13 C 6 13 Me Me 2.5 equiv. cation Bn t-bu C 6 13 Me Beeson, T.D.; Mastracchio, A.; ong, J.B.; Ashton, K.; MacMillan, D.W.C. Science, 2007, 316,

46 Mechanistic Investigation Bn t-bu radical Bn t-bu C C 6 13 Me C 6 13 Me 65% yield Me Bn t-bu C 6 13 Me cation Bn t-bu C 6 13 Me C Me not observed Beeson, T.D.; Mastracchio, A.; ong, J.B.; Ashton, K.; MacMillan, D.W.C. Science, 2007, 316,

47 Applications of SM-rganocatalysis α-substitution of Aldehydes Allylation Enolation * 1 xyamination Alkylation Vinylation

48 α-xyamination of Aldehydes 4.0 eq. 1. Catalyst, Cp 2 FeBF 4 2. ab 4, rt Zn(Ac) 2 enantioselective 1,2-diol synthesis Sibi, M.P.; asegawa, M. J. Am. Chem. Soc., 2007, 129,

49 Catalyst ptimization 4.0 eq. 1. Catalyst, TF (1.0 M), rt 1.0 eq. Cp 2 FeBF eq. ab 4, rt TEMP BF Tf C 2 Entry Catalyst mol % time, h Isolated Yield (%) ee (%) 1 none Sibi, M.P.; asegawa, M. J. Am. Chem. Soc., 2007, 129,

50 Scope of Aldehydes 4.0 eq mol% 3, DMF (1.0 M) 0.1 eq. FeCl 3, 0.3 eq. a 2 temp., time eq. ab 4, rt TEMP Entry Temp, C time, h Isolated Yield (%) ee (%) 1 C 6 5 r.t C 6 5 C 2 r.t C 6 5 C 2 C 2 r.t Me-C 6 4 C 2 C 2 r.t C 6 4 C 2 C 2 r.t (C 3 ) 2 C r.t BF 4 3 Sibi, M.P.; asegawa, M. J. Am. Chem. Soc., 2007, 129,

51 Model for Enantioselectivity Si-face open Sibi, M.P.; asegawa, M. J. Am. Chem. Soc., 2007, 129,

52 Applications of SM-rganocatalysis α-substitution of Aldehydes Allylation Vinylation * 1 xyamination Alkylation Enolation * 1

53 α-enolation of Aldehydes TMS 1 1!-substituted 1,4-dicarbonyl Importance of eaction: ne step reaction to form umpolung polarity without going through anionic mechanism Jang,.Y.; ong, J.B.; MacMillan, D.W.C. J. Am. Chem. Soc., 2007, 129,

54 rganocatalytic Enolation: Scope of Aldehyde Substrate TMS 20 mol% CA (2 eq.), DTBP (2 eq.) acetone, 2, 24 h, -20 C TFA hexyl 85% yield 90% ee 7 92% yield 92% ee 74% yield 93% ee 77% yield 91% ee 2 71% yield 90% ee 84% yield 95% ee Bn Boc Jang,.Y.; ong, J.B.; MacMillan, D.W.C. J. Am. Chem. Soc., 2007, 129,

55 rganocatalytic Enolation: Scope of Enolsilane Substrate TFA hexyl Si mol% CA (2 eq.), DTBP (2 eq.) DME, 2, 24 h, -20 C hexyl 1 Enolsilane Product Enolsilane Product TMS hexyl 77% yield 92% ee TBS t-bu hexyl t-bu 74% yield 96% ee TMS hexyl 77% yield 92% ee TBS t-bu hexyl 55% yield 92% ee Jang,.Y.; ong, J.B.; MacMillan, D.W.C. J. Am. Chem. Soc., 2007, 129,

56 Applications of SM-rganocatalysis α-substitution of Aldehydes Allylation Vinylation * 1 xyamination Alkylation 1 Enolation * 1

57 rganocatalytic α-vinylation of Aldehydes KF 3 B 1 20 mol% TFA 1 aldehyde vinyl-bf 3 K enantioenriched!-vinyl aldehyde Importance of eaction: Form β,γ-unsaturated aldehydes without olefin transpostion Kim,.; MacMillan, D.W.C. J. Am. Chem. Soc., 2008, 130,

58 rganocatalytic Vinylation of Aldehydes KF 3 B 1 20 mol% TFA 1 aldehyde vinyl-bf 3 K enantioenriched!-vinyl aldehyde BF 3 K - 1 e - 1 KF 3 B 1 KF 3 B 1 Kim,.; MacMillan, D.W.C. J. Am. Chem. Soc., 2008, 130,

59 rganocatalytic Vinylation: Scope of Aldehyde Substrate KF 3 B 20 mol% CA (2.5 eq.), -50 C ac 3, DME, 2, 24 h TFA Me 72% yield 94% ee 4 78% yield 95% ee 82% yield 96% ee Et 79% yield 93% ee 2 78% yield 93% ee 76% yield 96% ee Bn Boc Kim,.; MacMillan, D.W.C. J. Am. Chem. Soc., 2008, 130,

60 rganocatalytic Vinylation: Scope of Vinyl Trifluoroborate Salt hexyl KF 3 B 1 1 =, Me 20 mol% CA (2.5 eq.), -50 C ac 3, DME, 2, 24 h TFA hexyl 1 hexyl 81% yield 94% ee hexyl Me 78% yield 95% ee hexyl 6 82% yield 89% ee Cl Me hexyl 77% yield 95% ee hexyl 61% yield 95% ee hexyl 84% yield 90% ee Kim,.; MacMillan, D.W.C. J. Am. Chem. Soc., 2008, 130,

61 Applications of SM-rganocatalysis α-substitution of Aldehydes Allylation Enolation * 1 xyamination Alkylation * * 1 1 * 2 Vinylation 1

62 α-alkylation of Aldehydes Br 1 2 rganocatalysis otoredox Catalysis 1 2 aldehyde racemic!-bromocarbonyl enantioenriched!-alkylated "-ketoaldehyde Me Tf Me Me Me Me u 2+ rganocatalyst otoredox Catalyst icewicz, D.A.; MacMillan, D.W.C. Science, 2008, 322, 77-80

63 Catalytic Cycles 1 ()C Br! Br SET u(bpy) 3 + (3) reductant t-bu 11 catalyst 6 t-bu aldehyde 7 u(bpy) 3 2+ photoredox catalyst 1 otoredox Catalytic Cycle SET rganocatalytic Cycle 8 t-bu photon source * u(bpy) 3 2+ (2) oxidant 1 9 t-bu C Si-face open icewicz, D.A.; MacMillan, D.W.C. Science, 2008, 322, 77-80

64 2.0 eq. rganocatalytic Alkylation: Scope of Aldehyde Substrate hexyl Et C 2 Et C 2 Et Br 93% yield 90% ee Et 20 mol% Et C 2 Et 4 C 2 Et Me TFA Me 86% yield 90% ee Me Me Me 0.5 mol% u(bpy) 3 Cl eq 2,6-lutidine, DMF fluorescent light, 23 C C 2 Et C 2 Et C 2 Et C 2 Et 83% yield 95% ee C 2 Et C 2 Et C 2 Et C 2 Et 92% yield 90% ee C 2 Et 63% yield 93% ee C 2 Et 66% yield 91% ee Boc icewicz, D.A.; MacMillan, D.W.C. Science, 2008, 322, 77-80

65 rganocatalytic Alkylation: Scope of α-bromocarbonyl Substrate ex 2.0 eq. Br 1 20 mol% Me TFA Me Me Me Me 0.5 mol% u(bpy) 3 Cl eq 2,6-lutidine, DMF fluorescent light, 23 C ex 1 ex 84% yield 96% ee ex C 2 CF 3 80% yield 92% ee ex C 2 Et C 2 Et 80% yield 88% ee 2 Me t-bu 2 C ex 84% yield 95% ee ex 87% yield 96% ee ex 70% yield 5:1 dr, 99% ee icewicz, D.A.; MacMillan, D.W.C. Science, 2008, 322, 77-80

66 To Sum Up Asymmetric control is difficult in radical synthesis Fast reactivity Planar structure Methods that have been used to control asymmetry Chiral Auxiliary Chiral Acid Chelation rganocatalysis

67 Acknowledgements Dr. Jetze Tepe Dr. Babak Borhan Group Membes: Brandon, Chris, Daljinder, Jason, Mike, ahman, Samantha, Thu, Amanda Arvind, Camille, Carmin

Asymmetric Radical Reactions. Zhen Liu 08/30/2018

Asymmetric Radical Reactions. Zhen Liu 08/30/2018 Asymmetric adical eactions Zhen Liu 08/30/2018 Contents Introduction eactions Using Chiral Auxiliary Chiral Lewis Acid-diated eactions Transition tal-catalyzed eactions eactions Using Chiral rganocatalysts

More information

"-Amino Acids: Function and Synthesis

-Amino Acids: Function and Synthesis "-Amino Acids: Function and Synthesis # Conformations of "-Peptides # Biological Significance # Asymmetric Synthesis Sean Brown MacMillan Group eting ovember 14, 2001 Lead eferences: Cheng,. P.; Gellman,

More information

Chiral Proton Catalysis in Organic Synthesis. Samantha M. Frawley Organic Seminar September 14 th, 2005

Chiral Proton Catalysis in Organic Synthesis. Samantha M. Frawley Organic Seminar September 14 th, 2005 Chiral Proton Catalysis in rganic Synthesis Samantha M. Frawley rganic Seminar September 14 th, 2005 Seminar utline Introduction Lewis Acid-assisted Chiral Brønsted Acids Enantioselective protonation for

More information

CEM 852 Final Exam. May 6, 2010

CEM 852 Final Exam. May 6, 2010 CEM 852 Final Exam May 6, 2010 This exam consists of 7 pages. Please make certain that your exam has all of the necessary pages. Total points possible for this exam are 150. n answering your questions,

More information

Homogeneous Catalysis - B. List

Homogeneous Catalysis - B. List omogeneous Catalysis - B. List 2.2.2 Research Area "rganocatalytic Asymmetric α-alkylation of Aldehydes" (B. List) Involved:. Vignola, A. Majeed Seayad bjective: α-alkylations of carbonyl compounds are

More information

Stereoselective reactions of enolates: auxiliaries

Stereoselective reactions of enolates: auxiliaries 1 Stereoselective reactions of enolates: auxiliaries Chiral auxiliaries are frequently used to allow diastereoselective enolate reactions Possibly the most extensively studied are the Evan s oxazolidinones

More information

Chiral Diol Promoted Boronates Addi3on Reac3ons. Lu Yan Morken Group Boston College

Chiral Diol Promoted Boronates Addi3on Reac3ons. Lu Yan Morken Group Boston College Chiral Diol Promoted Boronates Addi3on Reac3ons Lu Yan Morken Group Boston College Main Idea R R B or R R B Ar * exchange B * * or B Ar R 1 R 1 R 2 R 1 R 2 Products not nucleophilic enough nucleophilic

More information

Asymmetric Nucleophilic Catalysis

Asymmetric Nucleophilic Catalysis Asymmetric ucleophilic Catalysis Chiral catalyst X 2 Chiral catalyst X = alkyl, X 1 2 1 Vedejs, E.; Daugulis,. J. Am. Chem. Soc. 2003, 125, 4166-4173 Shaw, S. A.; Aleman,.; Vedejs, E. J. Am. Chem. Soc.

More information

Asymmetric Catalysis by Lewis Acids and Amines

Asymmetric Catalysis by Lewis Acids and Amines Asymmetric Catalysis by Lewis Acids and Amines Asymmetric Lewis acid catalysis - Chiral (bisooxazoline) copper (II) complexes - Monodentate Lewis acids: the formyl -bond Amine catalysed reactions Asymmetric

More information

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of X 2. Addition of and addition of Y X 3. Addition to allene and alkyne 4. Substitution at α-carbon 5. eactions via organoborane

More information

Asymmetric Alklylation of Enolates

Asymmetric Alklylation of Enolates Asymmetric Alklylation of Enolates M with material from A G Meyers http://faculty.chemistry.harvard.edu/myers/pages/chem-215-handouts 745 rganic Synthesis Spring 2015 Asymmetric Alkylation - eed to control

More information

Stereoselective reactions of enolates

Stereoselective reactions of enolates 1 Stereoselective reactions of enolates Chiral auxiliaries are frequently used to allow diastereoselective enolate reactions Possibly the most extensively studied are the Evan s oxazolidinones These are

More information

Radical Reactions. Radical Stability!!! bond dissociation energies X Y X + Y. bond BDE (kcal/mol) bond BDE (kcal/mol) CH 3 CH 3 CH 2 95 O H R 2 C H

Radical Reactions. Radical Stability!!! bond dissociation energies X Y X + Y. bond BDE (kcal/mol) bond BDE (kcal/mol) CH 3 CH 3 CH 2 95 O H R 2 C H adical eactions adical Stability!!! bond dissociation energies X Y X Y bond BDE (kcal/mol) bond BDE (kcal/mol) C 3 104 108 C 3 C 2 98 110 95 2 C 102 (-) 93 (C-) 92 C 3 C 3 36 89 85 C 3 C 3 80 adical eactions

More information

CHT402 Recent Advances in Homogeneous Catalysis Organocatalysis Workshop

CHT402 Recent Advances in Homogeneous Catalysis Organocatalysis Workshop CT402 Recent Advances in omogeneous Catalysis rganocatalysis Workshop Dr Louis C. Morrill School of Chemistry, Cardiff University Main Building, Rm 1.47B MorrillLC@cardiff.ac.uk For further information

More information

Conjugate (1,4-) addition

Conjugate (1,4-) addition 1 Conjugate (1,4-) addition uc R 1 R 2 uc R 1 R 2 uc R 1 E R 2 E ucleophilic attack on C=C bond normally requires electron deficient alkene Know as 1,4-addition or conjugate addition As enolate formed

More information

Electrophilic Carbenes

Electrophilic Carbenes Electrophilic Carbenes The reaction of so-called stabilized diazo compounds with late transition metals produces a metal carbene intermediate that is electrophilic. The most common catalysts are Cu(I)

More information

Chiral Brønsted Acid Catalysis

Chiral Brønsted Acid Catalysis Chiral Brønsted Acid Catalysis Aryl Aryl Aryl Aryl S CF 3 2 P Fe CF 3 CF 3 2 Jack Liu ov. 16, 2004 CF 3 Introduction Chiral Brønsted acid catalysis in nature: enzymes and peptides Chiral Brønsted acid

More information

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02 Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02 Xiao, W.-J. et al. J. Am. Chem. Soc. 2016, 138, 8360.

More information

Zr-Catalyzed Carbometallation

Zr-Catalyzed Carbometallation -Catalyzed Carbometallation C C C C ML n C C ML n ML n C C C C ML n ML n C C ML n Wipf Group esearch Topic Seminar Juan Arredondo November 13, 2004 Juan Arredondo @ Wipf Group 1 11/14/2004 Carbometallation

More information

Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines

Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines Current Literature - May 12, 2007 Direct, Catalytic ydroaminoalkylation of Unactivated lefins with -Alkyl ylamines ' '' Ta[ 2 ] 5 (4-8 mol%), 160-165 o C 24-67h 66-95% ' '' S. B. erzon and J. F. artwig,

More information

Denmark Group Meeting. & Electrophilic rearrangement of amides

Denmark Group Meeting. & Electrophilic rearrangement of amides Denmark Group Meeting Palladium catalyzed Dearomatizationeaction & Electrophilic rearrangement of amides 11 th Bo Peng th Feb. 2014 1 https://maps.google.com 2 Palladium catalyzed Dearomatization eaction

More information

Highlights of Schmidt Reaction in the Last Ten Years

Highlights of Schmidt Reaction in the Last Ten Years ighlights of Schmidt eaction in the Last Ten Years Dendrobates histrionicus Jack Liu ov. 18, 2003 Introduction Classical Schmidt reaction of aldehydes and carboxylic acids Classical Schmidt reaction of

More information

Direct Organocatalytic Enantioselective Mannich Reactions of Ketimines: An Approach to Optically Active Quaternary α-amino Acid Derivatives

Direct Organocatalytic Enantioselective Mannich Reactions of Ketimines: An Approach to Optically Active Quaternary α-amino Acid Derivatives Direct rganocatalytic Enantioselective Mannich eactions of Ketimines: An Approach to ptically Active Quaternary α-amino Acid Derivatives Wei Zhang, Steen Saaby, and Karl Anker Jorgensen The Danish ational

More information

When something goes wrong. Goya: Mother showing her derformed child to two women Louvre, Paris

When something goes wrong. Goya: Mother showing her derformed child to two women Louvre, Paris 1 ew Catalytic Asymmestric eactions Karl Anker Jørgensen Danish ational eserach Foundation: Center for Catalysis Department of Chemistry, Aarhus University Denmark kaj@chem.au.dk When something goes wrong

More information

Stereoselective Organic Synthesis

Stereoselective Organic Synthesis Stereoselective rganic Synthesis Prabhat Arya Professor and Leader, Chemical Biology Program Dean, Academic Affairs, Institute of Life Sciences (An Associate Institute of University of yderabad Supported

More information

Use of Cp 2 TiCl in Synthesis

Use of Cp 2 TiCl in Synthesis Use of 2 TiCl in Synthesis eagent Control of adical eactions Jeff Kallemeyn May 21, 2002 eactions of 2 TiCl 1. Pinacol Coupling H H H 2. Epoxide pening H H E H Chemoselectivity Activated aldehydes (aromatic,

More information

A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols

A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols B() 2 H H B() 2 H H Hu, X.-D.; Fan, C.-A.; Zhang, F.-M.; Tu, Y.

More information

Suggested solutions for Chapter 40

Suggested solutions for Chapter 40 s for Chapter 40 40 PBLEM 1 Suggest mechanisms for these reactions, explaining the role of palladium in the first step. Ac Et Et BS () 4 2 1. 2. K 2 C 3 evision of enol ethers and bromination, the Wittig

More information

Nine-Step Enantioselective Total Synthesis of (+)-Minfiensine

Nine-Step Enantioselective Total Synthesis of (+)-Minfiensine ine-step nantioselective Total Synthesis of (+)-Minfiensine Jones, S. B.; Simmons, B.; MacMillan, D. W. C.* J. Am. Chem. Soc. 2009, ASAP. DI: 10.1021/ja906472m Kara George Wipf Group - Current Literature

More information

Chiral Bronsted Acids as Catalysts

Chiral Bronsted Acids as Catalysts Chiral Bronsted Acids as Catalysts Short Literature Seminar 6/3/08 Dustin aup BIL Derived osphoric Acids - First reported in 1992 as a ligand by irrung and coworkers. 4 h 2 irrung Tet. Lett. 1992, 33,

More information

Organic Tutorials 3 rd Year Michaelmas Transition Metals in Organic Synthesis: (General paper level) ! 1! Reading

Organic Tutorials 3 rd Year Michaelmas Transition Metals in Organic Synthesis: (General paper level) ! 1! Reading rganic Tutorials 3 rd Year Michaelmas 2010 Transition Metals in rganic Synthesis: (General paper level) Reading 1. Lecture Course, and suggested references from this. 2. Clayden, Greaves, Warren and Wothers.

More information

CEM 852 Final Exam. May 5, 2011

CEM 852 Final Exam. May 5, 2011 CEM 852 Final Exam May 5, 2011 This exam consists of 8 pages. Please make certain that your exam has all of the necessary pages. Total points possible for this exam are 150. In answering your questions,

More information

CHO. OMe. endo. xylene, 140 o C, 2 h 70% 1. CH 2 (OMe) 2, MeOH TsOH, rt 2. Bu 2 O, 1,2-dichloroethane 140 o C, 2 h 3. 6 M HCl, THF, rt 44%

CHO. OMe. endo. xylene, 140 o C, 2 h 70% 1. CH 2 (OMe) 2, MeOH TsOH, rt 2. Bu 2 O, 1,2-dichloroethane 140 o C, 2 h 3. 6 M HCl, THF, rt 44% VII Abstracts 2010 p1 2.4.12 Arene rganometallic Complexes of Chromium, Molybdenum, and Tungsten M. Uemura This review is an update to Section 2.4 and covers the literature from 1999 to 2010. (h 6 -Arene)chromium

More information

Three Type Of Carbene Complexes

Three Type Of Carbene Complexes Three Type f arbene omplexes arbene complexes have formal metal-to-carbon double bonds. Several types are known. The reactivity of the carbene and how it contributes to the overall electron counting is

More information

Catalytic Asymmetric Acyl Halide-Aldehyde Cyclocondensation Reactions of Substituted Ketenes

Catalytic Asymmetric Acyl Halide-Aldehyde Cyclocondensation Reactions of Substituted Ketenes Catalytic Asymmetric Acyl Halide-Aldehyde Cyclocondensation eactions of Substituted Ketenes Scott G. elson, Cheng Zhu, and Xiaoqiang Shen J. Am. Chem Soc. 2004, 126, 14-15. Michael C. Myers, Literature

More information

Suggested solutions for Chapter 41

Suggested solutions for Chapter 41 s for Chapter 41 41 PBLEM 1 Explain how this synthesis of amino acids, starting with natural proline, works. Explain the stereoselectivity of each step after the first. C 2 C 2 3 CF 3 C 2 2 Pd 2 C 2 +

More information

Organocopper Reagents

Organocopper Reagents rganocopper eagents General Information!!! why organocopper reagents? - Efficient method of C-C bond formation - Cu less electropositive than Li or Mg, so -Cu bond less polarized - consequences: 1. how

More information

Intramolecular Ene Reactions Utilizing Oxazolones and Enol Ethers Fisk, J.S. and Tepe, J..J J. Am. Chem. Soc., 2007, 129,

Intramolecular Ene Reactions Utilizing Oxazolones and Enol Ethers Fisk, J.S. and Tepe, J..J J. Am. Chem. Soc., 2007, 129, Intramolecular Ene Reactions Utilizing xazolones and Enol Ethers Fisk, J.S. and Tepe, J..J J. Am. Chem. Soc., 2007, 129, 3058-3059 - versus -Arylation of Aminoalcohols: rthogonal Selectivity in Copper-Based

More information

Short Literature Presentation 10/4/2010 Erika A. Crane

Short Literature Presentation 10/4/2010 Erika A. Crane Copper-Catalyzed Enantioselective Synthesis of trans-1- Alkyl-2-substituted Cyclopropanes via Tandem Conjugate Additions-Intramolecular Enolate Trapping artog, T. D.; Rudolph, A.; Macia B.; Minnaard, A.

More information

A Highly Efficient Organocatalyst for Direct Aldol Reactions of Ketones and Aldehydes

A Highly Efficient Organocatalyst for Direct Aldol Reactions of Ketones and Aldehydes A ighly Efficient rganocatalyst for Direct Aldol Reactions of Ketones and Aldehydes Zhuo Tang, Zhi-ua Yang, Xiao-ua Chen, Lin-Feng Cun, Ai-Qiao Mi, Yao-Zhong Jiang, and Liu-Zhu Gong Contribution from the

More information

Recent Development in. Tandem Radical Reactions (TRR)

Recent Development in. Tandem Radical Reactions (TRR) ecent Development in Tandem adical eactions (T) Feng u Jan. 13, 2006 Contents Brief Introduction of the istory of T Definition of T Intramolecular T Intermolecular T T as Key Steps in Total Synthesis of

More information

Chap 11. Carbonyl Alpha-Substitution Reactions and Condensation Reactions

Chap 11. Carbonyl Alpha-Substitution Reactions and Condensation Reactions Chap 11. Carbonyl Alpha-Substitution eactions and Condensation eactions Four fundamental reactions of carbonyl compounds 1) Nucleophilic addition (aldehydes and ketones) ) Nucleophilic acyl substitution

More information

OC 2 (FS 2013) Lecture 3 Prof. Bode. Redox Neutral Reactions and Rearrangements

OC 2 (FS 2013) Lecture 3 Prof. Bode. Redox Neutral Reactions and Rearrangements C 2 (F 203) Lecture 3 Prof. Bode edox eutral eactions and earrangements Types of edox eutral rganic eactions. eactions with no external reducing or oxidizing agent In this case, one part of the starting

More information

Strategies for Catalytic Asymmetric Electrophilic a Halogenation of Carbonyl Compounds

Strategies for Catalytic Asymmetric Electrophilic a Halogenation of Carbonyl Compounds Strategies for Catalytic Asymmetric Electrophilic a alogenation of Carbonyl Compounds 1 2 Y Catalyst [X + ] 1 X! 2 Y intermann, L. ; Togni, A. Angew. Chem. Int. Ed. 2000, 39, 4359 4362 amashima, Y.; Sodeoka,

More information

Stable gold(iii) catalysts by oxidative addition of a carboncarbon

Stable gold(iii) catalysts by oxidative addition of a carboncarbon Stable gold(iii) catalysts by oxidative addition of a carboncarbon bond Chung-Yeh Wu, Takahiro oribe, Christian Borch Jacobsen & F. Dean Toste ature, 517, 449-454 (2015) presented by Ian Crouch Literature

More information

Tips for taking exams in 852

Tips for taking exams in 852 Comprehensive Tactical Methods in rganic Synthesis W. D. Wulff 1) Know the relative reactivity of carbonyl compounds Tips for taking exams in 852 Cl > > ' > > ' N2 eg: 'Mg Et ' 1equiv. 1equiv. ' ' Et 50%

More information

TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R

TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R eaction using diarylprolinol silyl ether derivatives as catalyst 1) C Et K C 3, ) MgBr, TF TMS hexane, 0 o C TBS p- C 6 4, T C Et 85%, 99% ee Angew. Chem., nt. Ed., 44, 41 (005). rg. Synth., 017, 94, 5.

More information

Additions to Metal-Alkene and -Alkyne Complexes

Additions to Metal-Alkene and -Alkyne Complexes Additions to tal-alkene and -Alkyne Complexes ecal that alkenes, alkynes and other π-systems can be excellent ligands for transition metals. As a consequence of this binding, the nature of the π-system

More information

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: Z-enolates: M 2 M 2 syn 2 C 2 favored 2 M 2 anti disfavored E-enolates: M 2 2 C 3 C 3 C 2 favored 2 M M disfavored In

More information

Denmark s Base Catalyzed Aldol/Allylation

Denmark s Base Catalyzed Aldol/Allylation Denmark s Base Catalyzed Aldol/Allylation Evans Group Seminar ovember 1th, 003 Jimmy Wu Lead eferences: Denmark, S. E. Acc. Chem. es., 000, 33, 43 Denmark, S. E. Chem. Comm. 003, 167 Denmark, S. E. Chem.

More information

Strategies for Stereocontrolled Synthesis

Strategies for Stereocontrolled Synthesis Chemistry. Synthetic rganic Chemistry II Lecture 3 March, 2007 Rick L. Danheiser Massachusetts Institute of Technology! Thermodynamic Control Strategies! Kinetic Control Strategies! Strategies for the

More information

Synthetic Methodology. Using Tertiary Phosphines. as Nucleophilic Catalysts

Synthetic Methodology. Using Tertiary Phosphines. as Nucleophilic Catalysts Synthetic Methodology Using Tertiary osphines as Nucleophilic Catalysts 1 3 2 u 2 (P 3 ) 3 4 1 2 D. Ma, X. Lu 1988 1 2 Pd 2 (dba) 3.CCl 3 /P 3 /Ac or Pd(Ac) 2 /P 3 1 2 B. M. Trost 1988 1 3 2 u 2 (P 3 )

More information

Domino Reactions in Total Synthesis! Reporter: Tianhe Yang! Supervisors: Prof. Yang! Prof. Chen! Prof. Tang!

Domino Reactions in Total Synthesis! Reporter: Tianhe Yang! Supervisors: Prof. Yang! Prof. Chen! Prof. Tang! 1! Domino Reactions in Total Synthesis! Reporter: Tianhe Yang! Supervisors: Prof. Yang! Prof. Chen! Prof. Tang! 2! utline! 1. Brief Introduction! 2. ucleophilic Dominoes! 3. Electrophilc Dominoes! 4. Radical

More information

Asymmetric Lewis Base Strategies for Heterocycle Synthesis

Asymmetric Lewis Base Strategies for Heterocycle Synthesis Asymmetric Lewis Base trategies for eterocycle ynthesis Dr Andrew mith EatCEM, chool of Chemistry, University of t Andrews 1st cottish-japanese ymposium of rganic Chemistry, University of Glasgow Friday

More information

CHEM 330. Final Exam December 5, 2014 ANSWERS. This a closed-notes, closed-book exam. The use of molecular models is allowed

CHEM 330. Final Exam December 5, 2014 ANSWERS. This a closed-notes, closed-book exam. The use of molecular models is allowed CEM 330 Final Exam December 5, 2014 Your name: ASWERS This a closed-notes, closed-book exam The use of molecular models is allowed This exam consists of 12 pages Time: 2h 30 min 1. / 30 2. / 30 3. / 30

More information

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group Literature eport Functionalization of C(sp 3 ) Bonds Using a Transient Directing Group eporter: Mu-Wang Chen Checker: Yue Ji Date: 2016-04-05 Yu, J.-Q. et al. Science 2016, 351, 252-256. Scripps esearch

More information

Stereodivergent Catalysis. Aragorn Laverny SED Group Meeting July

Stereodivergent Catalysis. Aragorn Laverny SED Group Meeting July Stereodivergent Catalysis Aragorn Laverny SED Group Meeting July 31 2018 1 Stereodivergent Catalysis In the context of asymmetric synthesis, a stereodivergent process is one that allows access to any given

More information

R 2 R 4 Ln catalyst. This manuscript describes the methods for the synthesis and application of group 4 metallocene bis(trimethylsilyl)acetylene

R 2 R 4 Ln catalyst. This manuscript describes the methods for the synthesis and application of group 4 metallocene bis(trimethylsilyl)acetylene VII Abstracts 2011 p1 2.12.15 rganometallic Complexes of Scandium, Yttrium, and the Lanthanides P. Dissanayake, D. J. Averill, and M. J. Allen This manuscript is an update to the existing Science of Synthesis

More information

Metal Catalyzed Outer Sphere Alkylations of Unactivated Olefins and Alkynes

Metal Catalyzed Outer Sphere Alkylations of Unactivated Olefins and Alkynes Metal Catalyzed uter Sphere Alkylations of Unactivated lefins and Alkynes Stephen Goble rganic Super-Group Meeting Literature Presentation ctober 6, 2004 1 utline I. Background Introduction to Carbometallation

More information

EWG EWG EWG EDG EDG EDG

EWG EWG EWG EDG EDG EDG Functional Group Interconversions Lecture 4 2.1 rganic Synthesis A. Armstrong 20032004 3.4 eduction of aromatic systems We can reduce aromatic systems to cyclohexanes under very forcing hydrogenolytic

More information

Bifunctional Asymmetric Catalysts: Design and Applications. Junqi Li CHEM Sep 2010

Bifunctional Asymmetric Catalysts: Design and Applications. Junqi Li CHEM Sep 2010 Bifunctional Asymmetric Catalysts: Design and Applications Junqi Li CHEM 535 27 Sep 2010 Enzyme Catalysis vs Small-Molecule Catalysis Bronsted acid Lewis acid Lewis acid Bronsted base Activation of both

More information

Stereoselective Organic Synthesis

Stereoselective Organic Synthesis Stereoselective rganic Synthesis Prabhat Arya Professor and Leader, Chemical Biology Program Dean, Academic Affairs, Institute of Life Sciences (An Associate Institute of University of yderabad Supported

More information

Carbonyl Ylide Cycloadditions

Carbonyl Ylide Cycloadditions Carbonyl Ylide Cycloadditions cond. icholas Anderson Denmark Group eting 07/13/10 Carbonyl Ylides Uncharged 1,3-Dipole Conjugated π-system ighly reactive on-isolable Generate in-situ Carbonyl Ylide Stability

More information

Stereoselective reactions of the carbonyl group

Stereoselective reactions of the carbonyl group 1 Stereoselective reactions of the carbonyl group We have seen many examples of substrate control in nucleophilic addition to the carbonyl group (Felkin-Ahn & chelation control) If molecule does not contain

More information

A 1,3 Strain and the Anomeric Effect. Michael Shaghafi Chem. Topics Feb. 6, 2012

A 1,3 Strain and the Anomeric Effect. Michael Shaghafi Chem. Topics Feb. 6, 2012 A 1,3 Strain and the Anomeric Effect Michael Shaghafi Chem. Topics Feb. 6, 2012 Introduction: Definition of A 1,3 Strain m L L m m 3 L 3 1 1 otation about σ-bond between α-stereocenter and olefin is associated

More information

Shi Asymmetric Epoxidation

Shi Asymmetric Epoxidation Shi Asymmetric Epoxidation Chiral dioxirane strategy: R 3 + 1 xone, ph 10.5, K 2 C 3, H 2, C R 3 formed in situ catalyst (10-20 mol%) is prepared from D-fructose, and its enantiomer from L-sorbose oxone,

More information

Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group.

Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group. Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group. akatani, Y.; Koizumi, Y.; Yamasaki, R.; Saito, S. rg. Lett. 2008, 10, 2067-2070. An Annulation Reaction for the Synthesis

More information

Catalytic Reactions in Organic Synthesis

Catalytic Reactions in Organic Synthesis 17 April, 2008 Catalytic eactions in rganic Synthesis hodium Complexes and edox Catalysts Koichi AASAKA, Motoki YAMAE, Shunsuke CIBA Division of Chemistry and Biological Chemistry, School of ysical and

More information

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc Chiral Catalyst II ast lecture we looked at asymmetric catalysis for oxidation and reduction Many other organic transformations, this has led to much investigation Today we will look at some others...

More information

Total Synthesis of Oxazolomycin A

Total Synthesis of Oxazolomycin A Total Synthesis of xazolomycin A Me xazolomycin A Me Eto, K.; Yoshino, M.; Takahashi K.; Ishihara, J.; atakeyama S. rg. Lett. 2011, 13, 5398 Dimas Paz Wipf group- Current Literature ctober 8, 2011 Dimas

More information

Spiro Monophosphite and Monophosphoramidite Ligand Kit

Spiro Monophosphite and Monophosphoramidite Ligand Kit Spiro Monophosphite and Monophosphoramidite Ligand Kit metals inorganics organometallics catalysts ligands custom synthesis cgm facilities nanomaterials 15-5162 15-5150 15-5156 15-5163 15-5151 15-5157

More information

Chem 251 Fall Learning Objectives

Chem 251 Fall Learning Objectives Learning Objectives Chapter 8 (last semester) 1. Write an electron-pushing mechanism for an SN2 reaction between an alkyl halide and a nucleophile. 2. Describe the rate law and relative rate of reaction

More information

Lecture 6: Transition-Metal Catalysed C-C Bond Formation

Lecture 6: Transition-Metal Catalysed C-C Bond Formation Lecture 6: Transition-Metal Catalysed C-C Bond Formation (a) Asymmetric allylic substitution 1 u - d u (b) Asymmetric eck reaction 2 3 Ar- d (0) Ar 2 3 (c) Asymmetric olefin metathesis alladium π-allyl

More information

Palladium-Catalyzed Electrophilic Aromatic C H Fluorination

Palladium-Catalyzed Electrophilic Aromatic C H Fluorination Palladium-Catalyzed Electrophilic Aromatic C luorination +2 Pd II 2 B 4 C (5 mol %) SI (2 eq) MeC, rt 61%, 69:31 o:p C Yamamoto, K; Li, J.; Garber, J. A..; Rolfes, J. D.; Boursalian, G. B.; Borghs, J.

More information

Catalytic alkylation of remote C H bonds enabled by proton-coupled electron transfer

Catalytic alkylation of remote C H bonds enabled by proton-coupled electron transfer Catalytic alkylation of remote C bonds enabled by proton-coupled electron transfer Reporter: Ji Zhou Checker: Shubo u Date: 2016/11/14 Choi, G. J.; Zhu, Q.-L.; Miller, D. C.; Gu, C. J.; Knowles, R. R.

More information

Answers To Chapter 7 Problems.

Answers To Chapter 7 Problems. Answers To Chapter Problems.. Most of the Chapter problems appear as end-of-chapter problems in later chapters.. The first reaction is an ene reaction. When light shines on in the presence of light and

More information

David W.C. MacMillan: Career-in-Review. Yan Xu Dong Group Meeting Jan. 2, 2014

David W.C. MacMillan: Career-in-Review. Yan Xu Dong Group Meeting Jan. 2, 2014 David W.C. MacMillan: Career-in-Review Yan Xu Dong Group Meeting Jan. 2, 2014 David W.C. MacMillan: A Brief Introduction Career 1968 Born in Bellshill, Scotland. 1987-1991 Undergraduate degree in chemistry

More information

Total Synthesis of (+/-)-Goniomitine via a Formal Nitrile/Donor-Acceptor Cyclopropane [3 + 2] Cyclization

Total Synthesis of (+/-)-Goniomitine via a Formal Nitrile/Donor-Acceptor Cyclopropane [3 + 2] Cyclization Total Synthesis of (+/-)-Goniomitine via a Formal itrile/donor-acceptor Cyclopropane [3 + 2] Cyclization (-)-Goniomitine Christian L. Morales and Brian Pagenkopf* rganic Letters, ASAP Current Literature

More information

C h a p t e r 1. Enantioselective LUMO-Lowering Organocatalysis. The presentation of the Nobel Prize in 2001 to William S. Knowles, Ryoji Noyori,

C h a p t e r 1. Enantioselective LUMO-Lowering Organocatalysis. The presentation of the Nobel Prize in 2001 to William S. Knowles, Ryoji Noyori, 1 C h a p t e r 1 Enantioselective LUM-Lowering rganocatalysis. I. Introduction. The presentation of the obel Prize in 2001 to William S. Knowles, Ryoji oyori, and K. Barry Sharpless recognized the influence

More information

Answers To Chapter 1 In-Chapter Problems.

Answers To Chapter 1 In-Chapter Problems. Answers To Chapter In-Chapter Problems... The resonance structure on the right is better because every atom has its octet... C + C C C C C C C C C C C the second structure is hopelessly strained Chapter..

More information

Answers To Chapter 1 Problems.

Answers To Chapter 1 Problems. Answers To Chapter Problems.. (a) Both and in amides have lone pairs that can react with electrophiles. When the reacts with an electrophile +, a product is obtained for which two good resonance structures

More information

Advanced Organic Chemistry

Advanced Organic Chemistry D. A. Evans, G. Lalic Question of the day: Chemistry 530A TBS Me 2 C Me toluene, 130 C 70% TBS C 2 Me H H Advanced rganic Chemistry Me Lecture 16 Cycloaddition Reactions Diels _ Alder Reaction Photochemical

More information

Topic 18: Nucleophilic Sigma Bonds

Topic 18: Nucleophilic Sigma Bonds Professor David L. Van Vranken Chemistry 201: rganic eaction Mechanisms I Topic 18: ucleophilic Sigma Bonds E E C E eferences: terature cited ecall the Six Types of Canonical Frontier rbitals We ve already

More information

C-O C-O C-N A A. (KHMDS) C-N (scheme 1) C-O C-N (1)

C-O C-O C-N A A. (KHMDS) C-N (scheme 1) C-O C-N (1) C- C- C- A A 2007 2008 -t- (Boc)-- (MM)- () (KMDS) C- (scheme ) C- C- () C- C- C- C- C- C- B C- B (scheme 2) C- B (2) C- manzacidin A Manzacidine A (5) - ATP (fig. ) C- 5 Ph MM Boc ethyl lactate X n=,2

More information

[3,3]-Sigmatropic rearrangements

[3,3]-Sigmatropic rearrangements 1 [3,3]-Sigmatropic rearrangements heat R 1 R 3 R 1 R 3 R 1 R 3 A class of pericyclic reactions whose stereochemical outcome is governed by the geometric requirements of the cyclic transition state Reactions

More information

VI. Metal alkyls from oxidative addition / insertion

VI. Metal alkyls from oxidative addition / insertion V. Metal alkyls from oxidative addition / insertion A. Carbonylation - C insertion very facile, metal acyls easily cleaved, all substrates which undergo oxidative addition can in principle be carbonylated.

More information

Organic Electron Donors

Organic Electron Donors rganic Electron onors Yang Li Zakarian esearch Group epartment of Chemistry and Biochemistry University of California, anta Barbara 11/15/2018 2 2 2 2 2 2 TAF1 TAE TAF2 TTF BPL utlines rganic Electron

More information

Mechanistic Studies of Allylsilane Rearrangement

Mechanistic Studies of Allylsilane Rearrangement chanistic Studies of Allylsilane Rearrangement Thesis: The goal of our project is to determine the operating mechanism in the transformation of α-siloxy allylsilanes to vinyl silanes. Elucidating the mechanism

More information

Keisuke Suzuki. Baran lab Group Meeting 6/11/16. Shigenobu Umemiya. Akira Suzuki. Takanori Suzuki (Hokkaido University)

Keisuke Suzuki. Baran lab Group Meeting 6/11/16. Shigenobu Umemiya. Akira Suzuki. Takanori Suzuki (Hokkaido University) 197.D., Teruaki Mukaiyama, University of Tokyo 193 Assistant Professor, Keio University 197 Lecturer, Keio University 199 Assocate Professor, Keio University 1990 Visiting Professor, ET 1994 ull Professor,

More information

Recent Total Syntheses! Published in Nature!

Recent Total Syntheses! Published in Nature! Recent Total Syntheses! Published in ature! Eric ewcomb 8/21/2011! 2 S 3 2 2 ature Then and ow! First published ov. 4th, 1869 First issue states two objectives: 'The objective which it is proposed to attain

More information

Catalytic Asymmetric Pauson-Khand Reaction. Won-jin Chung 02/25/2003

Catalytic Asymmetric Pauson-Khand Reaction. Won-jin Chung 02/25/2003 Catalytic Asymmetric Pauson-Khand eaction U. Khand; G.. Knox; P. L. Pauson; W. E. Watts J. Chem. Soc. Chem. Commun. 1971, 36 Won-jin Chung 02/25/2003 The General Pattern of the Pauson-Khand eaction Co

More information

eatles Oasis - 199

eatles Oasis - 199 eatles - 1964 asis - 199 Biography 2001-present: University of 1997-2000: Professor, Shef 1988-1997: Various Reader 1986-1988: Post-doc with G 1983-1986: D at Universi 1983: Undergrad at Cambrid Enantioselective

More information

Memory of Chirality: A Strategy for Asymmetric Synthesis

Memory of Chirality: A Strategy for Asymmetric Synthesis Memory of Chirality: A trategy for Asymmetric ynthesis David J. Richard eptember 14, 2005 Two Forms of Chirality Absolute (tatic) Chirality 2 - Absolute chirality - orientation of functional groups at

More information

Enantioselective Protonations

Enantioselective Protonations Enantioselective Protonations Marc Timo Gieseler 25.02.2013 15.03.2013 Group Seminar AK Kalesse 1 verview Introduction Enantioselective Protonation of Cyclic Substrates Enantioselective Protonation of

More information

Organocatalysis Enabled by N-Heterocyclic Carbenes

Organocatalysis Enabled by N-Heterocyclic Carbenes rganocatalysis Enabled by -eterocyclic Carbenes Acyl Anions X Y omoenolates Acylazolium Azolium enolate Base Catalysis Jiaming Li 2018/04/27 tability of -heterocyclic Carbenes 2p x,y,z p π 2p x,y,z p π

More information

π-alkyne metal complex and vinylidene metal complex in organic synthesis

π-alkyne metal complex and vinylidene metal complex in organic synthesis Literature Seminar 080220 Kenzo YAMATSUGU (D1) π-alkyne metal complex and vinylidene metal complex in organic synthesis 0. Introduction ' ' = π-alkyne metal complex vinylidene metal complex ecently, electrophilic

More information

Literature Report. Atroposelective Synthesis of Axially Chiral Arylpyrroles and Styrenes. : Zhong Yan : Ji Zhou :

Literature Report. Atroposelective Synthesis of Axially Chiral Arylpyrroles and Styrenes. : Zhong Yan : Ji Zhou : Literature eport Atroposelective Synthesis of Axially Chiral ylpyrroles and Styrenes eporter Checker Date : Zhong Yan : Ji Zhou : 2017-06-05 Tan, B. et al. J. Am. Chem. Soc. 2017, 139, 1714. Tan, B. et

More information

Olefin Metathesis ROMP. L n Ru= ROMP n RCM. dilute

Olefin Metathesis ROMP. L n Ru= ROMP n RCM. dilute lefin Metathesis MP: ing-opening metathesis polymerization Thermodynamically favored for 3,4, 8, larger ring systems Bridging groups (bicyclic olefins) make ΔG polymerization more favorable as a result

More information

Requirements for an Effective Chiral Auxiliary Enolate Alkylation

Requirements for an Effective Chiral Auxiliary Enolate Alkylation Requirements for an Effective Chiral Auxiliary Enolate Alkylation 1. Xc must be low cost, and available in both enentiomeric forms 2. The cleavage of Xc from the substrate must occur under mild enough

More information

Enantioselective 1,1-Arylborylation of. Transfer with Pd Catalysis

Enantioselective 1,1-Arylborylation of. Transfer with Pd Catalysis Enantioselective 1,1-Arylborylation of Alkenes: Merging Chiral Anion Phase Transfer with Pd Catalysis Reporter: Lian-Jin Liu Checker: Wen-Xue Huang Date: 12/05/2015 F. Dean Toste University of California,

More information