Stable Operation of Li-Air Batteries

Size: px
Start display at page:

Download "Stable Operation of Li-Air Batteries"

Transcription

1 Stable Operation of Li-Air Batteries Ji-Guang Zhang Pacific Northwest National Laboratory Richland, Washington, U.S.A. The 4th Symposium on Energy Storage: Beyond Lithium Ion June 8, 211 1

2 2 Outline 1. Development of High Capacity Primary Li-air Batteries 2. Stability of Li-air Batteries Using Aqueous Electrolyte & NASICON Glass 3. Stability of Li-air Batteries Using Non-Aqueous Electrolyte 3.1 Reaction Products During Discharge Process 3.2 Reaction Products During Charge Process 4. Summary

3 3 1. Development of High Capacity Primary Li-air Batteries.8 mil polymer membrane Footprint: 4.6 cm x 4.6 cm; thickness = 3.8 mm Metal mesh.7 mm KB carbon electrode 1 mil separator with binding layer.5 mm Li foil Cu mesh mah/g carbon Voltage (V) Operated in ambient air (~2% RH) for 33 days Total weight of the complete battery: g Specific energy: 362 Wh/kg Cell capacity (Ah)

4 Hierarchically Porous Graphene as a Lithium-Air Battery Electrode a and b, SEM images of asprepared graphene-based air electrodes c and d, Discharged air electrode using FGS with C/O = 14 and C/O = 1, respectively. e, TEM image of discharged air electrode. f, Selected area electron diffraction pattern (SAED) of the particles: Li 2. 4 Jie et al, to be published

5 5 Graphene as a Lithium-Air Battery Electrode Record Capacity of 15, mah/g

6 Li Li + Anode Glass e - Li Li + Load Air Electrode Basic-electrolyte ½ H 2 O LiOH Li + stable coating 2. Stability of Li-air Batteries Using Aqueous Electrolyte & NASICON Glass In Aqueous Electrolyte e - ¼ Final product stays in air electrode Challenges: Stable glass electrolyte at strong acid and alkaline environment Chemical stability Electrochemical stability Single ion conductivity Li+ ½ + ½ H 2 O LiOH 6

7 7 Advantages and Challenges in Li-air Batteries Li/ Reaction in Different Electrolyte With precipitation (Li/electrolyte/carbon) Theoretical voltage Theoretical specific energy based on metal Theoretical specific energy based on reactants (excluding ) Theoretical specific Specific energy based energy based on reaction on full reaction products V Wh/kg Wh/kg Wh/kg Wh/kg Li + ½ ½ Li ** Li H 2 O LiOH. H 2 O Li HCl LiCl +.5H 2 O With no precipitation (Li & electrolyte) Li H 2 O LiOH+1.64H 2 O Li HCl +2.29H 2 O LiCl +2.79H 2 O * ~ * ~ * ~ * ~ * Voltage is a function of ph value: V = ph **J. P. Zheng et al, J. Electrochem. Soc., 158 (1), A43- A46 (211).

8 Voltage in Li-Air Batteries Strongly Depends on ph Value of Aqueous Electrolyte V(x)* = ph (V) Strong acid (HCl) electrolyte (1M, 4.21 V) Voltage (V) Neutral electrolyte (3.855 V) Strong base (LiOH) electrolyte (1M, 3.4V) ph *Xia et al, NATURE CHEMISTRY, VOL 2, SEPTEMBER, 76 (21) 8

9 9 Stability of LTAP Glass vs. ph 未処理 pristine LiCl 3 週間 LiCl(aq.) 1k 1.8 μm 塩基性 basic LiOH LiOH 1 週間 LiNO 3 (aq.) LiNO 3 3 週間 H 2 O H 2 O 半年超 HCl HCl 3 週間 塩基性 : Li 3 PO 4 の結晶析出 acidic 酸性 酸 性 : 表面が溶出 Yamamoto et al, presentation in Symposium on Energy Storage Beyond Lithium Ion,ORNL, Oct, 21

10 Limitation of Li-air Batteries in Acid Electrolyte ph Li HCl +2.29H 2 O LiCl +2.79H 2 O mol HCl ph = V Strong acidic (HCl) electrolyte (11. 5 M, 4.33 V) Voltage (V) Neutral electrolyte mol HCl ph = 7 V = V Glass Stability limit: 118 Wh/kg Soluability limit: 1353 Wh/kg HCl (M) Capacity (%) % 8.7% 1% To utilize the full capacity of acid electrolyte based Li-air batteries, ph value of the electrolyte has to be limited to be larger than 4. 1

11 Limitation of Li-air Batteries in Alkaline Electrolyte ph Neutral electrolyte mol LiOH ph = 7 V = V Li H 2 O LiOH+1.64H 2 O Voltage (V) mol LiOH ph = V.5 mol LiOH ph = V 1 mol LiOH ph = V 5.3 LiOH 3.4 V 3.2 Glass Stability limit: 85 Wh/kg Soluability limit: 444 Wh/kg LiOH (M) % Capacity (%) 19.2% 1% To utilize the full capacity of alkaline electrolyte based Li-air batteries, ph value of the electrolyte has to be limited to be less than 1. 11

12 Electrochemical Stability of NASICON Glass in Aqueous Electrolytes 2 18 EMF / mv LiCl EMF HCl EMF K+ ion in nonaqueous Linear (LiCl EMF) lg (C1/C2) NASICON solid electrolyte cannot distinguish between H + ions and Li + ions, at least on the interface. Both Li + and H + ion in chamber B participate in the electrochemical process. Increase of ph value in chamber B may indicate the reaction of H + with glass electrolyte. See Dr. Fei Ding s poster for more details 12

13 3. Stability of Li-air Batteries Using Non-Aqueous Electrolyte Anode Separator 2Li Air electrode Non-aqueous electrolyte -2 Challenges: Stable non-aqueous electrolyte in oxygen rich environment 2Li + 2e - Load Li 2 2e - Final product stays in air electrode In non-aqueous electrolyte a. 2Li + Li 2 In non-aqueous b. 2Li + electrolyte Li 2 2Li + Li 2 E = 3.1V Schematic of reaction processes in metal-air batteries. 13

14 14 Investigation on the Reaction Products in Li- Batteries - +? 2Li + Li 2 Teflon container In situ analysis in Coin cells holder Mass Spec ---C? GC ---C? Compressed, 2 atm Li/air coin cells filled with 1M LITFSI in PC/EC (low vapor pressure electrolyte ) ex situ analysis X-ray FTIR NMR Developed unique characterization tools

15 Reaction Products During Discharge Process - +? 2Li + Li 2 Teflon container In situ analysis in Mass Spec ---C? GC ---C? Coin cells holder Li/air coin cells with 1M LITFSI in different electrolytes ex situ analysis Compressed, 2 atm X-ray FTIR NMR

16 16 Li 2 Was Not Observed in the Discharge Products When Carbonate Solvents Was Used Intensity (a. u.) 2.8 V 2.7 V 2.6 V 2.5 V 2.4 V 2.2 V 2. V Teflon Li 2 CO 3 Li 2 Li 2 O KB carbon LPDC LEDC Theta (Degree) For all DODs (from 2.8 V to 2. V), nearly no Li 2 and Li 2 O were detected. Lithium alkylcarbonates (LPDC and LEDC) and Li 2 CO 3 are identified to be the primary discharge products.

17 Ether Based Electrolytes Can Lead to the Formation of Li 2 During Discharge 2Li + Li 2 Yes. If the right electrolytes are used Li2O2 Li2O Li2CO3 PC-EC Sebaconitrile Triglyme BDG TEPa Teflon DMSO Carbon 17 See Dr. Wu Xu s poster for more details

18 3.2 Reaction Products During Charge Process ? 2Li + Li 2 Teflon container In situ analysis in Coin cells holder Mass Spec ---C? GC ---C? Li/air coin cells filled with 1M LITFSI in PC/EC ex situ analysis Compressed, 2 atm X-ray FTIR NMR

19 19 What Can be Charged? (f) Li 2 O First cycle charge capacities: Cell voltage (V) (b) Li 2 CO 3 (e) Li 2 (d) LPDC (c) LEDC (a) SP a) SP: 4.1 mah/g b) Li 2 CO 3 : 4.8 mah/g c) LEDC: 99.6 mah/g (331 mah/g, 3.1%) d) LPDC: mah/g (38 mah/g, 49.8%) e) Li 2 : mah/g (1165 mah/g, 92.5%) a) Li 2 O: 63.3 mah/g Test time (hour) Li 2 : Highly chargeable (>92%) LEDC and LPDC: Partially chargeable (~42-69%) and is responsible for apparent recharge-ability reported before. Li 2 O, SP, and LiC 2 O 3 : Not chargeable

20 2 What Are the Charge Products? (GC/MS Analysis).3 (a) SP 4.4 (c) LEDC/SP 5.3 (e) Li 2 /SP 5 Gas composition (%).2.1 Voltage Argon CO/N 2 3 Voltage (V) Gas composition (%) C CO/N 2 Voltage 4 3 Voltage (V) Gas composition (%).2.1 Voltage CO/N 2 C 4 3 Voltage (V) CO H 2 2 O Time (hour) Argon H 2 O Time (hour) H 2 O Argon Time (hour).3 (b) Li 2 CO 3 /SP 4.4 (d) LPDC/SP 5.3 (f) Li 2 O/SP 5 Gas composition (%).2.1 Argon H 2 O Voltage CO/N 2 C 3 2 Voltage (V) Gas composition (%) Argon C CO/N 2 H 2 O Voltage 4 3 Voltage (V) Gas composition (%).2.1 H 2 O C Voltage CO/N 2 Argon 4 3 Voltage (V) Time (hour) Time (hour) Time (hour) a) SP mainly CO with minor C b) Li 2 CO 3 small amount of C and CO c) LEDC large amount of C d) LPDC large amount of C e) Li 2 mainly with minor C f) Li 2 O some C and CO. It cannot be oxidized.

21 Current / ua Charge Efficiency in Different Non-Aqueous Electrolytes in Oxygen-Rich Environment Cyclic voltammograms (1 mv/s) on glass carbon in and Ar saturated LiPF 6 in different non-aqueous solvent 3 2 No OER peak forlipf 6 /PC a) b) solution c) indicates that all the ORR products react with PC -3 LiPF 6 /PC -2 which leads to the products Current / ua E / V (Li/Li + ) ORR OER Ar E / V (Li / Li + ) DME (.1M): Q OER /Q ORR = 97.5% bkgrd Current / ua Current / ua LiPF 6 / EC bkgrd E / V (Li/Li + ) LiPF6 / BDG bkgrd E / V (Li / Li + ) Butyl Diglycol Ether (1.M) Q OER /Q ORR = 96.7% Current / ua 4 No OER peak for LiPF 6 /PC solution indicates that all the ORR -4 products react with PC LiPF 6 / DMC which leads to the products that can that can -8 not be oxidized/recharged bkgrd not be O within the potential 2 range potential 3 4range. 5 E / V (Li/Li + ) oxidized/recharged within the Large Q OER /Q ORR ratio for LiPF 6 /ether solution indicates that most ORR products can be oxidized/recharged within the potential range. See Dr. Yuyan Shao s poster for more details 21

22 22 What Are the Source of Limited Efficiency? --NMR Investigation on Discharged Electrodes The characteristic peak of carbon for Li 2 CO 3 is located at 169 ppm and the peak at 112 ppm is ascribed for Kel- F signal from the two end plugs inside the MAS rotor. Li 2 CO 3 is still found in all electrodes discharged in all different electrolytes. The formation of Li 2 CO 3 during discharge process of a Li-air battery will limit the cycle life of the batteries. Where is Li 2 CO 3 from carbon electrode or electrolyte?

23 Li 2 CO 3 Comes From the Electrolyte C-MAS NMR Study 13 C-labeled air electrode was prepared and discharged in the same electrolyte. IfLi 2 CO 3 comes from the carbon electrode, the 13 C- MAS NMR signal corresponding to Li 2 CO 3 would increase by nearly 9 folds using 99% 13 C labeling since the natural abundance of 13 C is only 1.1% without isotope enrichment. The signal of Li 2 CO 3 in the 13 C-labeled carbon electrode is not larger, but even less, than the corresponding signal in the natural abundance carbon electrode. This result unambiguously reveals that the Li 2 CO 3 is originated not from the carbon electrode but from the electrolyte. Oxygen and/or superoxide radical anions may oxidize the alkyl groups (CH 3 or CH 2 ) or ether bond (C O) into the carbonate groups that in turn form Li 2 CO See Dr. Jian Zhi Hu s poster for more details

24 24 4. Summary 1. Graphene based air electrode exhibits very high capacity (~15, mah/g) due to its dual pore structure and defect activity. 2. Specific energy of Li-air batteries with aqueous electrolyte is strongly limited by the operational ph window of NASICON glass. Electrolyte additives and other approaches which can stabilize ph value of electrolyte is critical for long term operation of aqueous based Li-air batteries. 3. In carbonate electrolytes, the majority of the discharge products in Li-air batteries are lithium alkylcarbonates and Li 2 CO 3. Apparent rechargeability is due to oxidation of Lithium alkylcarbonates which release C and CO. This process is not sustainable. 4. Li 2 can be formed during discharge process when ether based electrolytes were used, Li 2 CO 3 was still observed and need to be minimized. 5. Electrolyte is the key for rechargeable, long term operation of Li-air batteries.

25 Acknowledgments Technical Team: Wu Xu, Jie Xiao, V. Viswanathan, Jianzhi Hu, Vijayakumar Murugesan, Silas A. Towne, Phillip Koech, Donghai Mei, Fei Ding, Zimin Nie, Yuyan Shao, Jian Zhang, Dehong Hu, Deyu Wang, Jun Liu, and Gordon L. Graff Financial support: Defense Advanced Research Program Agency Laboratory Directed R&D Program (Transformational Materials Science Initiative) of PNNL 25

The Role of Cesium Cation in Controlling Interphasial. Chemistry on Graphite Anode in Propylene Carbonate-Rich

The Role of Cesium Cation in Controlling Interphasial. Chemistry on Graphite Anode in Propylene Carbonate-Rich Supporting Information The Role of Cesium Cation in Controlling Interphasial Chemistry on Graphite Anode in Propylene Carbonate-Rich Electrolytes Hongfa Xiang,,# Donghai Mei, + Pengfei Yan, Priyanka Bhattacharya,

More information

Critical Role of Redox Mediator in Suppressing Charging Instabilities of Lithium-Oxygen Batteries

Critical Role of Redox Mediator in Suppressing Charging Instabilities of Lithium-Oxygen Batteries Supporting information Critical Role of Redox Mediator in Suppressing Charging Instabilities of Lithium-Oxygen Batteries Zhuojian Liang and Yi-Chun Lu * Electrochemical Energy and Interfaces Laboratory,

More information

Supporting Information. Bi-functional Catalyst with Enhanced Activity and Cycle Stability for. Rechargeable Lithium Oxygen Batteries

Supporting Information. Bi-functional Catalyst with Enhanced Activity and Cycle Stability for. Rechargeable Lithium Oxygen Batteries Supporting Information Hierarchical Mesoporous/Macroporous Perovskite La 0.5 Sr 0.5 CoO 3-x Nanotubes: a Bi-functional Catalyst with Enhanced Activity and Cycle Stability for Rechargeable Lithium Oxygen

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 214 Electronic Supplementary Information Ultrathin and High-Ordered CoO Nanosheet

More information

Supplemental Information. Crumpled Graphene Balls Stabilized. Dendrite-free Lithium Metal Anodes

Supplemental Information. Crumpled Graphene Balls Stabilized. Dendrite-free Lithium Metal Anodes JOUL, Volume 2 Supplemental Information Crumpled Graphene Balls Stabilized Dendrite-free Lithium Metal Anodes Shan Liu, Aoxuan Wang, Qianqian Li, Jinsong Wu, Kevin Chiou, Jiaxing Huang, and Jiayan Luo

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for SC Advances. This journal is The oyal Society of Chemistry 2014 Supporting Information Novel Functional Material Carboxymethyl Cellulose Lithium (CMC-Li) Enhanced

More information

A Low-overpotential Potassium-Oxygen Battery Based on Potassium Superoxide

A Low-overpotential Potassium-Oxygen Battery Based on Potassium Superoxide Supporting information A Low-overpotential Potassium-Oxygen Battery Based on Potassium Superoxide Xiaodi Ren, and Yiying Wu* Department of Chemistry and Biochemistry, The Ohio State University, 100 West

More information

Modeling the next battery generation: Lithium-sulfur and lithium-air cells

Modeling the next battery generation: Lithium-sulfur and lithium-air cells Modeling the next battery generation: Lithium-sulfur and lithium-air cells D. N. Fronczek, T. Danner, B. Horstmann, Wolfgang G. Bessler German Aerospace Center (DLR) University Stuttgart (ITW) Helmholtz

More information

High-Performance Silicon Battery Anodes Enabled by

High-Performance Silicon Battery Anodes Enabled by Supporting Information for: High-Performance Silicon Battery Anodes Enabled by Engineering Graphene Assemblies Min Zhou,, Xianglong Li, *, Bin Wang, Yunbo Zhang, Jing Ning, Zhichang Xiao, Xinghao Zhang,

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figures Supplementary Figure 1 Scanning electron microscopy image of a lithium dendrite. Dendrite formation in lithium ion batteries pose significant safety issues

More information

Layered reduced graphene oxide with nanoscale interlayer gaps as a stable

Layered reduced graphene oxide with nanoscale interlayer gaps as a stable Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes Dingchang Lin, Yayuan Liu, Zheng Liang, Hyun-Wook Lee, Jie Sun, Haotian Wang, Kai Yan, Jin Xie, Yi

More information

Two Dimensional Graphene/SnS 2 Hybrids with Superior Rate Capability for Lithium ion Storage

Two Dimensional Graphene/SnS 2 Hybrids with Superior Rate Capability for Lithium ion Storage Electronic Supplementary Information Two Dimensional Graphene/SnS 2 Hybrids with Superior Rate Capability for Lithium ion Storage Bin Luo, a Yan Fang, a Bin Wang, a Jisheng Zhou, b Huaihe Song, b and Linjie

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1. Photographs show the titration experiments by dropwise adding ~5 times number of moles of (a) LiOH and LiOH+H 2 O, (b) H 2 O 2 and H 2 O 2 +LiOH, (c) Li

More information

Supplementary Figure 1 A schematic representation of the different reaction mechanisms

Supplementary Figure 1 A schematic representation of the different reaction mechanisms Supplementary Figure 1 A schematic representation of the different reaction mechanisms observed in electrode materials for lithium batteries. Black circles: voids in the crystal structure, blue circles:

More information

Supplementary Information Supplementary Figures

Supplementary Information Supplementary Figures Supplementary Information Supplementary Figures Supplementary Figure 1 SEM images of the morphologies of Li metal after plating on Cu (1st cycle) from different electrolytes. The current density was 0.5

More information

5th International Conference on Information Engineering for Mechanics and Materials (ICIMM 2015)

5th International Conference on Information Engineering for Mechanics and Materials (ICIMM 2015) 5th International Conference on Information Engineering for Mechanics and Materials (ICIMM 2015) Facile synthesis of multiporous CuCo2O4 microspheresas efficient electrocatalysts for rechargeable Li-O2

More information

Supporting Information

Supporting Information Supporting Information A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes Nian Liu,, Hui Wu,, Matthew T. McDowell, Yan Yao, Chongmin Wang, and Yi Cui *,, Department of Chemistry,

More information

Anion-redox nanolithia cathodes for Li-ion batteries

Anion-redox nanolithia cathodes for Li-ion batteries ARTICLE NUMBER: 16111 Anion-redox nanolithia cathodes for Li-ion batteries Zhi Zhu 1,2, Akihiro Kushima 1,2, Zongyou Yin 1,2, Lu Qi 3 *, Khalil Amine 4, Jun Lu 4 * and Ju Li 1,2 * 1 Department of Nuclear

More information

SiOC Anode Material Derived from Poly(phenyl carbosilane) for Lithium Ion Batteries

SiOC Anode Material Derived from Poly(phenyl carbosilane) for Lithium Ion Batteries Journal of the Korean Ceramic Society Vol. 50, No. 6, pp. 480~484, 2013. http://dx.doi.org/10.4191/kcers.2013.50.6.480 SiOC Anode Material Derived from Poly(phenyl carbosilane) for Lithium Ion Batteries

More information

A Highly Efficient Double-Hierarchical Sulfur Host for Advanced Lithium-Sulfur Batteries

A Highly Efficient Double-Hierarchical Sulfur Host for Advanced Lithium-Sulfur Batteries Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2017 Supporting Information A Highly Efficient Double-Hierarchical Sulfur Host for Advanced

More information

Nitrogen-doped graphene and its electrochemical applications

Nitrogen-doped graphene and its electrochemical applications Nitrogen-doped and its electrochemical applications Yuyan Shao, a Sheng Zhang, a Mark H Engelhard, a Guosheng Li, a Guocheng Shao, a Yong Wang, a Jun Liu, a Ilhan A. Aksay, b Yuehe Lin*,a a Pacific Northwest

More information

Supporting Information

Supporting Information Supporting Information A Novel Potassium-Ion Hybrid Capacitor Based on an Anode of K 2 Ti 6 O 13 Micro-Scaffolds Shengyang Dong,, Zhifei Li, Zhenyu Xing, Xianyong Wu, Xiulei Ji*, and Xiaogang Zhang*, Jiangsu

More information

Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid

Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid Electronic Supplementary Information Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid Electrolytes Wen Lu, * Adam Goering, Liangti Qu, and Liming Dai * 1. Synthesis of

More information

Mg, Zn) as High Voltage Layered Cathodes for

Mg, Zn) as High Voltage Layered Cathodes for Supporting Information for Honeycomb-Ordered Na 3 Ni 1.5 M 0.5 BiO 6 (M = Ni, Cu, Mg, Zn) as High Voltage Layered Cathodes for Sodium-Ion Batteries Peng-Fei Wang, a,d, Yu-Jie Guo, a,d, Hui Duan, a,d Tong-Tong

More information

An inorganic-organic hybrid supramolecular nanotube as high-performance anode for lithium ion batteries

An inorganic-organic hybrid supramolecular nanotube as high-performance anode for lithium ion batteries Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2018 An inorganic-organic hybrid supramolecular nanotube as high-performance anode for lithium

More information

All-Solid-State Lithium Organic Battery with Composite Polymer Electrolyte and Pillar[5]quinone Cathode

All-Solid-State Lithium Organic Battery with Composite Polymer Electrolyte and Pillar[5]quinone Cathode All-Solid-State Lithium rganic Battery with Composite Polymer Electrolyte and Pillar[5]quinone Cathode Zhiqiang Zhu, Meiling Hong, Dongsheng Guo, Jifu Shi, Zhanliang Tao, Jun Chen, * Key Laboratory of

More information

Metal Organic Framework-Derived Metal Oxide Embedded in Nitrogen-Doped Graphene Network for High-Performance Lithium-Ion Batteries

Metal Organic Framework-Derived Metal Oxide Embedded in Nitrogen-Doped Graphene Network for High-Performance Lithium-Ion Batteries Supporting Information for Metal Organic Framework-Derived Metal Oxide Embedded in Nitrogen-Doped Graphene Network for High-Performance Lithium-Ion Batteries Zhu-Yin Sui, Pei-Ying Zhang,, Meng-Ying Xu,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Directly anchoring 2D NiCo metal-organic frameworks

More information

Experimental and Modeling Studies of Transport. Limitations in Lithium O2 Battery

Experimental and Modeling Studies of Transport. Limitations in Lithium O2 Battery Experimental and Modeling Studies of Transport Limitations in Lithium O2 Battery By Farhad Mohazabrad B.Sc., Yasuj University (Iran), 2007 Submitted to the graduate degree program in Mechanical Engineering

More information

Electronic Supplementary Information. A Flexible Alkaline Rechargeable Ni/Fe Battery Based on Graphene Foam/Carbon Nanotubes Hybrid Film

Electronic Supplementary Information. A Flexible Alkaline Rechargeable Ni/Fe Battery Based on Graphene Foam/Carbon Nanotubes Hybrid Film Electronic Supplementary Information A Flexible Alkaline Rechargeable Ni/Fe Battery Based on Graphene Foam/Carbon Nanotubes Hybrid Film Jilei Liu,, Minghua Chen, Lili Zhang, Jian Jiang, Jiaxu Yan, Yizhong

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Na3V2(PO4)2F3-SWCNT: A High Voltage Cathode for

More information

Hierarchical MoO 2 /Mo 2 C/C Hybrid Nanowires for High-Rate and. Long-Life Anodes for Lithium-Ion Batteries. Supporting Information

Hierarchical MoO 2 /Mo 2 C/C Hybrid Nanowires for High-Rate and. Long-Life Anodes for Lithium-Ion Batteries. Supporting Information Supporting Information Hierarchical MoO 2 /Mo 2 C/C Hybrid Nanowires for High-Rate and Long-Life Anodes for Lithium-Ion Batteries Lichun Yang, a Xiang Li, a Yunpeng Ouyang, a Qingsheng Gao, b Liuzhang

More information

High-Performance Flexible Asymmetric Supercapacitors Based on 3D. Electrodes

High-Performance Flexible Asymmetric Supercapacitors Based on 3D. Electrodes Supporting Information for: High-Performance Flexible Asymmetric Supercapacitors Based on 3D Porous Graphene/MnO 2 Nanorod and Graphene/Ag Hybrid Thin-Film Electrodes Yuanlong Shao, a Hongzhi Wang,* a

More information

Batteries: Now and Future

Batteries: Now and Future Batteries: Now and Future Yi Cui Department of Materials Science and Engineering Stanford University Stanford Institute for Materials and Energy Sciences SLAC National Accelerator Laboratory Mobile Phone

More information

Electronic Supplementary Information. Facile Synthesis of Germanium-Graphene Nanocomposites. and Their Application as Anode Material for Lithium Ion

Electronic Supplementary Information. Facile Synthesis of Germanium-Graphene Nanocomposites. and Their Application as Anode Material for Lithium Ion Supplementary Material (ESI) for CrystEngCommunity This journal is (c) The Royal Society of Chemistry 2011 Electronic Supplementary Information Facile Synthesis of Germanium-Graphene Nanocomposites and

More information

Supporting Information

Supporting Information Supporting Information Sodium and Lithium Storage Properties of Spray-Dried Molybdenum Disulfide-Graphene Hierarchical Microspheres Sujith Kalluri, a,b, Kuok Hau Seng, a, Zaiping Guo, a,b* Aijun Du, c

More information

Polymer graphite composite anodes for Li-ion batteries

Polymer graphite composite anodes for Li-ion batteries Polymer graphite composite anodes for Li-ion batteries Basker Veeraraghavan, Bala Haran, Ralph White and Branko Popov University of South Carolina, Columbia, SC 29208 Plamen Atanassov University of New

More information

Chapter - 8. Summary and Conclusion

Chapter - 8. Summary and Conclusion Chapter - 8 Summary and Conclusion The present research explains the synthesis process of two transition metal oxide semiconductors SnO 2 and V 2 O 5 thin films with different morphologies and studies

More information

School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, , Singapore. b

School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, , Singapore. b Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Dopamine-Mo VI complexation-assisted large-scale aqueous synthesis of single-layer MoS 2 /carbon

More information

Inexpensive Colloidal SnSb Nanoalloys as Efficient Anode Materials for Lithium- and Sodium-Ion Batteries

Inexpensive Colloidal SnSb Nanoalloys as Efficient Anode Materials for Lithium- and Sodium-Ion Batteries Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supplementary Information for Inexpensive Colloidal SnSb Nanoalloys as

More information

Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries

Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries Supporting Information Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries Zhiqiang Zhu, Shiwen Wang, Jing Du, Qi Jin, Tianran Zhang,

More information

Micro/Nanostructured Li-rich Cathode Materials with. Enhanced Electrochemical Properties for Li-ion. Batteries

Micro/Nanostructured Li-rich Cathode Materials with. Enhanced Electrochemical Properties for Li-ion. Batteries Supporting information Layered/spinel Heterostructured and Hierarchical Micro/Nanostructured Li-rich Cathode Materials with Enhanced Electrochemical Properties for Li-ion Batteries Ya-Ping Deng, Zu-Wei

More information

Covalent-Organic Frameworks: Potential Host Materials for Sulfur Impregnation in Lithium-Sulfur Batteries

Covalent-Organic Frameworks: Potential Host Materials for Sulfur Impregnation in Lithium-Sulfur Batteries Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Covalent-Organic Frameworks: Potential Host Materials for Sulfur Impregnation

More information

Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc-Air Battery

Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc-Air Battery Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc-Air Battery Longtao Ma 1, Shengmei Chen 1, Zengxia Pei 1 *, Yan Huang 2, Guojin Liang 1, Funian Mo 1,

More information

Supporting Information. Electrocatalytic polysulfide-traps for controlling redox shuttle process of Li-S battery

Supporting Information. Electrocatalytic polysulfide-traps for controlling redox shuttle process of Li-S battery Supporting Information Electrocatalytic polysulfide-traps for controlling redox shuttle process of Li-S battery Hesham Al Salem, Ganguli Babu, Chitturi V. Rao and Leela Mohana Reddy Arava * Department

More information

Highly stable and flexible Li-ion battery anodes based on TiO 2 coated

Highly stable and flexible Li-ion battery anodes based on TiO 2 coated Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting Information for Highly stable and flexible Li-ion battery anodes

More information

Layered Sb 2 Te 3 and its nanocomposite: A new and outstanding electrode material for superior rechargeable Li-ion batteries

Layered Sb 2 Te 3 and its nanocomposite: A new and outstanding electrode material for superior rechargeable Li-ion batteries Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supplementary Information: Layered Sb 2 Te 3 and its nanocomposite: A new

More information

How to develop post lithium ion battery. based on new concepts

How to develop post lithium ion battery. based on new concepts How to develop post lithium ion battery based on new concepts A new type Li-Cu battery &Li-Air battery/fuel cell Dr. Haoshen ZHOU (hs.zhou@aist.go.jp) Group Leader of Energy Interface Technology Group

More information

Electronic Supplementary Information. Lithium-Oxygen Batteries: Bridging Mechanistic Understanding and Battery Performance

Electronic Supplementary Information. Lithium-Oxygen Batteries: Bridging Mechanistic Understanding and Battery Performance Electronic Supplementary Information Lithium-Oxygen Batteries: Bridging Mechanistic Understanding and Battery Performance Yi-Chun Lu, a Betar M. Gallant, b David G. Kwabi, b Jonathon R. Harding, c Robert

More information

High-Performance Si Anodes with Highly Conductive and. Thermally Stable Titanium Silicide Coating Layer

High-Performance Si Anodes with Highly Conductive and. Thermally Stable Titanium Silicide Coating Layer Electronic Supplementary information High-Performance Si Anodes with Highly Conductive and Thermally Stable Titanium Silicide Coating Layer kji Park, Jung-In Lee, Myung-Jin Chun, Jin-Tak Yeon, Seungmin

More information

Supplementary Figure 1 Supplementary Figure 2

Supplementary Figure 1 Supplementary Figure 2 Supplementary Figure 1 XRD pattern of pure 3D PGC framework. The pure 3D PGC was obtained by immersing NaCl Na 2 S@GC in water to remove the NaCl and Na 2 S. The broad reflection peak in the range of 15

More information

ELECTROCHEMICAL CELLS

ELECTROCHEMICAL CELLS ELECTROCHEMICAL CELLS Electrochemistry 1. Redox reactions involve the transfer of electrons from one reactant to another 2. Electric current is a flow of electrons in a circuit Many reduction-oxidation

More information

Investigation of Polymers Used in Lithium. Oxygen Batteries as Electrolyte and. Cathode Materials

Investigation of Polymers Used in Lithium. Oxygen Batteries as Electrolyte and. Cathode Materials Investigation of Polymers Used in Lithium Oxygen Batteries as Electrolyte and Cathode Materials A thesis presented for the degree of Master by Research By Jinqiang Zhang, B. Sc. University of Technology,

More information

EFFECTS OF AIR ELECTRODE AND APROTIC SOLVENT ON LITHIUM-OXYGEN BATTERY PERFORMANCE

EFFECTS OF AIR ELECTRODE AND APROTIC SOLVENT ON LITHIUM-OXYGEN BATTERY PERFORMANCE EFFECTS OF AIR ELECTRODE AND APROTIC SOLVENT ON LITHIUM-OXYGEN BATTERY PERFORMANCE 1 MICHAELTANG, 2 CHUN-CHEN YANG, 3 SHINGJIANG JESSIE LUE 1 Department of Chemical and Materials Engineering, Chang Gung

More information

High Voltage Magnesium-ion Battery Enabled by Nanocluster Mg3Bi2

High Voltage Magnesium-ion Battery Enabled by Nanocluster Mg3Bi2 Supporting Information High Voltage Magnesium-ion Battery Enabled by Nanocluster Mg3Bi2 Alloy Anode in Noncorrosive Electrolyte Yi-Hong Tan,, Wei-Tang Yao,*, Tianwen Zhang, Tao Ma, Lei-Lei Lu, Fei Zhou,

More information

Redox reactions Revision galvanic cells and fuel cells Lesson 7 Revise fuel cells by visiting the link below. www.dynamicscience.com.au/tester/solutions1/chemistry/redox/fuelcl.html 1) A fuel cell uses

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Hierarchical MoS 2 microboxes constructed

More information

Hydrothermally Activated Graphene Fiber Fabrics for Textile. Electrodes of Supercapacitors

Hydrothermally Activated Graphene Fiber Fabrics for Textile. Electrodes of Supercapacitors Supporting Information for Hydrothermally Activated Graphene Fiber Fabrics for Textile Electrodes of Supercapacitors Zheng Li, Tieqi Huang, Weiwei Gao*, Zhen Xu, Dan Chang, Chunxiao Zhang, and Chao Gao*

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary material (ESI) for Nanoscale Electronic Supplementary Information (ESI) Synthesis of Nanostructured Materials by Using Metal-Cyanide Coordination Polymers and Their Lithium Storage

More information

An Advanced Anode Material for Sodium Ion. Batteries

An Advanced Anode Material for Sodium Ion. Batteries Layered-Structure SbPO 4 /Reduced Graphene Oxide: An Advanced Anode Material for Sodium Ion Batteries Jun Pan, Shulin Chen, # Qiang Fu, Yuanwei Sun, # Yuchen Zhang, Na Lin, Peng Gao,* # Jian Yang,* and

More information

Electrodeposited nickel hydroxide on nickel foam with ultrahigh. capacitance

Electrodeposited nickel hydroxide on nickel foam with ultrahigh. capacitance Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance Guang-Wu Yang, Cai-Ling Xu* and Hu-Lin Li* College of Chemistry and Chemical Engineering, Lanzhou University, 73 (PR China) 1.

More information

Sustainable Li/Na-Ion Batteries

Sustainable Li/Na-Ion Batteries Sustainable Li/Na-Ion Batteries Chunsheng Wang 1223C Chemical and Nuclear Engineering Department of Chemical & Biomolecular Engineering Email: cswang@umd.edu Phone: (301) 405-0352 Application of Li-ion

More information

Phytic Acid-Assisted Formation of Hierarchical Porous CoP/C Nanoboxes for Enhanced Lithium Storage and Hydrogen Generation

Phytic Acid-Assisted Formation of Hierarchical Porous CoP/C Nanoboxes for Enhanced Lithium Storage and Hydrogen Generation Phytic Acid-Assisted Formation of Hierarchical Porous CoP/C Nanoboxes for Enhanced Lithium Storage and Hydrogen Generation Xuxu Wang, ab Zhaolin Na, a Dongming Yin, a Chunli Wang, ab Yaoming Wu, a Gang

More information

Supporting Information

Supporting Information Supporting Information Facet-Selective Deposition of FeO x on α-moo 3 Nanobelts for Lithium Storage Yao Yao, 1 Nuo Xu, 2 Doudou Guan, 1 Jiantao Li, 1 Zechao Zhuang, 1 Liang Zhou,*,1 Changwei Shi 1, Xue

More information

Supporting Information for: High Rate Sodium Ion Battery Anodes from Block Copolymer Templated Mesoporous Nickel- Cobalt Carbonates and Oxides

Supporting Information for: High Rate Sodium Ion Battery Anodes from Block Copolymer Templated Mesoporous Nickel- Cobalt Carbonates and Oxides Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting Information for: High Rate Sodium Ion Battery Anodes from Block

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/1/e1501038/dc1 Supplementary Materials for Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life Xiaoli Dong,

More information

Environmental Science

Environmental Science / Journal Homepage Energy & Environmental Science Volume 3 Number 12 2010 Pages 1813 2020 Energy& Environmental Science www.rsc.org/ees Volume 3 Number 12 December 2010 Pages 1813 2020 ISSN 1754-5692 COVER

More information

Graphene oxide hydrogel at solid/liquid interface

Graphene oxide hydrogel at solid/liquid interface Electronic Supplementary Information Graphene oxide hydrogel at solid/liquid interface Jiao-Jing Shao, Si-Da Wu, Shao-Bo Zhang, Wei Lv, Fang-Yuan Su and Quan-Hong Yang * Key Laboratory for Green Chemical

More information

Please do not adjust margins. Electronic supplementary information

Please do not adjust margins. Electronic supplementary information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry Please do 2017 not adjust margins Journal of Materials Chemistry A Electronic

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supporting information Layered Nickel metal-organic framework for high

More information

Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li-O 2 battery

Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li-O 2 battery Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Supporting Information Dual redox catalysts for oxygen reduction and evolution reactions:

More information

Structural and Electronic properties of platinum nanoparticles studied by diffraction and absorption spectroscopy

Structural and Electronic properties of platinum nanoparticles studied by diffraction and absorption spectroscopy The 4 th SUNBEAM Workshop Structural and Electronic properties of platinum nanoparticles studied by in situ x-ray x diffraction and in situ x-ray x absorption spectroscopy Hideto Imai Fundamental and Environmental

More information

17.1 Redox Chemistry Revisited

17.1 Redox Chemistry Revisited Chapter Outline 17.1 Redox Chemistry Revisited 17.2 Electrochemical Cells 17.3 Standard Potentials 17.4 Chemical Energy and Electrical Work 17.5 A Reference Point: The Standard Hydrogen Electrode 17.6

More information

Capacity fade studies of Lithium Ion cells

Capacity fade studies of Lithium Ion cells Capacity fade studies of Lithium Ion cells by Branko N. Popov, P.Ramadass, Bala S. Haran, Ralph E. White Center for Electrochemical Engineering, Department of Chemical Engineering, University of South

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2016. Supporting Information for Adv. Mater., DOI: 10.1002/adma.201604015 High Performance Graphene/Ni 2 P Hybrid Anodes for Lithium

More information

High Performance Rechargeable Lithium-Iodine Batteries using Triiodide/Iodide Redox Couples in an Aqueous Cathode

High Performance Rechargeable Lithium-Iodine Batteries using Triiodide/Iodide Redox Couples in an Aqueous Cathode Supplementary Information High Performance Rechargeable Lithium-Iodine Batteries using Triiodide/Iodide Redox Couples in an Aqueous Cathode Yu Zhao, Lina Wang, and Hye Ryung Byon* Byon Initiative Research

More information

Supplementary Figure 1 a-c, The viscosity fitting curves of high-molecular-weight poly(vinyl alcohol) (HMW-PVA) (a), middle-molecular-weight

Supplementary Figure 1 a-c, The viscosity fitting curves of high-molecular-weight poly(vinyl alcohol) (HMW-PVA) (a), middle-molecular-weight Supplementary Figure 1 a-c, The viscosity fitting curves of high-molecular-weight poly(vinyl alcohol) (HMW-PVA) (a), middle-molecular-weight poly(vinyl alcohol) (MMW-PVA) (b) and low-molecular-weight poly(vinyl

More information

Supporting Information

Supporting Information Supporting Information Fe 3 O 4 @Carbon Nanosheets for All-Solid-State Supercapacitor Electrodes Huailin Fan, Ruiting Niu, & Jiaqi Duan, Wei Liu and Wenzhong Shen * State Key Laboratory of Coal Conversion,

More information

Lithium Batteries. Rechargeable batteries

Lithium Batteries. Rechargeable batteries Lithium Batteries One of the main attractions of lithium as an anode material is its position as the most electronegative metal in the electrochemical series combined with its low density, thus offering

More information

Chemistry: The Central Science. Chapter 20: Electrochemistry

Chemistry: The Central Science. Chapter 20: Electrochemistry Chemistry: The Central Science Chapter 20: Electrochemistry Redox reaction power batteries Electrochemistry is the study of the relationships between electricity and chemical reactions o It includes the

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting Information Title: A sulfonated polyaniline with high density and high rate Na-storage

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder Zhi Wei Seh, Qianfan Zhang, Weiyang Li, Guangyuan Zheng, Hongbin Yao,

More information

Self-assembled pancake-like hexagonal tungsten oxide with ordered mesopores for supercapacitors

Self-assembled pancake-like hexagonal tungsten oxide with ordered mesopores for supercapacitors Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supporting Information Self-assembled pancake-like hexagonal

More information

LITHIUM ION BATTERIES

LITHIUM ION BATTERIES LITHIUM ION BATTERIES 1 Electrodes & Jelly roll 2 3 Types of Lithium ion batteries 원형, 원통형, cylindrical 각형, prismatic 폴리머, polymer (pouch type) 4 Materials composing electrodes 5 6 Terminology-1

More information

Sulfur-Infiltrated Porous Carbon Microspheres with Controllable. Multi-Modal Pore Size Distribution for High Energy Lithium-

Sulfur-Infiltrated Porous Carbon Microspheres with Controllable. Multi-Modal Pore Size Distribution for High Energy Lithium- Electronic Supplementary Information Sulfur-Infiltrated Porous Carbon Microspheres with Controllable Multi-Modal Pore Size Distribution for High Energy Lithium- Sulfur Batteries Cunyu Zhao, a Lianjun Liu,

More information

Nitrogen-doped Activated Carbon for High Energy Hybridtype Supercapacitor

Nitrogen-doped Activated Carbon for High Energy Hybridtype Supercapacitor Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2015 SUPPORTING INFORMATION Nitrogen-doped Activated Carbon for High Energy Hybridtype

More information

Bulk graphdiyne powder applied for highly efficient lithium storage

Bulk graphdiyne powder applied for highly efficient lithium storage Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Bulk graphdiyne powder applied for highly efficient lithium storage Shengliang Zhang, ab Huibiao

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information In situ growth of heterostructured Sn/SnO nanospheres

More information

Direct Atomic-Scale Confirmation of Three-Phase Storage Mechanism in Li 4 Ti 5 O 12 Anodes for Room-Temperature Sodium-Ion Batteries

Direct Atomic-Scale Confirmation of Three-Phase Storage Mechanism in Li 4 Ti 5 O 12 Anodes for Room-Temperature Sodium-Ion Batteries SUPPLEMENTARY INFORMATION FOR Direct Atomic-Scale Confirmation of Three-Phase Storage Mechanism in Li 4 Ti 5 O 12 Anodes for Room-Temperature Sodium-Ion Batteries Authors: Yang Sun 1,*, Liang Zhao 1,*,

More information

Generation of Hydrogen Peroxide In ORR Over Low Loadings of Pt/C Catalysts

Generation of Hydrogen Peroxide In ORR Over Low Loadings of Pt/C Catalysts Generation of Hydrogen Peroxide In ORR Over Low Loadings of Pt/C Catalysts Raja Swaidan The Cooper Union Advisor: Dr. Branko N. Popov Electrochemical Engineering 26 July 2007 Overview of Research Studied

More information

Redox and Electrochemistry

Redox and Electrochemistry Redox and Electrochemistry 1 Electrochemistry in Action! 2 Rules for Assigning Oxidation Numbers The oxidation number of any uncombined element is 0. The oxidation number of a monatomic ion equals the

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012658 TITLE: Synthesis of Nanosized Lithium Manganate For Lithium-ion Secondary Batteries DISTRIBUTION: Approved for public

More information

Enhancing potassium-ion battery performance by defect and. interlayer engineering

Enhancing potassium-ion battery performance by defect and. interlayer engineering Electronic Supplementary Material (ESI) for Nanoscale Horizons. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information for Enhancing potassium-ion battery performance

More information

Ultrathin V 2 O 5 Nanosheet Cathodes: Realizing Ultrafast Reversible Lithium Storage

Ultrathin V 2 O 5 Nanosheet Cathodes: Realizing Ultrafast Reversible Lithium Storage Supplementary Information for Ultrathin V 2 O 5 Nanosheet Cathodes: Realizing Ultrafast Reversible Lithium Storage Xianhong Rui, ab Ziyang Lu, a Hong Yu, a Dan Yang, a Huey Hoon Hng, a Tuti Mariana Lim,*

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Porous MoS 2 @C hetero shell with Si yolk structure

More information

Supporting Information

Supporting Information Supporting Information Anion Redox Chemistry in the Cobalt Free 3d Transition Metal Oxide Intercalation Electrode Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2 Kun Luo a, Matthew R. Roberts a, Niccoló Guerrini a, Nuria

More information

Supplementary Information. Seeding Approach to Noble Metal Decorated Conducting Polymer Nanofiber Network

Supplementary Information. Seeding Approach to Noble Metal Decorated Conducting Polymer Nanofiber Network Supplementary Information Seeding Approach to Noble Metal Decorated Conducting Polymer Nanofiber Network Zhen Liu, Selcuk Poyraz, Yang Liu, Xinyu Zhang* Department of Polymer and Fiber Engineering, Auburn

More information

Rechargeable Lithium-Air Batteries Using Mathematical Modelling

Rechargeable Lithium-Air Batteries Using Mathematical Modelling Rechargeable Lithium-Air Batteries Using Mathematical Modelling A Thesis Submitted by Ukrit Sahapatsombut For the Degree of Doctor of Philosophy School of Chemical Engineering and Advanced Materials Newcastle

More information

Nickel Sulfides Freestanding Holey Films as Air-Breathing Electrodes for. Flexible Zn-Air Batteries

Nickel Sulfides Freestanding Holey Films as Air-Breathing Electrodes for. Flexible Zn-Air Batteries Nickel Sulfides Freestanding Holey Films as Air-Breathing Electrodes for Flexible Zn-Air Batteries Kyle Marcus, 1,# Kun Liang, 1,# Wenhan Niu, 1,# Yang Yang 1,* 1 NanoScience Technology Center, Department

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is The Royal Society of Chemistry 2017 Supporting Information Asymmetric hybrid energy storage of battery-type nickel

More information